
Abstract
In many parts of the world, uncontrolled fires in sparsely populated 
areas are a major concern as they can quickly grow into large and 
destructive conflagrations in short time spans. Detecting these fires 
has traditionally been a job for trained humans on the ground, or in 
the air. In many cases, these manned solutions are simply not able to 
survey the amount of area necessary to maintain sufficient vigilance 
and coverage. This paper investigates the use of unmanned aerial 
systems (UAS) for automated wildfire detection. The proposed 
system uses low-cost, consumer-grade electronics and sensors 
combined with various airframes to create a system suitable for 
automatic detection of wildfires. The system employs automatic 
image processing techniques to analyze captured images and 
autonomously detect fire-related features such as fire lines, burnt 
regions, and flammable material. This image recognition algorithm is 
designed to cope with environmental occlusions such as shadows, 
smoke and obstructions. Once the fire is identified and classified, it is 
used to initialize a spatial/temporal fire simulation. This simulation is 
based on occupancy maps whose fidelity can be varied to include 
stochastic elements, various types of vegetation, weather conditions, 
and unique terrain. The simulations can be used to predict the effects 
of optimized firefighting methods to prevent the future propagation of 
the fires and greatly reduce time to detection of wildfires, thereby 
greatly minimizing the ensuing damage. This paper also documents 
experimental flight tests using a SenseFly Swinglet UAS conducted 
in Brisbane, Australia as well as modifications for custom UAS.

Introduction
Historically, brush fires have dictated the shape of the Australian 
brush by consistently burning away large swaths of the Australian 
landscape. As the human population of Australia continues to 
increase, these widespread fires have become a significant hazard to 
the people and the land due to globalization and climate change. 
According to the office of Australian Emergency Management, 
authorities respond to an average of 54,000 bush fires each summer. 
The costs of these disasters include destruction of property, insurance 

costs, damage to water supply, environmental damage, and nearly 
200 deaths since the year 2000. In 2009 alone, there were over 2.5 
billion dollars in damages, hence the significant research on brush fire 
detection and prevention in Australia [1].

One of the primary methods used by Australian authorities to detect 
fires is the Sentinel system. This system uses satellite imagery to detect 
the wildfires. However, this method, and similar methods are limited to 
favorable weather conditions, strong heat sources, a 1.5 km accuracy, 
and do not include the size of the fire. These methods have assisted 
authorities in combating and identifying fires but firefighting is still an 
extremely dangerous task that could be made safer, and simpler, with 
the help of aerial technology, specifically UAS technology [2].

UAS have the potential to remove human beings from dangerous 
tasks such as on-site fire line detection. UAS could also diminish the 
cost of manned aerial vehicle operations, such as helicopters, and 
reduce the risk of human fatality in the process. The purpose of this 
research is to utilize UAS in an efficient and inexpensive manner to 
detect bush fires with a consumer grade RGB visual camera. This 
method can provide a faster and more accurate approach to the issue.

The viability of using UAS for fire detection has been studied in the 
past. Currently, the National Aeronautics and Space Administration 
(NASA) is working to utilize small unmanned aerial systems (UAS) 
platforms outfitted with visual and infrared cameras to conduct aerial 
reconnaissance of fire prone regions. It is NASA's hope to replace the 
fire detection planes that fly over the Great Dismal Swamp National 
Wildlife Refuge with their UAS platform for the United States 
Department of the Interior's Fish and Wildlife Service [3]. Another 
group with the University of Seville in Spain is looking into similar 
solutions with visual and infrared cameras using multiple rotor craft 
working in collaboration to patrol an area to identify fires [4], [5].

The aim of this publication is to develop the field of aerial fire detection 
in the hope of making UAS a viable option for fire identification. 
Specifically, in this project, a UAS was equipped with a visual camera 
and was used to patrol the Australian brush to look for simulated fires. 
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Fire identification was achieved through the use of image processing 
algorithms that searched for the simulated fires in a scene. Once fires 
were identified, occupancy maps were created and a simulation 
performed to predict the potential spread of the fire over space and 
time. Knowing where the fire will be next would help firefighters 
mitigate the effects of the brush fires and ultimately take this 
technology one step closer to becoming a practical firefighting tool.

Experimental Hardware and Methodology

Experimental Hardware
In the experiment, a light-weight autonomous aircraft, the Swinglet 
UAS, equipped with a 16MP camera was utilized to capture aerial 
images of the survey area. An onboard GPS determined the 
3-dimensional position of the Swinglet and communicated this 
information to the ground control station (GCS) via a radio module. A 
flight plan for the Swinglet was created using an aerial path defining 
software (eMotion 2). This software allowed for manipulation of 
waypoints, altitude, and picture events, over a given survey area of 
chosen dimensions. All set attributes were altered by the density of 
chosen flight paths and photo overlay. A GCS operator monitored the 
flight path of the Swinglet during transit to and from each waypoint 
to ensure airspace and flight path integrity. During each photo event 
the power to the motor was terminated to grant a vibration free period 
for the photo to be taken clearly. Once the Swinglet reached the home 
waypoint, the GCS operator requested the UAS to land. Upon 
recovery, images were uploaded to the GCS computer and checked 
for quality [6].

Swinglet
The aircraft and associated ground station components are shown in 
Figure 1.

Figure 1. Swinglet UAS consisting of the aircraft, camera, GCS and manual 
control unit. Image from of SenseFly.com.

eMotion 2
Pre-flight testing was available through the combination of eMotion 
2™ and Google Earth ™ software. The software allowed the 
simulation of the UAS flight plans over the true test location.

The mission planning procedure of the eMotion 2 software required 
using Google Earth to acquire a satellite image of the survey site that 
would be overlaid on the geographic map found in eMotion 2. The 
area of interest could then be identified and enclosed by a custom 
boundary set within eMotion 2. Complex boundaries are possible, 

however the particular area of interest at the experiment site allowed 
for a rectangular boundary to be sufficient. Within the set boundaries, 
the eMotion 2 software determines waypoints and transit paths that 
can be customized. All waypoints during the flight were set to an 
average altitude of 75 meters with 20 meter turn radii. The aircraft 
home way point acts as the starting point of its path as well as the 
termination and safe landing location. Mission parameters were 
manipulated to meet the optimal flight plan, altitude for a desired cm/
pixel resolution, total area covered, and external inputs (such as wind 
conditions). Simulations display deviation of flight path due to real 
world issues such as low battery or constant and strong wind 
conditions, allowing for alteration under these factors [7].

Field Experiment
The goal of the field experiment was to generate data sets of fires in 
the Australian outback that could be used to test the image processing 
and fire simulation algorithms. Experiments were conducted at the 
Samford Ecological Research Facility (SERF) in Brisbane, Australia 
[8]. Due to the dangerous nature of live fires in the Australian bush, a 
substitute for a live fire was required. The chosen substitute was 
flagging tape of varying color (orange/yellow) and width (5 & 15 
cm). Mock fires were created using this fire substitute with the intent 
of creating fire lines similar to that of a bush fire. Acting as a 
baseline, a circular fire in an open field was used during the first flight 
to act as the target as seen in Figure 2.

Figure 2. Aerial view of a simulated circular fire at SERF.

Ground Station and Controls (GCS)
The ground control station consisted of a computer installed with 
eMotion 2 software and a radio module that communicated to the 
Swinglet. The GCS allowed for on-site mission planning and 
modification. Parameters consisting of ground covered, mission time, 
and resolution were fixed and could be uploaded to the UAS 
wirelessly. Safe control of the UAS from GCS is achieved by 
commanding the UAS to the home waypoint, and forced landing at 
any time.

Experimental Conditions and Flight Parameters
Flight conditions during the experimental procedure were favorable. 
Fairly low environmental disturbances were present (i.e. low wind 
speed and good visibility). Since the experimental conditions, shown 
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in Table 1, were similar to the calibration test conditions, the 
Swinglet data was able to accurately capture images with the required 
resolution [6].

Table 1. Atmospheric conditions during flight testing.

Image Processing and Fire Detection

The Theoretical Algorithm and Procedure
After obtaining images from the Swinglet, image processing tools 
were utilized to create an algorithm that could detect and highlight 
the simulated fire line on to the original image. Before processing the 
images taken during the experiment, an image of a real fire was used 
to test the effectiveness of the algorithm. The picture used to test the 
image processing techniques used can be seen in Figure 3.

Figure 3. Aerial Photo of an actual fire used to test image processing 
algorithms.

The initial step, and key component of the algorithm, was converting 
the original red, green, blue (RGB) image of the fire into a modified 
grayscale image that mapped the color of the fire to the highest 
intensity. Standard algorithms and implementations can be used for 
this mapping. A major disadvantage of a standard image grayscale 
conversion is that the user is unable to specify how a given RGB 
value is mapped to intensity. Therefore, a custom mapping from the 
RGB triplet to an intensity scalar is used. This algorithm computes 
the Euclidean 2-norm distance between a pixel in question and the 
desired fire color. The intensity is then mapped to be a function of 
this distance in color space. The end effect is that colors that are 
closer to the desired fire color are mapped to a higher intensity while 
the rest are obscured as shown in Figure 4. The custom conversion 
thus allowed for the isolation of the color of the fire line alone which 
improved upon the default grayscale function that assigned the smoke 
a similar intensity to the fire line.

Figure 4. Normal grayscale image (left), customized grayscale to isolate the 
fire from the smoke (right).

To accentuate the fire line, a threshold from the customized grayscale 
image was employed. This threshold was mapped from a desired 
RGB value. However, it should be noted that the exact color to be 
mapped for the threshold may be varied since not all fires will burn at 
the exact same color depending on the type of fuel and environmental 
factors. In addition, different photographing conditions may produce 
different results even for the same fire, i.e., images obtained during a 
very bright period as opposed to overcast conditions will yield fires 
of slightly different colors captured by the Swinglet. By considering 
the aggressiveness of the filter within the custom grayscale function, 
it was possible to include all of the fire line while simultaneously 
excluding other objects that are close to the color of the fire. A higher 
threshold causes only pixels that are close to the color of interest to 
be mapped at a high intensity. Likewise, a lower threshold causes 
pixels that are not as close to the color of interest to be mapped at a 
high intensity. Further image processing was achieved after the 
appropriate intensity map was created. To isolate the fire line from the 
rest of the image, an edge function was applied as seen in Figure 5. 
This returns a binary image after specifying a threshold value.

Figure 5. Edge function applied to the isolated fire line.

This binary image was then morphologically closed. By doing so, 
image pixels were dilated followed by erosion. The structuring 
element chosen specified how the image was being dilated and 
eroded. In this case, the target was to find lines in the image; 
therefore a linear structuring element was used. Essentially, the 
morphological operation first made the image brighter and then 
proceeded to make the image darker in an attempt to restore a more 
continuous fire line, making it more prominent by eliminating the 
random pixels possibly picked up earlier in the algorithm.

Finally, the perimeter function was used to outline the final result. 
The morphological operations and applied perimeter process can be 
seen in Figure 6.
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The perimeter could then be highlighted with a specified color to 
represent a bush fire front. The highlighted image was then 
superimposed back onto the original RGB image. This final RGB 
image with a highlighted fire line can be seen in Figure 7.

Though most fires are similar, the colors and intensity may vary given 
wind, time, shadow, and vegetation conditions. Also, as mentioned 
earlier, lighting of the images captured may not be consistent due to 
weather conditions, such as brightness from the sun. When the colors 
of the fire image are not within reasonable range of the default color 
specified to distinguish the fire line, the performance begins to 
deteriorate. Therefore, the algorithm was designed to allow for online 
parameter tuning to adapt to these changing scenarios.

In this study, to determine the spatial extent of the fire front, multiple 
images collected by the Swinglet UAS were transformed into a single 
ortho-rectified image. A structure-from-motion program such as 
AgiSoft PhotoScan Pro is capable of creating such otho-rectified 
imagery as well as 3-dimensional models. These types of modeling 
are increasingly common for making three dimensional models of 
cities and construction sites. The level of detail and accuracy may be 
relatively low but this is somewhat mitigated by its ability to function 
in dynamic environments as multiple pictures are used to construct 
the 3D model [9]. For the purposes of this experiment, this type of 
software is sufficient since the Swinglet is capable of rapidly 
surveying an area while obtaining the necessary pictures to build a 
3D model that accurately describes where the fire was when the 
pictures were taken.

Figure 6. Morphological close (Top), Perimeter function applied (Bottom).

Figure 7. RGB image with fire line highlighted in green.

The images captured by the Swinglet were aligned and a point cloud was 
created with corresponding GPS data. From there, a mesh was built to 
stitch the images together. Here, the overlap of the images was necessary 
to yield a continuous orthophoto. Additionally, model texture was added 
to the mesh creating the resulting ortho-rectified image as shown in 
Figure 8. This image could be used as input to the image processing 
algorithm. This technique has applications for aerial mapping, terrain 
modeling, and other types of environmental monitoring.

Figure 8. Orthorectified photo of SERF site with simulated fire lines.

Image Processing Results
Figure 2 shows an artificial fire created at SERF which consists of red 
and yellow flagging tape in a circle. This image was used as input to 
the previously described image processing algorithm (without the 
edge and perimeter functions). The result was then highlighted in 
green and superimposed on the original image as shown in Figure 9.

Figure 9. Intensity Map (left), Morphological close (middle), Image with 
perimeter highlighted (right).
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In addition to the simple fire case of Figure 9, other fire scenarios of 
varying complexity were constructed at SERF to evaluate algorithm 
performance. In Figure 10, the flagging tape was placed under a tree 
where it was more difficult to see from the aerial view of the Swinglet. 
The variation in brightness due to the casting shadow of the trees also 
contributed to the difficulty in visually detecting the fire line.

Interestingly, from the original image even a human observer would 
have difficulty seeing this potential fire. Of course, in this case there 
was no smoke which potentially would make it easier for humans to 
detect. The effect of smoke on fire detection is an area for future work.

As shown in Figure 11, the flagging tape was highlighted in red, 
indicated the algorithm was able to successfully detect of the artificial 
fire despite the more difficult conditions [10].

Figure 10. SERF simulated fire under tree with shadow occlusions. Fire 
bounded by white rectangle.

Figure 11. Detection results of the SERF mock fire under trees. Areas of 
detected fire are highlighted in red.

Figure 12. SERF mock fire around wood pile with thin fire lines highlighted 
in green within the image.

Figure 13. Example of poor algorithm threshold selection and subsequent false 
detections of fire.

Lastly, another artificial fire created at SERF is tested for detection. 
This fire was anticipated to be harder to detect due to the thinner lines 
of tape, the differences in color of tape used, and possible shadows 
created by the wood pile. Looking at the final result, it is apparent that 
the fire lines are again outlined successfully as shown in Figure 12.

It is recognized that image processing is quite sensitive in many cases. 
Accurate parameter selection in the algorithm was necessary to achieve 
the appropriate level of detected fire lines. Figure 13 illustrates an 
extreme case whereby the system needed manual parameter tuning 
(such as increasing the threshold) to fit the application.

Fire Propagation and Simulation
After successfully detecting a fire, using imagery of the area of 
interest, the next task was to generate a fire propagation simulation to 
predict how a given wildfire would spread. The simulation 
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environment was based on a method of discretizing the environment 
into a series of 2D rectangular cells. Each of these cells represented 
the state of the physical world at a given location. The collection of 
cells is often referred to as an occupancy map. This framework has 
been successfully and widely used in the fields of computer 
perception and map building [11], [12], [13].

The system operates as a finite state machine where the state of each 
cell can transitions to another state after an appropriate event occurs. 
The fire propagation algorithm updated each cell state based on its 
previous state and surroundings thus creating a means for predicting 
potential fire propagation pathways.

Within this study, occupancy maps cell states were varied to simulate 
scenarios of varying environments. Cell states were created to 
represent various flammable terrain, inflammable terrain, burnt zones, 
actively burning fires of various intensities, and even firefighting 
zones. Each cell was given a numeric number matching the 
aforementioned states and grids of these cells simulating the 
environment surrounding the detected fire were thus manually 
created. The size of the occupancy map and resolution were tunable 
parameters and followed the developer's discretion [14].

The Theoretical Algorithm and Procedure
An occupancy map takes the form of a matrix. The cells of this 
matrix hold values that relate the matrix to a set of states. An example 
of a simple wildfire model would have a discrete set of states of

(1)

where

s1 = unburnt flammable material (green)

s2 = burning flammable material (red)

s3 = inflammable material (grey)

s4 = burnt material (black)

A visual example of a wild fire occupancy map can be seen in Figure 
14. Here a fire is burning outside of an inflammable barrier which 
protects the unburnt flammable material.

Figure 14. Visual representation of occupancy map.

The occupancy map is referred to as the state of the world, xw(k), as it 
represents the state of the fire in the environment at the given time 
step, k. Knowing this, the occupancy map can be propagated forward 
in time so that the state changes based on an algorithm designed to 
determine the next state from the current state of the cell and the state 
of the surroundings cells. The state of the finite state machine can 
include the state of the world for several prior time steps, thereby 
allowing a degree of temporal dependence on the model.

(2)

The importance of recording past states increases as more complex 
fire propagation algorithms are used. This is due to the fact that fires 
may burn for longer than one time step or the manner in which a state 
transitions to another may be considered in the next propagation step.

In order for a flammable cell to burn, a fire cell must be detected at 
one of the four neighboring cells (North, East, South, or West). The 
fire algorithms takes into consideration the flammability levels of the 
terrain. The flammability of cells was modeled under the premise that 
the cells physical moisture content, describing environments from 
damp vegetation to dry brush, would affect the flammability of that 
cell. Other cells were created such that the cell state was permanently 
inflammable to mark areas such as rocks or rivers, where fire 
propagation among cells was impossible. A logic tree can be seen in 
Figure 15 demonstrating the possible state flow with time.

Figure 15. Finite state machine model for cell state transformation within the 
wildfire propagation model.

A series of algorithms were created to simulate different models of 
propagating fires. Common across each algorithm was the presence 
of a function to determine proximity to cells signaling fire status and 
the effect this presence would have on the current cell. Namely the 
fire algorithm would use the current state of a given cell's neighbors 
based on the x-y position within the occupancy map matrix.

Algorithms varied from deterministic to stochastic in nature. 
Stochastic models made use of a probability factor added to each cell 
and varied between simulations allowing for different results with 
each iteration. Deterministic models have no stochastic factors and 
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thus generate repeatable outcomes. The probability factor within the 
stochastic algorithm altered the flammability of each cell. In other 
words, the cell would ignite in reference to a setting of different 
thresholds, demonstrated in the pseudo-code shown below.

The stochastic method replicates the uncertainty of reality by having 
each cell behave uniquely. The stochastic elements allow for 
unpredictable actions, and offer new situations. The threshold could 
be altered to change algorithm probabilities to match a fire on a very 
hot, dry site or a fire on a damp site where the humidity is higher or 
rainfall was recently recorded. No end result of a simulation will be 
identical but each simulation would exhibit similar trends. True 
propagation scenarios can be found via the summation of stochastic 
trials over a given region.

Complex algorithms simulated fire propagation under the influence of 
wind conditions [15]. These simulations directed the movement of fire 
lines to coincide with wind direction. Wind can be either deterministic 
or stochastic. In deterministic propagation the algorithm is altered to 
allow fire passage to flow in one direction if wind speed exceeds a 
certain value, or propagates more slowly with each time step.

Fire Simulation Results
The simulations of fire propagation varied in complexity and were 
made to model experimental scenarios and practical applications of 
interest. Some simulations consisted of relatively simple cell states 
and environmental conditions.

The first fire simulation designed was that of a circular, artificial fire 
created during experimentation at SERF with wind coming from the 
Northeast, shown in Figure 16. This was accomplished by having an 
active cell only be affected by the status of cells to the North and East.

Figure 16. Simulation of two fires with a Northeasterly wind.

Within this simulation a flammable field was ignited at 2 spots to 
simulate multiple lightning strikes as a source of ignition. In the 
model, the wind pushes the fire to the Southwest, as would be 
expected in a real world fire with a Northeasterly wind. The small 
patches of unburnt material after the fire had passed indicate areas 
where the stochastic nature of the model allowed a cell to remain 

unburnt long enough for the fire to pass. Modeling the wind was 
accomplished by running the cell states in the same manner as 
previous simulations, but in this iteration the cells were only affected 
by the neighboring cells to the North and East. The second simulation 
modeled an experimental fire at SERF with the addition of a fire 
break line to demonstrate firefighting efforts, shown in Figure 17.

Figure 17. Fire simulation with fire break lines.

It should be noted that the inflammable lake and fire line have not 
burned. The wind has directed the fire to the Southwest once more. 
The fire line, marked in orange also funneled the fire toward the lake 
and stopped its passage south of the fire line.

A model of a simulated fire at SERF can be seen in Figure 18. This 
scenario simulates a dry area, seen as yellow and brown, and a wet 
forested area, seen in green. This fire algorithm follows the 
previously described algorithm properties. The propagation from 
Figure 18 does involve a long burn (seen in red) which transitions 
into a shorter burn (seen yellow) and propagates outward unimpeded 
by wind.

Figure 18. Stochastic model of simulated SERF fire with varying cell states.

The simulation proves viable as the area of flammable material is 
entirely burnt while the wet areas remain mostly intact. These results 
match those expected of an area like this. If Figure 18 were to be a 
deterministic model, we would see that if one tree in the forest 
burned, all of the trees would burn. This model can be seen to be 
stochastic since the fire burns inconsistently within the forested 
regions of Figure 18 due to the threshold of each individual forest cell 
possessing different properties or flammability, just like a real forest.
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The simulation displayed in Figure 19 was designed to model the 
effects firefighting techniques could have on the propagation of brush 
fires at the SERF. Within the model, a fire was set along a dry river bed 
that would cause an unobstructed fire to eventually burn down the 
house present at the SERF. The digging of a fire line, seen in black, 
around the house was also included to simulate efforts from a 
firefighting team working towards combating the fire to save the house.

Figure 19. SERF fire with fire lines.

It was found that the digging of fire lines was viable and capable method 
of preserving the flammable area. The fire lines were designed to 
propagate at the same rate as a fire in one direction only. This decision 
was made to simulate the efforts of one team of onsite fire fighters 
digging in a single, optimized direction. This scenario demonstrates how 
the system could be altered and updated to account for real time 
alterations to the environments by firefighters, or to theorize possible 
firefighting scenarios to find an optimal firefighting plan.

The final example seen in Figure 20 demonstrates an alternative 
algorithm simulation of the SERF environment. This scenario has a 
weak Southeasterly wind to impede the propagation of the 3 small 
fires in the opposite direction.

Figure 20. Simulation of SERF fire.

The simulation demonstrates the ability to mimic certain occurrences, 
such as trees, seen as brown protected by a green layer, that require 
more time in contact with a fire to burn, but in turn burn longer once 
ignited as denoted by the red squares. The alternative algorithm 
proves viable as the flammable area is burnt while the wet areas are 
not burned consistently. The presence of wind and the stochastic 
nature of the propagation lead to some flammable areas remaining 
unburnt, an event that proves true in reality. In this scenario wet areas 
surrounding the river can be seen to have dried but not burnt, another 
realistic possibility.

These simulations demonstrate how the occupancy maps can be 
manually created and manipulated to accurately simulate controlled 
scenarios. By generating these occupancy maps the UAS could go 

from fire detection to fire monitoring, providing real time information 
concerning the fire location as well as providing probable propagation 
routes based on current conditions.

Future Work

Merging Detection and Simulation
The next logical step is to merge the fire detection and fire 
propagation system into a multi-faceted algorithm capable of 
completing both through a series of event triggers as shown in Figure 
21.

The final system could involve a UAS being sent to an area of high 
fire probability with the goal of detecting a fire. The UAS could scan 
until a fire detection event is triggered by the image processing 
algorithm. The UAS would then notify the presence of this fire to the 
GCS which would then visually confirm the fire and disseminate the 
information to emergency response teams once the fire was 
confirmed. The UAS would then create an orthorectified photo of the 
fire and its surrounding terrain via its RGB camera. This information 
could once again be disseminated to emergency response teams to 
allow for an effective first response [16]. In addition, the orthophoto 
could then be propagated forward in time, via the propagation 
algorithm, allowing for continuously effective response to the 
expected fire course and even allow for early warnings to be sent to 
populated areas [17]. This is a possible desired event flow of a UAS 
fire monitoring system.

Figure 21. Block diagram of the final fire detection system.

RGB Landscape to Occupancy Map Method
An alternative method for occupancy map creation was developed to 
avoid the manual creation of occupancy maps from a given RGB 
photo. The previous method involved examination of an aerial photo 
and designation of cell states by a human operator. The alternative 
method takes an aerial photo and directly converts the given image 
into an occupancy map with automatically designated cell states.

The algorithm requires an RGB photo of a given landscape and 
smoothed terrain data. Pixels of varying RGB values are sectioned of 
into cells of an overlaid grid on the photo. The pixels within each cell 
are then averaged to find the overall mean RGB value that describes 
the cell terrain within that specific cell. This method avoids the 
presence of small outliers which may affect fire detection such as 
reflections, shadows, or rooftops. This type of simulation has been 
used in the past, including its use to build small occupancy maps 
based on real time video rates [18], [19].
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An occupancy map can then be created that describes the true 
environment of an aerial photo. An aerial survey can be taken and 
stored to maintain an environmental map of given areas with high fire 
probability. An example of the RGB to occupancy map conversion 
can be seen in Figure 22.

Figure 22. Landscape to occupancy map conversion.

Following occupancy map conversion, RGB data for each cell was 
noted and converted into an appropriate cell state. Each cell was 
given a specified level of fire resistance which defined its status as 
burning, unburnt, or burnt. The cell state for each cell was set to an 
initial value above the burning threshold and then altered based on its 
RGB value. Cell states describing areas of varying tolerance and 
inflammability were detected using a method similar to that of RGB 
fire detection. Areas detected with moisture, denoted by a green hue, 
were considered more fire resistant and thus the fire resistance of 
those cells was modified to account for this. The opposite occurred 
with areas of low moisture, denoted by a yellow hue.

The algorithm then propagated each cell forward and altered the cell 
states based on surrounding cells. The presence of fire near a cell 
changed the internal fire resistance of each cell until the fire had 
passed or the cell itself was burning. The change in fire resistance 
accounts for the number of burning cells in contact with a given cell 
and increases with the number of burning neighboring cells. Once the 
threshold has been passed, the cell begins to burn and will change 
cell state regardless of whether or not the cell is currently surrounded 
by fire. The rate of fire resistance loss due to burning can be adapted 
to match the given detected material. Once the cell completely loses 
its internal fire resistance the cell will be in the burnt state and thus no 
longer has an effect on the surroundings. This algorithm allows cells 
to remain unburnt should nearby cells burn out before contact is held 
for enough time steps to pass the burning threshold. An example fire 
can be seen in Figure 23.

Figure 23. Fire propagation using landscape to occupancy map algorithm.

The fire seen in red propagates outward, the area enclosed by the fire 
is considered burnt and is denoted in black, and all other cell colors 
denote remaining fire resistance above the burning threshold.

It should be noted that this method is only viable if the picture is 
taken from a top down angle. Any sky caught by the camera will be 
assumed part of the environment to be modeled and given a cell state. 
The top view method is viable as this was the likely manner of 
camera mounting on a UAS. Future models could include the ability 
to model the sky as inflammable region, but regardless of this the 
propagation rate will be skewed as the angle is off so objects near the 
fire will burn at the same rate as objects near the camera despite 
variations in size, density, etc. which will need to be taken into 
account in future models.

UAS Application
The University of Washington is currently constructing the 
Topography and Ecology Data Drone (TEDD,) which is a UAS 
capable of mapping an area of interest in a cost effective manner. 
This current system will act as an example platform for the creation 
of a fire detecting UAS [20], [21].

TEDD offers the two main requirements for an effective detection 
and monitoring system of this type, a downward facing RGB camera 
and a capable GPS unit. The RGB camera would be connected to a 
simple target computer capable of computing the less 
computationally strenuous RGB detection algorithm. Once successful 
fire detection is triggered, the UAS will begin to circle the area and 
create a spread of RGB photos and send this information back to 
ground control along with the GPS and pose coordinates of each 
picture location. The UAS will remain in this circling pattern until 
ground control either confirms or denies the fire detection. A denial 
will lead to a command of the UAS to ignore this area. If confirmed 
the system will move radially outward creating a basic landscape for 
initial propagation.

At this point the GCS operator may designate areas of importance 
where fire propagation information is required to be more accurate. 
The UAS will continue to radially move outward to a set distance 
before returning to its initial position above the fire. The process will 
then be repeated allowing for updated fire propagation models to be 
created until the fire is contained or the operation is terminated by 
ground control [22].

First Response
Should a system such as this become effective in fire monitoring and 
cost, the next step would be to create a first response system capability. 
Such a UAS would be capable of dropping a flame retardant payload 
capable of dealing with small fires, and may be able to bias the 
propagation direction of medium sized fires for firefighting or 
preservation purposes [23]. This area is open to further investigation 
and will require cooperation between multiple federal departments.

Summary/Conclusions
This paper has proposed an algorithm for the detection and 
simulation of fire propagation from UAS collected imagery. The 
image processing algorithm used only RGB images and proved 
effective in identifying fire fronts. The accuracy of this algorithm as a 
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method for fire detection proved valid and surpassed human 
observation in many cases. The algorithm was found to be capable of 
detecting mock fire lines through shadows and obstructions. The 
image processing algorithm required manual parameter tuning to 
achieve higher fire detection accuracy in visually obstructed 
scenarios, but remained accurate within the majority of the tested 
scenarios. The fire detection algorithm via RGB values offers a cost 
effective and a currently moderate fidelity manner to detect the 
presence of fire. The detection of said fire creates a cache for early 
response and fire line modeling.

The fire propagation simulation using occupancy maps was shown to 
be a viable method to predict the spread of a fire in a complex 
environment. An added benefit of this workflow is the addition of 
topographical data in the form of 3D orthotropic photos and offers the 
ability to further increase the fidelity of the fire propagation model. 
Fire propagation information offer a means to predict the flow of the 
fire allowing for preemptive strategies to be formed and the 
avoidance of dangerous firefighting scenarios [24].

Higher fidelity models can be created with the addition regional 
specific information. Classification of certain fauna, terrain, and the 
reaction to fire lines will allow for progress beyond general algorithms.

The addition of non-continuous environmental factors via regional 
weather forecasting offers a means to higher fidelity propagation of 
fires as well.
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