
Baseline method:

• MPPI: MPPI framework utilizing a Gaussian prior 

• CFM: A Sample from the reward-guided CFM

• Diff-MPPI: Guided-Diffusion model as a prior

Environments:

• UCY: pedestrians

• SDD: heterogenous obstacles

• Crowd Simulation: dense and reactive 

obstacles

Evaluation metrics:

• Collision: percentage of simulations that violate 

the collision radius

• Reaching: distance between the goal and the 

final state

• Acceleration: average linear and angular 

acceleration

• Time: computation time required to compute a 

control input at the current time step

Karen Leung
University of Washington

Abstract

Background and Motivation

Experiments

Integrate CFM framework with Model Predictive Path Integral (MPPI) control, which is compatible with 
general sampling-based MPC techniques

Benefits

• Uses multiple trajectories from CFM as informed samples instead of random perturbations

• Incorporates additional constraints and dynamics not covered by CFM

• Creates bidirectional feedback loop: MPC output warm-starts next CFM step

Integration with MPPI

Towards Safe and Predictable Social Navigation for 
Autonomous Ground Vehicles
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Fig. 4: Multimodality of samples from CFM.
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Table 1: Quantitative performance comparison.

Safety & Efficiency

• Best performance on safety, reaching, 

acceleration

Real-Time Performance

• Compatible with 10Hz planning

Robustness

• Handles reactive agents

• Generates multiple trajectory candidates rather 

than relying on a single solution

• MPPI algorithm filters extreme behaviors for 

balanced navigation

Takeaways

: Goal

: Human

: Human Trajectory

: Trajectory Samples

Fig. 5: Warm-Start of CFM-MPPI.

(a) w/o warm-start (b) w/ warm-start

(a) w/o guidance

(b) w/ week guidance (c) w/ strong guidance

Key Advantage

• Enables real-time adaptation to dynamic environments 

without retraining

• Achieves optimal balance between generation quality and 

computational efficiency

Core Concept

• Incorporate reward-based guidance into the CFM 

trajectory generation process

• Evaluate rewards on estimated noise-free trajectories

Reward

• Safety Reward using control barrier function (CBF):

• Goal Reward

Reward-Guided CFM

Fig. 2: Overview of the guided CFM algorithm.

Fig. 3: Overview of the proposed unified planning framework for dynamic environments: A safety-guided CFM model 

generates diverse trajectories as priors for sampling-based MPC, which in turn warm-starts the next CFM sampling step.

Planning safe and effective robot behavior in dynamic, human-
centric environments remains a core challenge due to the need to 
handle uncertainty, adapt in real-time, and ensure safety. In this 
work, we introduce a unified generation-refinement framework 
bridging learning and optimization with a novel reward-guided 
conditional flow matching (CFM) model and model predictive 
path integral (MPPI) control. Our key innovation is in the 
incorporation of a bidirectional information exchange: samples 
from a reward-guided CFM model provide informed priors for MPPI 
refinement, while the optimal trajectory from MPPI warm-starts the 
next CFM generation. Using autonomous social navigation as a 
motivating application, we demonstrate that our approach can 
flexibly adapt to dynamic environments to satisfy safety 
requirements in real-time.

Fig. 1: Dynamic human-dense 

environments.

Limitations of Existing Methods:

Learning-based methods (e.g., diffusion 

policies):

✓ Real-time planning

✓ Constraint handling

✓ Computational 

efficiency

× Dynamic settings

× Oversimplified 

initialization

✓ Flexible behavior

✓ Multimodal 

uncertainty handling

× Slow inference

× No guarantees

Promising Direction:

Unified generation-refinement framework

with conditional flow matching (CFM)

✓ Real-time planning

✓ Flexible behavior

✓ Multimodal 

uncertainty handling

✓ Constraint handling

Optimization-based methods:
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