

Towards Safe and Predictable Social Navigation for Autonomous Ground Vehicles

Kazuki Mizuta University of Washington

Karen Leung University of Washington

Abstract

Planning safe and effective robot behavior in dynamic, humancentric environments remains a core challenge due to the need to handle uncertainty, adapt in real-time, and ensure safety. In this work, we introduce a unified generation-refinement framework bridging learning and optimization with a novel **reward-guided** conditional flow matching (CFM) model and model predictive path integral (MPPI) control. Our key innovation is in the incorporation of a **bidirectional information exchange**: samples from a reward-guided CFM model provide informed priors for MPPI refinement, while the optimal trajectory from MPPI warm-starts the next CFM generation. Using autonomous social navigation as a motivating application, we demonstrate that our approach can flexibly adapt to dynamic environments to satisfy safety requirements in real-time.

Experiments

Baseline method:

- **MPPI:** MPPI framework utilizing a Gaussian prior
- **CFM:** A Sample from the reward-guided CFM
- **Diff-MPPI:** Guided-Diffusion model as a prior **Environments**:
- UCY: pedestrians
- **SDD:** heterogenous obstacles
- **Crowd Simulation:** dense and reactive

Fig. 1: Dynamic human-dense environments.

Background and Motivation

Limitations of Existing Methods:

Optimization-based methods:

- Real-time planning
- Constraint handling
- Computational efficiency
- Dynamic settings
- Oversimplified initialization

Learning-based methods (e.g., diffusion policies):

Flexible behavior

without retraining Achieves optimal balance between generation quality and computational efficiency

Enables real-time adaptation to dynamic environments

Core Concept

Key Advantage

Reward-Guided CFM

- Incorporate reward-based guidance into the CFM trajectory generation process
- Evaluate rewards on estimated noise-free trajectories Reward
- Safety Reward using control barrier function (CBF):

 $r_{\text{CBF}}(\mathbf{x}_t, \mathbf{u}_t) = \gamma_t \cdot \min\{0, \dot{h}(\mathbf{x}_t) + \alpha(h(\mathbf{x}_t))\}$

Goal Reward

obstacles

Evaluation metrics:

- **Collision:** percentage of simulations that violate the collision radius
- **Reaching:** distance between the goal and the final state
- **Acceleration:** average linear and angular acceleration
- **Time:** computation time required to compute a control input at the current time step

Table 1: Quantitative performance comparison.

Method	Coll. (%) \downarrow	Reach (m) \downarrow	Accel. $(m/s^2) \downarrow$	Accel. (rad/s ²) \downarrow	Time (s) \downarrow
UCY Dataset					
MPPI	0.67	0.99 ± 1.79	5.09 ± 0.05	6.83 ± 0.04	0.006
CFM	5.67	1.06 ± 1.01	8.22 ± 3.14	7.32 ± 1.72	0.036
Diff-MPPI	0.33	0.61 ± 0.20	12.99 ± 0.66	30.16 ± 2.50	0.121
CFM-MPPI	0.00	0.10 ± 0.03	1.58 ± 0.05	3.89 ± 0.50	0.076
SDD Dataset					
MPPI	1.67	0.56 ± 0.25	5.05 ± 0.05	6.80 ± 0.04	0.006
CFM	5.00	1.19 ± 1.62	7.43 ± 2.58	7.64 ± 2.67	0.035
Diff-MPPI	0.67	0.62 ± 0.19	13.34 ± 0.56	31.45 ± 2.73	0.120
CFM-MPPI	0.00	0.10 ± 0.04	$\bf 1.54 \pm 0.05$	3.55 ± 0.34	0.076
Simulated Crowd Environment with Social Force Model					
MPPI	6.67	0.82 ± 0.64	5.46 ± 0.04	6.80 ± 0.04	0.006
CFM	22.33	2.73 ± 2.40	10.15 ± 3.27	9.57 ± 2.41	0.036
Diff-MPPI	2.00	2.16 ± 1.97	13.74 ± 0.52	30.26 ± 2.91	0.122
CFM-MPPI	1.00	$\boldsymbol{0.49 \pm 0.69}$	2.57 ± 0.06	4.97 ± 0.21	0.076
)			

Promising Direction: Unified generation-refinement framework with conditional flow matching (CFM)

Real-time planning Flexible behavior Multimodal uncertainty handling Constraint handling

Fig. 2: Overview of the guided CFM algorithm.

Integration with MPPI

Integrate CFM framework with Model Predictive Path Integral (MPPI) control, which is compatible with general sampling-based MPC techniques

Benefits

- Uses multiple trajectories from CFM as informed samples instead of random perturbations
- Incorporates additional constraints and dynamics not covered by CFM Creates bidirectional feedback loop: MPC output warm-starts next CFM step

(a) w/o guidance

(b) w/ week guidance Fig. 4: Multimodality of samples from CFM.

(c) w/ strong guidance

(a) w/o warm-start

(b) w/ warm-start

Fig. 5: Warm-Start of CFM-MPPI.

Fig. 3: Overview of the proposed unified planning framework for dynamic environments: A safety-guided CFM model generates diverse trajectories as priors for sampling-based MPC, which in turn warm-starts the next CFM sampling step.

Takeaways

Safety & Efficiency

Best performance on safety, reaching, acceleration

Real-Time Performance

Compatible with 10Hz planning

Robustness

- Handles reactive agents
- Generates multiple trajectory candidates rather than relying on a single solution
- MPPI algorithm filters extreme behaviors for balanced navigation