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Learning Responsibility Allocations Experiments and Future Work
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Fig. 3: Towards a contextual responsibility model. Given o o Xion[m]
a set of agent states X, we train a neural network 70 to Fig. 4: Convergence to ground truth responsibility allocations Fig. 5: Responsibility inference with a neural network
perform prediction of the agents’ responsibility allocations. using synthetically generated data for 2 and 5 agent scenarios. trained on real-world lane-swapping data.
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Loss function: With differentiable optimization, we can use
the original CBF-QP to infer how good of a responsibility
prediction we made for an observed datapoint (x*, u}. ).

Fig. 6: Comparison of responsibility landscape after training on different sub-datasets. In the lane-swapping dataset, agents
start at multiple places relative to one another. When both agents started with same initial states, our model couldn’t learn a
meaningful difference in responsibility allocations across different states, sparking an interest in a probabilistic approach.
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