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Abstract
A new class of self-similar turbulent flows is proposed, which exhibits dramatically reduced
entrainment rates. Under strong acceleration, the rotation period of the large-scale vortices is
forced to decrease linearly in time. In ordinary unforced turbulence, the rotation period always
increases linearly with time, at least in the mean. However, by imposing an exponential
acceleration on the flow, the vortex rotation period is forced to become the e-folding timescale
of the acceleration. If the e-folding timescale itself decreases linearly in time, the forcing is
‘super-exponential’, characterized by an acceleration parameter α. Based on dimensional and
heuristic arguments, a model suggests that the dissipation rate is an exponential function of α

and the dimensions of the conserved quantity of the flow. Acceleration decreases the
dissipation and entrainment rates in all canonical laboratory flows except for Rayleigh–Taylor.
Experiments of exponential jets and super-exponential transverse jets are in accord with the
model. As noted by Johari, acceleration is the only known means of affecting the entrainment
rate of the far-field jet. Numerical simulations of Rayleigh–Taylor flow by Cook and
Greenough are also consistent. In the limit of large acceleration, vortices do not move far
before their rotation period changes substantially. In this sense, extreme acceleration
corresponds to stationary vortices.

PACS number: 47.27.−i

1. Introduction

It has long been known that pressure gradients strongly
affect the boundary layer. A negative pressure gradient
can completely relaminarize a turbulent boundary layer
(Narasimha and Sreenivasan 1973, 1979, Narasimha 1983).
From the nonlinear momentum equation, a negative pressure
gradient makes the velocity profile more full. The no-slip
boundary condition implies that the mean spanwise vorticity
profile becomes narrower and more sharply peaked at the
wall. So the mean spanwise vorticity must increase. Since the
average vortex rotation period is proportional to the inverse
of the mean vorticity, the average vortex rotation period is
reduced.

In the turbulent wake, a negative pressure gradient also
affects the flow, but in a different way from that of the
boundary layer. The mean spanwise vorticity in the wake
is reduced in a negative pressure gradient. Narasimha and
Prabhu (1972), Prabhu and Narasimha (1972), and Liu
et al (1999) found non-self-similar behavior with pressure

gradients. Keffer (1965, 1967) and Elliott and Townsend
(1981) could not find self-similar flow when a plane wake
was subjected to a constant strain rate of varying orientations.
Rogers (2002) distorted plane wakes at constant rate in
direct numerical simulations. He also found that the flows
were not self-similar. This suggests that any self-similar flow
must correspond to a different type of forcing. As discussed
below, a new theory suggests that acceleration effects can be
understood in terms of the temporal evolution of the vortex
rotation period. In this way, a new class of self-similar flows
is proposed.

Since vorticity has dimension of inverse time, one might
speculate that time is the natural language of a vortex. If so,
how do turbulent vortices respond when a single timescale is
imposed on them? Oster and Wygnanski (1982) discovered
that the imposition of a sinusoidal perturbation of fixed period
had a dramatic effect on the entrainment rate of the free shear
layer. It is natural to wonder about an exponential forcing of
constant e-folding timescale.
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A simple argument suggested that the dimensionless
entrainment rate into a jet with an exponentially increasing
nozzle speed would be reduced by the acceleration
(Breidenthal 1986). Entrainment at the rear of a vortex
might be inhibited if the neighboring vortex was increased
in strength. Kato et al (1987) measured the visible flame
length of a chemically reacting jet with exponential forcing.
They found that the flame length of the exponential jet was
about 20–25% longer than the classical jet. Since the mixing
is entrainment-limited at large Reynolds number, their result
indicated a reduction in the normalized entrainment rate.

More careful and detailed measurements by Zhang and
Johari (1996) revealed the internal structure of the exponential
jet. Their images of the concentration field demonstrated that
the acceleration must be appreciable for any dynamic effect on
the normalized entrainment. If the imposed velocity change
during one vortex rotation is too small, then the entrainment
rate into that vortex is not affected by the acceleration. So a
threshold must exist for any dynamic effect. Zhang and Johari
also demonstrated that the vortex rotation period was equal to
the e-folding time of the exponential nozzle flow, as expected.
In other words, each large-scale vortex in the far field rotated
at the same rate, no matter how far from the nozzle. The
exponential forcing imposed its e-folding timescale on the
vortex rotation period. This key concept will be exploited
below.

As noted by Johari, acceleration is the only known means
of altering the entrainment into the far-field turbulent jet.
Nothing else done at the nozzle has a lasting effect on the jet.
Acceleration is a powerful tool for controlling turbulence.

2. Theory

Recently, a simple theory has been developed in an attempt
to account for acceleration in turbulent flows in general
(Breidenthal 2003). The approach assumes that the most
important property of a vortex is its rotation period.
Acceleration affects turbulent entrainment depending on how
the vortex rotation period τv(t) changes with time t.

2.1. Self-similarity

In order for the flow to be strictly self-similar, the rotation
period should change by a constant factor at each rotation.
This implies that τv(t) must be linear, at least in the mean. For
ordinary, unaccelerated turbulence, τv(t) increases in time as
the rotation period lengthens in the natural aging process. On
the other hand, in the exponential jet, τv(t) is a constant, equal
to the e-folding timescale of the exponential forcing.

Extrapolating from the unforced to the exponential jet,
one might expect the dimensionless entrainment rate to
decline even further if the e-folding timescale would decline
in time. Suppose that the e-folding timescale is selected to
decline linearly with t. If the forcing is successful, the rotation
period of the vortices is obliged to follow the e-folding
timescale of the forcing. The linear nature of the e-folding
timescale implies that the vortices would be self-similar.

Figure 1 illustrates the evolution of the vortex rotation
period for these three cases, where τv(t) either increases,
remains constant, or decreases with t. According to our
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Figure 1. Temporal evolution of the vortex rotation period for
self-similar flow.

definition of self-similarity, all self-similar turbulent flows
must correspond to one of these three lines, all described by
the single parametric equation

τv(t) = τ0 − αt. (1)

Here τ0 is the rotation period at t = 0 and α is an
acceleration parameter. We want to find the effect of α on the
dimensionless entrainment rate in all generalized laboratory
flows.

2.2. Entrainment

The initial guess was that entrainment would decrease with
increasing α for all flows. It was qualitatively consistent
with the exponential jet as well as a related experiment
on the exponential transverse jet (Eroglu and Breidenthal
1998). However, this idea was quickly refuted for the case of
Rayleigh–Taylor flow. Unpublished numerical simulations by
A Cook and J Greenough demonstrated that Rayleigh–Taylor
flow did not fit the mold.

Using dimensional and heuristic arguments, a new
theory attempted to account for the peculiar behavior
of Rayleigh–Taylor flow (Breidenthal 2003 with different
notation). Every canonical flow has some conserved quantity
or invariant Q that controls the physics (Cantwell 1981). For
example, in the jet, Q is the thrust per unit mass. In the shear
layer, Q is the velocity jump 1U . Since different flows have
different dimensions for Q, it may be possible to account for
the effect of α in different flows by exploiting the dimensions
of Q.

Take the dimensions of Q to be (length)m(time)−n .
The dimensions of the dissipation rate per unit mass are
(length)2(time)−3. This is proportional to

Q2/mτv
−(3−2n/m). (2)

Since the physically controlling parameter is Q, we expect that
every flow may be forced in a self-similar way through

Q = Q0exp {t/(τ0 − αt)}. (3)
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Figure 2. The edge of a plume with increasing buoyancy.
Baroclinic torques act to reduce entrainment.

These super-exponential flows are a new class of self-similar
turbulence. They are the natural generalization of acceleration
on the subset of classical, non-accelerated laboratory flows.

Take D to be the dissipation rate normalized by that of
the unforced flow. Based on heuristic grounds, the logarithmic
differential of D is assumed to be

dD/D = dα/β, (4)

where the natural scaling of acceleration on dissipation is β,

β = −(3 − 2n/m). (5)

It follows that

D = exp {−(α − α∗)/β}, (6)

where α∗ is the value of α for the unforced flow. Note that if
β is negative, dissipation declines with increasing α.

The value of β is negative for every canonical laboratory
flow, with two exceptions. For an observer moving down
the inertial cascade, β is zero. For Rayleigh-Taylor flow, β

is positive (Breidenthal 2003 and 2006). According to the
theory, Rayleigh-Taylor flow is unique in that acceleration
increases its dissipation rate.

Aside from this dimensional argument, is there another,
more physical explanation for the unique behavior of
Rayleigh–Taylor? In all other flows, the acceleration vector
is essentially parallel to the plane of the vortex sheet.
Entrainment tongues are between vortices of the same
sign. Figure 2 is a sketch of a two-dimensional plume
with increasing buoyancy, related to geophysical flows
of latent heat release in clouds (Bhat and Narasimha
1996) and vesiculation in magma flows (Bergantz and
Breidenthal 2001). The increasing buoyancy generates

Figure 3. Rayleigh–Taylor entrainment with increasing buoyancy.
Baroclinic torques act to increase entrainment.
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Figure 4. Entrainment in a non-accelerating jet. Point 1 is in the
middle of an engulfment tongue.

additional baroclinic torques in the braid region, increasing
the vorticity there. The resulting induced velocity from that
vorticity acts to reduce the entrainment velocity in Roskho’s
engulfment tongues (Roshko 1976). Increasing buoyancy
reduces entrainment.

On the other hand, the basic geometry for
Rayleigh–Taylor is different. There the acceleration vector
is essentially orthogonal to the plane of the vortex sheet.
Entrainment tongues are between vortices of opposite sign.
In figure 3, the baroclinic torques from the acceleration
act to increase the entrainment velocity of the engulfment
tongues. Acceleration increases entrainment. Because the
Rayleigh–Taylor geometry is different, the dependence on
acceleration is different.

A final example illustrates the effect of acceleration in the
absence of baroclinic vorticity. Consider the uniform density
jet in figure 4. Vortex A is older than vortex B and further
downstream. If the jet is not accelerating, the circulation of
vortex B is on average less than that of A. Suppose Point
1 is closer to the center of Vortex A than to the center of
Vortex B. The induced velocity at Point 1 will be dominated
by Vortex A, since A is both closer and stronger than B.
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Figure 5. Entrainment in an accelerating jet. Point 1 is now a
stagnation point and the engulfment tongue is narrower.

As a consequence, Point 1 resides well within a wide
engulfment tongue.

Now imagine that the acceleration parameter α is
increased so that the circulation of Vortex B exceeds that
of A (figure 5). Under sufficient acceleration, Vortex B will
be strengthen with respect to Vortex A such that its induced
velocity at Point 1 just nullifies that of Vortex A. In a
coordinate frame moving with the vortices, Point 1 then
becomes a stagnation point. The surviving engulfment tongue
is now much narrower, thereby reducing the average volume
flow into the jet. The entrainment velocity has declined due
to acceleration. The effect of acceleration on the engulfment
tongues can be considered a generalization of the effects of
density and velocity ratios on non-accelerating shear flows
(Dimotakis 1986).

2.3. Stationary vortices and starting jets

If α is positive, the rotation period vanishes at finite time
τ0/α. As α is increased, this singular time is reduced,
so that vortices do not have much time to travel. In the limit
of large α, vortices in a jet flow may remain near the nozzle,
as seen in analogous exponential transverse jet (Eroglu and
Breidenthal 1998). Ironically, such vortices are in a sense
stationary, in spite of the violent acceleration. Thus, there is
an underlying connection between two seemingly separate
phenomena.

It is known that stationary vortices behave differently than
nonstationary ones. For example, the entrainment rate across
a stratified interface decreases by orders of magnitude when
stationary vortices are made nonstationary (Cotel et al 1997).
The addition of stationary vortices into an initially turbulent
boundary layer results in relaminarization over most of the
wall (Balle and Breidenthal 2002, Dawson 2005, Bauer 2006).

When a vortex is near some surface, one can define
an intrinsic velocity ratio of the vortex, the ratio of the
rotational to the translational speed with respect to the surface
(figure 6). Cotel and Breidenthal (1994, 1997) identified this
initially in stratified flow, calling it a vortex ‘persistence’
parameter. According to their argument, this parameter should
be important anytime a vortex is near any definable surface,

U1
U2

Figure 6. The intrinsic velocity ratio U2/U1 of a vortex near any
surface (Cotel).

such as a stratified interface, a solid wall, or an iso-vorticity
surface of another vortex. As noted by Gharib (1995, private
communication), the persistence parameter is also equivalent
to the formation number in starting jets (Gharib et al 1998).
They found that there was a critical value of formation number
corresponding to the point at which no more vorticity could be
accommodated into the starting vortex.

Since acceleration reduces the dissipation and
entrainment rates in the jet, the critical formation number
should increase in accelerating jets. This qualitative trend has
already been observed in non-self-similar jets (Shusser et al
2006, Yu et al 2007). According to the theory, the critical
formation number should increase exponentially with α for
the self-similar jet.

3. Conclusions

A new class of self-similar, accelerating flows is proposed
as a generalization of classical, non-accelerating turbulence.
A new theory analyzes the general behavior of acceleration
on entrainment. According to the theory, the normalized
entrainment velocity is an exponential function of an
acceleration parameter. Acceleration reduces the entrainment
rate in all flows except for Rayleigh–Taylor, whose geometry
is unique.
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