

Who's Responsible? Disentangling Safety in Multi-Agent Interactions

Isaac Remy University of Washington

Abstract

From autonomous driving to package delivery, ensuring safe yet efficient multi-agent interaction is challenging as the interaction dynamics are influenced by hard-to-model factors such as social norms and contextual cues. Understanding these influences can aid in the design and evaluation of socially-aware autonomous agents whose behaviors are aligned with human values. In this work, we seek to codify factors governing safe multi-agent interactions via the lens of *responsibility*, i.e., an agent's willingness to deviate from their desired control to accommodate safe interaction with others. Specifically, we propose a datadriven modeling approach based on control barrier functions and differentiable optimization that efficiently learns agents' responsibility allocation from data. We demonstrate on synthetic and real-world datasets that we can obtain an interpretable and quantitative understanding of how much agents adjust their behavior to ensure the safety of others given their current environment.

Learning Responsibility Allocations 0.7 Responsibilities Context X

Fig. 3: Towards a contextual responsibility model. Given a set of agent states X, we train a neural network γ_{θ} to perform prediction of the agents' responsibility allocations.

$$\begin{split} \min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}^{i}, u_{1:N}^{i}) \in \mathcal{D}} \Delta(u_{1:N}^{i}, \tilde{u}_{1:N}^{i}, \gamma_{\theta}(\mathbf{x}^{i})) \\ \text{s.t.} \ \tilde{u}_{1:N}^{i} = \text{proj}(\pi_{1:N}^{\text{desire}}(\mathbf{x}^{i}); \mathbf{x}^{i}, b, \alpha, \gamma_{\theta}(\mathbf{x}^{i})), \\ \mathbf{1}^{T} \gamma_{\theta}(\mathbf{x}^{i}) = 1, \quad 0 \leq \gamma_{\theta}(\mathbf{x}^{i}) \leq 1. \end{split}$$

Loss function: With *differentiable optimization*, we can use the original CBF-QP to infer how good of a responsibility prediction we made for an observed datapoint $(\mathbf{x}^i, u_{1:N}^i)$.

Karen Leung University of Washington

the observation that people must deviate from their ideal path to ensure joint safety constraints.

Experiments and Future Work

Fig. 6: Comparison of responsibility landscape after training on different sub-datasets. In the lane-swapping dataset, agents start at multiple places relative to one another. When both agents started with same initial states, our model couldn't learn a meaningful difference in responsibility allocations across different states, sparking an interest in a probabilistic approach.

Responsibility via Control Barrier Functions

CBF-QP: For unsafe some desired control that multiple wish to take, a *control* agents function constraint barrier projects to the nearest safe control, given their state and a responsibility allocation γ .

 $\underset{u_1,...,u_N,\epsilon}{\operatorname{argmin}} \sum_{i=1}^{n} \left(\gamma_i \| u_i - u_i^{\operatorname{desire}} \|_2^2 + \beta_1 \| u_i \|_2^2 \right) + \beta_2 \epsilon^2$ s.t. $\nabla b(\mathbf{x})^T \left[\tilde{f}(\mathbf{x}) + \sum_{i=1}^N g_i(\mathbf{x}) u_i \right] + \alpha(b(\mathbf{x})) \ge -\epsilon$ $u_1 \in \mathcal{U}_1, \dots, u_N \in \mathcal{U}_N$ $\epsilon \geq 0.$ 2: A visualization Fig. responsibility CBF constraint in a 2agent setting, each with a 1D control

 $\operatorname{proj}(u_{1:N}^{\operatorname{desired}};\mathbf{x},b,\alpha,\gamma) \coloneqq$

space. In the red zone (unsafe controls), the star represents the joint control the agents would like to take. The CBF-QP projects to the safe controls on the boundary.

Fig. 5: Responsibility inference with a neural network trained on real-world lane-swapping data.

