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The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron fluids

and Maxwell’s equations to describe the electric and magnetic fields. Two-fluid physics becomes

significant when the characteristic spatial scales are on the order of the ion skin depth and

characteristic time scales are on the order of the ion cyclotron period. The full two-fluid plasma

model has disparate characteristic speeds ranging from the ion and electron speeds of sound to the

speed of light. Two asymptotic approximations are applied to the full two-fluid plasma to arrive at

the Hall-MHD model, namely negligible electron inertia and infinite speed of light. The full

two-fluid plasma model and the Hall-MHD model are studied for applications to an electromagnetic

plasma shock, geospace environmental modeling (GEM challenge) magnetic reconnection, an

axisymmetric Z-pinch, and an axisymmetric field reversed configuration (FRC). VC 2011 American
Institute of Physics. [doi:10.1063/1.3640811]

I. INTRODUCTION

The ideal full two-fluid plasma model1 results directly

from taking moments of the Vlasov equation for electrons and

ions. The moment series can be truncated by assuming Max-

wellian velocity distributions, which provides five moment

equations. Though this model is seeing more frequent use

recently,2–5 it is more common to apply asymptotic approxi-

mations to arrive at reduced plasma models, for example,

Hall-MHD or ideal MHD.6–10 The two-fluid plasma model

reduces to the Hall-MHD model when electron inertia is

assumed negligible and speed of light is assumed infinite.

However, other reduced plasma models can be derived by

independently applying each asymptotic approximation.

The ideal full two-fluid plasma model is studied in this

paper and is compared to reduced plasma models. Asymp-

totic approximations, namely negligible electron inertia and

infinite speed of light, are applied independently to study the

effect of the approximations on the dispersion relation.

When both asymptotic approximations are applied simulta-

neously, the more commonly used Hall-MHD model is

obtained. The full and asymptotically approximated two-

fluid plasma models are explored analytically and computa-

tionally. Analytical dispersion relations are studied for each

of these models. Simulations are performed using the full

two-fluid plasma model and Hall-MHD for applications of

an electromagnetic plasma shock, geospace environmental

modeling (GEM challenge) magnetic reconnection, an axi-

symmetric Z-pinch, and an axisymmetric field reversed con-

figuration (FRC) to explore the physics captured by each of

these models. The code WARPX (Washington approximate

Riemann plasma)11,12 developed at the University of Wash-

ington is used for all the simulations in this paper.

The paper is outlined as follows. Section II describes the

ideal full two-fluid plasma model. Section III applies the as-

ymptotic approximations independently and simultaneously,

and presents analytical dispersion relations describing the

reduced plasma models. Section IV briefly describes the nu-

merical method used for the simulations presented in the pa-

per. Section V presents the applications of the full two-fluid

plasma model and Hall-MHD to study the physics, accuracy,

and computational efficiency of the models when using an

explicit time-integration scheme. Discussions are presented

in Sec. VI.

II. IDEAL FULL TWO-FLUID PLASMA MODEL

The full two-fluid plasma model is described by a com-

plete set of Euler equations for the ions, a complete set of

Euler equations for the electrons, and a complete set of Max-

well’s equations to evolve the electric and magnetic fields.

The source terms couple the fluid and field variables. Writing

the fluid equations in balance law form gives

@qs

@t
þr � ðqsusÞ ¼ 0; (1)

@qsus

@t
þr � ðqsusus þ psIÞ ¼

qsqs

ms
ðEþ us � BÞ; (2)

@es

@t
þr � ðð�s þ psÞusÞ ¼

qsqs

ms
us � E; (3)

where subscript, s, denotes electron or ion species, qs and ms

are the species charge and mass. qs is the mass density, us is

the velocity, and ps is the isotropic pressure of each species.

E is the electric field and B is the magnetic field. The energy,

�s, is defined as

�s �
ps

c� 1
þ 1

2
qsu

2
s : (4)
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The source terms of Eq. (2) contain the Lorentz forces on the

electrons and ions. These source terms couple the fluid equa-

tions to the electromagnetic terms of Maxwell’s equations.

The Lorentz force acts as a body force on the electrons and

ions.

Maxwell’s equations are used to evolve the electric and

magnetic fields using Faraday’s law and Ampere’s law

described by

@B

@t
þr� E ¼ 0; (5)

1

c2

@E

@t
�r� B ¼ �l0J: (6)

Additional divergence constraints are required.

r � E ¼ .c

e0

; (7)

r � B ¼ 0: (8)

The current density and charge density are defined by the

fluid variables as

J �
X

s

qs

ms
qsus; (9)

.c �
X

s

qs

ms
qs: (10)

If the initial fields satisfy the divergence constraints, then the

fields evolved by Eqs. (5) and (6) will mathematically pre-

serve the divergence constraints. However, divergence errors

can develop in the numerical solution. Solving Eqs. (7) and

(8) additionally leads to an over-specified system of

equations. Hence, the perfectly hyperbolic Maxwell’s equa-

tions13 are used to evolve the electric and magnetic fields

while maintaining the divergence constraints

@B

@t
þr� Eþ crW ¼ 0; (11)

1

c2

@E

@t
�r� Bþ vrU ¼ �l0J; (12)

1

v
@U
@t
þr � E ¼ .c

e0

; (13)

1

cc2

@W
@t
þr � B ¼ 0: (14)

In Eqs. (13) and (14), U and W are the scalar error correction

potentials for the divergence of E and for the divergence of

B, respectively. As the error correction coefficients, v and c,

increase, the divergence constraints are recovered. For many

problems, the error correction coefficients can be set to unity

such that the errors are propagated out of the domain at the

speed of light. This is often a sufficient condition; however,

for some problems, additional divergence correction is

required to accurately capture the evolution of the electro-

magnetic waves. In such situations, increasing the error cor-

rection coefficients leads to a more restrictive time step than

the speed of light.

Analyzing the dispersion of characteristic waves pro-

vides a means of comparing various plasma models. The

dispersion diagrams are computed by assuming the form

q(x, t)¼ ei(xt�kx), where x is the frequency and k is the wave

number, and linearizing the equations using this form.

Figure 1 shows the dispersion diagrams for parallel propaga-

tion using the ideal full two-fluid plasma model. The

FIG. 1. (Color online) Parallel propagation dispersion relation of x vs k for the two-fluid plasma model. Plot (a) shows R- and L-mode waves and right plot

shows the low-frequency branch of the R-mode wave, the whistler wave, that has an asymptote at the electron cyclotron frequency. Plot (b) is an expanded

scale of plot (a) to show the whistler wave, the ion cyclotron wave, and the ion acoustic wave.
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R-mode and the L-mode waves are shown. Of particular

interest is the whistler wave which is a part of the low-

frequency spectrum of the R-mode wave. The whistler wave

asymptotes to a resonance at the electron cyclotron fre-

quency. The reason for choosing only the parallel propaga-

tion for all the dispersion diagrams presented here is to study

the evolution of the whistler wave as the asymptotic approxi-

mations are applied. The whistler wave propagates parallel

to the magnetic field.

For the ideal two-fluid plasma model, the characteristic

speeds in the system are the fluid speeds of sound and the

speed of light. The numerical method used to solve the two-

fluid plasma model needs to be capable of resolving the

physics in the presence of such disparate characteristic

speeds. Furthermore, the characteristic frequencies in the

system include the electron and ion plasma frequencies and

the electron and ion cyclotron frequencies. All the speeds

and frequencies must be resolved in the system to capture

full two-fluid physics when using an explicit time-

integration scheme. The explicit time step is described by

Dt ¼ min CFL
Dx

c
;

0:1

xpe
;
0:1

xce
;
0:1

xpi
;
0:1

xci

� �
; (15)

where c is the light speed, and

xps ¼

ffiffiffiffiffiffiffiffiffi
nsq2

s

e0ms

s
and xcs ¼

qsB

ms
(16)

are the plasma and cyclotron frequencies. CFL is the Courant

condition for stability, and the factor of 0.1 is used to ensure

that the frequencies are accurately resolved. Since xpe>xpi

and xce>xci, the explicit time step is given by

Dt ¼ min CFL
Dx

c
;

0:1

xpe
;
0:1

xce

� �
: (17)

Exploring the canonical form of the momentum equation

and taking the curl of that to obtain generalized vorticity,14

@Xs

@t
�r� us � Xs ¼ �rH; (18)

H ¼ u2
s

2
þ /

ms
þ
ð

dps

qS

; (19)

where X ¼ r� p is the generalized vorticity with p being

the canonical momentum, / is the electrostatic potential, and

s is the species. In the two-fluid picture, the presence of elec-

tron mass allows the generalized vorticity to be retained for

the electron fluid as well. As explored in the following sec-

tions, two-fluid effects become important when small spatial

and temporal scales become significant with respect to the

system scales. The full two-fluid plasma model allows gener-

ation of local magnetic fields due to small-scale ion as well

as electron fluid motions. The electron generalized vorticity

is only present as a conserved quantity when electron inertia

is retained.

The full two-fluid plasma model is valid for simulations

involving electron demagnetization due to the inclusion of

electron inertia. Electron inertia allows the electrons to break

the frozen-in flux condition. The two-fluid model is also

valid in regimes where the ion Larmor radius is much

smaller than the scale-length of interest as well as when the

ion Larmor radius is much larger than the scale-length of in-

terest. For large ion Larmor radii, single-fluid models are no

longer relevant since the Larmor radius is assumed to be neg-

ligible in the single-fluid regime. To appropriately include

effects of anisotropic pressure, finite Larmor radius effects

need to be included and higher moments of the Vlasov equa-

tion need to be taken to explore this regime.

III. ASYMPTOTIC APPROXIMATIONS

Two asymptotic approximations are commonly applied

to the full two-fluid plasma model described previously to

obtain the reduced plasma models. These approximations are

negligible electron inertia and infinite speed of light. Perfect

charge neutrality follows from the infinite light speed

approximation. In this section, each asymptotic approxima-

tion is applied independently and the resulting dispersion

relations are studied. Applying both approximations together

gives the Hall-MHD model.

A. Negligible electron inertia

Since the ions are more massive than the electrons, elec-

tron inertia is neglected in a majority of plasma fluid models.

Neglecting electron inertia reduces the electron momentum

equation described in Eq. (2) to the generalized Ohm’s law,

neqeE ¼ rpe � Je � B; (20)

where Je¼�neeue, qe¼�qi¼�e. This approximation also

eliminates the kinetic energy term in the electron energy

described by Eq. (4).

The dispersion diagram for parallel propagation when

only neglecting electron inertia in the full two-fluid plasma

model is shown in Fig. 2. The ion cyclotron wave asymptotes

to a resonance at the ion cyclotron frequency. The speeds of

the whistler wave and the additional wave (wave 2) asymp-

tote at the speed of light. Wave 2 has a cutoff at
x2

piþx2
ci

xci
and

asymptotes to the light wave. The whistler wave no longer

has a resonance and also asymptotes to the light wave.

B. Infinite speed of light

The infinite speed of light approximation is used to

eliminate high frequency electromagnetic waves, so the re-

gime of interest lies in the lower frequency plasma waves.

This approximation is achieved by assuming that the permit-

tivity of free space vanishes thus implying an infinite speed

of light. Applying this approximation eliminates the dis-

placement currents from Ampere’s law in Eq. (12) and

results in

J ¼ 1

l0

r� B; (21)

such that J¼ Jiþ Je.
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The dispersion diagram for parallel propagation when

only assuming infinite light speed in the full two-fluid

plasma model is shown in Fig. 3. Perfect charge neutrality is

automatically implied through the mathematics of this

approximation from Eq. (7) since e0 ! 0. The parallel dis-

persion relations for the infinite light speed assumption yield

a whistler wave that retains the resonance at the electron cy-

clotron frequency and an ion cyclotron wave that retains the

resonance at the ion cyclotron frequency. The high frequency

R- and L-mode waves do not appear in this reduced model

since e0! 0 eliminates the ion and electron plasma frequen-

cies as well as the speed of light.

C. Reduction to the Hall-MHD model

Applying both of the above approximations gives the

Hall-MHD model.6 In the Hall-MHD model, the electron

momentum equation reduces to the generalized Ohm’s law,

Ampere’s law reduces to the form described in Eq. (21), and

the electron continuity equation is eliminated due to charge

neutrality. The Hall-MHD model is described by a complete

set of Euler equations for ions, the generalized Ohm’s law,

an electron energy equation, Faraday’s law, and the low-

frequency Ampere’s law (given by Eq. (21)).

A hyperbolic divergence cleaning method similar to the

previously described perfectly hyperbolic Maxwell’s equa-

tions is used for the Hall-MHD model.13,15 The Hall-MHD

model implemented here is described by

@qi

@t
þr � qiui½ � ¼ 0; (22)

@qiui

@t
þr � qiuiui þ piI½ � ¼ nieEþ Ji � B; (23)

@�i

@t
þr � ð�i þ piÞui½ � ¼ Ji � E; (24)

@�e

@t
þr � ð�e þ peÞue½ � ¼ Je � E; (25)

neeE ¼ qi

mi
eE ¼ Je � B�rpe; (26)

Je ¼
1

l0

r� B� Ji; (27)

@B

@t
þr� EþrW ¼ 0; (28)

@W
@t
þ C2r � B ¼ �fW: (29)

Je is obtained from Eq. (21). Here, C is the speed at which

the divergence of B errors is propagated out of the domain

and f provides dissipation for the divergence errors. To

obtain a perfectly hyperbolic divergence correction formula-

tion, f is often assumed to be zero, so the error is swept out

of the domain without dissipation similar to the implementa-

tion for the full two-fluid plasma model. Due to charge neu-

trality resulting from e0 ! 0, divergence of E errors are not

an issue for the Hall-MHD model.

The dispersion diagram for parallel propagation for the

Hall-MHD model is shown in Fig. 4. Figure 4 shows that the

whistler wave frequency in the Hall-MHD model grows quad-

ratically without bound in regimes where x�xci and k� 1=di,

where the ion skin depth is di¼ c=xpi¼ vA=xci¼ rLicsi=vA and

the ion Larmor radius is rLi. csi=vA � 0.5 is used in the disper-

sion diagrams. The quadratically growing frequency produces a

whistler wave speed that increases without bound with

FIG. 2. (Color online) Parallel propagation dispersion relation of x vs k when electron inertia is ignored in the two-fluid plasma model. The dashed black line

represents the speed of light and is included for scale. Plot (b) has an expanded scale to show the whistler wave, the ion cyclotron wave, and the ion acoustic

wave. The whistler wave reaches an asymptote at the speed of light. “Wave 2” is an additional wave of the dispersion relation that has an asymptote at the

speed of light.
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increasing wave number. If k	 1=di x	 xcið Þ, the disper-

sion diagram resembles that of ideal-MHD and is only

described at the origin of Fig. 4. This is more easily seen by

examining the analytical dispersion relation for parallel propa-

gation for the Hall-MHD model,16

x ¼ 1

2
xcid

2
i k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

Ak2 þ 1

4
x2

cid
4
i k4

r
; (30)

where vA is the Alfvén velocity. For k 	 1=di x	 xcið Þ, the

Alfvén wave dispersion relation varies linearly with k and

resembles ideal-MHD. However, for sufficiently large k, the

whistler wave becomes

x ¼ xcid
2
i k2: (31)

Therefore, for a regime where k >� 1=di

�
x >� xciÞ, the whis-

tler wave grows quadratically without bound.

FIG. 3. (Color online) Parallel propagation dispersion relation of x vs k when speed of light is assumed to be infinite in the two-fluid plasma model. Plot (a)

shows the whistler wave that has an asymptote at the electron cyclotron frequency. Plot (b) has an expanded scale to show the whistler wave, the ion cyclotron

wave, and the ion acoustic wave.

FIG. 4. (Color online) Parallel propagation dispersion relation of x vs k when both assumptions are applied to the two-fluid plasma model, which reduces it to

the Hall-MHD model. Plot (a) shows that the whistler wave frequency grows quadratically without bound as k is increased. Plot (b) has an expanded scale to

show the whistler wave, the ion cyclotron wave, and the ion acoustic wave.
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Figure 5 compares the whistler wave of the two-fluid

plasma model, Hall-MHD, and the asymptotic model that

contains electron inertia but assumes infinite speed of light.

Neglecting the electron inertia generates the unbounded

whistler wave and retaining finite electron inertia causes the

whistler wave to asymptote at the resonance at the electron

cyclotron frequency, xce. This unbounded whistler wave

speed is problematic for simulations that use the Hall-MHD

model because waves with higher speeds need to be resolved

as the wave number increases. This requires smaller time

steps in order to resolve the two-fluid physics and, hence,

longer simulation times. The explicit time step for Hall-

MHD is described by

Dt ¼ min CFL
Dx

vW
;CFL

Dx

vM
;CFL

Dx

vH
;
0:1

xci

� �
; (32)

where

vW ¼
kv2

A

xci
; vM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

A þ c2
si

q
; vH ¼ �

J

nq
; (33)

where CFL is the Courant-Friedrichs-Lewy condition, vW is

the whistler velocity, vM is the magnetosonic velocity, and

vH is the Hall velocity. J is the magnitude of the total current.

To compute the fastest whistler wave speed, k is chosen to

be the maximum resolved by the grid scale, k¼p=Dx.

In order to overcome the grid scale dependence of the

whistler wave, a cutoff frequency is chosen such that any

phenomena occurring at higher frequencies are not resolved.

This does not lead to an asymptote for the whistler wave like

with the two-fluid plasma model. Instead, it just cuts-off the

dispersion relation above the specified wave number. This is

done by employing a hyper-resistivity17 which is included

strictly for numerical reasons. The generalized Ohm’s law is

modified such that

neeE ¼ Je � B�rpe � �r2J; (34)

where � is the hyper-resistivity parameter, which is most of-

ten held constant through all space and time. Hyper-

resistivity introduces a diffusive time-scale that limits the

explicit time step,

Dt <
Dx2

2:0�
: (35)

The Hall-MHD model does not include electron inertia, so it

does not describe electron demagnetization. However, it

does apply to regimes where the Larmor radius is much

smaller or much larger than the scale length of interest.

IV. NUMERICAL METHOD

The simulations presented here use the Runge-Kutta dis-

continuous Galerkin (RKDG) method18 in the WARPX

code. A 3rd order total variation diminishing Runge-Kutta

method is used for the time integration.19 The time step is re-

stricted for numerical stability, CFL 
 1=(2p� 1), where

CFL is the Courant number and p is the spatial order of the

selected Legendre polynomial basis functions.20 A spatial

order of 2 is chosen for all the simulations presented here.

The RKDG method is chosen for its ability to capture strong

shocks by solving a Riemann problem at each cell interface,

which allows the solution to be discontinuous at each cell

interface. Limiters are used to reduce oscillations from

developing in regions of sharp gradients. Loverich and

Shumlak describe the implementation of the RKDG method

for the full two-fluid plasma model.21

For the Hall-MHD model implementation, auxiliary

state variables are introduced for Je and E and are defined

with the same discontinuous Galerkin implementation. This

allows the second order derivatives to be treated consistently

with a flux-source formulation similar to the first order deriv-

atives. If hyper-resistivity is included, the �r2J term in

Eq. (34) is also described as an auxiliary state variable.

V. APPLICATIONS

The full two-fluid plasma model and the Hall-MHD

model are applied to several problems to study the physics

captured and the ease of implementation of these models.

Both models have stringent time step restrictions as

described in Secs. II and III C with the explicit time-

integration scheme.

To provide a physical context, vW¼VA for small k, c
� 103–104vA, and vW � 10vA in some astrophysical plas-

mas.22,23 For the two-fluid plasma model, c can be artificially

reduced provided it is much higher than the next fastest char-

acteristic speed in the system. In some Hall-MHD simula-

tions, the whistler wave speed is unphysically larger than the

Alfvén speed due to the nature of the Hall-MHD dispersion

relation where the whistler wave frequency grows quadrati-

cally without bound as the wave number is increased. Hyper-

resistivity is used to address this issue. The full two-fluid

FIG. 5. (Color online) The whistler waves of the two-fluid plasma model,

the Hall-MHD model, and a reduced plasma model with infinite light speed

and finite electron inertia are compared. Finite electron inertia allows the

whistler wave to have an asymptote at the electron cyclotron frequency

whereas ignoring electron inertia causes it to grow without bound as seen in

the Hall-MHD model.
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model does not require numerical damping as long as all the

temporal scales are resolved since none of the waves grow

unbounded.

A. 1D electromagnetic plasma shock

A 1D electromagnetic plasma shock is initialized with a

discontinuous jump at x¼ 0.5 in electron and ion densities

and pressures, and in the transverse magnetic field, Bz, for

the two-fluid plasma model. The domain size is from x¼ 0

to x¼ 1 with open boundary conditions at the lower and

upper boundaries. A uniform longitudinal magnetic field, Bx,

is also initialized. The initial conditions used are the same as

those described by Shumlak and Loverich.1 For the Hall-

MHD model, the ion density, ion and electron pressures, and

magnetic fields are initialized the same as the full two-fluid

case. The simulations are performed using 256 cells. The

MHD limit has a zero ion Larmor radius, rLi=L¼ 0 where

L¼ 1 is the domain length.

Figures 6, 7, and 8 show solutions using the Hall-MHD

model and two-fluid plasma model with different ion Larmor

radii and different ion-to-electron mass ratios, M : mi=me.

At an ion Larmor radius of rLi=L¼ 0.7 in Fig. 6, the two-

fluid model using a realistic ion-to-electron mass ratio of

M¼ 1836 agrees well with the Hall-MHD model that

assumes M¼1. Even at M¼ 100, the solutions agree well

in regions of the rarefaction, contact discontinuity, and

shock. Differences arise in the whistler wave propagation to

the left of the domain. With rLi=L¼ 0.07 in Fig. 7, the two-

fluid plasma model becomes stiff if M¼ 1836 is used,

because the electron plasma frequency needs to be resolved

and can be more restrictive than the speed of light for setting

the time step. The rLi parameter is modified by changing the

normalized charge, qi, and M. rLi is decreased by increasing

qi which consequently increases xpi and xpe. For high M and

small rLi, i.e., small qi, xpe becomes very large. This pro-

vides a large contribution from the source terms as opposed

to the fluxes, making the equation system stiff. However,

artificially decreasing M in the two-fluid plasma model still

provides a comparable solution to the Hall-MHD model for

rLi=L¼ 0.07. Both the full two-fluid and Hall-MHD models

generate solutions that approach the ideal MHD solution as

rLi=L ! 0, consistent with theory. This is seen from Fig. 8

for rLi=L¼ 0.0007, where several mass ratios are included

for the two-fluid model to show convergence. In this regime,

the two-fluid plasma model is stiff and the Hall-MHD model

takes less computational effort.

The time step for the two-fluid plasma model is restricted

by the speed of light which is set to c¼ 35vA¼ 110csi¼ 2.5cse

for rLi=L¼ 0.7. The speed of light for the two-fluid plasma

model is chosen such that it is the fastest characteristic speed

in the system. Since the speed of light is assumed infinite in

the Hall-MHD model, the whistler wave speed restricts the

time step with a cutoff wave number described previously

FIG. 6. (Color online) The full two-fluid plasma model and Hall-MHD

results of ion density are presented after 0.2 Alfvén transit times for

rLi=L¼ 0.7. M¼1 corresponds to Hall-MHD. No hyper-resistivity is used

for Hall-MHD in this plot.

FIG. 7. (Color online) The full two-fluid plasma model and Hall-MHD

results of ion density are presented after 0.2 Alfvén transit times for

rLi=L¼ 0.07. M¼1 corresponds to Hall-MHD. The Hall-MHD solution is

similar to the two-fluid plasma model solution with ion-to-electron mass

ratio, mi=me¼ 183.6. The problem becomes stiff for the full two-fluid

plasma model with M¼ 1836 at rLi=L¼ 0.07. No hyper-resistivity is used

for Hall-MHD in this plot.

FIG. 8. (Color online) The full two-fluid plasma model, the Hall MHD

model, and the ideal MHD model results of ion density are presented after

0.2 Alfvén transit times for rLi=L¼ 0.0007. M¼1 corresponds to Hall-

MHD. Solutions with decreasing rLi=L approach the ideal MHD solution.

No hyper-resistivity is used for Hall-MHD in this plot.
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such that vW � 2275vA for this problem. However, using

hyper-resistivity of � � 10�6 leads to a vW � 227vA and the

results are plotted in Fig. 9. v � 10�6 is the largest value

hyper-resistivity coefficient that is stable for this problem. It is

noted from Fig. 9 that using hyper-resistivity does not signifi-

cantly change the solution. For this problem, both the full

two-fluid and Hall-MHD solutions have the same effective

grid resolution. The effective grid resolution is defined as a

product of the grid resolution and the spatial order chosen for

the discontinuous Galerkin method.12 The time step used for

the two-fluid plasma model with M¼ 1836 and rLi=L¼ 0.7

case is approximately 100 times larger than the time step used

for Hall-MHD leading to 135 times more computational effort

to obtain a Hall-MHD solution as compared to the two-fluid

model when �¼ 0. With �¼ 10�6, the computational effort is

reduced to 16 times more with a 10 times larger time step for

Hall-MHD as compared to the two-fluid model. For the

rLi=L¼ 0.07 case, the Hall-MHD model with �¼ 0 takes 14

times more computational effort than the M¼ 183.6 two-fluid

plasma solution. Using �¼ 10�6, Hall-MHD takes 1.6 times

the computational effort of the two-fluid model. For

rLi=L¼ 0.0007, Hall-MHD uses less computational effort than

the two-fluid plasma model which becomes stiff in this re-

gime. However, in regimes where small spatial and temporal

scales are of interest, the two-fluid plasma model uses less

computational effort than the Hall-MHD model and provides

accurate solutions even after artificially decreasing M and c.

Implicit implementations might overcome the large com-

putational effort of the Hall-MHD model and the stiffness of

the two-fluid plasma model presented here. The electromag-

netic shock problem has strong shocks and discontinuities that

need to be appropriately resolved. Numerical resistivity or

hyper-resistivity that is often used with Hall-MHD introduces

additional diffusion to damp the whistler wave. This diffusion

also reduces the sharp physical gradients in the solution.

Additionally and more importantly, implicit schemes become

problematic as the solution becomes strongly nonlinear. The

electromagnetic plasma shock problem is a strongly nonlinear

problem and the inclusion of limiters with the RKDG scheme

to reduce numerical dispersions further exacerbates the non-

linear components. As a result, implicit schemes have diffi-

culty converging to a solution. Hence, explicit methods are

presented here.

B. 2D GEM challenge collisionless magnetic
reconnection

Magnetic reconnection plays an important role in mag-

netosphere dynamics, space plasmas, and laboratory plas-

mas.24,25 Collisionless magnetic reconnection results in

small scale reconnection at rates that are faster than resistive

reconnection.24 Collisionless magnetic reconnection has

been explored using a number of fluid and particle codes.

Shay et al.7 determine that the inclusion of the Hall term is

necessary to produce physically correct reconnection rates,

and the Hall-MHD model represents the minimum physical

model needed to accurately capture collisionless magnetic

reconnection.

The 2D collisionless magnetic reconnection problem is

studied with the full two-fluid plasma model and the Hall-

MHD model. The Hall-MHD model does not use any hyper-

resistivity for this application. An out-of-plane current sheet

is initialized with a current density profile of Jz / sech2 yð Þ
and uniform in x. The current produces a magnetic field in

the x direction such that Bx / tanh yð Þ. A small perturbation

is initialized to the magnetic field consistent with r � B ¼ 0.

The electron density is initialized for the two-fluid plasma

model such that it follows the current density profile. The

problem domain is bounded in y by perfectly conducting

walls and is periodic in x. The problem setup is the same as

described in the GEM challenge.26 Initial conditions are

shown for qi and Bx in Fig. 10. For the Hall-MHD model, the

electron current density is calculated from the Ampere’s law

and the ion fluid velocity using Eq. (27). All results are for a

resolution of 128� 64 cells using the 2nd order RKDG

method. All normalizations and parameters chosen are

consistent with Ref. 26.

For the two-fluid plasma model, M¼ 25 and c � 10 vA

and for the Hall-MHD model, vW � 100 vA. No hyper-

resistivity is used for the Hall-MHD results. Figures 11 and

12 show qi at a time of xcit¼ 20 for the two-fluid plasma

model and the Hall-MHD model. Figures 11(a) and 12(a) do

not include any correction of r � B errors. The effect of

r � B errors is addressed later. Figures 11(b) and 12(b)

include r � B corrections. Divergence corrections more

accurately capture the islands that form and provide better

agreement between the full two-fluid plasma and the Hall-

MHD models. These islands eventually move to either side

of the domain and begin to merge with the larger plasma

island at a time of xcit � 33.

The reconnected magnetic flux for the two-fluid plasma

model and the Hall-MHD model are shown in Fig. 13. The

magnetic flux, Unorm, is normalized to the GEM challenge

magnetic flux at xcit¼ 0 so the scales are the same. The

reconnected flux and the reconnection rate of the two-fluid

FIG. 9. (Color online) Hall-MHD results of ion density are presented after

0.2 Alfvén transit times for rLi=L¼ 0.7 with and without hyper-resistivity.

Without hyper-resistivity, vW � 2275vA and using a hyper-resistivity coeffi-

cient of 10�6 sets a cut-off wave-number for Hall-MHD such that vW � 227

and this speeds up the computation time by a factor of 10. The artifact at

x¼ 0 is caused by the diffusion of the solution from the boundary back into

the domain.
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model do not change significantly with divergence correc-

tions for this problem. However, the impact for the Hall-

MHD model is more significant. The magnetic flux recon-

nection rates from this plot agree with previously published

results7 that use Hall-MHD. As described in Refs. 26 and 7,

Hall-MHD reconnects more flux than hybrid and kinetic

codes. The two-fluid plasma model and the r � B corrected

Hall-MHD appear to saturate at approximately the same

Unorm as particle solutions.

A study of divergence corrections is performed for the

Hall-MHD and two-fluid plasma models to quantify the

amount of error present and the correction applied. The val-

ues of the error correction coefficients were chosen such that

the error correction speeds are the same as the speed of light

for the full two-fluid model. For the Hall MHD model, C is

chosen such that it equals vW, the fastest speed in the system.

This ensures that the time-step is not affected in advecting

the divergence errors out of the domain. Figure 14 quantifies

the r � B errors for the full two-fluid and the Hall-MHD

models for this problem. The r � B errors are computed

using central differencing on Bx and By and the values are

normalized to an initial B0=Lx, where B0 is the initial peak

magnetic field and Lx is the domain length. It is seen that the

r � B errors are significantly reduced for both models when

using perfectly hyperbolic Maxwell’s equations divergence

corrections. The reduction is more significant for the Hall-

MHD model and has a correspondingly larger effect on the

magnetic reconnection.

FIG. 10. (Color online) Initial conditions of (a) qi and (b) Bx for the collisionless magnetic reconnection GEM challenge problem.

FIG. 11. (Color online) Solution of qi for the full two-fluid plasma model for the magnetic reconnection problem at xcit¼ 20. (a) When no r � B correction is

applied, an island forms in the center of the domain that moves to the right and merges with the larger plasma islands. (b) With r � B correction, two islands

form in the center of the domain that move in either direction and merge with the larger plasma islands.
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The energy conservation is explored to determine how

the initial magnetic energy is converted to ion and electron

kinetic and thermal energies for the full two-fluid and Hall-

MHD models. Figure 15 shows the variation in each of the

energy components as a function of time for both fluid mod-

els. The individual components of energy are normalized to

the total initial energy. It is observed that the ion thermal

energy gains the largest fraction of the magnetic field energy.

The electron thermal energy and ion kinetic energy also gain

some of the energy from the magnetic field. The magnetic

field loses about 35% of its energy to the fluids. Both fluid

models provide similar results since the electron kinetic

energy does not seem to grow significantly with time in the

two-fluid model where electron inertia is retained. One dif-

ference is the time at which the ions gain kinetic energy

from the field, which occurs at a later time for the Hall-MHD

model.

For this problem, the restrictive time step of the Hall-

MHD model requires 15 times the computational effort of

the two-fluid plasma model. Since the reconnection rates of

both models match previously published results, the two-

fluid model provides the more computationally efficient so-

lution. No explicit resistivity or dissipation is added to these

models. References 7 mentions three mechanisms that break

FIG. 12. (Color online) Solution of qi for the Hall-MHD model for the magnetic reconnection problem at xcit¼ 20. (a) With nor � B correction, no noticeable

island forms at the center of the domain, but an island of small magnitude appears at higher grid resolution. (b) With r � B correction, noticeable islands form

at the center of the domain, then move and merge with the larger plasma islands.

FIG. 13. (Color online) Reconnected magnetic flux is shown as a function

of normalized time, xcit, for the two-fluid model (dashed lines) and Hall-

MHD (solid lines) with and without divergence corrections. The solid red

line is the Hall-MHD solution without r � B correction, and the solid blue

line is the Hall-MHD solution with r � B correction. The dashed black line

is the full two-fluid solution without r � B correction and the dashed cyan

line is the full two-fluid solution with r � B correction. The magnetic flux is

normalized to the GEM challenge magnetic flux at xcit¼ 0 so the scales are

the same. The reconnection rates match well with previous literature.7 Hall-

MHD reconnects more flux than the two-fluid model before saturating when

divergence corrections are not employed. The additional flux of Hall-MHD

is consistent with Ref. 26.

FIG. 14. (Color online) Quantifying the normalized r � B errors for the full

two-fluid plasma model and for the Hall-MHD model with and without

r � B corrections. It is seen that the errors are significantly reduced for both

fluid models when using the perfectly hyperbolic Maxwell’s equations for

divergence corrections.
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the frozen-in flux condition namely, electron inertia, electron

thermal motion, and resistivity. For the full two-fluid plasma

model, reconnection is triggered by the presence of electron

inertia and electron thermal motions which break the frozen-

in flux condition. The Hall-MHD model contains the electron

thermal motion through the diamagnetic drift term which is

represented by the gradient of the electron pressure in

Eq. (26). For ideal Hall-MHD, the frozen-in flux condition

seems to be broken by electron thermal motion alone. While

resistivity or numerical dissipation could provide a mecha-

nism for breaking the frozen-in law for the electrons, the

results presented here do not rely on these mechanisms.

C. 2D axisymmetric Z-pinch

The drift-turbulence instability in an axisymmetric

Z-pinch investigated here uses the same initial and boundary

conditions presented in Refs. 2 and 12 but with a single

wavelength perturbation for all plasma models. The Hall

MHD model solutions are compared to the full two-fluid

plasma solutions using a grid of 128� 128 cells. For both

models, the ratio of the pinch radius to the ion Larmor radius

rp=rLi � 3. The two-fluid plasma model uses M¼ 25 and c
� 16vA. The Hall-MHD model uses vW � 400vA.

Figure 16 shows the formation of the short-wavelength

drift-turbulence instability in the two-fluid plasma model, in

ideal-MHD, and in Hall-MHD with and without hyper-

resistivity. Ideal-MHD does not capture this drift-turbulence

instability and forms a sausage instability based on the initial

perturbation. In Fig. 16, the Hall-MHD solution is shown

without any hyper-resistivity where many small-scale fea-

tures are present, and with a hyper-resistivity of �¼ 6� 10�5

where some of the small-scale features appear to be damped.

Hyper-resistivity is applied using �¼ 1=k2 where the wave-

number k is specified and maintained for all grid resolutions.

Figure 17 shows the instability growth in the magnetic

field perturbation for the full two-fluid plasma model, the

Hall-MHD model with �¼ 0, and Hall-MHD model for sev-

eral values of �. The growth rate is computed using

cgr ¼
ð ð

DBj j2prdrdz; (36)

where DB refers to the difference in magnetic field between

the solutions of a perturbed equilibrium and an unperturbed

equilibrium. The unperturbed equilibrium solution is needed

to account for oscillations that occur in the system since the

equilibrium is not a true two-fluid equilibrium initially. For

�¼ 0, the Hall-MHD solution has a much larger initial

growth rate compared to the two-fluid plasma model because

of the grid scale excites shorter wavelengths of the whistler

wave. For values of � > 0, the growth rate for the Hall-MHD

model approaches that of the full two-fluid plasma model.

The Hall-MHD model requires 35 times the computational

effort of the two-fluid model for this problem with �¼ 0 and

8 times the computational effort when �¼ 6� 10�5.

D. 2D axisymmetric FRC

An axisymmetric FRC is initialized by numerically solv-

ing the Grad-Shafranov equation to give distributions of

pressure, poloidal magnetic field, and toroidal current den-

sity. The pressure is assumed to be equally distributed

between ion and electron pressures, pi¼ pe¼ p=2. The den-

sity and temperature are specified assuming an adiabatic con-

dition with c ¼ 5
3

such that

ns ¼
1

k
p1=c

s ; (37)

Ts ¼ pðc�1Þ=c
s ; (38)

FIG. 15. (Color online) Full two-fluid (a) and Hall-MHD (b) energies plotted as a function of ion cyclotron time. Variables include ion and electron kinetic

energies, ion and electron thermal energies, magnetic energy, and electric energy for each of the fluid models normalized to the total energy. All energies are

normalized to the initial total energy. Due to massless electrons, there is no electron kinetic energy in Hall-MHD. Note, for both models, the magnetic energy

is primarily converted to ion thermal energy as the solution evolves. The electron thermal energy and the ion kinetic energy also gain some energy from the

magnetic field. The magnetic field loses about 35% of its energy to the fluids. Both fluid models provide similar results.
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where ns is the species number density, Ts is the species tem-

perature, ps is the species pressure, and k is the Boltzmann

constant. The azimuthal current that results from the equilib-

rium is initialized as electron current. The evolution of the

equilibrium is studied using the full two-fluid plasma model

and the Hall-MHD model. Figure 18 shows the initial total

fluid pressure and the initial electron current with vector

plots of the magnetic fields superimposed. The simulations

presented here have a resolution of 64� 64 cells with a spa-

tial order of 2 for both the full two-fluid plasma model and

the Hall-MHD model. Axis boundary conditions are imple-

mented at r=rLi¼ 0 and conducting wall boundary conditions

are implemented at r=rLi¼ 115. Periodic boundary condi-

tions are implemented in the axial direction instead of open

boundaries to prevent artificial reflections from affecting the

equilibrium profile, particularly in the magnetic fields at the

domain edges. The kinetic parameter, s, which is the ratio of

the separatrix radius to the ion skin depth, is approximately

20. For the full two-fluid plasma model, c � 8vA and M¼ 25.

For the Hall-MHD model, vW � vA which is the result of the

MHD equilibrium having di 	 L. Since the equilibrium is

initially in the MHD regime, the Hall-MHD model is more

computationally efficient because rLi 	 L and di 	 L which

results in the full two-fluid plasma model being stiff.

Two-fluid plasma models are important to study FRC

physics. FRC experiments have observed the self-generation

of toroidal magnetic fields,27,28 which can be large during

FRC formation and become smaller once a stationary equi-

librium is achieved. The ideal MHD model without Hall

effects does not allow the self-generation of toroidal mag-

netic fields in FRCs and maintains the equilibrium of Fig. 18

unchanged in the axisymmetric simulations performed here.

Two-fluid plasma models, however, allow spontaneous gen-

eration of toroidal magnetic fields and toroidal velocities29

due to the inclusion of the diamagnetic drift term and the

Hall term.30

Consistent with Ref. 29, Figs. 19 and 20 for the full two-

fluid plasma and Hall-MHD solutions after 5tA and 10tA

FIG. 16. (Color online) Ion density after

1.5 Alfvén transit times for the axisym-

metric Z-pinch using (a) the full two-

fluid plasma model, (b) the ideal MHD

model solution, (c) the Hall-MHD model

with �¼ 0, (d) the Hall-MHD model

with �¼ 6.5� 10�5. For the same single

wavelength perturbation, a small-scale,

drift-turbulence instability grows for the

two-fluid plasma and the Hall-MHD sol-

utions whereas the ideal MHD solution

just forms the single-wavelength sausage

instability.

FIG. 17. (Color online) Growth of the magnetic field perturbation as a func-

tion of normalized time, t=sa, where sa is the Alfvén transit time when using

a single wavelength perturbation. Notice that with increasing dissipation, the

growth rate for the Hall-MHD solutions approach that of the two-fluid

plasma solution.
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show the spontaneous generation of a toroidal field with

equal and opposite magnitudes on each side of the axial

plane to maintain zero net toroidal flux. The toroidal mag-

netic fields have only a small effect on the equilibrium con-

figuration. The Hall term produces the toroidal magnetic

field by causing the field lines to be frozen to the electron

fluid instead of the ion fluid. Reference 29 explains that the

toroidal field results because of the poloidal field lines being

frozen to the electron fluid while the electron toroidal veloc-

ity varies along the field lines.

Figures 19 and 20 show that the toroidal magnetic fields

after 5tA and 10tA are approximately an order of magnitude

larger in the full two-fluid plasma model as compared to the

Hall-MHD model. For the full two-fluid plasma model, the

toroidal magnetic fields are between 1% and 5% of the poloi-

dal magnetic fields. The two-fluid model contains additional

terms besides the diamagnetic drift and the Hall term that

break the frozen-in-flux condition. These include the tempo-

ral and spatial derivatives that result from including finite

electron inertia. An asymptotic study of the total fluid pres-

sure for different mass ratios M¼ 50 and M¼ 100 in Fig. 21

after 5tA shows that the full two-fluid solution is not affected

by the artificial ion-to-electron mass ratio. The magnitudes

of the observed toroidal magnetic fields are comparable to

M¼ 25 in Fig. 19.

Neither the full two-fluid plasma model nor the Hall-

MHD model contains any explicit resistivity for the FRC

simulations. An effective resistivity is measured for both

models using

g ¼
ð

E � j
j � j dV: (39)

The effective resistivity observed for the full two-fluid

plasma model is significantly larger than the Hall-MHD

effective resistivity and the Spitzer resistivity calculated for

the same simulation parameters. The comparison is shown in

Fig. 22. Figure 23 shows the net toroidal magnetic field nor-

malized to the peak poloidal magnetic field in the full two-

fluid plasma model and in Hall-MHD. It is noted that the net

toroidal magnetic field is very small for both fluid models

and this could be due to numerical errors.

VI. DISCUSSION

The full two-fluid plasma model is explored and asymp-

totic approximations are applied to obtain the Hall-MHD

model. The two-fluid plasma model and the Hall-MHD

model retain the two-fluid physics by including the Hall and

diamagnetic-drift terms that are neglected in the single fluid

MHD plasma models. The full two-fluid plasma model is

implemented as a set of hyperbolic balance laws, which are

solved using an RKDG method. The electromagnetic shock

shows slight differences between the full two-fluid plasma

model and the Hall-MHD model that result from including

finite electron inertia. For the Z-pinch two-fluid drift-

turbulence instability, the Hall-MHD model requires a

hyper-resistivity to predict a consistent growth rate. For the

FRC, the toroidal magnetic field and the effective resistivity

are significantly larger in the full two-fluid plasma model

(while the net toroidal magnetic fields are close to 0) as com-

pared to the Hall-MHD model in the absence of any explicit

resistivity.

The two-fluid plasma model is different from the more

commonly used Hall-MHD model in three specific ways.

The two-fluid plasma model includes

• finite electron mass,
• finite speed of light, and
• non-neutral effects.

Retaining the electron inertia allows the whistler wave

to asymptote at a resonance of the electron cyclotron fre-

quency, which is a physically correct behavior, and this

allows for simpler computations. Since the asymptote for the

FIG. 18. (Color online) Initial condition for an axisymmetric FRC using an MHD equilibrium. (a) Contours of the total pressure with the magnetic field vec-

tors normalized to the pressure at the separatrix. (b) Contours of azimuthal current density with magnetic field vectors.

092113-13 Study of the ideal full two-fluid plasma model… Phys. Plasmas 18, 092113 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



whistler wave now lies at the electron plasma frequency,

there is no need to set an artificial resistivity or hyper-

resistivity to choose a cutoff frequency for the whistler

wave. The whistler wave in the Hall-MHD model can be

problematic since it is unbounded, and numerical diffusion

must be added to cut off high frequency phenomena.

Retaining a finite speed of light in Maxwell’s equations

allows displacement currents to be captured in the system.

The effect is relevant even for non-relativistic simulations

since the interest lies in capturing the physics associated

with the ion and electron fluids. Electromagnetic waves can

be captured without including relativistic effects and having

waves in the system that propagate at speeds close to the

speed of light does not require relativistic effects. Relativis-

tic effects are important if the fluid motions occur at time-

scales approaching those associated with the speed of light,

which is not the case for the simulations presented here. The

fluid physics at the high frequency electromagnetic time

scales is not presently of interest for the applications con-

cerned here.

In most plasma fluid models, a parallel electric field can-

not exist unless there is a resistivity included in the equation

system. In this context, parallel and perpendicular are in rela-

tion to the magnetic field. To elaborate, the generalized

Ohm’s law for an ideal plasma, E¼�ui �B, does not allow

for a parallel electric field unless an gJ term is also included.

This implies that in most reduced fluid models, a parallel

electric field can exist only if there is a parallel current and

resistivity. In the two-fluid plasma model, including

Ampere’s law with the displacement current allows a parallel

electric field to be present self-consistently even without a

parallel current. Even for the idealized two-fluid model pre-

sented here, i.e., no explicit resistivity, a parallel electric

field can exist and is captured in the model.

Including the speed of light and consequently the dis-

placement currents allows for local non-neutral effects to be

FIG. 19. (Color online) (a) Total fluid pressure with poloidal magnetic field vectors superimposed after 5tA. (b) Toroidal magnetic field after 5tA for the full

two-fluid plasma model. (c) Total fluid pressure with poloidal magnetic field vectors superimposed after 10tA. (d) Toroidal magnetic field after 10tA for the full

two-fluid plasma model. Note the formation of toroidal magnetic field as the solution relaxes to a two-fluid equilibrium.
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captured in the plasma. Single fluid MHD and even Hall-

MHD models do not capture local non-neutral effects.

Charge neutrality is an inherent assumption of the Hall-

MHD model. The charge neutrality assumption does not

allow local charge separation as a result of which potentially

large local electric fields are missed. Non-neutral effects can

FIG. 20. (Color online) (a) Total fluid pressure with poloidal magnetic field vectors superimposed after 5tA. (b) Toroidal magnetic field after 5tA for the Hall-

MHD model. (c) Total fluid pressure with poloidal magnetic field vectors superimposed after 10tA. (d) Toroidal magnetic field after 10tA for the Hall-MHD

model. The pixelation in the magnetic field is a result of not numerically limiting the auxiliary electric field that is used in Faraday’s law. Note that the toroidal

magnetic fields that form are about an order of magnitude smaller than the full two-fluid solution in Fig. 19.

FIG. 21. (Color online) Toroidal mag-

netic field for full two-fluid plasma

model (a) with M¼ 50 and (b) with

M¼ 100 after 5tA. Note that the solution

magnitudes are of the same order as the

M¼ 25 full two-fluid solution in Fig. 19.
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be important in plasmas and the full two-fluid plasma model

is required to capture them. Even with the ideal full two-

fluid plasma model, an effective resistivity can be observed4

which likely results from non-neutral effects. The effective

resistivity observed in Hall-MHD is much smaller in magni-

tude compared to that of the two-fluid plasma model.

Semi-implicit solvers have been implemented for Hall-

MHD with special treatment for just the Hall term such that

the remaining MHD terms are advanced at the single fluid

time-scales. Examples of these are the implicit treatment of

the Hall term31 and explicit sub-cycling of just the Hall term

using smaller time-steps6 with explicit treatment of the

remaining MHD terms at single-fluid time-scales. A semi-

implicit Hall-MHD scheme with adaptive mesh refinement

has been implemented in previous publications.32 Chacón

and Knoll propose a fully implicit Hall-MHD scheme with

physics-based preconditioning.33 In solving the full two-fluid

plasma model, similar techniques can be used for implicit

treatment or explicit sub-cycling of just the electron and

Maxwell’s equations while explicitly solving the ion equa-

tions. However, implicit schemes can have convergence

issues as shocks develop and as the solution becomes

strongly nonlinear. The presence of limiters exacerbates this

problem. The explicit full two-fluid plasma model presented

here captures shocks and sharp gradients without the need

for numerical damping of high frequency waves. Two-fluid

physics is captured for problems with sharp gradients with

reasonable computational effort by artificially decreasing the

ion-to-electron mass ratio and the light-to-Alfvén speed ratio

using the full two-fluid plasma model.

There are implications of the research presented here on

some areas of ongoing research such as the penetration of

magnetic fields into a plasma.34–36 Small-scale density fluc-

tuations in a plasma can drive large density gradients that

can enhance the Hall electric field which is an explanation

for magnetic field penetration into a plasma.34 This draws

parallels with the Z-pinch small-scale instability where the

instability grows in the region of maximum density gradient.

Including two-fluid effects allows small-scale spatial phe-

nomena to be captured. The two-fluid plasma model and

Hall-MHD resolve the ion skin depth and the two-fluid

model also resolves the electron skin depth. References 35

and 36 explore magnetic field penetration in an initially ho-

mogeneous plasma, where resistivity determines the shock

structure for high collisionality and electron inertia deter-

mines the shock structure for low collisionality. For this

problem, Hall-MHD does not capture the necessary physics

since it ignores electron inertia. Using the full two-fluid

plasma model, magnetic field penetration requires collisions,

but it may be possible to achieve a small amount of dissipa-

tion from the numerical method and limiters alone. This

could provide a solution where the shock structure is deter-

mined by the electron inertia without any explicit collisions

included in the model but a very low collisionality case

implied as a result of the numerical method. This problem is

an example of an interesting application that would require

the full two-fluid plasma model over Hall-MHD.
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J. Comput. Phys. 161, 484 (2000).
14P. Banks, W. Edwards, C. Rasmussen, and R. Thompson, Geophys. Res.

Lett. 8, 95, doi: 10.1029/GL008i001p00095 (1981).
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