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Advanced physics calculations using a multi-fluid plasma model
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The multi-fluid plasma model is derived from moments of the Boltzmann equation and typically has two
fluids representing electron and ion species. Large mass differences between electrons and ions introduce
disparate temporal and spatial scales and require a numerical algorithm with sufficient accuracy to
capture the multiple scales. Source terms of the multi-fluid plasma model couple the fluids to themselves
(interspecies interactions) and to the electromagnetic fields. The numerical algorithm must treat the
inherent stiffness introduced by the multiple physical effects of the model and tightly couple the source
terms of the governing equations. A discontinuous Galerkin method is implemented for the spatial
representation. Time integration is investigated using explicit, implicit, semi-implicit methods. Semi-
implicit treatment is accomplished using a physics-based splitting. The algorithm is applied to study drift
turbulence in field reversed configuration plasmas to illustrate the physical accuracy of the model. The
algorithm is also applied to plasma sheath formation which demonstrates Langmuir wave propagation.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Understanding and predictability of plasma behavior has been
significantly advanced through the development of reduced plasma
models and their numerical solution. The most common reduced
plasma model is the magnetohydrodynamic (MHD) model, which
describes the plasma as a single-fluid. While the MHD model has
been successful in many applications [1–4], more complex effects
require more complete physical models. The most complete con-
tinuum model for plasma is described using kinetic theory where
each species α of a plasma is described by a time-dependent dis-
tribution function fα(x,v, t) in physical and velocity space. The
evolution of the distribution functions is described by the Boltz-
mann equation

∂ fα
∂t

+ v · ∂ fα
∂x

+ qα

mα
(E + v × B) · ∂ fα

∂v
= ∂ fα

∂t

∣∣∣∣
c
. (1)

The plasma is typically composed of ion and electron species and
possibly additional species for neutrals or impurities. The Boltz-
mann equation coupled with Maxwell’s equations for electromag-
netic fields completely describe the plasma dynamics. Plasmas
have been simulated using this model with specific forms of the
collision operator (Vlasov equation and Fokker–Planck equation)
[5–8]. However, the Boltzmann equation is seven-dimensional. As
a consequence of the large dimensionality, plasmas are simulated
using the Boltzmann equation only when necessary to capture the
essential physics.
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Another approach to capture more complete physics is to gen-
eralize the single-fluid MHD model. The generalization described
here allows for multiple species — the multi-fluid plasma model.
Each fluid is assumed to have a Maxwellian velocity distribution.
The generalization also allows for atomic reactions such as ion-
ization, recombination, and charge exchange. The analytical devel-
opment of the model is briefly described in Section 2. Section 3
presents the numerical implementation and some of its features
that are specifically important to the multi-fluid plasma model.
Illustrative applications of the multi-fluid plasma model are pre-
sented in Section 4.

2. Multi-fluid plasma model

Taking moments of the Boltzmann equation, Eq. (1), provides
equations that govern the evolution of the moment variables. The
moment variables are defined from moments of the distribution
function. The governing equations for the limiting case without
atomic reactions and for a two-fluid (ions and electrons) plasma
model is presented in Ref. [9].

The governing equations of the two-fluid plasma model can be
combined to form the single-fluid MHD model [10]. In the deriva-
tion of the MHD model several approximations are made which
limit its applicability to low frequency phenomena and ignores
potentially significant finite electron mass and charge separation
effects.

Generalizing the moment approach to include an arbitrary
number of species and to include atomic reactions yields the
multi-fluid plasma model. The derivation follows that provided by
Braginskii in Ref. [11]. However, the form of the equations are de-
rived here for the conservation variables in flux/source form where
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hyperbolic and parabolic fluxes are in balance with source terms.
For example, the governing equations for the electron fluid are

∂ne

∂t
+ ∇ · (neve) = Γion − Γrec, (2)

∂

∂t
(ρeve) + ∇ · (ρeveve + Pe)

= −ene(E + ve × B) − Rei + Rne + mevnΓion − meveΓrec, (3)
∂εe

∂t
+ ∇ · (εeve + ve · Pe + he)

= −ve · (eneE + Rei − Rne) + Q ei + Q en

+
(

1

2
me v2

n − φion

)
Γion − 1

2
me v2

eΓrec, (4)

where the conservation variables are number density ne = ρe/me ,
momentum density ρeve , and total energy density εe . The total
energy density is defined as the sum of the internal energy and
kinetic energy.

εe ≡ 3

2
ne Te + 1

2
ρe v2

e , (5)

and the electron temperature Te is defined by the scalar electron
pressure pe from the second moment of the distribution function,

ne Te = pe ≡ 1

3

∫
me w2 fe dv, (6)

where w = |ve − v| is the random velocity of the electron species.
The electron pressure tensor Pe can deviate from the scalar elec-
tron pressure. Closure statements are required to relate these
terms to the other variables in the system [11]. The heat flux
he is defined by a closure statement that relates it to the tem-
perature gradient, i.e. he ∝ ∇Te . Collisional effects originate from
the right hand side of Eq. (1) and provide a mechanism for mo-
mentum transfer, e.g. Rei , and a mechanism for heat generation,
e.g. Q ei . The atomic reaction rates are given by Γion and Γrec for
ionization and recombination which include the charge exchange
reaction. Governing equations similar to Eqs. (2)–(4) exist for each
ionic species and each neutral species. (Neutral species do not ex-
perience forces directly from the electric and magnetic fields.) The
five moment equations given by Eqs. (2)–(4) are sufficient for de-
scribing the evolution of an electron fluid in thermodynamic equi-
librium. The distribution function for the electrons fe is described
by a Maxwellian distribution. Provided the other fluids are each
in thermodynamic equilibrium, similar five moment equations are
sufficient to describe their evolution. Equal temperatures are not
required, e.g. Te �= Ti �= · · ·.

The electric and magnetic fields, E and B, appear in the source
terms of the fluid equations, e.g. the Lorentz force in Eq. (3). The
field dynamics are governed by Maxwell’s equations, which have
source terms that contain the fluid variables. For example, Am-
pere’s law and Gauss’s law are expressed as

ε0μ0
∂E

∂t
− ∇ × B = −μ0

∑
α

qαnαvα, (7)

ε0∇ · E =
∑
α

qαnα. (8)

The motion of the plasma influences the evolution of the electro-
magnetic fields through the redistribution of charge density and
current density.

The divergence constraints of Maxwell’s equations can be dif-
ficult to satisfy with the presence of current and charge sources
on an arbitrary computational grid. Maxwell’s equations can be re-
formulated into a “purely hyperbolic” form (hyperbolic fluxes and
source terms) by introducing two scalar correction potentials [12].
The multi-fluid plasma model is described by the equation sys-
tem comprised of fluid equations for each species, appropriate clo-
sure statements and Maxwell’s equations for the fields. As seen
in the equation system, the fluids and fields are coupled through
the source terms. Accurate calculation of the source terms and hy-
perbolic fluxes is particularly critical for steady-state equilibrium
problems where large magnetic, electric, and pressure forces bal-
ance.

3. Numerical implementation

The governing equations for the multi-fluid plasma model (in-
cluding the electromagnetic equations) are formulated in flux/
source form as shown above. The entire equation system can be
expressed in compact form as

∂q

∂t
+ ∇ · F = S, (9)

where q is the vector of conserved variables, F is the tensor of hy-
perbolic fluxes, and S is the vector containing the source terms.
The numerical implementation of the multi-fluid plasma model
must provide an accurate and consistent treatment of the source
terms and hyperbolic fluxes.

The spatial representation is accomplished with a high-order
discontinuous Galerkin (DG) method [13–16]. The DG implemen-
tation is an unsplit method. Both the hyperbolic fluxes and source
terms are represented with a high-order spatial representation and
are integrated in time simultaneously. Split methods can lead to
inaccurate balancing of the source terms and hyperbolic fluxes.
Time-integration is accomplished using either an explicit TVD
Runge–Kutta method, a fully implicit method, or a physics-based
semi-implicit method.

3.1. Spatial representation — discontinuous Galerkin

The simulation domain is divided into discrete elements which
are quadrilaterals in 2D and hexahedrals in 3D. The spatial varia-
tion of the conservation variables within each element is modeled
by projecting the variables onto a set of basis functions vh of or-
der h, such that q = ∑

h qh vh . The basis functions are Legendre
polynomials for the implementation described here. The governing
equations are multiplied by each basis function and integrated over
the element volume. An integral equation is generated for each ba-
sis function.∫
Ω

vh
∂q

∂t
dV +

∮
∂Ω

vhF · dS −
∫
Ω

F · ∇vh dV =
∫
Ω

vh S dV , (10)

where the divergence theorem has been applied to the second
term of Eq. (9). The volume and surface integrals are evaluated by
Gaussian quadrature. The source terms are projected onto the basis
functions and are, therefore, the same order accurate as the solu-
tion variables. This satisfies the high-order accuracy requirement
to preserve the equilibrium balance between the divergence of the
hyperbolic fluxes and the source terms. The hyperbolic fluxes at
the element surfaces for the surface integral in Eq. (10) are calcu-
lated with a Roe-type approximate Riemann solver [9].

Spatial representations using up to 16th-order polynomials
have been used. Such high orders are important for equilibrium
problems.

3.2. Time integration — explicit, implicit, and semi-implicit

Several time-integration methods have been investigated. An
explicit third-order TVD Runge–Kutta method has been imple-
mented and works well provided the stability restriction is obeyed.
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The CFL number must be less than 1/5 [17]. However, the multi-
fluid plasma model allows for the propagation of waves that have
disparate characteristic speeds. The speeds range from high speed
of light (≈ 108 m/s) to slow speed of bulk fluid motion (≈ 1 m/s).
Many simulations aim to study the plasma evolution over long
timescales — many fluid transit times. Explicit simulations are thus
computationally intensive.

Implicit methods allow for time steps that are not limited by
the fast waves. The entire system of governing equations, Eq. (9),
is written as

∂q

∂t
= f (q). (11)

The time advance can be expressed in an implicit form of arbitrary
order accuracy. A second-order Crank–Nicolson method has been
implemented, which is solved iteratively using a variety of implicit
numerical methods.

The implicit method has been applied to several benchmark
problems to compare the accuracy of the solution when large time
steps are used. Solution accuracy is well preserved for the resolved
timescale. However, formulating the implicit time-advance method
for the multi-fluid plasma model results in a large, stiff equation
system with a matrix that is difficult to invert. The multi-fluid
plasma model contains 18 variables for the ion and electron flu-
ids and the electromagnetic fields. Each additional fluid requires
an additional 5 variables. None of the numerical methods, e.g. ILU
preconditioned GMRES, have performed adequately without artifi-
cially altering the physics of the problem, like using unrealistically
massive electrons with mi/me = 25 [18].

A semi-implicit method has been formulated to perform a split-
ting of the governing equations based on the different expected
physics and scales. The electron fluid and electromagnetic fields
introduce the fast/small scales, and their governing equations are
solved implicitly. The ion and neutral fluids introduce slow/large
scales, and their governing equations are solved explicitly. The
combination of implicit and explicit treatments limits the size of
the operator matrix that needs inverting. The time step is still lim-
ited by the ion motion, which is often the timescale of interest.

4. Illustrative applications

The numerical algorithm described above has been imple-
mented on parallel computers in a code named WARPX (Wash-
ington Approximate Riemann Plasma) for 2D and 3D for general
geometries. The code has been benchmarked against several ana-
lytical and published computational problems [9,19,20].

4.1. Drift turbulence in FRC plasmas

The resulting numerical method has been applied to study Z-
pinch dynamics [21,18] and three-dimensional field reversed con-
figuration (FRC) evolution to investigate anomalous resistivity [20,
18] that experimentally limits the plasma current. FRCs form a
toroidal equilibrium structure where a toroidal electron current is
driven to create a poloidal magnetic field superimposed onto an
external solenoidal magnetic field. The electron motion interacts
with the magnetic field to confine an electron pressure. The con-
fined electron fluid creates a radial electric field to confine the ion
pressure. FRC plasma simulations require at least two fluids for ac-
curacy.

Fig. 1 shows a sample evolution of an FRC plasma. The sim-
ulation is performed with mi/me = 25, c/v A = 39, and kinetic
parameter s = 7. The corresponding time steps are 6 × 10−12,
1 × 10−9, and 6 × 10−7 s, for explicit, semi-implicit, and implicit
methods. The FRC problem demonstrates the accurate balance of
the hyperbolic fluxes and the source terms. Split methods cause
Fig. 1. Three-dimensional evolution of an FRC using the two-fluid WARPX code.
Shown are ion density isosurfaces (1.8, 2.8, 3.8, 4.8 × 10−21 m−3) for initial con-
dition and after instability evolves. Electron density and pressures have a similar
structure. Equilibrium is maintained. Small scale variations related to drift turbu-
lence are evident in the toroidal direction.

the equilibrium to artificially dissipate. The simulation results in
Fig. 1 demonstrate that equilibrium is maintained. The simulation
also shows a drift turbulence instability develops in the toroidal
direction. This instability may be related to anomalous resistivity
observed in experiments.

4.2. Plasma sheath formation

A three-fluid (electrons, ions, and neutrals) simulation of
plasma sheath formation is performed to illustrate the multi-fluid
capability of the numerical algorithm. The sheath formation is
studied by initializing uniform static fluids and no bias electric
field. The boundaries are modeled with interleaved regions of di-
electric and electrode materials. Electrical potentials can be applied
to the electrodes. The simulation is performed with mi/me = 100,
c/vTe = 10. Atomic reactions are incorporated that describe the
effects of collisions between the species explicitly, allowing for
the identification of regions of ionization/recombination and inter-
species momentum and energy transfer. Plasma sheath formation
is important for electrode-based plasma technologies, e.g. plasma
actuators for control of high-speed aerospace vehicles. The multi-
fluid model captures electron inertial effects and has revealed a
physical effect not observed with other plasma models. During the
initial formation of the plasma sheath, the applied electrode poten-
tial excites a Langmuir wave that propagates into the bulk plasma.
The dispersion relation for the Langmuir wave is given by

ω2 = ω2
pe + 1.5k2 v2

Te (12)

where ωpe is the electron plasma frequency and vTe is the electron
thermal speed. Typically, sheath simulations assume electrostatic
fields and miss the electrodynamics of the formation process [22].
Propagating Langmuir waves are shown in simulation results in
Fig. 2, where parallel electrodes at ground potential are modeled
to allow validation with theoretical predictions, such as the ions
reach the Bohm velocity prior to the sheath edge. The numerical
dispersion agrees with the relation of Eq. (12), as seen in Fig. 2.

The plasma sheath formation studies provide better physical
understanding of the plasma production process. Plasma (ions and
electrons) is produced by ionizing the neutral gas, and plasma is
lost when it reaches the electrode and recombines. An analytical
model of the electrode describes secondary electron emission and
recombination at the electrode. In addition to the plasma sheath
that naturally forms around electrodes, a voltage can be applied
to the electrodes to drive a net current through the plasma. While
steady-state cathode and anode drops are well understood analyt-
ically in simple geometries, the numerical solution of the multi-
fluid plasma model with WARPX captures the details of the forma-
tion dynamics and allows for arbitrarily complex geometries and
time-dependent phenomena.
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Fig. 2. Initial plasma production showing the propagation of a Langmuir wave in the
electron density (black) and electric field (blue). The lower plot shows amplitude
contours when the numerical results are Fourier transformed into wave space (k,ω).
The numerical dispersion agrees well with analytical dispersion relation (white dot-
ted line). (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

5. Conclusions

The multi-fluid plasma model in flux/source form has been de-
rived from moments of the Boltzmann equation combined with
Maxwell’s equations. The model captures more complete physics
than the single-fluid MHD model. Accurate treatments of the
source terms and hyperbolic fluxes are important since the fluids
and fields are coupled through the source terms. A high-order dis-
continuous Galerkin method provides the necessary coupling and
high spatial accuracy. A full implicit time integration implementa-
tion leads to an inefficient method since the large system size and
disparate characteristic speeds result in a matrix that is difficult
to invert. A physics-based, semi-implicit method splits the gov-
erning equations into two systems — one with fast characteristic
speeds, which is integrated implicitly, and one with slow charac-
teristic speeds, which is integrated explicitly. The numerical algo-
rithm has been benchmarked and is producing physically-relevant
simulations, such as FRC simulations of anomalous resistivity and
plasma sheath formation.
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