
QOCO: A Quadratic Objective Conic Optimizer with Custom
Solver Generation
STUDENT: Govind M. Chari

ADVISOR: Behcet Acikmese

SPONSORS: Blue Origin + Office of Naval Research

• Quadratic objective second-order cone programs commonly
arise in optimal control and trajectory optimization and must be
solved in real-time

• Typically, the sparsity structure of the matrices P, A, and G are
known beforehand

• When the sparsity structure is known, it is possible to generate a
solver that uses custom linear algebra to exploit the sparsity
structure and reduce solve-time

Background

• In this work, we develop:
• QOCO, an open-source C-based solver for quadratic objective

SOCP
• QOCOGEN, an open-source custom solver generator for

quadratic objective SOCPs
• QOCO is faster and more robust than many commonly used

solvers.
• Solvers generated by QOCOGEN are significantly faster than

QOCO and are free of dynamic memory allocation making them
an attractive option for real-time optimization on
resource-constrained embedded systems

• Both solvers are easy to use as they can be called from
CVXPY/CVXPYgen

Contributions

Numeric results

• We compared our solvers against a variety of open-source and
commercial solvers

• The plot below depicts solve-time in seconds vs problem size for five
optimization problem from various domains

Limitations of Existing Software

• Clarabel is an open-source solver for quadratic objective SOCPs,
but it is written in Rust rather than C making it more challenging
to use for legacy systems and is not a custom solver generator

• CVXGEN and BSOCP are custom solver generators for quadratic
programs and linear objective SOCPs respectively, however
neither can handle quadratic objective SOCPs, neither are
open-source, and neither can be used with modern modeling
languages such as CVXPY

• QOCO implements a primal-dual interior point method due to its robustness
to ill-conditioning and good practical performance

Primal-Dual Interior Point Method

Customized Linear Algebra

• In the primal-dual interior point method, the main computational
bottleneck is the factorization of the KKT system

• Sparse linear algebra has extra overhead to locate nonzero elements and
their positions in the matrix, since it must handle arbitrary sparsity patterns

• Customized linear algebra hard-codes the exact operations and memory
accesses needed resulting in higher performance

