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The Dory–Guest–Harris instability is demonstrated to be a well-suited benchmark for 
continuum kinetic Vlasov–Poisson algorithms. The instability is a special case of perpen-
dicularly-propagating kinetic electrostatic waves in a warm uniformly magnetized plasma. 
A complete derivation of the closed-form linear theory dispersion relation for the 
instability is presented. The electric field growth rates and oscillation frequencies specified 
by the dispersion relation provide concrete measures against which simulation results can 
be quantitatively compared. A fourth-order continuum kinetic algorithm is benchmarked 
against the instability, and is demonstrated to have good convergence properties and close 
agreement with theoretical growth rate and oscillation frequency predictions. Second-order 
accurate simulations are also shown to be consistent with theoretical predictions, but 
require higher resolution for convergence. The Dory–Guest–Harris instability benchmark 
extends the scope of current standard test problems by providing a substantive means of 
validating continuum kinetic simulations of magnetized plasmas in higher-dimensional 3D 
(x, vx, v y) phase space. The linear theory analysis, initial conditions, algorithm description, 
and comparisons between theoretical predictions and simulation results are presented.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Kinetic theory of plasmas treats each particle species as a probability distribution function in six-dimensional position-
velocity phase space. The evolution of the distribution function is governed by the Boltzmann equation coupled to Maxwell’s 
equations. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation.

These governing equations are often solved using Particle-in-Cell (PIC) methods. PIC methods sample a phase space dis-
tribution function with superparticles, and advance these superparticles in up to three spatial dimensions using the Lorentz 
force, which relates particle motion to fields [1]. In contrast, continuum methods – also known as Eulerian methods – 
evolve the full kinetic distribution function by solving the Boltzmann–Maxwell equation system in up to six dimensions of 
phase space. The computational cost of continuum methods scales geometrically with the number of dimensions thereby 
making full phase space continuum methods computationally costly. Recent advances in supercomputing capability and 
hyperbolic partial differential equation solvers, however, have made continuum methods a viable alternative to PIC. Exam-
ples include the development of high-order moment-conserving Vlasov–Poisson solvers in 2D (x, vx) [2–7], relativistic and 
non-relativistic Vlasov–Maxwell solvers in 3D (x, vx, v y) [8,9] and in 4D (x, y, vx, v y) [10,11], five-dimensional continuum 
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gyrokinetics algorithms for strong guide-field physics [12,13], and various continuum kinetic methods for collisional physics 
modeled by the Boltzmann equation [14].

Continuum methods offer a number of advantages. They can be cast in conservation law form so as to preserve velocity 
moments of the distribution function i.e. conserve mass, momentum, and energy. They also allow for the use of high order 
methods, which enhance the temporal and spatial accuracy of the solution. Unlike PIC methods, the continuum approach is 
not subject to noise [15–17] and thus can retain accuracy over longer periods of simulated time. In terms of computational 
efficiency, parallelization for continuum methods is achieved through static domain decomposition, which is especially con-
ducive to scalable load balancing on supercomputers. Continuum method scalability is also facilitated by the fact that they 
involve more arithmetic operations per byte of data, thus ensuring that parallelization is dominated by computation, not 
communication [18]. This still holds even when dynamic domain decomposition is used, e.g. in numerical methods that 
employ adaptive mesh refinement techniques.

Kinetic model algorithms in general, and continuum methods in particular, lack an arsenal of standardized benchmarks 
problems. This is in part due to the comparatively recent development of continuum methods, but more fundamentally 
because PIC and continuum methods have different limitations. Whereas PIC accuracy is limited by both the number of 
particles and grid resolution in up to three spatial dimensions, continuum method accuracy is limited by grid resolution 
in up to six phase space dimensions. A consequence of this is that PIC methods most effectively model cold plasmas and 
beams, whereas continuum methods are more conducive to modeling finite or high temperature phenomena. Thus standard 
benchmarks for PIC involving cold plasma assumptions with delta function initial conditions in velocity space [1] do not in 
general carry over to continuum methods.

Existing standardized benchmarks for continuum methods are largely limited to electrostatic phenomena that can be 
simulated in 2D (x, vx) phase space. These standardized test problems include: weak Landau damping [2,3,5–7,19,20], strong 
Landau damping [3–7,19], two-stream instability [3–7,19], bump-on-tail instability [2,3], and Langmuir waves [10,21]. In ad-
dition, ion-acoustic turbulence has been used as a qualitative benchmark [2]. Plasma in the presence of magnetic fields 
have been simulated with continuum methods using the following much less developed test problems: particle gyra-
tion [8,10], high-frequency electromagnetic waves [10], Raman scattering in 2D (x, vx) [22] and in 4D (x, y, vx, v y) [10], 
Weibel instability [8,23–25], Bernstein waves [20], relativistic wakefield acceleration [8,9], and the Kelvin–Helmholtz insta-
bility [11,26,27].

To address the paucity of benchmark problems for continuum methods, this paper investigates the Dory–Guest–Harris 
instability [28], which is a type of cyclotron harmonic instability [29–31] that is closely related to Bernstein modes [32], 
as a means of validating continuum kinetic simulations. In particular, the instability provides a straightforward means by 
which to benchmark simulations of magnetized plasmas in a limited number of dimensions: one spatial dimension and two 
velocity dimensions (1D2V). The paper is organized such that Section 2 draws on the theory of perpendicularly-propagating 
electrostatic waves in a warm magnetized plasma and provides a derivation of a closed-form dispersion relation for multiple 
species with arbitrary equilibrium distribution functions. Section 3 explores the dispersion relation characteristics for a 
Dory–Guest–Harris distribution and presents benchmarks against which continuum kinetic methods can be tested. Section 4
outlines a continuum fourth-order accurate 3D (x, vx, v y) Vlasov–Poisson solver that is used to simulate the instability. 
Sections 5 and 6 present simulation results and discuss the utility of the theoretical benchmarks as a validation platform.

2. Linear analysis of electrostatic k‖ = 0 waves in uniformly magnetized plasma

In kinetic theory constituent particle species in a plasma are described by probability distribution functions in phase 
space. The probability distribution function f s(x, v, t) for species s depends on the position coordinate x, velocity coordi-
nate v, and time t . The evolution of the distribution function in the case of electrostatic fields is described by the Vlasov 
equation and Gauss’s law. The non-dimensional form of this system of governing equations is

0 = ∂ f s

∂t
+ v · ∂ f s

∂x
+ Zs

Ms

(
E · ∂ f s

∂v
+ ωc

ωp
v × b̂ · ∂ f s

∂v

)
(1)

∇ · E =
∑

s

Zs

∫
f sdv, (2)

where f is the non-dimensional distribution function normalized by a nominal electron density n0; b̂ is the direction of the 
magnetic field B = Bb̂; Ms = ms/me is the ratio of the mass of species s to the electron mass; and Zs = qs/|e| is ionization 
state i.e. the ratio of the charge of species s to the electron charge. Note that t is the non-dimensional time, i.e. the physical 
time normalized by the electron plasma frequency. The factor in front of the cross product term is the ratio of electron 
cyclotron frequency ωc = eB/me to electron plasma frequency ωp = (n0e2/ε0me)

1/2, where −e is the electron charge and ε0
is the permittivity of free space. For electrostatic waves the electric field can be defined in terms of the electric potential Φ , 
such that E = −∇Φ . Thus Gauss’s law can be expressed as Poisson’s equation,

−∇2Φ =
∑

Zs

∫
f sdv. (3)
s
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The properties of small-amplitude waves depend on the equilibrium fields (E0, B0) and the equilibrium probability 
distribution function f s0(x, v). The response of equilibria to perturbations can be analyzed using the linearized governing 
equations. In the linearization procedure the fields and the distribution function f s(x, v, t) are expressed as a sum of an 
equilibrium part and a perturbation about that equilibrium [33]: E = E0 + E1, B = B0 + B1, f s = f s0 + f s1. It is assumed 
that the perturbation values are much smaller in magnitude than the equilibrium values, e.g. f s1 � f s0, such that nonlinear 
products of the perturbation terms can be neglected.

For an electrostatic system with a time-invariant equilibrium magnetic field (B = B0) and no equilibrium electric field 
(E = E1), the departure away from equilibrium is described by the linearized Vlasov equation and Gauss’s law. These are 
expressed in their non-dimensional form as

0 = ∂ f s1

∂t
+ v · ∂ f s1

∂x
+ Zs

Ms

(
E1 · ∂ f s0

∂v
+ ωc

ωp
v × b̂0 · ∂ f s1

∂v

)
(4)

∇ · E1 =
∑

s

Zs

∫
f s1dv, (5)

where f s0(v⊥, v‖) is the equilibrium velocity distribution for species s, v⊥ and v‖ are the non-dimensional components of 
electron velocity that are perpendicular and parallel to the equilibrium magnetic field B0 = B0b̂0, and f s1 is the first order 
perturbation of the probability distribution function away from equilibrium.

Eqs. (4) and (5) can be used to derive a dispersion relation for small-amplitude waves. For the purposes of this pa-
per, consideration is limited to electrostatic waves propagating perpendicular to the equilibrium magnetic field with wave 
vector components k⊥ �= 0 and k‖ = 0. Such waves are not subject to the effects of collisionless cyclotron or Landau damp-
ing [28,31]. Without loss of generality, let B0 = B0ẑ and k = k⊥x̂ to simplify the analysis. Taking advantage of the azimuthal 
symmetry associated with the equilibrium magnetic field, and following the procedure detailed in Ref. [34, pp. 341–351], 
a cylindrical coordinate system is introduced in which velocity is defined as

v = v⊥ cos θ x̂ + v⊥ sin θ ŷ + v‖ẑ. (6)

Fourier transforms in space and time are applied to both f1 and E1, such that the transformed versions are f̂1 and Ê1, 
respectively. To analyze a single fixed wave number Fourier mode, f1 = f̂1ei(k·x−ωt) and E1 = Ê1ei(k·x−ωt) are substituted 
into Eq. (4), which yields

0 = −iω f̂ s1 + iv · k f̂ s1 + Zs

Ms
Ê1 · ∂ f s0

∂v
− Zsωc

Msωp

∂ f̂ s1

∂θ
. (7)

Note that v · k = k⊥v⊥ cos θ and let the non-dimensionalized species-dependent cyclotron frequency be defined as Ωcs =
Zsωc/(Msωp), then the transformed linearized Vlasov equation is

0 = i

(
ω

Ωcs
− k⊥v⊥

Ωcs
cos θ

)
f̂ s1 − ωp

ωc
Ê1 · ∂ f s0

∂v
+ ∂ f̂ s1

∂θ
. (8)

Eq. (8) is an ordinary differential equation that can be analytically solved for f̂ s1. The solution is then substituted into the 
transformed Poisson equation

k2⊥Φ̂1 =
∑

s

Zs

∫
f̂ s1dv, (9)

such that the variables Ê1, Φ̂1, and f̂ s1 are eliminated. See Appendix A for details. The resulting dispersion relation, given 
by D(ω, k⊥) = 0, where D(ω, k⊥) is an implicit function that can be expressed as

D(ω,k⊥) = 1 +
∑

s

Ms
ω2

p

ω2
c

π∫
0

sin( ω
Ωcs

τ )

sin( ω
Ωcs

π)
sin(τ ) F0(τ + π)dτ = 0 (10)

F0(τ ) =
∞∫

0

f s0(v⊥) J0

(
2

k⊥v⊥
Ωcs

sin
τ

2

)
2π v⊥dv⊥, (11)

where J0 is the zeroth order Bessel function of the first kind. Note that v‖ dependence has been eliminated since it does 
not play a role for k‖ = 0 waves. Note also that the dispersion relation is independent of the sign of Ωcs because J0 is an 
even function. Thus, for convenience, Ωcs is henceforth defined to be positive such that Ωcs = |Zs|ωc/(Msωp). Eq. (10) is 
the non-dimensional multi-species closed-form dispersion relation and is a generalization of the dimensional single-species 
closed-form expression presented without proof in Ref. [31]. The closed-form representation (see Appendix A for a complete 
derivation) does not involve infinite sums, and thus a solution ω(k⊥) can be computed numerically with great accuracy for 
any arbitrary equilibrium distribution function.
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Fig. 1. Dory–Guest–Harris equilibrium probability distribution function in velocity space for different values of j. See Eq. (12). The larger the value of 
non-negative integer j, the more peaked the distribution. When superimposed with a spatially-dependent perturbation, the distribution function is uncon-
ditionally stable for j = {0, 1, 2} and conditionally stable for j ≥ 3.

The dispersion relation describes the propagation of waves of the form ei(k⊥x−ωt) . To obtain an explicit relation for 
frequency as a function of wavenumber, i.e. ω(k⊥), the roots of Eq. (10) are evaluated numerically for real values of k⊥ . 
In general frequency ω is complex-valued, such that ω = ωr + iωi . The real and imaginary components of frequency indicate 
the temporal evolution of the perturbation: ωr provides the oscillation frequency and ωi , depending on the sign, provides 
the growth (ωi > 0) or decay (ωi < 0) rate. For a given mixed-complex frequency solution of the dispersion relation, its 
complex-conjugate is also a solution; however, because exponential growth e|ωi |t dominates over an exponential rate of 
decay e−|ωi |t , only the exponentially growing solution is of consequence.

3. Dory–Guest–Harris instability in warm plasmas

The dispersion relation in Eq. (10) describes the properties of electrostatic waves propagating perpendicular to a uniform 
externally applied magnetic field in a spatially uniform infinite plasma. The properties of these waves over small and large 
time scales are relevant to a number of applications [35] including neutral beam heating in tokamaks [36,37], electrostatic 
cyclotron harmonic emissions in the magnetosphere [38,39], auroral precipitation [40,41], magnetic mirror loss cones [42], 
and electron cyclotron resonance heating [43]. Notably, the exact dispersion relation properties are determined by the 
equilibrium distribution function in velocity space, f0(v⊥).

Different probability distribution functions and their associated stability properties have been investigated theoreti-
cally [28,30–32,44] and computationally [29,45,46]. In particular, Dory et al. [28] identified that such waves are unstable 
for a warm ring velocity distribution provided that (a) the distribution f0(v⊥) is sufficiently peaked, (b) the ratio of plasma 
frequency to cyclotron frequency is above a specified threshold value, and (c) the wave number falls in a specific range. The 
class of single-species velocity distribution functions investigated by Dory et al. [28] can be expressed as:

f0(v⊥) = 1

πα2⊥ j!
(

v⊥
α⊥

)2 j

exp

(
− v2⊥

α2⊥

)
, (12)

where f0(v⊥) is the normalized equilibrium distribution function whose integral over the velocity domain has a value of 
one. Parameter α⊥ and non-negative integer j control the velocity spread of the distribution and the location of the peak. 
The distribution is peaked at v⊥0 = j1/2α⊥ and has a half-width at half-maximum that is approximated by α⊥/ j1/2. The 
half-width approximation is incorrectly presented in Ref. [28].

Note the dependence of the velocity distribution function on j: j = 0 corresponds to a Maxwellian, j > 0 corresponds to 
a ring, and in the limit of j → ∞ the distribution is a delta function ring with infinitesimal velocity spread. Fig. 1 shows 
the velocity distribution function for different values of j. Dory et al. [28] identified that for j = {0, 1, 2} the equilibrium 
distribution function is unconditionally stable; for j = {3, 4, 5} it is conditionally stable and supports wave frequencies that 
are either purely real or purely imaginary; for j ≥ 6 the distribution is conditionally stable and supports wave frequencies 
that have purely real, purely imaginary, or mixed complex frequencies.

While the dispersion relation of Eq. (10) applies more generally, the evolution of the Dory–Guest–Harris instability con-
cerns particles of a single species. It is assumed that the plasma is composed of particle species that have disparate masses, 
e.g. ions and electrons, and thereby the interactions between species are not important [28]. Thus on time scales over which 
ion motion can be neglected, the only evolving distribution function is that of the electrons. Similarly, on time scales much 
greater than the electron plasma frequency, the only evolving distribution function is that of the ions. In effort to avoid 
ambiguity, f is henceforth the electron distribution function and a fixed uniform ion background is assumed.
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Fig. 2. Dispersion diagram for a Maxwellian distribution function in velocity space, with j = 0 and α⊥ = 21/2 in Eq. (12). The Maxwellian distribution is 
unconditionally stable such that frequency is real-valued, independent of ωp/ωc and of k⊥v T /Ωc . Note that the wave number (see Eq. (14)) is normalized 
using thermal velocity defined by v2

T = α2⊥/2 since v⊥0 is zero for a Maxwellian distribution.

Fig. 3. Dispersion diagram for an unconditionally stable warm ring velocity distribution function with j = 2 and v⊥0 = √
2, namely ω̃i = 0. Stability is 

evidenced by a real-valued frequency ω̃ for each k̃, independent of the value of ωp/ωc .

The dispersion relation for the Dory–Guest–Harris distribution can be solved numerically for frequency as a function of 
wave number. It is convenient to solve for the normalized frequency ω̃ = ω̃r + iω̃i as a function of the normalized wave 
number k̃, defined respectively as

ω̃ = ω/Ωc (13)

k̃ = k⊥v⊥0/Ωc, (14)

where Ωc = ωc/ωp . As described in Section 2, time is normalized by ωp . Solutions to the dispersion relation are found by 
selecting a particular real wave number value, k̃∗ , and finding the value of frequency ω̃ for which the equality D(ω̃, ̃k∗) = 0
is satisfied. In cases where ω̃ is purely real, or purely imaginary, the bisection method can be used to find the frequency. 
When frequency is mixed complex, a minimization of (D(ω̃, ̃k∗))2 is performed to solve for the real and imaginary com-
ponents of frequency. In the minimization method, an initial guess is informed by first evaluating D(ω̃r, ω̃i, ̃k∗) for a range 
of real and imaginary frequency values and then finding the intersection of the Re(D(ω̃r, ω̃i, ̃k∗)) = 0 contours with the 
Im(D(ω̃r, ω̃i, ̃k∗)) = 0 contours in the ω̃r–ω̃i plane. Note that ω̃(k̃) is multivalued, so that for each value of k̃, there are mul-
tiple values of ω̃ that satisfy the dispersion relation of Eq. (10). These multiple values correspond to different harmonics. 
Thus, when numerically solving for frequency as a function of wavenumber, it is helpful to limit the range of ω̃ over which 
solutions are sought.

The resulting dispersion diagram for the case of a Maxwellian distribution ( j = 0, α⊥ = 21/2) is shown in Fig. 2, and 
is consistent with the results presented in Refs. [30,31]. Because frequency is real-valued for all values of wave number 
independent of the ratio ωp/ωc , the Maxwellian distribution is unconditionally stable. The dispersion diagrams for the 
unconditionally stable case of j = 2 are shown in Fig. 3 for different values of ωp/ωc . As is consistent with [31], the cutoff 
frequencies (for which k̃ = 0) are: at integer multiples of the non-dimensional cyclotron frequency, nΩc with |n| > 1; and at 
the non-dimensional upper hybrid frequency, (1 + Ω2

c )1/2. Likewise, the resonance frequencies (for which k̃ is infinite), are 
at nΩc with |n| > 0.
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Fig. 4. Dispersion diagrams for a conditionally stable velocity distribution function with j = 4 and v⊥0 = √
2. For these parameters frequency is either purely 

real (blue) or purely imaginary (red). Instability can occur when ωp/ωc � 10.5. For ωp/ωc = 20, instability occurs when k̃ ∈ [2.73, 3.58]. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 5. Dispersion diagrams for a conditionally stable velocity distribution function with j = 6 and v⊥0 = √
2. Instability can occur when ωp/ωc � 7.0. Real 

values of frequencies are shown in blue, imaginary components of frequency are shown in red, and real components of mixed-complex frequencies are 
shown in green. For ωp/ωc = 20 an electrostatic wave exhibits pure growth when k̃ ∈ [2.57, 3.73], and growth with propagation when k̃ ∈ [4.23, 5.13]. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

For conditionally stable cases of j = 4 and j = 6 dispersion diagrams are shown in Fig. 4 and Fig. 5, respectively. In-
stability for the j = 4 equilibrium distribution function is evidenced when ω̃i > 0, which occurs for a finite range of wave 
numbers provided that the ratio of electron plasma frequency to cyclotron frequency exceeds the threshold value of ≈10.5. 
In this case there are no mixed-complex frequency solutions to the dispersion relation. For j = 6 the distribution function is 
unstable for certain ranges of k̃ provided that ωp/ωc � 7.0. Above this threshold value, instabilities with purely imaginary or 
mixed complex frequencies can occur. Note that the threshold value of ωp/ωc above which instability can occur is smaller 
for larger values of j. These instability properties are consistent with the thresholds presented in Ref. [28]. As j is increased, 
the ω̃(k̃) for the warm ring smoothly approaches the dispersion relation for the delta function ring [28]. Dispersion diagrams 
for delta function distributions are presented in Refs. [1,31].

4. Vlasov–Poisson model and continuum algorithm

4.1. Non-dimensional 3D (x, vx, v y) Vlasov–Poisson system and domain specifications

The evolution of the Dory–Guest–Harris probability distribution function in response to electrostatic waves propagating 
perpendicular to an equilibrium magnetic field can be simulated in three-dimensional phase space: position coordinate x
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and velocity coordinates vx and v y , with magnetic field in the ẑ direction and electric field of the wave in the x̂ direction. 
This evolution is described by the non-relativistic Vlasov–Poisson equation system. In non-dimensional conservation law 
form the 3D (x, vx, v y) Vlasov–Poisson system of governing equations is:

0 = ∂ f

∂t
+ ∂

∂x
(vx f ) + Ze

Me

∂

∂vx

([
Ex + v y

ωc

ωp

]
f

)
+ Ze

Me

∂

∂v y

(
−vx

ωc

ωp
f

)
(15)

−∂2φ

∂x2
= 1 −

∞∫
−∞

∞∫
−∞

f dvxdv y (16)

where Eq. (15) is the reduced dimension version of Eq. (1), f is the electron distribution function, and Ze/Me = −1. The 
spatial domain has length L, such that x ∈ [0, L]. To minimize computational cost, the velocity domain is truncated such that 
vx, v y ∈ [−vmax, vmax] with finite vmax. Note that the Poisson equation contains number density contributions from the 
electrons and from the ions, which are assumed to be fixed and uniformly distributed in space. The system is quasineutral 
such that the righthand side of Eq. (16) integrated over the spatial domain has a value of zero.

The domain is divided into Nx × Nvx × Nv y cells where Nx , Nvx , and Nv y are the number of cells in each of the 
three phase space directions. Boundary conditions are imposed using ghost cells that are appended to the domain to allow 
for finite volume calculations at boundaries. Because the plasma is assumed to be spatially infinite, periodic boundary 
conditions are applied in the x̂ direction. Solid-wall boundary conditions are applied at |vx|, |v y| = vmax by: setting the 
value of the distribution function to zero in the velocity-boundary ghost cells i.e. enforcing f = 0 for |v| > vmax; and 
setting the values of fluxes at velocity boundaries to zero. The latter stipulation ensures that the integral of the distribution 
function over the entire phase space domain is conserved. The solid-wall boundary condition is valid provided that f (vmax)

is sufficiently close to zero.

4.2. Fourth-order finite volume discretization

The non-dimensional Vlasov–Poisson system is solved using an explicit finite volume method with fourth-order accu-
racy in time and space. Fourth-order interpolations are used for spatial accuracy, and fourth-order Runge–Kutta is used to 
advance the cell-average distribution function in time.

The probability distribution function is initialized by a fourth-order cell-average of the analytic f (x, vx, v y)|t=0, such that 
the cell-average value is computed as the sum of the cell-center value and second derivative corrections:

〈 f 〉i, j,k = f i, j,k + h2
x

24

(
f i+1, j,k − 2 f i, j,k + f i−1, j,k

h2
x

)
+ h2

vx

24

(
f i, j+1,k − 2 f i, j,k + f i, j−1,k

h2
vx

)

+ h2
v y

24

(
f i, j,k+1 − 2 f i, j,k+1 + f i, j,k−1

h2
v y

)
(17)

where 〈·〉 denotes the cell-average value, subscripts i, j, k denote discretized domain cell indices, and hx , hvx and hv y are 
the grid spacings in the x̂, v̂x , and v̂ y directions, respectively.

For each time step, the algorithm for advancing the cell-average distribution function performs the following steps.

1. The Poisson equation is solved for the cell-average potential 〈φ〉i using a 4th-order finite volume stencil:

−
(

− 1

12
〈φ〉i+2 + 4

3
〈φ〉i+1 − 5

2
〈φ〉i + 4

3
〈φ〉i−1 − 1

12
〈φ〉i−2

)
= 1 −

∑
j

∑
k

〈 f 〉i, j,khvx hv y , (18)

with the constraint 
∑

i〈φ〉i = 0, which is used as a means to ensure that the net electric field in the domain is zero.
2. The cell-average electric field 〈E〉i is computed using the cell-average potential:

〈E〉i = − 8

12hx

(〈φ〉i+1 − 〈φ〉i−1
) + 1

12hx

(〈φ〉i+2 − 〈φ〉i−2
)
. (19)

3. The cell-average values of the distribution function are interpolated to cell-faces, using a one-point upstream-centered 
stencil:

f x-face
i+ 1

2 , j,k
=

{
2

60 f i−2, j,k − 13
60 f i−1, j,k + 47

60 f i, j,k + 27
60 f i+1, j,k − 3

60 f i+2, j,k for vx > 0

− 3
60 f i−1, j,k + 27

60 f i, j,k + 47
60 f i+1, j,k − 13

60 f i+2, j,k + 2
60 f i+3, j,k for vx ≤ 0

(20)

f vx-face
i, j+ 1

2 ,k
=

{ 2
60 f i, j−2,k − 13

60 f i, j−1,k + 47
60 f i, j,k + 27

60 f i, j+1,k − 3
60 f i, j+2,k for Ze(Ex + v y

ωc
ωp

) > 0

− 3
60 f i, j−1,k + 27

60 f i, j,k + 47
60 f i, j+1,k − 13

60 f i, j+2,k + 2
60 f i, j+3,k for Ze(Ex + v y

ωc
ωp

) ≤ 0
(21)

f
v y -face

i, j,k+ 1
2

=
{ 2

60 f i, j,k−2 − 13
60 f i, j,k−1 + 47

60 f i, j,k + 27
60 f i, j,k+1 − 3

60 f i, j,k+2 for vx
ωc
ωp

> 0

− 3 f i, j,k−1 + 27 f i, j,k + 47 f i, j,k+1 − 13 f i, j,k+2 + 2 f i, j,k+3 for vx
ωc ≤ 0

(22)

60 60 60 60 60 ωp
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4. Flux terms on the righthand side of Eq. (15) are evaluated using cell-face values of E , vx , v y , f , and Bz and associated 
fourth-order corrections [47]:

F x-face
i+ 1

2 , j,k
= f x-face

i+ 1
2 , j,k

〈vx〉 j + hvx

24

(
f x-face

i+ 1
2 , j+1,k

− f x-face
i+ 1

2 , j−1,k

)
(23)

F vx-face
i, j+ 1

2 ,k
= f vx-face

i, j+ 1
2 ,k

〈E〉i + 1

48

(
f vx-face

i+1, j+ 1
2 ,k

− f vx-face
i−1, j+ 1

2 ,k

)(〈E〉i+1 − 〈E〉i−1
)

+ ωc

ωp

[
f vx-face

i, j+ 1
2 ,k

〈v y〉k + hv y

24

(
f vx-face

i, j+ 1
2 ,k+1

− f vx-face
i, j+ 1

2 ,k−1

)]
(24)

F
v y -face

i, j,k+ 1
2

= ωc

ωp

[
f

v y -face

i, j,k+ 1
2
〈vx〉 j + hvx

24

(
f

v y -face

i, j+1,k+ 1
2

− f
v y -face

i, j−1,k+ 1
2

)]
. (25)

Note that x, vx , and v y are independent coordinates, electric field depends only on position, and the magnetic field is 
constant.

5. Eq. (15) is expressed in terms of a time derivative and divergence of fluxes:

∂

∂t
〈 f 〉i, j,k = − 1

hx

(
F x-face

i+ 1
2 , j,k

− F x-face
i− 1

2 , j,k

)
+ 1

hvx

(
F vx-face

i, j+ 1
2 ,k

− F vx-face
i, j− 1

2 ,k

)
− 1

hv y

(
F

v y -face

i, j,k+ 1
2

− F
v y -face

i, j,k− 1
2

)
. (26)

6. 〈 f 〉i, j,k is advanced in time using a fourth-order explicit Runge–Kutta method.

The one-point upstream-centered stencil used to interpolate 〈 f 〉 to cell faces is an upwind-biased method [48] that takes 
into account the direction of hyperbolic advection. Thus upwind-biasing provides dissipation to damp out numerical errors 
with wavelengths 2hx, 2hvx , and 2hv y , which are inherent to high-order centered-difference stencils.

For explicit methods the time step is limited by the CFL condition, which depends on grid spacing in each direction 
(hx , hvx , hv y ) and the fastest advection speed in the system. In this case, the advection speeds that control the distribution 
function evolution in the x̂, v̂x , and v̂ y directions are: |vx|, |Ex + v y

ωp
ωc

|, and |vx
ωp
ωc

|, respectively. In phase space calculations, 
velocity is a coordinate and therefore the extent of the domain in the velocity direction imposes a limit on the time step. 
The limit on the time step size is

�t ≤ σ · min

{
hx

vmax
,

hvx

|E|max + ωc
ωp

vmax
,

hv y
ωc
ωp

vmax

}
, (27)

where |E|max is the maximum of the absolute value of the electric field at any given time and σ is the CFL number. The 
described high-order upwind-biased spatial discretization sets a constraint on the CFL, such that σ must be less than ≈0.6
to ensure that the method is numerically stable.

4.3. Initial condition and its influence on the dominant mode

The initial condition for the Dory–Guest–Harris instability involves an equilibrium velocity distribution function specified 
in Eq. (12), and a position-dependent sinusoidal perturbation which constitutes the electrostatic wave. It is important to 
note that the dependence of the perturbation on vx and v y is arbitrary; however, this dependence dictates how strongly 
the dominant, fastest-growing mode is excited. This is related to the fact that ω̃i > 0 solutions to the dispersion relation 
identify the growth rate of the fastest growing mode, whereas other modes will exhibit smaller growth rates. A perturbation 
with an arbitrary velocity dependence leads to a growth of many different modes, only one of which, over a long period of 
time, emerges as the dominant mode with the largest growth rate.

In order to determine the velocity dependence of a perturbation that more strongly excites the fastest-growing mode, 
a perturbation that is symmetric in velocity is first investigated, such that the initial condition is

f (x, vx, v y)|t=0 = 1

πα2⊥ j!
(

v2
x + v2

y

α2⊥

) j

exp

(
− v2

x + v2
y

α2⊥

)(
1 + ε sin

(
k̃ Ωc

v⊥0
x

))

x ∈ [0, L], vx ∈ [−vmax, vmax], v y ∈ [−vmax, vmax], k̃ = 2π

L

v⊥0

Ωc
, (28)

where ε � 1 is the amplitude of the perturbation. This distribution, with k̃ and ωp/ωc for which the dispersion relation 
predicts a non-zero imaginary component of frequency, is evolved for a time period of several hundred plasma frequencies. 
An isosurface of the peak values of f (x, vx, v y) at the final time gives an indication of the dominant mode topology. In-
formed by this qualitative analysis, an initial condition with a perturbation of the following form is found to most effectively 
excite the dominant mode:
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Fig. 6. Isosurface ( f − f0) = 7.5 × 10−6 in phase space at initial time, depicting the helical structure of the initial perturbation that strongly excites the 
dominant mode. Contours at x = 0 and x = L show that the perturbation is periodic along the x̂ direction.

f (x, vx, v y)|t=0 = 1

πα2⊥ j!
(

v2
x + v2

y

α2⊥

) j

exp

(
− v2

x + v2
y

α2⊥

)(
1 + ε sin

(
4θ − k̃ Ωc

v⊥0
x

))
(29)

θ = arctan

(
v y

vx

)
. (30)

This perturbation is peaked along a four-stranded helix in phase space coordinates (x, vx, v y), with a position-dependent 
sinusoidal wave with wavelength L and a velocity-dependent component that excites the fastest growing mode for cases of 
ω̃i > 0. See Fig. 6 for a depiction of the peaks of this perturbation.

For all simulation results presented here, the perturbation amplitude is chosen to be ε = 1 × 10−4 and parameter α⊥ is 
selected to have a value of (2/ j)1/2 so that v⊥0 = √

2. The perturbation amplitude determines how quickly the instability 
saturates, and thus for smaller ε the linear phase of the instability lasts longer. In general α⊥ and j should be selected 
subject to constraints associated with resolution limits (due to computational cost) and the CFL condition.

Another aspect of the initial condition that deserves particular attention is the normalization. The integral of Eq. (28) and 
Eq. (29) over the infinite velocity domain is one, which ensures that the system being modeled is globally charge neutral. 
However, for computational cost purposes associated with resolution and the CFL stability limit on the time step size (see 
Eq. (27)), the velocity domain is truncated such that in simulations vx, v y ∈ [−vmax, vmax]. In the simulations discussed in 
this paper, vmax = 4. Using a higher vmax would introduce a prohibitive computational expense by (a) further limiting the 
time step size required for numerical stability and (b) requiring more grid cells to properly resolve the distribution function. 
Thus the integral over the truncated domain, depending on the choice of vmax and the distribution function parameters, 
may not be normalized to numerical precision.

To address the effects of a truncated velocity domain and to ensure charge neutrality in the system, the initial condition 
is scaled by a constant factor A such that the following expression is satisfied to 10−15 precision:

A
vmax∫

−vmax

vmax∫
−vmax

1

πα2⊥ j!
(

v2
x + v2

y

α2⊥

) j

exp

(
− v2

x + v2
y

α2⊥

)
dvxdv y = 1, (31)

where the value of A depends on the value of vmax, j, and α⊥ . Ideally vmax would be chosen to be sufficiently high that 
the scale factor A would not be necessary, i.e. the scale factor would equal one to numerical precision. For the parameters 
of interest with j = {2, 4, 6}, the scale factor value is one to within a precision of 10−6, 10−10, and 10−15, respectively.

5. Simulation of the Dory–Guest–Harris instability

5.1. Quantifying instability growth rate from electric field energy evolution

In order to compare simulation results to the theoretical predictions from the dispersion relations for the Dory–Guest–
Harris probability distribution function, potential energy is tracked as a function of time. The non-dimensional electrostatic 
potential energy, i.e. the electric field energy U E , is defined analytically as
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Fig. 7. Comparison of electric field energy evolution for cases in which perturbation: amplifies only (black), amplifies and propagates (cyan), and propagates 
only (purple). Time is normalized by the electron plasma frequency. (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

U E = 1

2

L∫
0

E2(x)dx (32)

and in fourth-order accurate discrete form as

U E = 1

2

∑
i

〈E〉2
i + h2

x

12

( 〈E〉i+1 − 〈E〉i−1

2hx

)2

. (33)

In simulations the Dory–Guest–Harris instability is evidenced by net exponential growth of electrostatic potential energy as 
a function of time. According to the dispersion relation in Eq. (10), this occurs for waves whose normalized wave numbers 
yield a positive imaginary frequency, i.e. ω̃i(k̃) > 0. The growth rate of electric field energy in a simulation is determined 
by fitting an exponential to U E (t), or equivalently finding the slope S of the line that fits log(U E ) versus time during the 
linear stage of evolution. In the non-dimensional system of equations being solved, time t is also non-dimensional and is 
defined to be the product of physical time and the electron plasma frequency. Note that it is the growth rate of the electric 
field, not electric field energy, that is compared against the value of ω̃th

i predicted by the linear theory dispersion relation. 
The growth rate of the electric field is a factor of two smaller than the growth rate of the electric field energy. From the 
numerical simulations, the electric field growth rate ω̃num

i is calculated as

ω̃num
i = 1

2

ωp

ωc
S, (34)

where the ωp/ωc factor is necessary for proper normalization. When ω̃i > 0, ω̃r = 0, pure exponential growth of the electric 
field is observed, until the instability enters the nonlinear regime and saturates. When ω̃i > 0, ω̃r > 0, the electric field 
energy oscillates at a frequency 2ω̃r and grows at a rate of 2ω̃i , which means the electrostatic wave propagates and amplifies 
until it saturates. From the simulations, the oscillation frequency ω̃num

r of the electric field is determined from U E (t)

ω̃num
r = π

T

ωp

ωc
, (35)

where T is the period of U E (t) oscillation in units of normalized time, and the ratio of plasma frequency to cyclotron 
frequency is necessary to be consistent with Eq. (13).

When potential energy oscillates without net growth or decay (ω̃i = 0), the electrostatic wave is stable and propagates 
unchanged through the infinite plasma. In this case ω̃num

r is difficult to determine from the simulation, since many different 
modes are excited by the initial perturbation, none of which grow in time. Exciting a single mode would require solving 
for the eigenfunction associated with the linearized Vlasov–Poisson system. Such analysis is beyond the scope of this paper 
and is not necessary to determine stability properties and characterize the behavior of the instability. Cases of stability are 
therefore verified not by comparing ω̃num

r to the theoretically predicted ω̃th
r , but by verifying that there is no net growth of 

potential energy as a function of time. Fig. 7 shows the electric field energy evolution for the three different cases discussed.

5.2. Discussion of fourth-order simulation results

Cases of stability allow for a qualitative comparison between simulation results and theoretical predictions. The 
Maxwellian equilibrium distribution function is verified to be stable for different values of α⊥ and k̃. This result is con-
sistent with those presented in Ref. [31]. Other parameter values for which linear theory predicts stability are listed in 
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Table 1
Sets of parameters j, ωp/ωc , and k̃ for which simulations show stability of the Dory–Guest–Harris distribution in response to perturbation.

j 2 2 2 2 2 2 4 4 4 4 4 6 6 6 6
ωp/ωc 20 20 20 10 10 10 20 20 10 10 10 20 6 6 6
k̃ 1.41 2.12 2.83 1.41 2.12 2.83 2.00 4.00 2.00 3.00 4.00 0.50 0.50 3.15 4.65

Table 2
Converged values of frequencies from fourth-order simulations compared to theoretical values predicted by the dispersion relation for parameters that 
result in instability. Error is defined as the relative difference between the theoretical value and the converged value from simulations, e.g. |ω̃th

i − ω̃num
i |/ω̃i .

j ωp/ωc k̃ ω̃th
i ω̃num

i Error ω̃th
r ω̃num

r Error

4 20 3.00 0.2938 0.3003 2.2% – – –
6 20 3.15 0.4912 0.4958 0.9% – – –
6 20 4.65 0.2899 0.2903 0.1% 1.0361 1.0310 0.5%

Table 1 and are verified to be stable in simulations. Note that these parameters correspond to cases for which frequency is 
real-valued – see Fig. 3, Fig. 4, and Fig. 5 for the dispersion diagrams. For each set of stable parameters, the electric field 
energy exhibits no net change in magnitude. Fig. 7 shows the electric field energy evolution for the stable case of j = 2, 
k̃ = 2.12, and ωp/ωc = 10 as compared to unstable cases, for which field energy grows by many orders of magnitude.

For parameter values that result in growth of the instability, simulation results can be quantitatively compared against 
theoretical predictions. See Table 2 for a comparison of frequency values obtained from simulation against dispersion rela-
tion predictions. For the case of pure growth with j = 4, ̃k = 3.00, and ωp/ωc = 20 the simulation-derived growth rate is 
0.3003, which is 2.2% larger than the theoretical value. Simulated electric field energy evolution as a function of time for 
j = 6 is shown in Fig. 8(a) for the case of pure growth, with k̃ = 3.15 and ωp/ωc = 20. For these parameters, the elec-
trostatic wave does not propagate and its amplitude grows exponentially in time at a rate of ω̃num

i = 0.4958. This growth 
rate value is within one percent of the theoretical value ω̃th

i = 0.4912 predicted by the dispersion relation. Fig. 9(a) shows 
electric field energy evolution for the case of growth with propagation, with j = 6, k̃ = 4.65 and ωp/ωc = 20. For this set of 
parameters the perturbation grows at a rate of ω̃num

i = 0.2903 and oscillates at a frequency of ω̃num
r = 1.0310. These values 

are within one percent of the theoretical predictions (see Table 2).
All values of simulation-derived frequencies presented in this paper are converged from simulation outputs for three 

different grid resolutions. Thus for a given set of simulation parameters, the fourth-order electric field energy outputs are 
generated using grids of size Nx × Nvx × Nv y : 32 × 64 × 64, 40 × 80 × 80, and 48 × 96 × 96. The number of cells Nvx in the 
v̂x direction and Nv y in the v̂ y directions are equal such that the velocity grid spacings are uniform, hvx = hv y = hv . As the 
grid is refined, hv → 0 and ω̃num approaches a limiting value. The value hc

v is the lowest resolution grid cell spacing, corre-
sponding to the 32 × 64 × 64 grid. Converged fourth-order simulation results for cases of instability growth are presented 
in Figs. 8(b), 9(b) and 9(c).

Representative convergence study results are shown in Fig. 8(b) for a purely imaginary frequency, and in Figs. 9(b) and 
9(c) for a mixed complex frequency. The convergence study enables one to find values of ω̃num

r and ω̃num
i in the limit of 

infinite resolution and to verify the accuracy of the numerical method. Since the discrete numerical representation of the 
Vlasov–Poisson partial differential equation system is an approximation with order accuracy p, the error is expected to 
scale as (hv )p . For the finite volume method described in Section 4.2, p = 4. Thus, simulation-derived frequency values as 
a function of (hv )4 should be a linear relation such that the y-intercept is the converged value of frequency. The data in 
Figs. 8(b), 9(b) and 9(c) are well represented by line fits, which verifies that the numerical method is fourth-order accurate.

Figs. 8(a) and 9(a) show that the instability evolution enters a nonlinear regime and saturates. Saturation occurs when 
the electric field energy reaches a value on the order of 10−2. This saturation threshold is consistent with PIC simulations 
for a delta function ring initial condition [29]. Fig. 10 shows contour slices of the electron probability distribution function 
in phase space during the nonlinear phase of the evolution for parameters j = 6, ̃k = 4.65, ωp/ωc = 20. The figure shows 
that the Dory–Guest–Harris instability is characterized by a complicated 3D structure in phase space with evidence of phase 
mixing due to the combined effects of shearing and Larmor motion. The probability distribution function, averaged over 
position x, exhibits increased velocity spread over time. For the warm ring initial conditions presented here, this effect 
is subtle during the linear stage of evolution, but becomes more pronounced during the nonlinear regime. As a point of 
comparison, delta-function ring distributions simulated using a PIC method also exhibit increased velocity spread, leading 
up to and following saturation [29].

5.3. Order of accuracy considerations

To assess the effect of numerical method accuracy on the simulation results, a second-order variant of the fourth-
order finite volume method discussed in Section 4.2 is implemented. The second-order method uses second-order explicit 
Runge–Kutta time advance and smaller stencils for the spatial finite volume discretization. Thereby it takes less numerical 
operations and achieves lower computational cost at the expense of spatial and temporal accuracy.
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Fig. 8. Fourth-order simulation results with j = 6, ωp/ωc = 20, and k̃ = 3.15. (a) Electric field energy grows exponentially in time. Linear phase is observed 
for time t ∈ [150, 360], denoted by the vertical dashed lines. Time is normalized by the electron plasma frequency. (b) As the simulation grid is refined 
from 32 × 64 × 64 to 48 × 96 × 96, the growth rate converges at fourth-order to a value of 0.4958.

Fig. 9. Fourth-order simulation results with j = 6, ωc/ωp = 20, and k̃ = 4.65 using different grid resolutions. (a) The Dory–Guest–Harris equilibrium 
distribution function is unstable and the initial small-amplitude wave grows and propagates in time. Propagation is evidenced by the periodic oscillations in 
the electric field energy. The linear phase of the instability is observed for t ∈ [138, 510] and is denoted by vertical black dashed lines. Time is normalized 
by the electron plasma frequency. (b) As the simulation grid is refined instability growth rate converges at fourth-order to a value of 0.2903. (c) Real 
frequency converges at fourth-order to a value of 1.0310.
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Fig. 10. Contours showing the fourth-order accurate nonlinear evolution of the distribution function on a 48 ×96 ×96 grid with j = 6, ̃k = 4.65, ωp/ωc = 20
with slices at v y = 0, vx = 0, and x = L/2. Negative values of the distribution function are an unphysical numerical artifact. Time is normalized by the 
electron plasma frequency.
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Fig. 11. Second-order simulation results for the case of pure growth with j = 6, ωp/ωc = 20, and k̃ = 3.15. As the simulation grid is refined from 32 × 64 ×
64 to 48 × 96 × 96, the growth rate converges at second-order to a value of 0.5413.

Fig. 12. Second-order simulation results with j = 6, ωp/ωc = 20, and k̃ = 4.65. In order to adequately capture the electric field energy growth and oscillation 
associated with the linear phase of the Dory–Guest–Harris instability, the second-order method requires higher resolution.

Second-order simulations with j = 6, ̃k = 3.15, and ωp/ωc = 20 exhibit electric field energy evolution that is similar to 
the fourth-order results presented in Fig. 8(a). The linear phase of the instability visibly depends on the grid resolution, but 
otherwise exhibits the same features: the linear phase starts at time t = 150 and saturation occurs when electric field energy 
reaches 10−2. Fig. 11 shows the instability growth rates as derived from the second-order simulations using different grid 
resolutions. The value of the growth rate is a linear function of (hv )2, verifying that the rate of convergence is second-order. 
The converged value of the instability growth rate in this case is 0.5413, which is 10% off from the theoretically-predicted 
value shown in Table 2. The large error is due to the lower accuracy of the method and can be improved with higher 
resolution.

Second-order simulations of instability growth and propagation with j = 6, k̃ = 4.65, and ωp/ωc = 20 are shown in 
Fig. 12. In this case grid resolutions 32 × 64 × 64 and 40 × 80 × 80 are insufficient and fail to capture the growth and 
propagation of the initial electric field perturbation. Higher resolution is required in order to reach the asymptotic regime 
and demonstrate convergence of the second-order method. Even when using a resolution of 64 ×128 ×128, the second-order 
method is unable to capture the transition between the linear and nonlinear phases of instability evolution. Consequently 
the evolution of the electric field energy starts to exhibit nonlinear behavior long before the instability is expected to 
saturate. As the grid is refined from 48 × 96 × 96 to 64 × 128 × 128, the imaginary component of frequency converges to a 
value of 0.3693 which is 27% off from the theoretically predicted value (see Table 2). The converged value of the oscillation 
frequency, ω̃num

r = 1.0445 is 0.8% off from the theoretically predicted value. As in the case of pure growth, large error in 
the growth rate can be mitigated by using higher resolution.

As expected, second-order simulation results are consistent with fourth-order results, but require higher resolution to 
achieve adequate convergence for the value of the growth rate. Cases in which the instability amplifies and propagates 
are particularly sensitive to the order of accuracy. Thus low order methods can successfully be benchmarked against the 
Dory–Guest–Harris instability, provided the resolution is high enough to ensure that a given simulation is in the asymptotic 
regime.
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5.4. Sources of error

While converged values of fourth-order simulation-derived frequencies closely agree with theoretical values predicted 
by the dispersion relation, an assessment of simulation limitations and sources of error is warranted. One source of error 
in the simulations is the truncation of velocity boundaries. Truncation is necessitated by the CFL condition, which limits 
time step size based on the value of vmax – a unique feature of phase space calculations (see Eq. (27)). When the velocity 
domain is truncated, the value of the distribution function at the velocity boundary can be appreciably greater than zero, 
which affects the validity of the imposed velocity boundary conditions. Note that j, α⊥ and the re-normalization of the 
distribution function after velocity boundary truncation (see Eq. (31)) affect the value of f (vmax). Since solid wall boundary 
conditions at |vx|, |v y| = vmax are imposed by setting ghost cell values and fluxes to zero, truncation does not affect con-
servation. Thus, in the finite volume simulation results presented, mass (i.e. the zeroth velocity moment of the distribution 
function) is conserved to numerical precision. Truncation does, however, introduce an unphysical barrier that can impact the 
solution. This may explain why the j = 4 test case, which has a higher value of f (vmax), exhibits the worst agreement with 
theoretical predictions. Using a higher value of vmax would resolve discrepancies due to boundary effects at the expense of 
increased computational cost. Equilibrium distribution function parameters j and α⊥ can also be modified to decrease the 
value of f (vmax) without increasing the value of vmax, and thereby improve agreement between theoretical and numerical 
values of frequency. It is important, however, to ensure that the distribution function features are adequately resolved by 
the simulation grid.

Numerical errors are another source of discrepancy. These cause the probability distribution function to become negative 
in regions far away from the distribution function peaks (as evidenced in the minimum values of f shown in Fig. 10). 
These negative values are unphysical and are the result of under-resolved gradients associated with the spatial discretiza-
tion. Consequently the errors can be diminished by increasing the resolution. Since fine-scale phase space features develop 
progressively throughout a simulation, increased resolution would also extend the duration over which the instability can 
be modeled. Positivity preserving methods involving limiters can also be used to mitigate the effects of these numerical 
errors.

Low resolution also limits the accuracy of the convergence study – both for high-order and low-order numerical methods. 
Second-order simulations in particular require higher resolution in order to converge to a theoretically predicted solution. 
The grid resolution is limited by the computational cost of advancing the distribution function in three dimensions. Higher 
resolution simulations, facilitated by optimization of algorithm performance, would likely improve the accuracy of the con-
vergence fits (see Figs. 8(b), 9(b) and 9(c)), and thereby reduce the error in the converged values of ω̃num

i and ω̃num
r . 

Even with limited resolution, however, fourth-order simulation results demonstrate good convergence, implying that higher 
resolution calculations may not yield any additional physical insight.

Finally, it is important to note that a nonlinear equation system and nonlinear discretization are being used to simulate 
a linear problem. Thus discrepancies between the simulation results and dispersion relation predictions are expected as 
the assumptions used in the linearization process become invalid. Despite the limitations of the algorithm with regard to 
resolution, truncation, and numerical error, it is shown to successfully model the Dory–Guest–Harris instability, as validated 
against linear theory.

6. Conclusions

The Dory–Guest–Harris instability is demonstrated to be a well-suited benchmark for continuum kinetic Vlasov–Poisson 
algorithms in 3D (x, vx, v y) phase space. It has a closed-form linear theory dispersion relation that can be used to identify 
thresholds for instability, against which continuum method simulations can be quantitatively compared. This is done by 
initializing a warm ring velocity distribution function with a position-dependent sinusoidal wave perturbation. The velocity 
spread of the distribution function, the wave number of the perturbation, and the ratio of electron plasma frequency to 
electron cyclotron frequency determine whether an instability occurs. In cases of instability, the electric field energy grows 
exponentially in time, and the associated growth rate and oscillation frequency can be deduced and compared against linear 
theory predictions.

A fourth-order accurate finite volume continuum Vlasov–Poisson algorithm is successfully benchmarked using the pre-
sented analysis of the Dory–Guest–Harris distribution function. In cases of stability, the simulation results exhibit no net 
change in electric field energy. For parameter values that yield an instability, convergence studies are performed to compute 
real and imaginary frequency components in the limit of infinite resolution. The same convergence studies are used to verify 
the order of accuracy of the algorithm. The resulting real and imaginary values of frequency are shown to closely agree with 
theoretical predictions. Discrepancies between simulation outputs and theory are attributed to a number of factors including 
computational cost limitations, truncation of velocity boundaries, and numerical error. In spite of these factors, growth rates 
and oscillation frequencies obtained from fourth-order simulations fall within three percent of the values predicted by the 
dispersion relation.

Results from second-order accurate finite volume simulations indicate that the Dory–Guest–Harris instability can be 
modeled with low-order numerical methods, provided that the resolution is sufficiently high. Since low order methods 
are less costly, increasing grid resolution as means of improving the level of agreement between simulation results and 
theoretical predictions is common practice.
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As evidenced by the evolution of the Dory–Guest–Harris distribution function, the instability necessitates simulating 
three dimensions (x, vx, v y) of phase space. By rotating the distribution function, the benchmark can be used to test meth-
ods in four and even six phase space dimensions. Thus the instability provides a means to go beyond the present scope 
of 2D (x, vx) standardized benchmark problems, and provides a robust test for extending continuum kinetic algorithms to 
more phase space dimensions. The described Dory–Guest–Harris benchmark is particularly valuable in that it involves a 
magnetized plasma in which the magnetic field has an important role in the distribution function evolution. The benchmark 
facilitates a quantitative means by which to evaluate continuum kinetic algorithms, as they become more developed, more 
robust, and include more generalized physics.
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Appendix A. Derivation of the closed-form dispersion relation for k‖ = 0 electrostatic waves

The dispersion relation for k‖ = 0 kinetic electrostatic waves is most often derived and expressed in a form that involves 
infinite sums [28,34,49,44]. Tataronis et al. [31] present without proof an equivalent closed-form expression, a version 
of which can also be found in Ref. [30]. The closed-form dispersion relation allows for accurate computation of explicit 
numerical solutions (i.e. frequency as a function of wavenumber) for arbitrary probability distribution functions. In effort to 
fill in the missing details, a complete derivation of the dispersion relation is presented here, including the derivation of the 
closed-form expression (see Eqs. (10) and (11)) for a plasma with multiple species s.

From Eqs. (8) and (9) it is possible to obtain the analytic form of the dispersion relation by applying the procedure 
discussed in Ref. [34, pp. 341–352] to the non-dimensionalized system of equations that is used in this paper. Starting 
with the transformed non-dimensionalized Vlasov equation (see Eq. (8)), let α = −ω/Ωcs and β = k⊥v⊥/Ωcs . Recall that 
Ωcs = Zsωc/(Msωp). The result is an ordinary differential equation that can be analytically solved for f̂ s1:

0 = −i(α + β cos θ) f̂ s1 − ωp

ωc
Ê1 · ∂ f s0

∂v
+ ∂ f̂ s1

∂θ
. (A.1)

Solving for f̂ s1 using an integrating factor yields

f̂ s1 = ei(αθ+β sin θ)

θ∫
θ0

ωp

ωc
Ê1 · ∂ f s0

∂v
e−i(αθ ′+β sin θ ′)dθ ′. (A.2)

Substituting Eq. (A.2) into Poisson’s equation (see Eq. (9)) and noting that E = −∇Φ and consequently Ê1 = −ikΦ̂1 yields

0 = 1 +
∑

s

Zsωp

k2⊥ωc

∫ [
ei(αθ+β sin θ)

θ∫
θ0

ik · ∂ f s0

∂v
e−i(αθ ′+β sin θ ′)dθ ′

]
dv. (A.3)

Recall that f s0 is the equilibrium distribution function and that it is azimuthally symmetric such that ∂ f s0/∂θ = 0. Also 
note that waves that propagate perpendicular to the magnetic field have k‖ = 0. Consequently the dot product term can be 
expressed as

ik · ∂ f0

∂v
= ik⊥

∂ f0

∂v⊥
cos θ ′ = ik⊥

∂ f0

∂v⊥
eiθ ′ + e−iθ ′

2
. (A.4)

Substituting Eq. (A.4) into Eq. (A.3) yields

0 = 1 +
∑

s

Zsωp

2k⊥ωc

∫ [
ei(αθ+β sin θ)i

∂ f s0

∂v⊥

θ∫
θ0

(
eiθ ′ + e−iθ ′)

e−i(αθ ′+β sin θ ′)dθ ′
]

dv. (A.5)

The integral with respect to θ ′ is evaluated with the lower limit θ0 selected so that the antiderivative is zero at θ ′ = θ0. 
In order to simplify Eq. (A.5), special properties of the Bessel function of the first kind are invoked. These properties are [50, 
pp. 7, 12]

e−iβ sin θ =
∞∑

n=−∞
Jn(β)e−inθ (A.6)

Jn+1(β) + Jn−1(β) = 2n
Jn(β). (A.7)
β
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The resulting dispersion relation is

0 = 1 −
∑

s

Zsωp

k⊥ωc

∞∫
−∞

∞∫
0

2π∫
0

[
1

β

∂ f s0

∂v⊥

∞∑
m,n=−∞

n Jm(β) Jn(β)
eiθ(m−n)

(α + n)

]
v⊥dθdv⊥dv‖. (A.8)

Note that for the purposes of this paper, all physics of interest is independent of v‖ . Also note that by the orthogonality 
properties of Bessel functions and the Fourier basis functions, the terms in the summation equation (A.8) are zero for all 
m �= n. The resulting dispersion relation is

0 = 1 +
∑

s

Z 2
s

Msk2⊥

∞∫
0

∂ f0

∂v⊥

∞∑
n=−∞

J 2
n

(
k⊥v⊥
Ωcs

)
n

ω
Ωcs

− n
2πdv⊥. (A.9)

This result is consistent with [28,31]. Let ws = ω/Ωcs . It is noted by identity that J 2
n = J 2−n (see Eq. (B.1)) and therefore

∞∑
n=−∞

n

ws − n
J 2
n =

−1∑
n=−∞

n

ws − n
J 2
n +

∞∑
n=1

n

ws − n
J 2
n (A.10)

=
∞∑

n=1

[
2n2

w2
s − n2

]
J 2
n . (A.11)

Consequently the summation indices in Eq. (A.9) can be changed as follows

0 = 1 +
∑

s

Z 2
s

Msk2⊥

∞∑
n=1

2n2

w2
s − n2

∞∫
0

∂ f s0

∂v⊥
J 2
n

(
k⊥v⊥
Ωcs

)
2πdv⊥. (A.12)

Applying integration by parts and noting that Jn(0) = 0 if n �= 0 and that the equilibrium distribution function has compact 
support such that f s0|v⊥=∞ = 0 yields

0 = 1 −
∑

s

Z 2
s

Msk2⊥

∞∑
n=1

2n2

w2
s − n2

∞∫
0

f s0
∂

∂v⊥

[
J 2
n

(
k⊥v⊥
Ωcs

)]
2πdv⊥. (A.13)

It can be readily shown that the following equality is satisfied

ws sin(wsπ)

w2
s − n2

=
π∫

0

cos
(
n(τ + π)

)
cos(wsτ )dτ . (A.14)

Substituting Eq. (A.14) into Eq. (A.13) yields

0 = 1 −
∑

s

Z 2
s

Msk2⊥

∞∫
0

f s0

∞∑
n=1

[
2n2

π∫
0

cos
(
n(τ + π)

)
cos(wsτ )

ws sin(wsπ)
dτ

]
∂

∂v⊥

[
J 2
n

(
k⊥v⊥
Ωcs

)]
2πdv⊥. (A.15)

The infinite sum in the dispersion relation of Eq. (A.15) can be reduced to an integral representation [30,31,51] using an 
auxiliary Bessel function identity:

π∫
0

ws sin(wsτ ) sinτ J0

(
2z cos

τ

2

)
dτ = −

π∫
0

1

z

∞∑
n=1

2n2 ∂

∂z

[
J 2
n(z)

]
cos

(
n(τ + π)

)
cos(wsτ )dτ . (A.16)

See Appendix B for a complete derivation of this identity. The result is a closed-form integral representation of the dispersion 
relation that is equivalent to Eq. (A.9):

0 = 1 +
∑

s

Z 2
s

MsΩ
2
cs

∞∫
0

f s0

π∫
0

sin(wsτ )

sin(wsπ)
sin(τ ) J0

(
2

k⊥v⊥
Ωcs

sin
τ + π

2

)
dτ2π v⊥dv⊥, (A.17)

which is consistent with the expressions presented in Refs. [30,31].
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Appendix B. Auxiliary Bessel function identity

For integer n, the following standard identities apply to Bessel functions of the first kind [50, pp. 6, 12, 102]

J−n(z) = (−1)n Jn(z) (B.1)

Jn−1(z) − Jn+1(z) = 2
∂

∂z

[
Jn(z)

]
(B.2)

J0

(
2z sin

τ

2

)
=

∞∑
n=0

�n Jn(z)2 cos(nτ ), (B.3)

where �n is defined as

�n =
{

1 if n = 0
2 if n �= 0.

(B.4)

An additional auxiliary Bessel function identity is derived by manipulating Eq. (B.3). Refs. [30] and [51] allude to these types 
of manipulations.

Starting with Eq. (B.3), the identity can be modified as follows

J0

(
2z sin

τ + π

2

)
=

∞∑
n=0

�n Jn(z)2 cos
(
n(τ + π)

)
(B.5)

J0

(
2z cos

τ

2

)
=

∞∑
n=0

�n Jn(z)2 cos
(
n(τ + π)

)
. (B.6)

Taking the derivative of Eq. (B.6) with respect to τ and using identities in Eq. (B.1) and Eq. (B.2) yields

sin
τ

2
J1

(
2z cos

τ

2

)
= −2

z

∞∑
n=1

n J 2
n(z) sin

(
n(τ + π)

)
. (B.7)

Taking derivative of Eq. (B.7) with respect to z and using Eq. (B.2) again yields

cos
τ

2
sin

τ

2

[
J0

(
2z cos

τ

2

)
− J2

(
2z cos

τ

2

)]
= 2

z2

∞∑
n=1

n J 2
n sin

(
n(τ + π)

)

− 2

z

∞∑
n=1

n
∂

∂z

[
J 2
n(z)

]
sin

(
n(τ + π)

)
. (B.8)

Using Bessel function identity of Eq. (A.7) and noting that J2(2z cos τ
2 ) = J1(2z cos τ

2 )

z cos τ
2

− J0(2z cos τ
2 ), Eq. (B.8) can be expressed 

as

2 cos
τ

2
sin

τ

2
J0

(
2z cos

τ

2

)
− sin τ

2

z
J1

(
2z cos

τ

2

)
= 2

z2

∞∑
n=1

n J 2
n sin

(
n(τ + π)

)

− 2

z

∞∑
n=1

n
∂

∂z

[
J 2
n(z)

]
sin

(
n(τ + π)

)
. (B.9)

Multiplying Eq. (B.7) by z−1 and substituting into Eq. (B.9) results in the cancellation of two of the terms, thus the manip-
ulated identity is now

2 cos
τ

2
sin

τ

2
J0

(
2z cos

τ

2

)
= −2

z

∞∑
n=1

n
∂

∂z

[
J 2
n(z)

]
sin

(
n(τ + π)

)
(B.10)

sinτ J0

(
2z cos

τ

2

)
= −2

z

∞∑
n=1

n
∂

∂z

[
J 2
n(z)

]
sin

(
n(τ + π)

)
. (B.11)

Taking the derivative of Eq. (B.11) with respect to τ , multiplying both sides by cos(wsτ ), and using the product rule of 
differentiation yields

∂

∂τ

[
sinτ J0

(
2z cos

τ

2

)
cos(wsτ )

]
+ ws sin(wsτ ) sinτ J0

(
2z cos

τ

2

)

= −2

z

∞∑
n2 ∂

∂z

[
J 2
n(z)

]
cos

(
n(τ + π)

)
cos(wsτ ). (B.12)
n=1
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Integrating both sides with respect to τ on the interval [0, π ] yields the modified Bessel function identity

π∫
0

ws sin(wsτ ) sinτ J0

(
2z cos

τ

2

)
dτ = −

π∫
0

1

z

∞∑
n=1

2n2 ∂

∂z

[
J 2
n(z)

]
cos

(
n(τ + π)

)
cos(wsτ )dτ , (B.13)

which is used in the derivation of the k‖ = 0 dispersion relation.
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