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Baseline method.:

 MPPI: MPPI framework utilizing a Gaussian prior

« CFM: A Sample from the reward-guided CFM

« Diff-MPPI. Guided-Diffusion model as a prior

Environments:

« UCY: pedestrians

« SDD: heterogenous obstacles

 Crowd Simulation: dense and reactive
obstacles

Evaluation metrics:

Planning safe and effective robot behavior in dynamic, human-
centric environments remains a core challenge due to the need to
handle uncertainty, adapt in real-time, and ensure safety. In this
work, we introduce a unified generation-refinement framework
bridging learning and optimization with a novel reward-guided
conditional flow matching (CFM) model and model predictive
path integral (MPPI) control. Our key innovation is in the
iIncorporation of a bidirectional information exchange: samples
from a reward-guided CFM model provide informed priors for MPPI
refinement, while the optimal trajectory from MPPI warm-starts the
next CFM generation. Using autonomous social navigation as a

motivating application, we demonstrate that our approach can | | * Collision: percentage of simulations that violate
flexibly adapt to dynamic environments to satisfy safety Fig. 1: Dynamic human-dense the collision radius
requirements in real-time. environments. * Reaching: distance between the goal and the
final state
* Acceleration: average linear and angular
Background and Motivation Reward-Guided CFM acceleration .
* Time: computation time required to compute a
Limitations of Existing Methods: Key Advantage control input at the current time step
* Enables real-time adaptation to dynamic environments Table 1 o f _
Optimization-based methods: without retraining able 1: Quantitative performance comparison.
v' Real-time planning * Achieves optimal balance between generation quality and Method | Coll. (%) | Reach(m)| Accel. (m/s?) | Accel. (rad/s?) | Time (s) |
: . UCY Dataset
v" Constraint handling C corréputatlortlal efficiency MPPI 0.67 0.994+1.79  5.09 % 0.05 6.83 £ 0.04 0.006
: ore once CFM 5.67 1.06 £1.01 8.22 4+ 3.14 7.32 +1.72 0.036
‘/ ComPUtatlonal p . . Diff-MPPI 0.33 0.61 4+ 0.20 12.99 £ 0.66 30.16 4= 2.50 0.121
efficiency * |ncorporate reward-based guidance into the CFM CFM-MPPI | 0.00  0.10+003 1.58+0.05  3.80-050 0076
x Dynamic settings trajectory generation process SDD Dataset
- - - - MPPI 1.67 0.56 £0.25 5.05 £ 0.05 6.80 £ 0.04 0.006
x Oversimplified « Evaluate rewards on estimated noise-free trajectories CEM 500 1104162 743+958 764+ 967 0.035
T ) Reward Diff-MPPI 0.67 0.624+0.19  13.3440.56 31.45 +2.73 0.120
INnitialization _ _ _ CFM-MPPI 0.00 0.10+0.04 1.54+0.05 3.55+0.34 0.076
« Safety Reward using control barrier function (CBF): Simulated Crowd Environment with Social Force Model
I - I ' . . MPPI 6.67 0.82 4+ 0.64 9.46 & 0.04 6.80 £ 0.04 0.006
Le?-r_nmg based methods (e.g., diffusion rORE (Xty U—t) = vy - mm{()’ h(Xt) + Q/(h(xt))} CFM 2233 2734240 1015+3.27  9.57+2.41 0.036
pO|ICI€S)Z Diff-MPPI 2.00 216 £1.97  13.744+0.52  30.26 +2.91 0.122
CFM-MPPI 1.00 0.49 + 0.69 2.57 +0.06 4.97 + 0.21 0.076
v" Flexible behavior * Goal Reward ,
v" Multimodal Tgoal(XTa Xg) — _HXT — XgH ® : Start
uncertainty handling ® : Goal
x Slow inference I Context . 7 — 1 . ® : Human
x No guarantees 0 CFM T ODE : Human Trajectory
mmwm e  Trajectory Samples

Promising Direction:
Unified generation-refinement framework
with conditional flow matching (CFM) u

guided
Ti+1

Reward

v Real-time planning

v" Flexible behavior

v Multimodal
uncertainty handling

v" Constraint handling

y

Gradient

(b) w/ week guidance (c) w/ strong guidance

Fig. 2: Overview of the guided CFM algorithm.

Integration with MPPI

Integrate CFM framework with Model Predictive Path Integral (MPPI) control, which is compatible with
general sampling-based MPC techniques

Fig. 4. Multimodality of samples from CFM.

Benefits
» Uses multiple trajectories from CFM as informed samples instead of random perturbations (a) wio warm-start (b) w/ warm-start
* |Incorporates additional constraints and dynamics not covered by CFM Fig. 5: Warm-Start of CFM-MPPI.

* Creates bidirectional feedback loop: MPC output warm-starts next CFM step
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Fig. 3. Overview of the proposed unified planning framework for dynamic environments: A safety-guided CFM model than rermg_ on a_smgle solution _
generates diverse trajectories as priors for sampling-based MPC, which in turn warm-starts the next CFM sampling step. | |* MPPI algorlth.m fl.IterS extreme behaviors for
balanced navigation
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