A hybrid CPU-GPU Fast Poisson Solver for Direct Numerical Simulations

Neha Saripella, Emily Ku, Nithin Adidela

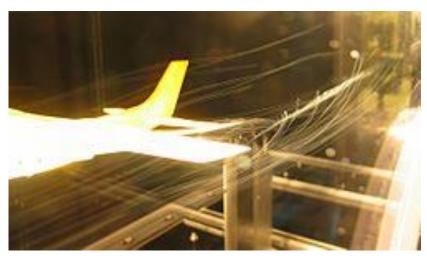
Computational Fluid Mechanics Lab (<u>https://sites.uw.edu/cfmlab/</u>) William E. Boeing Department of Aeronautics & Astronautics

Motivation: Turbulent flows

Storm of turbulent gases in the Omega/Swan Nebula¹ Scale: Light years; Re: ~10¹⁰

Falcon 9 Exhaust plume³ Scale: ~100m, Re: ~10⁹

Eruption of Mount St. Helens on 18th May 1980² Scale: ~1km, Re: ~10⁶

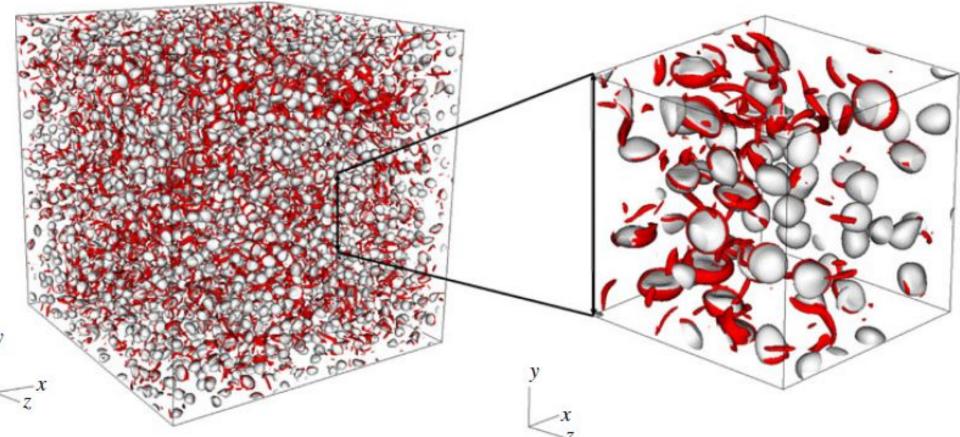


Aircraft wake turbulence⁴ Scale: ~100m, Re: ~10⁷

Experimentally accessible flows

Turbulent jet visualized using Laser-induced fluorescence⁵

Wing-tip vortices visualized using helium-filled bubbles⁶


Experimentally inaccessible flows

- **Not feasible:** Stellar flows, volcanoes, cardiovascular flows, etc.
- **Expensive:** High Re turbulent flows in wind tunnels, flight tests, etc.
- **Unavailable**: Multiphase flows like particle-laden flows in clouds, droplet-laden flows in combustion chambers, etc.

Computational Fluid Dynamics (CFD)

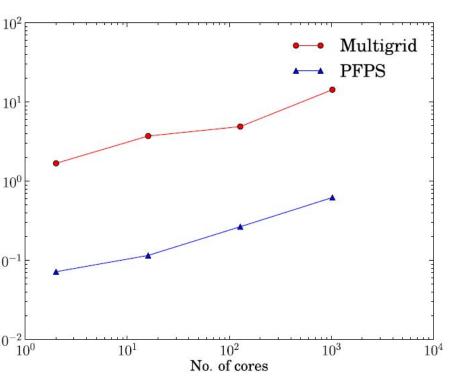
Croenables in-silico experiments with the following tools.

- Direct Numerical Simulation (DNS) is a research tool that accurately solves the governing equations of the flow.
- Reynolds Averaged Navier-Stokes (RANS) simulation is an industry standard tool to approximate turbulent flows.
- Others (e.g., Large-Eddy Simulation (LES), Detached ation (DEC) ata

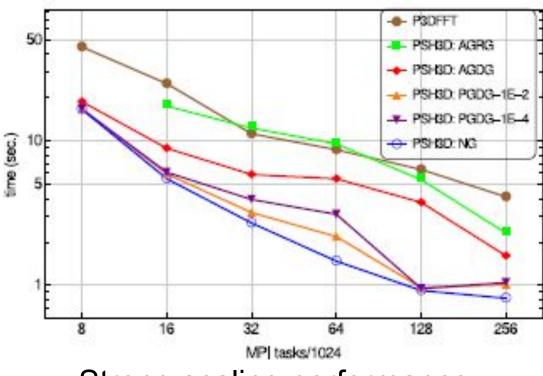
DNS of 3130 droplets interacting with grid turbulence, simulating a spray combustion process to study atomization (Dodd & Ferrante JFM 2016)

Direct Numerical Simulation (DNS)

- DNS of high Reynolds number turbulent flows require high memory and petascale/exascale super computers.
- DNS solvers for incompressible flows like the pressure correction method often requires a solution to the Poisson equation at every time step.
- E.g., Ansys Fluent, OpenFOAM, etc.
- The Poisson solver is the bottleneck of such codes.

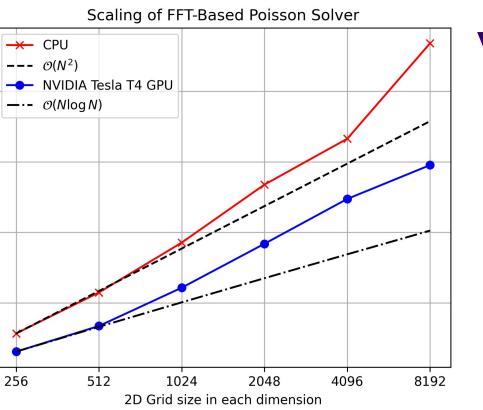

Poisson equation

 $\nabla^2 p^{n+1} = \nabla \cdot \left| \left(1 - \frac{\rho_0}{\rho^{n+1}} \right) \nabla p^* \right| + \frac{\rho_0}{\Delta t} \nabla \cdot u^*$



Poisson solvers

- Poisson equation is solved using the following methods. Direct methods involve constructing a linear system of eqns. and matrix inversion - computationally expensive.
 - Iterative methods are simple but converge slowly.
 - Eg. Gauss-Jacobi, Multigrid method, etc.
 - Direct spectral methods with Fast-Fourier Transform for periodic domains – Fast but difficult to 3D arallaliza



Weak scaling comparison of Multigrid method & Fast Poisson solver at 128³/2 grid points/core (Dodd & Ferrante *JCP* 2014)

Strong scaling performance comparison of various Fast Poisson solvers on an 8192³ grid (Adams et al. *Parallel CFD* 2015)

Hybrid CPU-GPU Fast Poisson

₩ 10⁻¹

A 2D benchmark test case with periodic BCs is tested.

- FFT-based Fast Poisson on a CPU using NumPy and on an NVIDIA Telsa T4 GPU using CuPy
- Plan: Implement in 3D.
- Plan: Implement hybrid **CPU-GPU Fast Poisson solver** using MPI+CUDA.

Summary: Poisson solver is the bottleneck for DNS of turbulent flows. We explore a hybrid CPU-GPU Fast Poisson solver to improve performance.

References:¹NASA, ESA, and J. Hester (ASU); ²R. Krimmel, USGS Cascades Volcano Observatory; ³Austin