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Abstract

Study of Magnetic Relaxation in Plasmas

Using a Parallel Implicit MHD Solver

by Ogden S. Jones

Chairperson of Supervisory Committee: Prof. D. Scott Eberhardt

Aeronautics and Astronautics

A new implicit algorithm has been developed for solving the time-dependent, non-

ideal magnetohydrodynamic (MHD) equations. The algorithm is a finite-volume

scheme that uses an approximate Riemann solver for the hyperbolic fluxes and cen-

tral differencing applied on nested control volumes for the parabolic fluxes that

arise from the non-ideal terms (i.e. resistivity and viscosity). For sufficiently large

Lundquist numbers, the implicit formulation is stable for any size time step, thus al-

lowing efficient tracking of slower transients. The implicit operator is inverted using

a lower-upper symmetric-Gauss-Seidel (LU-SGS) iteration. In addition to the im-

plicit scheme, a related explicit scheme has also been developed. Both schemes were

implemented in a computer code that has been optimized for parallel computers.

The code has been benchmarked against several analytical solutions. The code was

then applied to two problems relevant to the magnetic relaxation of fusion plasmas.

The first application was a planar sheet pinch. The linearized equations were first

solved to obtain the most unstable eigenmode, which was then used as an initial

perturbation. The nonlinear evolution of the resistive tearing mode was then followed

using the implicit MHD solver. The second application was a simulation of the three-



dimensional relaxation of simple toroidal configurations that were initialized near

equilibrium, but far from the force-free Taylor state. As the Lundquist number was

increased, it was found that the fully three-dimensional plasma relaxes more rapidly

than an axisymmetric plasma.
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Chapter 1

INTRODUCTION

Plasmas, like all natural systems, will, if allowed to, tend to evolve over time

toward a minimum energy state. Generally speaking, if this evolution occurs gradually

(that is, it is not due to a rapid global instability), then the plasma is said to ”relax”

toward the minimum energy state. In this research we are concerned only with fully

ionized or ”magnetized” plasmas. Thus, magnetic relaxation refers to any type of

relaxation process occurring in a magnetized plasma. Although relaxation processes

are basic to all fields of plasma physics, this research focuses on the role relaxation

plays in magnetically confined fusion devices.

Relaxation processes are of considerable interest to magnetic fusion research be-

cause they are always present. That is, by design a magnetic fusion device squeezes

a plasma together in order to get the nuclei to fuse and release energy, and this

obviously puts the plasma far from its minimum energy state. Although one can

generally stabilize global MHD modes that would otherwise cause the immediate dis-

ruption of the plasma, there are always various other localized micro-instabilities that

are present and are available to drive the plasma back toward a lower energy state.

In fact, it turns out that relaxation processes, when viewed in terms of the relative

decay rates of various global invariants or integrals of the motion, can be analyzed

in terms of variational principles. That is, one can minimize the energy with the

constraint that, on the time scale of the changes in the energy, the global invariant

is constant, and thus obtain quantitative information on the resulting relaxed state
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of the plasma.

1.1 Background

A theory of plasma relaxation based on variational principles was first applied to

fusion plasmas by Taylor [36]. He postulated that the magnetic helicity, which is

given by

K =
∫

(A · B) dτ, (1.1)

is a constant of motion for plasmas. Here, B is the magnetic field and A is the vector

potential. When the magnetic energy is minimized under the constraint of constant

helicity, the resulting plasma configuration is a force-free state (j ‖ B) with j/B ≡ λ

equal to a global constant. This theory has been successful in explaining the results

of several different types of toroidal devices, including the Reverse Field Pinch (RFP)

and the spheromak.

Recently, there has been an ongoing experiment at the University of Washington,

the Helicity Injected Tokamak (HIT) [21], that relies on Taylor’s relaxation theory

in order to operate properly. HIT is based on the premise that a certain amount of

relaxation takes place that drives the plasma toward the desired magnetic configura-

tion (a ”tokamak”). In order to explain how HIT works, it is necessary first to define

what a tokamak is.

A tokamak is a particular type of device for magnetically confining and compress-

ing plasmas in order to obtain controlled thermonuclear fusion power. Like many

fusion concepts, the tokamak is a toroidal device. This has the advantage that the

magnetic field lines close back on themselves, thus mitigating the end losses that

dominate the confinement of open-ended configurations. A tokamak is distinguished

from other toroidal fusion concepts in that its poloidal field is much smaller than the

externally imposed toroidal field and is created by a toroidal plasma current. There

are a number of ways in which to drive a toroidal current in a tokamak. Most toka-



3

maks use so-called ohmic drive, in which toroidal coils are used to create a changing

magnetic flux through the center of the torus (the hole of the doughnut) that drives

a toroidal current. In this case, the tokamak is behaving as a transformer, with the

plasma acting as the secondary coil. This technique is called ohmic drive because one

result of the current is that the plasma is ohmically heated due to its resistivity. This

technique has the disadvantage of being pulsed, whereas there are obvious advantages

to having a steady-state fusion reactor.

The primary objective of the HIT experiment is to explore the feasibility of us-

ing one particular technique, called coaxial helicity injection (CHI), for driving a

steady-state plasma current in a tokamak (there are other possibilities, such as using

particle beams). The idea behind CHI is to drive current on open magnetic field lines

that connect two electrodes, and then to rely on Taylor relaxation to drive current

throughout the plasma volume. Figure (1.1) is a schematic of the HIT experiment

that illustrates how CHI works. A slice in the poloidal plane is shown. The plasma

resides between a cylindrical center column and a outer shell (both copper) that are

separated by toroidal insulators shown near the top and bottom of the figure. These

are the electrodes. Contours of poloidal magnetic flux are shown in the region be-

tween the electrodes. A voltage, Vinj , is applied between the electrodes. This drives

a current in the plasma and induces a flow of plasma from the injector (bottom) to

the absorber (top). Initially the current flows along the open field lines that connect

the center column and the shell. The forces push the open field against the walls, as

shown. Toroidal flux is brought in with the plasma flow through the insulator. This

toroidal flux links the poloidal flux between the electrodes, which is denoted as ψinj.

This adds helicity at a rate given by

K̇inj = ψinjVinj . (1.2)

Once quasi-steady operation is achieved, this injected helicity makes up for the resis-

tive decay of helicity. This drives ”too much” current on the outer open field lines,
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Figure 1.1: Poloidal cross-section of the Helicity Injected Tokamak showing the coaxial
electrodes that surround the plasma and the toroidal field coils.

which then have a λ larger than the rest of the plasma. If Taylor’s theory holds, then

the plasma will tend to relax toward a uniform λ, thus redistributing the current so

that it forms the toroidal current (closed loops of poloidal flux) of the tokamak.

The HIT experiment provided the motivation for this research, in that it was

clear that very detailed knowledge of the details of the relaxation process would be

required to understand the results of the HIT experiment. One way in which to gain

such as understanding is to perform detailed numerical simulations of plasmas with



5

sufficient resolution to accurately capture the physics of Taylor relaxation.

1.1.1 Previous Numerical Studies of Relaxation

In the time since Taylor’s theory was proposed in the mid-1970s, there has been a

lot of work done on the numerical simulation of relaxation in fusion plasmas. In the

following, we review a few representative papers from the fusion literature. This is

by no means a complete review of the fusion literature on the subject, let alone the

plasma literature as a whole.

Much of the previous work came out of modeling spheromak and RFP experi-

ments. Caramana, et al. [4] studied current-driven resistive instabilities in an RFP

using a quasi 3-D (single helicity) compressible MHD model. Although the model was

able to predict many aspects of the plasma behavior observed in experiments, it was

not able to predict the spontaneous reversal of the toroidal field and the maintenance

of the reversed field that is observed in all RFP experiments and is predicted by

Taylor’s theory. However, Aydemir, et al. [1] were able to numerically predict field

reversal using several different fully three-dimensional MHD codes. They found that

compressibility was critical for getting the correct results. Sgro, et al. [31] studied

the ”relaxation oscillations” observed in the CTX spheromak experiment. In these

oscillations the plasma was observed to undergo periods of slow decay away from the

Taylor state, followed by periods of rapid movement back toward the Taylor state.

They were able to reproduce these oscillations numerically using a 1-D transport

code and a 3-D MHD code. Katayama and Katsurai [17] studied the relaxation of

spheromaks with various q profiles using a three-dimensional MHD code and got good

agreement with several experiments. All of the codes used in the work described here

were finite difference codes.

Another approach has been to study the relaxation process more generally, and

somewhat independently of a particular fusion device. This is the approach used in

this work. Ting, et al. [37] studied two-dimensional MHD turbulence and ”selective
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decay” processes using high resolution spectral codes. They define selective decay

as any process (such as Taylor relaxation) in which some quantity such as energy is

dissipated more rapidly than another quantity, such as helicity. Riyopoulos et al. [26]

and Horiuchi and Sata [16] studied relaxation in generic geometries. More recently,

Sovinec and Prager [34] studied relaxation in a driven system with some similarities

to the HIT experiment. They were able to simulate flux amplification similar to that

observed in HIT. However, their geometry was a straight, periodic cylinder, rather

than a low aspect ratio torus.

1.2 Present Work

Although there have been a number efforts at simulating Taylor relaxation, many

of the efforts to date have been constrained by computer power to relatively low

Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén time) or

to less than three dimensions. Thus, it is apparent that there is a need for more

powerful computational tools to tackle this difficult problem, and others like it. This

provided the motivation for the first, and ultimately the primary, objective of this

research, which was to develop a new numerical method to enable higher resolution

numerical studies of relaxation with parameters closer to those in experiments and

with reasonable computer run times.

The simplest model that includes the effects of a resistive plasma, which is the

crucial element in Taylor’s theory, is the resistive MHD model. Some of the tech-

niques that have been used to solve these equations numerically are discussed in the

next chapter. Ultimately, we chose to develop two new numerical schemes, one im-

plicit and one explicit, based on an approximate Riemann solver. To our knowledge,

these are the first Riemann-type schemes for MHD in three-dimensional generalized

coordinates. It is also the first application of the LU-SGS implicit technique to the

MHD equations. The development and testing of these new schemes is the primary
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original contribution of this research.

Once the new code had been developed and checked out, we used it to perform

numerical studies of relaxation along the lines of the previous studies described above.

We decided to study simple geometries that were somewhat amenable to theoretical

treatment in order that the results be as understandable and general as possible,

rather than to immediately apply the code to the somewhat more complicated geom-

etry of the HIT experiment.

The first real application was the study of the nonlinear behavior of a symmetric

tearing mode in a planar sheet pinch geometry. This problem was chosen because re-

sistive instabilities are thought to drive Taylor relaxation in many systems. While this

problem provided an excellent test of the code’s capabilities, it was a two-dimensional

problem that had previously been solved by others.

On the other hand, the second and final application we studied - the three-

dimensional relaxation of RFP-like toroidal configurations - is a system that has

not been previously studied, especially at such high resolution. Although these simu-

lations were done with the explicit scheme and thus were not run out as far in time as

might be possible with an implicit scheme (which didn’t converge for these problems),

they did provide insight into the effects of Lundquist number and three-dimensionality

in such a system. The results of the three-dimensional toroidal simulations constitute

the other original contribution of this work.

1.3 Organization of this Dissertation

This dissertation is broken into two major sections. In the first section, which com-

prises chapters 2-4, a new multiblock, three-dimensional, parallel, implicit MHD

solver for general geometries is developed and then benchmarked against analyti-

cal solutions. The resistive/viscous MHD equations are introduced in chapter 2. In

chapter 3 the numerical algorithm is discussed. This includes a discussion of the



8

boundary conditions and other details of the implementation of the algorithm into a

usable computer program. In chapter 4 we present the results of various benchmark

runs that were used to validate the code.

The second section, chapters 5 and 6, describes the results of two relaxation

problems that were studied. In the first problem we studied two-dimensional resistive

tearing modes of a planar current sheet. In chapter 6 we use the code to study the

three-dimensional relaxation of toroidal plasmas in a particularly simple geometry

that is loosely analogous to the HIT experiment. Chapter 7 contains a summary and

conclusions.



Chapter 2

MHD MODEL

Plasmas generally exhibit both collective (fluid) and individual (particle) behavior.

In the MHD model, the plasma is treated like a conducting fluid having macroscopic

parameters that accurately describe its particle-like interactions. The equations can

be formally derived (see, for example, Freidberg [10]) by starting from the Boltz-

mann equation for a fully singly ionized plasma, averaging appropriately over the

velocity distributions to get a two-fluid model (ions and electrons), and then simpli-

fying further to obtain a one-fluid model for the ions (with the relative motion of

the electrons and ions appearing in the equations as a current density). The main

assumptions required for this model are that (1) the plasma is collision dominated,

(2) the length scales are long compared to the Debye length, and (3) the frequency

is low compared to the plasma oscillation frequency (and the cyclotron frequencies).

The physical consequence of the second and third assumptions is that the electrons

respond rapidly to shield out any local buildup of charge, thus keeping the plasma ap-

proximately neutral. This model is useful in many areas of plasma physics, including

fusion plasmas, space and solar plasmas, and electric propulsion.

In the ideal MHD model, which is the simplest, the electrical resistivity and fluid

viscosity are neglected. Although the ideal MHD model is useful for examining global

stability properties of fusion plasmas, it is too restrictive for studying Taylor relax-

ation. The reason is that in the ideal MHD approximation the magnetic flux is

”frozen” to the plasma motion. Thus, the field lines are precluded from tearing and

reconnecting in order to achieve a more energetically favorable magnetic configura-

tion.
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When the effects of finite resistivity (due to electron-ion collisions) are included,

the model is called resistive MHD. This is the simplest ”nonideal” MHD model, and

thus it is the simplest model for looking at Taylor relaxation. If finite viscosity (due

to ion-ion collisions) is also included, the resulting model is called resistive/viscous

MHD, and so on. For fusion plasmas, finite resistivity is typically the most important

nonideal effect, although viscosity can become very important for sheared ion flows.

In this work, we use the three-dimensional, resistive/viscous MHD plasma model.

The governing equations are the conservation of mass, momentum, and energy of the

ions, and the low-frequency Maxwell’s equations relating the magnetic and electric

fields to the current density. The conservation of mass for the ions is expressed as

∂ρ

∂t
+ ∇ · ρv = 0, (2.1)

where ρ is the ion density and v is the ion velocity. The conservation of momentum

is

ρ
dv

dt
= −∇p+ ∇ · ¯̄τ + j× B, (2.2)

where p is the pressure, ¯̄τ is the stress tensor, j is the current density, and B is the

magnetic field. Note the analogy with the Navier-Stokes equations of fluid dynamics,

except that there is an extra body force given by j× B. The total energy density is

the sum of the internal, kinetic, and magnetic energy densities, and is given by

e =
p

γ − 1
+ ρ

v · v
2

+
B · B
2μo

, (2.3)

where γ is the ratio of the specific heats (i.e. γ = cp/cv). The conservation equation

for this is

∂e

∂t
+ ∇ ·

[(
e+ p+B2/μo

)
v − (B · v)B/μo

]
= ∇ · [v · ¯̄τ − ¯̄η · j× B] , (2.4)

where ¯̄η is the resistivity tensor. Generally, the resistivity is a strong function of

temperature. The temperature is related to the density and pressure through an

equation of state. In this work, we use the ideal gas law.
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In the limit of low frequency (ω � c/L), the displacement current in Ampere’s

law and the net charge in Gauss’s law can both be neglected. In this limit, Maxwell’s

equations reduce to

μ0j = ∇× B, (2.5)

and

∂B

∂t
= −∇×E. (2.6)

Here, μo is the permeability of free space. The first equation is Ampere’s law. It

is used to eliminate j from the equations. The second equation is Faraday’s law. E

is eliminated from Faraday’s law by substituting for E using the generalized Ohm’s

law, which is

E + v × B = ¯̄η · j. (2.7)

It is useful to write the equations in non-dimensional form. As characteristic or

reference variables, we choose length (L), field (Bo), density (ρo), resistivity (ηo), and

kinematic viscosity (νo). Letting the primed variables denote the non-dimensional

form, we have

x′ = x
L

y′ = y
L

t′ = t
L/ca

ρ′ = ρ
ρo

v′ = v
ca

B ′ = B
Bo

e′ = e
B2

o/(2μo)
= e

ρoc2a

p′ = p
B2

o/(2μo)

ν ′ = ν
νo

η′ = η
ηo
,

(2.8)

where ca = Bo/
√
μoρo is the Alfvèn speed. When expressed in conservative, non-
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dimensional form, the equation set is (dropping the primed notation)

∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρv

B

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ∇ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρv

ρvv − BB + (p + B · B/2) I

vB − Bv

(e+ p+ B · B/2) v − (B · v)B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

∇ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(ReA)−1 ¯̄τ

(S)
−1 ¯̄Eres

(ReA)−1 v · ¯̄τ − (S)−1 ¯̄η · (∇×B) × B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.9)

I is the identity matrix. The non-dimensional numbers are defined as follows:

Lundquist Number : S ≡ μocaL/ηo

Modified Reynolds Number : ReA ≡ caL/νo

(2.10)

Note that the characteristic speed appearing in ReA is the Alfvén speed, rather than

the flow velocity.

The tensor ¯̄Eres is defined such that

∇ · ¯̄Eres = −∇× (¯̄η · ∇ ×B) , (2.11)

where the resistivity tensor, ¯̄η, is

¯̄η = diag(ηx, ηy, ηz). (2.12)

Typically, the resistivity is much less in the direction parallel to the magnetic field

than in the direction perpendicular to the field. The divergence of the ¯̄Eres tensor

accounts for the curl of the part of the E field due to the electrical resistance. That

is

∇ · ¯̄Eres = ∇ ·

⎡
⎢⎢⎢⎢⎢⎣

0 ηzjz −ηyjy

−ηzjz 0 ηxjx

ηyjy −ηxjx 0

⎤
⎥⎥⎥⎥⎥⎦ = −∇×

⎡
⎢⎢⎢⎢⎢⎣
ηxjx

ηyjy

ηzjz

⎤
⎥⎥⎥⎥⎥⎦ . (2.13)
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In terms of B, the non-zero components of the tensor are

Eyx = ηzjz = ηz

(
∂By

∂x
− ∂Bx

∂y

)
= −Exy (2.14)

Ezx = ηyjy = ηy

(
∂Bz

∂x
− ∂Bx

∂z

)
= −Exz (2.15)

Eyz = ηxjx = ηx

(
∂Bz

∂y
− ∂By

∂z

)
= −Ezy (2.16)

Similarly, the components of the stress tensor, τ , are

τxx =
2

3
μ

(
2
∂vx

∂x
− ∂vy

∂y
− ∂vz

∂z

)
(2.17)

τyy =
2

3
μ

(
2
∂vy

∂y
− ∂vx

∂x
− ∂vz

∂z

)
(2.18)

τzz =
2

3
μ

(
2
∂vz

∂z
− ∂vx

∂x
− ∂vy

∂y

)
(2.19)

τxy = μ

(
∂vx

∂y
+
∂vy

∂x

)
= τyx (2.20)

τxz = μ

(
∂vz

∂x
+
∂vx

∂z

)
= τzx (2.21)

τyz = μ

(
∂vy

∂z
+
∂vz

∂y

)
= τzy (2.22)

Although the viscosity, μ, is generally anisotropic, and must be expressed as a tensor

as the resistivity is, in this work we make the simplification that the viscosity is

isotropic.

These equations are a mixed set of hyperbolic and parabolic equations. The left

hand side of Eq. (2.9) contains the terms from ideal MHD. If the right hand side

were zero, this would be a purely hyperbolic system of equations. The dissipative

terms are on the right hand side of Eq. (2.9). We refer to these often as the parabolic

terms of the equation. Physically, the parabolic terms in the momentum equation are

due to the diffusion of momentum, while those in the magnetic induction equation

(Faraday’s law and Ohm’s law) are due to the diffusion of magnetic field. Finally,
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the two terms on the right hand side of the energy equation correspond to viscous

heating and Joule heating.

For convenience, the MHD equation set (Eq. (2.9)) is rewritten in the following

compact form
∂Q

∂t
+ ∇ · ¯̄Th = ∇ · ¯̄Tp, (2.23)

where Q is the vector of conservative variables, ¯̄Th is the tensor of hyperbolic fluxes,

and ¯̄Tp is the tensor of parabolic fluxes. The forms of these vectors and tensors can

be seen from Eq. (2.9).



Chapter 3

NUMERICAL METHOD

In this chapter we describe the numerical schemes that were developed for solving

the time-dependent, non-ideal MHD equations. Two schemes were developed: an

explicit one and an implicit one. Both methods feature an approximate Riemann

solver for evaluating the hyperbolic fluxes. This technique has been widely applied

to the Euler equations in fluid dynamics, but has only recently been extended to

the MHD equations, which have a significantly more complex wave structure. To our

knowledge, this work presents the first approximate Riemann solver for MHD written

for three-dimensional, generalized coordinates. The implicit scheme is based upon a

flux-vector splitting of the hyperbolic fluxes, which also has never been tried before

with the MHD equations. The formulation allows the time step to be chosen based

on the time scales one wishes to resolve rather than on the stability of the numerical

method. This can be important for problems where the time scales of interest are

much longer than the transit time of the fast magnetosonic wave. As long as the

Reynolds and Lundquist numbers are much larger than one, which is the case for

fusion plasmas, this method is numerically stable for any CFL number. As with

most implicit schemes, the implicit operator is solved iteratively at each time step.

However, due to its simple form in this case, it can be solved using an approximate

LU decomposition technique that is extremely efficient.



16

3.1 Background: Solving the MHD Equations

The MHD model comprises a coupled set of nonlinear partial differential equations

that must be solved numerically. Finite-volume methods are one of several different

techniques available to solve these equations. They are simple to implement, easily

adaptable to complex geometries, and well-suited to handle non-linear phenomena

such as mode coupling. The most difficult part of creating a finite-volume scheme for

MHD is the determination of the hyperbolic fluxes at each cell interface. Approximate

Riemann solvers are a class of methods for evaluating these fluxes that take into

account the wave nature of hyperbolic equations. In the past, approximate Riemann

solvers have been used extensively in the solution of the Euler and Navier-Stokes

equations in fluid dynamics. Recently, a number of explicit schemes built around some

type of approximate Riemann solver have been developed for the one-dimensional and

multi-dimensional MHD equations [3, 42, 43, 25, 6, 7, 8].

Time-dependent MHD simulations are particularly challenging because of the wide

range of time scales present in the model. While the MHD equations can be used to

study plasma phenomena occurring on time scales as short as the transit time of a

fast MHD wave, for many problems, the important physics occurs on time scales that

are much longer. For example, it can be shown that resistive tearing modes, which

are important in studying fusion plasmas, evolve on a time scale given by [13]

τtearing ∝ τ
2/5
A τ 3/5

η = (S)3/5 τA, (3.1)

where τA is the Alfvén time, τη is the resistive diffusion time, and S is the Lundquist

number, which is defined as

S =
τη
τA
. (3.2)

If S is 106, which is typical for laboratory plasmas in fusion applications, the resis-

tive tearing time is approximately 4000 times larger than the Alfvén time. In this

case, an explicit scheme would limit the time step to a much smaller value than is
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needed to accurately resolve the transient behavior. An implicit scheme removes the

numerically-imposed time-step constraint, allowing much larger time steps.

There have been a number of applications of implicit finite-difference methods to

nonlinear multidimensional MHD problems. Lindemuth and Killeen [20] and Schnack

and Killeen [29] used fully implicit schemes that employed iterations at each time

step to invert the implicit operator. However, for large, three-dimensional prob-

lems, inverting the full implicit operators became impractical, so various semi-implicit

schemes were introduced. Weber et al., [38] used a time-split method whereby the

convective terms were solved explicitly and the diffusive terms were solved implicitly.

The MACH2 and MACH3 codes [24, 11, 32] also use a time-splitting scheme, but the

equations are split in such a way as to remove the Alfvén speed from the numeri-

cal stability considerations. Since the equations are decoupled in these schemes, the

equations must be iterated at each time step until they converge. Schnack et al., [30]

introduced a class of semi-implicit schemes that used operator-splitting to remove the

numerical time-step restrictions. These methods have the advantage of not requiring

iterations, but inaccuracies are introduced by the operator splitting that limit the

allowable time step.

3.2 Description of the Algorithm

The method presented here is based on an algorithm that has been applied to the

time-dependent, incompressible Navier-Stokes equations [23]. In one dimension the

algorithm is second order accurate in space and time. For multi-dimensions, the

accuracy may be slightly less than second order because the one-dimensional flux

formulas are applied without using operator splitting [5]. We will derive the algorithm

for two dimensional Cartesian coordinates. The extension to three dimensions and

general coordinates is straight forward. To begin, we express the MHD equations as

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂Fp

∂x
+
∂Gp

∂y
= 0, (3.3)
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where F is the hyperbolic flux vector in the x direction (i.e. ¯̄Th = (F,G)) and Fp is

the parabolic flux vector in the x direction (i.e. ¯̄Tp = −(Fp,Gp)). We then discretize

Eq. (3.3) in space and time, evaluating the fluxes at the n+ 1 time level to get

1

2Δt

(
3Qn+1

ij − 4Qn
ij + Qn−1

ij

)
= −

[
(Rh)

n+1
ij + (Rp)

n+1
ij

]
, (3.4)

where Rh and Rp are the discretizations of the hyperbolic and parabolic fluxes,

respectively.

Eq. (3.4) is implicit and must be solved iteratively. Let Qn+1,m denote the mth

iteration of the solution at the n + 1 time level. To derive a recursive expression for

the next iteration of Qn+1 in terms of the previous iteration, we rewrite Eq. (3.4) as

(
∂Q

∂t

)m+1

ij

= −
[
(Rh)

n+1,m+1
ij + (Rp)

n+1,m
ij

]
, (3.5)

where (
∂Q

∂t

)m+1

ij

≡ 1

2Δt

(
3Qn+1,m+1

ij − 4Qn
ij + Qn−1

ij

)
(3.6)

This equation is still implicit, because the time derivative and hyperbolic flux terms

are evaluated at the m+1 iteration. (Evaluating the parabolic flux at the old iteration

level,m, results in a significantly simpler implicit operator, as will be explained later).

These terms are related to the previous iteration by linearizing them using truncated

Taylor series expansions. That is,

(
∂Q

∂t

)m+1

ij

≈
(
∂Q

∂t

)m

ij

+
∂ (∂Q/∂t)m

ij

∂Q

(
Qn+1,m+1

ij − Qijn+1,m
)
. (3.7)

and

(Rh)
m+1
ij ≈ (Rh)

m
ij +

∂ (Rh)
m
ij

∂Q

(
Qn+1,m+1

ij − Qn+1,m
ij

)
. (3.8)

It is important to note that the partial derivatives above are taken with respect to

Q at every cell, not just Qij. The partial derivative of ∂Q/∂t with respect to Q is

simply
∂ (∂Q/∂t)

∂Q
=

3I

2Δt
, (3.9)
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since it only varies with Qn+1,m
ij . However, the partial derivative of Rh is much more

difficult to evaluate. In fact, in order to make it tractable, it is evaluated using a

first order accurate approximation of the hyperbolic fluxes, which we will denote as

R̂h, rather than the full second order accurate discretization (Rh). This first order

approximation can be written generally as

(
R̂h

)
ij

= f (Qij,Qi−1,j,Qi+1,j,Qi,j−1,Qi,j+1) , (3.10)

so that the m + 1 iteration of
(
R̂h

)
ij

is coupled to five points from the previous

iteration. Substituting these expressions back into Eq. (3.4) and rearranging, we get⎡
⎢⎣∂

(
R̂h

)m

ij

∂Q
+

3I

2Δt

⎤
⎥⎦ΔQm

ij = −
⎡
⎣(Rh)

m
ij + (Rp)

m
ij +

(
∂Q

∂t

)m

ij

⎤
⎦ , (3.11)

where

ΔQm
ij ≡ Qn+1,m+1

ij − Qn+1,m
ij . (3.12)

At each time step, Eq. (3.11) is iterated until ΔQm is driven to approximately

zero, at which point the original differential equation is approximately satisfied. The

implementation of this iteration depends, of course, on the details of the discretization

of the hyperbolic and parabolic fluxes (Rh and Rp), and on the linearization of the

hyperbolic fluxes (∂R̂h/∂Q). The left hand side of Eq. (3.11) can be thought of as an

implicit operator operating on ΔQm. The implicit operator is a large banded block

matrix that is costly to invert directly. Instead, we make a number of simplifications

to the operator, and then invert it using the Lower Upper - Symmetric Gauss Seidel

(LU-SGS) technique [41].

The implicit scheme described here worked satisfactorily for the code validation

tests described in chapter 4 and for the two-dimensional resistive tearing simula-

tions in chapter 5. However, this technique proved unable to converge for the three-

dimensional relaxation simulations in chapter 6. For those simulations, we used an

explicit scheme given by

Qn+1
ij − Qn

ij

Δt
= −

[
(Rh)

n
ij + (Rp)

n
ij

]
. (3.13)
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This scheme is first order accurate in time. It would be simple to increase the temporal

accuracy by either using the n − 1 time level as in the implicit scheme, or by using

a multi-step Runge-Kutta technique. However, the explicit scheme was originally

intended to simply check the results of the implicit scheme and thus was not extended

to higher order time accuracy.

Both the implicit and explicit schemes use the same techniques for differencing

the right-hand-side fluxes. The hyperbolic fluxes are differenced by applying Harten’s

approximate Riemann solver [15] within the framework of the multidimensional tech-

nique developed by Powell [25]. The parabolic fluxes are discretized using central

differencing on an offset finite volume mesh. In the following sections, each of these

parts of the algorithm are described separately in more detail. In order to make the

equations simpler, the algorithm is derived for a two-dimensional Cartesian grid. The

extension to three dimensions is trivial, except in a few instances, which are noted.

The extension to non-Cartesian grids is discussed separately in section 3.3.1.

3.2.1 Approximate Riemann Solver

The finite volume discretization of the hyperbolic fluxes can be written as

(Rh)ij = Fi+1/2,j −Fi−1/2,j + Gi,j+1/2 − Gi,j−1/2. (3.14)

Note that in this equation, and all that follow, the grid metric terms (cell areas

and volumes) are omitted for clarity. The fluxes at the cell faces in each direction

are evaluated by solving a one-dimensional linear Riemann problem defined by the

discontinuous jump in Q between each cell. That is, if we let Ql and Qr denote the

states to the left and right of a cell interface, then the x direction flux is determined

by solving
∂Q

∂t
+ A(Ql,Qr)

∂Q

∂x
= 0, (3.15)

where A, the Jacobian of the F with respect to Q, is a function of the left and right

states. Similarly, a linear Riemann problem in the y direction is solved to get the y
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fluxes. There are a number of different types of approximate Riemann solvers that

have been developed. In this work, we adapted a solver originally developed for the

Euler equations by Harten [15].

To solve the linear Riemann problem defined above, we write A as

A = X−1ΛX, (3.16)

where X is a matrix whose columns are the right eigenvectors of A, X−1 is its inverse

(its rows are the left eigenvectors of A), and Λ is a matrix having the eigenvalues of

A along the diagonal. The eigenvalues of A are

λ = (vx, 0, vx ± cf , vx ± cs, vx ± va)
T , (3.17)

where cf and cs are the fast and slow magnetosonic speeds in the x direction, and va

is the Alfvén speed based on the x component of the magnetic field. These can be

expressed as

c2f =
1

2

{
a2 + c2a +

[(
a2 + c2a

)2 − 4a2v2
a

]1/2
}

(3.18)

c2s =
1

2

{
a2 + c2a −

[(
a2 + c2a

)2 − 4a2v2
a

]1/2
}

(3.19)

v2
a =

B2
x

μoρ
. (3.20)

Here, a is the ion acoustic speed, which for a perfect gas is

a2 =
γp

ρ
. (3.21)

The zero eigenvalue arises from the fact that the j× B force acts perpendicularly to

the directions of j and B, so that the F flux vector has a zero term corresponding to

Bx. For approximate Riemann solvers, there are basically two approaches to solving

this problem. The most common is to drop Bx from Q when applying the Riemann

solver to the x fluxes, drop By from Q when applying it to the y fluxes, and so forth.

That is, in each direction a different seven-variable Riemann problem is solved.
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An alternate approach, which is used in this work, has been developed by Powell

[25]. In this approach the Jacobians are modified in order to change the zero eigen-

value to he flow speed, and a source term is added that exactly cancels the terms

introduced by the modification of the Jacobians. The eigenvalues of the modified

Jacobian, Ã, are

λ = (vx, vx, vx ± cf , vx ± cs, vx ± va)
T . (3.22)

Thus the modification of A has changed the zero eigenvalue to the flow speed, while

keeping the others unchanged. In the same way, the zero eigenvalue for the y flux is

changed to vy. The source term, Sdiv, is given by

Sdiv = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B

v

v · B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∇ · B (3.23)

It is proportional to ∇ · B, which is zero analytically, but not numerically. It can be

shown [25] that the artificial eighth wave is associated with the convection of non-zero

∇ ·B produced by truncation errors.

The main reason we chose the eight-variable Riemann solver approach is that it

was simpler to incorporate into our implicit iteration scheme. An additional benefit

of this approach for the problems we have considered, is that the formulation auto-

matically insures that ∇ ·B remains approximately zero and does not grow, because

any finite ∇ · B is convected out of the domain [25]. However, it should be noted

that for more complicated flows having stagnation points and recirculation regions,

this technique would not guarantee that ∇ · B would remain zero everywhere in the

domain. For those types of problems, we employ a ”divergence fix” between time

steps in which an auxiliary equation is solved in order to remove any non-solenoidal

components of the field. This technique is commonly done in other MHD Riemann

solvers (e.g. [43]) and is explained in section 3.2.4.
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With the addition of the source term, Rh becomes

(Rh)ij = Fi+1/2,j − Fi−1/2,j + Gi,j+1/2 − Gi,j−1/2 + (Sdiv)ij . (3.24)

The fluxes are calculated by using the modified Jacobians with Harten’s scheme in

the form used by Yee, et al. [40]. In this form, the x direction flux at the i+1/2 face

is

Fi+1/2 =
1

2
[Fi+1 + Fi] +

1

2

∑
k

φk
i+1/2r

k
i+1/2, (3.25)

where rk is the kth right eigenvector of Ã, and φk is a nonlinear dissipation term

that is designed to provide just enough dissipation near sharp gradients to suppress

numerical oscillations while still achieving higher order spatial accuracy throughout

the rest of the domain. In smooth regions of the solution, φ is approximately zero, so

that Fi+1/2 −Fi−1/2 yields second order accurate central differencing. However, near

steep gradients and discontinuities, φ makes the flux approximately equal to its first

order accurate upwind form given by

Fi+1/2 =
1

2
[Fi+1 + Fi] − 1

2

∑
k

ψ(λk
i+1/2)α

k
i+1/2r

k
i+1/2, (3.26)

where

αk
i+1/2 = lki+1/2 · (Qi+1 − Qi) , (3.27)

λk is the kth eigenvalue of Ã, lk is the kth left eigenvector of Ã, and ψ is the absolute

value function with a smoothing term that adds a small amount of dissipation in

order to enforce the entropy condition. It is given by

ψ (z) =

⎧⎪⎨
⎪⎩

1
2

[
z2

ε
+ ε

]
if |z| ≤ ε

|z| if |z| > ε
, (3.28)

where ε is typically set to 0.01. Note that the values at the cell interface (i + 1/2)

are obtained by a simple average of the neighboring cells. It is possible to evaluate

the average state at the cell interface using a more complicated and potentially more

robust averaging such as the ”Roe average”. However, we have found in practice
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that simple averaging is sufficient except for the most extreme cases, such as for very

strong shocks.

This full expression for φ is

φk
i+1/2 = gk

i + gk
i+1 − ψ(λk

i+1/2 + γk
i+1/2)α

k
i+1/2, (3.29)

where

gi =
S

2
· max

[
0,min

[
ψ(λk

i+1/2)|αk
i+1/2|, Sψ(λk

i−1/2)α
k
i−1/2

]]
, (3.30)

S = sgn
(
αk

i+1/2

)
, (3.31)

and

γk
i+1/2 =

gk
i+1 − gk

i

αk
i+1/2

. (3.32)

It is essentially an upwind-weighted minmod function.

The eigenvectors were found analytically for generalized coordinates with the help

of the Mathematica symbolic mathematics software package [39]. It is important that

the eigenvectors of the modified Jacobians be properly normalized to insure that they

remain well-defined and form a complete set for various degenerate cases. Here, we

have followed the normalization developed by Balsara and Roe [28]. Their normal-

ization was for Cartesian coordinates, so we had to extend this to generalized coor-

dinates. The generalized normalization is significantly more complicated, although

it reduces to the Cartesian form. The complete normalized eigenvectors and the

procedure for handling all the possible degenerate cases are shown in appendix A.

3.2.2 LU-SGS Relaxation Scheme

As mentioned previously, the LU-SGS scheme is based on a simpler first order approx-

imation to the hyperbolic fluxes, rather than on Harten’s higher order discretization

described above. The first order approximation, denoted by R̂h, is actually a flux-

vector splitting [2] of the hyperbolic fluxes. This splitting of the fluxes is closely
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related to Harten’s first order upwind form. If we set ε in Eq. (3.28) to zero, then

Harten’s first order flux becomes

Fi+1/2 =
1

2

[
Fi+1 + Fi −

∑
k

|λ|ki+1/2α
k
i+1/2r

k
i+1/2

]
. (3.33)

Equivalently, this can also be expressed as

Fi+1/2 =
1

2

[
Fi+1 + Fi − |A|i+1/2 (Qi+1 − Qi)

]
. (3.34)

Here,

|A| ≡ A+ − A−, (3.35)

where

A± ≡ X−1Λ±X, (3.36)

and Λ± is a matrix having either all positive or all negative eigenvalues of Ã along

its diagonal.

Flux-vector splitting was developed for the Euler equations, which, for the ideal

gas equation of state, have the property that the flux function is a homogeneous

function of degree one in Q [35] and thus can be written as

F ≡ AQ. (3.37)

For the MHD equations, this property no longer holds. However, in this work we

have found that it is a good enough approximation to form the basis of a relaxation

scheme. That is, we say that

F ≈ AQ, (3.38)

so that we can define

F± ≡ A±Q. (3.39)

Using this type of splitting is equivalent to evaluating |A| in Eq. (3.34) at the cell

centers, i and i+ 1, rather than at the cell interface, i+ 1/2. With this change, Eq.

(3.34) becomes

Fi+1/2 =
1

2

[
Fi+1 + Fi −

(
|A|i+1Qi+1 − |A|iQi

)]
. (3.40)
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However, since |A| = A+ − A−, the flux simplifies to

Fi+1/2 = A−
i+1Qi+1 + A+

i Qi = F−
i+1 + F+

i . (3.41)

In general, R̂h can be written as

(
R̂h

)
ij

= (F)i+1/2,j − (F)i−1/2,j + (G)i,j+1/2 − (G)i,j−1/2 . (3.42)

Substituting Eq. (3.40) and similar expressions for Fi−1/2, Gi+1/2, and Gi−1/2 into

Eq. (3.42), we get

(
R̂h

)
ij

= F+
ij − F+

i−1,j + F−
i+1,j − F−

ij + G+
ij − G+

i,j−1 + G−
i,j+1 −G−

ij . (3.43)

Next, we form ∂R̂h/∂Q and substitute it into the left hand side of Eq. (3.11) to

obtain

{
3I

2Δt
+A+

ij−A+
i−1,j+A−

i+1,j−A−
ij+B+

ij−B+
i,j−1+B−

i,j+1−B−
i,j

}

× ΔQn
ij = −Rn

ij,

(3.44)

where all of the terms on the right hand side of the equations have been lumped

together in R. Here, B is the Jacobian of G. This is a block pentadiagonal matrix,

and the blocks themselves are fairly difficult to evaluate. To simplify the matrix, we

approximate A± and B± as

A± ≈ 1

2

(
Ã ± ρAI

)
(3.45)

B± ≈ 1

2

(
B̃ ± ρBI

)
, (3.46)

where ρA is the maximum eigenvalue of Ã, which is simply vx + cf , and ρB is defined

similarly. The result of this approximation is to reduce the convergence rate of the

relaxation because the operator is less closely coupled to the detailed wave structure

of the right hand side fluxes. However, the reduction in work per iteration more

than offsets the reduction in convergence rate. An important point here is that the

approximation to the implicit operator does not reduce the accuracy of the solution
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at each time step. As long as the scheme converges at each time step, the accuracy

of the solution is determined by the time step size and the right hand side fluxes.

With this approximation,

A+ − A− = ρAI, (3.47)

so that Eq. (3.44) simplifies to

{
Dij + A−

i+1,j + B−
i,j+1 − A+

i−1,j − B+
i,j−1

}
ΔQn

ij = −Rn
ij, (3.48)

where

Dij =
(

3

2Δt
+ ρA + ρB

)
Iij. (3.49)

This block matrix equation can be solved in two steps using a forward Gauss-Seidel

sweep followed by a backward sweep. The resulting algorithm can be written as

{
Dij − A+

i−1,j − B+
i,j−1

} {
Dij + A−

i+1,j + B−
i,j+1

}

× ΔQm
ij = − (Dij)R

m
ij ,

(3.50)

The forward sweep is equivalent to inverting a lower block diagonal matrix [the first

braced term in Eq. (3.50)], and the backward sweep is equivalent to inverting an upper

block diagonal matrix [second braced term in Eq. (3.50)]. That is, the operator has

been split according to the sign of the eigenvalues. Note that this is not a directional

splitting. The fluxes in the different directions are evaluated simultaneously. The

appeal of this scheme is that it doesn’t require any block matrix inversions, since the

blocks along the diagonal, D, contain only diagonal elements. Thus, a single LU-SGS

iteration requires only slightly more (about 10% more) computations than a single

explicit time step. We note here that the evaluation of the parabolic fluxes, Rp, at

the old iteration level (m) in Eq. (3.11) was motivated by the desire to achieve this

diagonal form, since linearization of Rm+1
p would have introduced some off-diagonal

terms. The price for this simplification is that for low ReA or S, the time step may

be limited by the numerical stability of the parabolic terms. However, for ReA and
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Figure 3.1: Grid stencil for parabolic fluxes. Dashed box is the offset mesh used to
determine flux at i+1/2 face.

S much larger than one, the CFL number is not limited by numerical stability. This

simple structure also lends itself well to parallelization using domain decomposition.

In addition, the relaxation scheme is highly vectorizable if we sweep through the

computational domain along lines of constant i+ j (in 2D), so that each term along

these lines is independent of the others and depends only on data that has already

been updated during the current sweep.

3.2.3 Parabolic Terms

The parabolic fluxes are differenced using a second order accurate finite-volume

scheme. The parabolic terms are the terms due to resistivity and viscosity that

appear on the right hand side of Eq. (2.9) in the momentum, induction, and energy

equations. The discretization of the parabolic fluxes, Rp is given by

(Rp)ij = (Fp)i+1/2,j − (Fp)i−1/2,j + (Gp)i,j+1/2 − (Gp)i,j−1/2. (3.51)

The face-centered fluxes that appear in the expression for Rp are obtained by per-

forming a flux balance on an offset, face-centered mesh.

Figure 3.1 shows the nine-point grid stencil for a uniformly-spaced Cartesian grid.
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The solid dots show the locations of the cell centers. The solid lines indicate the

boundaries of the cell surrounding point (i, j). The dashed lines indicate the offset

mesh used to calculate the parabolic flux at the i+ 1/2 face. The faces of the offset

mesh are labeled top, bottom, left, and right.

First we consider the differencing of the parabolic in the momentum equation,

which is ∇ · ¯̄τ . As an example, consider τxx, which is part of the x-momentum

equation (the second term of the Fp vector). In two dimensions, τxx at the i + 1/2

face is given by

(τxx)i+1/2 =
2

3
μi+1/2

(
2
∂vx

∂x
− ∂vy

∂y

)
i+1/2

, (3.52)

where μ is the dynamic viscosity. The derivatives at the i + 1/2 face are given by

one-dimensional applications of the divergence theorem as

∂vx

∂x
=

[(vx)i+1(dSx)right − (vx)i(dSx)left]

Vfc
(3.53)

and
∂vy

∂y
=

[(vy)top(dSy)top − (vy)bottom(dSy)bottom]

Vfc
, (3.54)

where Vfc is the volume of the face-centered cell, (dSx)right is the area of its right

face, and so forth. The face areas of the off-set mesh are obtained by appropriate

averages of neighboring regular cell faces. For the cell in the figure, we have

(dSx)left =
1

2
[(dSx)i−1,j + (dSx)i,j] , (3.55)

(dSx)right =
1

2
[(dSx)i,j + (dSx)i+1,j] , (3.56)

(dSy)bottom =
1

2
[(dSy)i−1,j + (dSy)i,j] , (3.57)

and

(dSy)top =
1

2
[(dSy)i−1,j+1 + (dSy)i,j+1] . (3.58)

Finally, the viscosity at the i+ 1/2 face is

μi+1/2 =
2μiμi+1

μi + μi+1
. (3.59)
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That is, the viscosities on either side of the interface are averaged like two resistances

in parallel.

The variables at the left and right faces of the off-set mesh are given by Qi and

Qi+1, respectively. The variables at the top and bottom faces, which are denoted by

open circles in the figure, are located at the vertices of the original mesh. These vertex

quantities are obtained by a volume-weighted average of the four cells surrounding

each vertex (in two dimensions). In three dimensions, the situation is somewhat more

complicated. In this case the vertex quantities are obtained by volume-weighted

average the values of the eight neighboring cells. Then, to get the value on, for

example, the top face of the three-dimensional offset mesh, two vertex quantities,

one from the k − 1/2 plane and one from the k + 1/2 plane are averaged, yielding

what amounts to an edge-centered quantity on the original mesh. Note that for

nonuniform meshes, a slight increase in accuracy can be achieved by using a more

accurate averaging scheme to obtain the parabolic fluxes at the cell faces. However,

the simple averaging employed here is sufficiently accurate for most applications.

The parabolic term in the induction equation, ∇ · ¯̄E, is differenced in a similar

manner. Consider one term in the ¯̄E tensor,

Eyx = ηzjz = ηz

(
∂By

∂x
− ∂Bx

∂y

)
. (3.60)

The resistivity is averaged in the same way as the viscosity, and the derivatives in B

are computed in the same way as the derivatives in v.

The parabolic part of the energy equation has terms describing resistive heating

and viscous heating. The viscous heating term is ∇ · (v · ¯̄τ). Evaluation of this term

requires v at each face, which is obtained by averaging the values of the two cell

centers on either side of the face. The stress tensor components on the cell faces are

evaluated the same way as for the momentum equation. The resistive heating term

is

−∇ · (¯̄η · j× B) . (3.61)



31

This is evaluated by using

−¯̄η · j× B =

⎡
⎢⎢⎢⎢⎢⎣
Byηzjz − Bzηyjy

Bzηxjx − Bxηzjz

Bxηyjy − Byηxjx

⎤
⎥⎥⎥⎥⎥⎦ . (3.62)

The face-centered B is obtained by averaging the values of the cell centers on either

side of the face, while the remaining terms are the components of the ¯̄E tensor

described above.

3.2.4 Divergence Cleaning

As discussed previously, the approximate Riemann solver used here only guarantees

that the magnetic field remains divergence-free to within the truncation error of the

method. In some calculations, it is possible that divergence errors could build up

over time and contaminate the solution.

To protect against this possibility, a ”divergence cleaning” procedure was added

to the algorithm. The procedure works as follows. Suppose that the calculated field,

B, has a non-zero divergence. Then, we define a modified field, B′, as

B′ = B + ∇b, (3.63)

where b is chosen to make ∇ · B′ = 0. That is, we have

∇ · B′ = ∇ ·B + ∇2b = 0, (3.64)

which implies

∇2b = −∇ · B. (3.65)

The Poisson equation for b is solved using a Jacobi iteration.

3.3 Implementation Details

The algorithm described in the previous sections has been implemented in a code

we have named Enhanced MACH3 Implicit (EMI), because it will eventually become
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integrated with the MACH3 code [32]. The code was originally written in Fortran

77, but was later changed to Fortran 90 in order to allow dynamic allocation of

memory, which was essential for running large jobs on a parallel computer. In this

section we describe some important aspects of the implementation of the algorithm,

including generalized coordinates, axisymmetric source terms, multiblock grids, and

parallelization. Appendix B is a ”user’s guide” for version v9701 of the code, which

is the version that was used for the three-dimensional simulations in chapter 6. The

user’s guide includes a description of the program flow and input parameters, the

format of the grid files, and other details that are needed to run this version of the

code.

3.3.1 Finite Volume Formulation for General Hexahedral Cells

To derive the finite volume formulation, we begin with the equations in tensor form,

∂Q

∂t
+ ∇ · ¯̄Th = ∇ · ¯̄Tp. (3.66)

The integral form of these equations, which is obtained by applying the divergence

theorem, is ∫
V

(
∂Q

∂t

)
dV +

∫
S

¯̄Th · dS =
∫
S

¯̄Tp · dS. (3.67)

The discretized equations are obtained by applying the integral form of the equations

to each computational cell. Each cell is an arbitrary hexahedron and has associated

with it a cell volume, V , and six outward-pointing cell face area vectors. The areas

and volumes are computed using the formulas in Kordulla and Vinokur [19]. The

resulting equation is

Vijk

(
∂Q

∂t

)
ijk

+
[(

¯̄Th − ¯̄Tp

)
· dS

]
i+1/2

−
[(

¯̄Th − ¯̄Tp

)
· dS

]
i−1/2

+
[(

¯̄Th − ¯̄Tp

)
· dS

]
j+1/2

−
[(

¯̄Th − ¯̄Tp

)
· dS

]
j−1/2

= 0. (3.68)
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This can be written in more compact form by dividing by the cell volume and defining

F̄i+1/2 =

(
¯̄Th

)
i+1/2

· dSi+1/2

Vijk

, (3.69)

with similar expressions for the other fluxes. Substituting these definitions into the

equation, we get

(
∂Q

∂t

)
ijk

+ F̄i+1/2 − F̄i−1/2 + Ḡj+1/2 − Ḡj−1/2

+
(
F̄p

)
i+1/2

−
(
F̄p

)
i−1/2

+
(
Ḡp

)
j+1/2

−
(
Ḡp

)
j−1/2

= 0. (3.70)

In order to get the discretized equations for general geometries, one simply substitutes

these generalized fluxes into the equations defined in the previous sections.

It is often convenient to think of the cell areas and volumes as defining a trans-

formation from computational space to physical space. In this notation the direction

of increasing i index is denoted as ξ, the direction of increasing j as η, and the di-

rection of increasing k as ζ. In general, ξ = ξ(x, y, z), and so forth. The coordinates

(ξ, η, ζ) are known as generalized coordinates. The generalized fluxes are related to

the Cartesian fluxes by

F̄ = ξxF + ξyG + ξzH. (3.71)

By analogy with Eq. (3.69), we see that

(ξx)i+1/2 =
(dSx)i+1/2

Vijk

(3.72)

Terms like ξx are known as the grid metrics, since they define a transformation from

physical space to computational space.

3.3.2 Coordinate System and Axisymmetric Terms

Although the toroidal simulations described in chapter 6 are most naturally described

by a cylindrical coordinate system, EMI is actually a Cartesian-based code. That is,
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although the equations are solved on an arbitrary, non-Cartesian mesh, the momen-

tum and magnetic field components in Q are Cartesian rather than cylindrical. This

is one area where EMI and MACH3 differ. One advantage of this is that the code

is applicable to a wide variety of geometries. Another reason for this choice was to

simplify the development of the three-dimensional version of the code, since it is much

easier to add an extra dimension to a Cartesian code than to a cylindrical code.

The only time cylindrical coordinates are used is for axisymmetric calculations.

For these calculations, a source term is added to the right hand side of the equations.

We use the convention that the x Cartesian coordinate becomes the R cylindrical

coordinate, and the y Cartesian coordinate becomes the Z cylindrical coordinate.

Note that with this pairing of coordinates, the out-of-plane coordinate, z, corresponds

to the −φ direction, when considering the standard right-handed (R, φ, Z) cylindrical

coordinate system. To obtain the source term, we follow the procedure used by

Nietubicz, et al. [22] and Frese [11]. If we rewrite the momentum equation as

∂ρv

∂t
+ ∇ · ¯̄M = 0, (3.73)

and the induction equation as

∂B

∂t
+ ∇ · ¯̄N = 0, (3.74)

then the axisymmetric source term, Saxi is

Saxi = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Mφφ/R

0

−MφR/R

0

0

−NφR/R

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.75)



35

1
2

3
4

Figure 3.2: Internal ghost cells for case where four blocks meet. Ghost cells for block
1 are shaded.

where Mφφ is the contribution to the φ-momentum equation from the φ-face flux,

MφR is the contribution to the φ-momentum equation from the R-face flux, and NφR

is the contribution to the Bφ equation from the R-face flux. These three terms are

given by

Mφφ = ρv2
φ + p +

B2

2
− B2

φ +
2

3

μ

ReA

(
∂vR

∂R
+
∂vZ

∂Z

)
, (3.76)

MφR = ρvRvφ − BRBφ − μ

ReA

∂vφ

∂R
, (3.77)

and

NφR = vφBR − vRBφ +
ηZ

S

∂Bφ

∂R
. (3.78)
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Figure 3.3: An example of external ghost cells.

3.3.3 Multiblock Capability and Ghost Cells

Further flexibility in modeling arbitrary geometries is provided by allowing for multi-

ple computational blocks, which communicate to each other through internal bound-

aries. Internal and external boundaries are handled in EMI through the use of ghost

cells. That is, there are two extra layers of cells surrounding each block. Figure 3.2

illustrates how the ghost cells work at an internal boundary. The figure shows a grid

where four blocks meet. The block boundaries are shown in bold. The cells for block

1 are highlighted, with the ghost cells shaded. The ghost cells for block 1 map directly

onto the last two rows of ”real” cells of the surrounding blocks. The reason two rows

are needed is to maintain second order accuracy in space in the hyperbolic fluxes at

internal boundaries, because the flux at the i+1/2 face depends on Q at i, i+1, and

i+ 2. For the parabolic fluxes, only one layer of the ghost cells is used.

The corner ghost cells are only used by the parabolic fluxes. They are used when

averaging to get the fluxes on the face-centered mesh at a corner. Since the parabolic

fluxes only use one row, only one of the four ghost cells at each corner is used (the

one diagonally adjacent to the real domain).
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Ghost cells are also used to implement external boundary conditions. In the earlier

versions of EMI, first order accurate (in space) boundary conditions were used, which

required only a single row of ghost cells. The ghost cells on boundaries are created

by reflecting the last real cell through the tangent to the boundary, as shown in

Figure 3.3. When external ghost cells are created this way, the location of the corner

ghost vertices can become somewhat difficult to determine for situations where two

or three blocks meet. The grids used in this research were simple enough that this

was not an issue. Later versions of EMI used second order boundary conditions, and

thus required two rows of external ghost cells, just as for internal boundaries.

A number of different types of boundary conditions were used in the simulations.

These included inflow, outflow, periodic, and perfectly conducting walls. The details

of each boundary condition are explained separately for each application.

3.3.4 Parallel Implementation

The code was originally developed on a serial computer. It was parallelized by another

graduate student, Bogdan Udrea. The parallelization was accomplished by means of

domain decomposition, which fit naturally with the multiblock design of the serial

code. The idea is that different parts of the domain are calculated on different pro-

cessors. Boundary information is passed among the processors by means of message

passing subroutines that pass the ghost cell values back and forth. The user must

specify which blocks reside on which processor, and some post-processing is required

to gather the output files from the different processors and create a single output file.

Other than that, the fact that the code is parallel is transparent to the user.

The Message Passing Interface (MPI) [9, 33] standard was used for the message

passing calls. The code was run primarily on the Maui High Performance Computing

Center IBM SP2 using IBM’s implementation of MPI (called MPL). It was also run

locally using a public domain version of MPI called MPICH. The details of how all

this was accomplished will appear in Bogdan Udrea’s thesis.



Chapter 4

CODE VALIDATION TESTS

This chapter describes the tests that were done to benchmark or validate the code.

The first test was the coplanar MHD Riemann problem. This problem was solved

separately in the x, y, and z directions in order to benchmark the approximate

Riemann solver. The oblique shock problem validated the approximate Riemann

solver and the LU-SGS relaxation scheme in two-dimensions. This problem was

solved in the x − y, y − z, and x− z planes to check out the third dimension. The

Hartmann flow test problem validated the parabolic terms. It also was exercised in

all three coordinate directions. The computed results from each of these three test

problems were compared against analytical solutions.

The fourth test problem, the magnetoplasmadynamic (MPD) arc problem, was

different in that it was not compared to an exact analytical solution. Instead, the

unsteady solution was computed with the explicit and implicit schemes. This problem

was used to check that all the parts of the implicit algorithm worked together correctly

for time-dependent problems. The unsteady solution computed from the explicit

scheme served as the ”truth” data in this case.

4.1 1D Coplanar MHD Riemann Problem

This test problem was solved to verify that Harten’s approximate Riemann solver

worked for the MHD equations. One-dimensional ideal MHD (variations in x only)

is described by a system of seven equations, since Bx is constant (in order to satisfy

∇ · B = 0). The coplanar MHD equations are obtained from the one-dimensional
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ideal MHD equations by setting Bz and vz to zero, thus allowing only planar flow and

fields. This eliminates the vx ± va eigenvalues, leaving a system of five equations with

five eigenvalues. Mathematically, the Riemann problem is an initial boundary value

problem in which there is initially a discontinuous jump in the data such that the

left half of the domain is at one state and the right half of the domain is at another

state. As the solution evolves in time, shock waves and rarefaction waves form that

travel at speeds related to the wave speeds of the system. Although not physically

realizable in plasmas, this problem is analogous to a shock tube in hydrodynamics.

For the full five-wave case, there is not a closed form analytical solution. Instead,

the solution must be checked by calculating generalized Riemann invariants across

the rarefaction waves and Rankine-Hugoniot jump conditions across the shock waves.

Since this has already been done by Brio and Wu [3] for a specific set of conditions,

we used those same initial conditions in order to allow direct comparison with their

published solution. The initial left state was p = 1, ρ = 1, and By = 1. The

initial right state was p = 0.1, ρ = 0.125, and By = −1. The velocities were zero

and Bx was 0.75. Figure 4.1 shows the initial density and transverse magnetic field

distributions and their numerical solution after 400 time steps on an 800 point grid

with a CFL number of 0.8. Since there was no advantage to using the implicit scheme

for this problem (due to the small time steps required for accuracy), the solution was

computed using a simple first order (in time) explicit scheme given by

Qn+1
ij − Qn

ij

Δt
= − (Rh)

n
ij . (4.1)

The solution clearly shows five waves formed corresponding to the five eigenvalues.

They are a fast rarefaction wave, a slow shock, a contact surface moving to the right,

a slow compound wave (rarefaction and shock), and a fast rarefaction wave moving to

the left. Note that the numerical method is able to resolve the shocks over a few grid

points without introducing numerical oscillations. The computed solution overlaid

exactly on Brio and Wu’s published solution.
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Figure 4.1: Numerical solution of coplanar Riemann problem. Density and transverse
magnetic field are shown initially and after solution has evolved for 400 time steps.
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If we set Bx = 0, then the problem reduces to a hydrodynamic shock tube problem

if one replaces the thermodynamic pressure by the sum of the thermodynamic and

magnetic pressures. For this case one can find a closed form exact solution to compare

to the calculated solution. Figure 4.2 shows both the calculated and the exact solution

for p + B2/2 after 80 time steps on a 100 point grid. There is very good agreement

with the plateau values and the shock is resolved in a few cells without numerical

oscillations.

4.2 Oblique Shock

Figure 4.3 shows the geometry and boundary conditions for the oblique shock test

problem. This steady-state problem served primarily as a test of our implementation

of the approximate Riemann solver in two dimensions. In this problem v and B

are initially zero in the interior of the domain. A super-Alfvénic (M = 3), inviscid,

perfectly conducting plasma flows in from the left and upper boundaries, and impinges

at an angle of 25 degrees on a perfectly conducting plate that forms the bottom

boundary. The incoming flow carries with it a vertical field of By = 0.2. The

boundary conditions for the perfectly conducting plate are vy = 0 and By = 0. In

general, boundary conditions were implemented by using a single layer of ghost cells

surrounding the computational domain. The boundaries were treated explicitly. That

is, the ghost cells were evaluated using values from the previous iteration. So, for

example, By = 0 at the conducting plate was achieved by setting

(By)ghost cell = − (By)first cell (4.2)

Figure 4.4 shows the steady-state solution of this problem. Contours of density

and magnetic field lines are plotted. The density contours show that an oblique shock

forms, as expected. Outside of the shock, the field is convected in from the boundary.

At the shock, the field lines bend due to the change in direction of the flow at the

shock. We verified that the divergence was less than 10−14 throughout the domain.
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Figure 4.3: Geometry and boundary conditions for oblique shock test problem.
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Figure 4.4: Density contours and field lines for an M = 3 flow impinging on a
perfectly conducting plate at an angle of 25 degrees.
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Figure 4.5: Logarithm of the two-norm of the energy equation residual per cell plotted
as a function of iteration number for explicit and implicit solutions of oblique shock
problem.

This solution was obtained from the implicit scheme, Eq. (3.11), with the parabolic

terms and the time derivative terms all set to zero, so that the scheme becomes

∂
(
R̂h

)m

ij

∂Q

[
Qm+1

ij − Qm
ij

]
= − (Rh)

m
ij . (4.3)

To determine the efficiency of the implicit scheme as a steady-state solver, the oblique

shock was also solved with the explicit scheme (Eq. (4.1)) at a CFL number of 0.8.

It is recognized that Eq. (4.1) is not an optimized explicit scheme. It is used here

simply to provide a rough benchmark for evaluating the implicit scheme. Figure 4.5 is

a plot of the logarithm of the two-norm of the average residual of the energy equation

as a function of the number of iterations (or time steps, in the case of the explicit

scheme). In this case, the two-norm of the average residual is

‖Rh,en‖2 =

√∑
i

∑
j (Rh,en)2

ij

Ncells
. (4.4)

The implicit scheme converged to 10−14 in about 150 iterations, whereas the explicit

scheme required about 700 time steps (iterations). Since one implicit iteration takes
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Figure 4.6: The Hartmann flow geometry showing the moving parallel plates and the
cross magnetic field.

only about 10% more CPU time than one explicit time step, the implicit scheme

required roughly four times less CPU time than the explicit scheme to converge to

the steady-state solution.

4.3 Hartmann Flow

The validation of the parabolic terms consisted of applying the code to the Hartmann

flow problem, whose steady-state solution can be solved analytically. The problem

geometry is shown in Figure 4.6. It consists of two infinite parallel plates, each moving

in opposite directions at velocity V0, and with an in-plane magnetic field Bo between

them that is normal to the plates in the y direction.

For the case with equal and opposite plate velocities, the Hartmann flow is de-

scribed by the differential equations

∂2vx

∂y2
−

(
H2

L2

)
vx = 0 (4.5)

∂Bx

∂y
= − (Rm) vx, (4.6)

where H, the Hartmann number, is

H ≡ BoL√
ρνη

=
√

(ReA)(S), (4.7)
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Figure 4.7: Hartmann flow simulation with H = 10. Flow velocity vectors and mag-
netic field lines are shown. The flow velocity only exists close to the plates. The
magnetic field lines are linear around the midplane.

and Rm, the magnetic Reynolds number, is

Rm ≡ μoLV

η
. (4.8)

Figure 4.7 shows the results from a simulation with H = 10. Near the plates there

is a boundary layer with a scale length of L/H in which the velocity falls off rapidly

to zero and the field develops a swayed shape as it is dragged by the fluid. In the

center region of the channel the velocity is zero and the field has a uniform slope.

We also ran simulations at extremely large and small Hartmann numbers. In the

limit of small Hartmann number the boundary layer extends to the opposite wall and a

linear velocity profile develops, as shown in Figure 4.8. For large Hartmann numbers,

the boundary layer shrinks to zero and the field has a uniform slope throughout the

channel, as shown in Figure 4.9. In the cases shown here we found that the error

between the computed solution and the analytical solution (as measured by the two-

norm of the energy error vector normalized by the number of cells) was less than

10−6.
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Figure 4.8: Hartmann flow simulation with H = 0.1. Flow velocity vectors and
magnetic field lines are shown. The velocity profile is linear and the magnetic field
lines have an “S” shape caused by the bulk fluid flow.
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Figure 4.9: Hartmann flow simulation with H = 104. Flow velocity vectors and
magnetic field lines are shown. The velocity of the flow is zero everywhere except at
the plates. The magnetic field lines have a constant slope through the domain.
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4.4 MPD Arc

The three problems described to this point show that the various pieces of the al-

gorithm work correctly, and that the implicit solver is an efficient relaxation scheme

for steady problems. This next example shows the utility of the scheme for unsteady

problems, which is the primary purpose of the algorithm. The problem geometry is

shown in Figure 4.10. In this figure, positive x is to the right, positive y is up, and

positive z is out of the page. Initially, v and B are zero throughout the computational

domain, which is indicated by the thick-lined rectangle. A current sheet, with a total

current per unit z of I , is applied to the left boundary (x = 0). The current density

is

jy = −∂Bz

∂x
. (4.9)

The current sheet at the left boundary is applied by setting Bz = μoI in the ghost

cells, so that the initial current sheet is represented by the jump in Bz between the

ghost cell and the first interior cell. The resulting j×B force accelerates the plasma

in the positive x direction, so that it flows out at the right boundary. The upper and

lower boundaries are perfectly conducting walls, whose boundary conditions were

discussed previously. There is no viscosity, so the problem is one-dimensional in x.

For a Lundquist number much larger than one and a relatively low current that
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x at several times for MPD arc problem.
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results in sub-Alfvénic flow, the plasma will be accelerated up to some exit velocity

on a fast hydromagnetic time scale, while the magnetic field and current will be

convected more slowly into the domain. The behavior of the plasma will be affected

by convection and diffusion. In the limit of zero resistivity (ideal MHD), the current

sheet will remain unmoving at the left boundary because no field will diffuse into the

domain, and the boundary condition of zero velocity at the left boundary will keep

the current sheet from being convected in. However, with a finite resistivity, some of

the current sheet will diffuse into the domain, and then it will be convected by the

accelerated plasma to the right. It is assumed for the purposes of this demonstration

problem that we are only interested in the long-time behavior of the solution, and

are willing to smear over some of the details of the faster dynamics by advancing the

solution at a large CFL number. This problem was solved with the time-accurate

implicit scheme at a CFL number of 100. Recall that the time-accurate implicit

scheme is [
∂ (Rh)

m
ij

∂Q
+

3I

2Δt

]
ΔQm

ij = −
⎡
⎣(Rh)

m
ij + (Rp)

m
ij +

(
∂Q

∂t

)m

ij

⎤
⎦ . (4.10)

For comparison purposes, the problem was also solved at a CFL number of 1 using

the first order explicit scheme given by

Qn+1
ij − Qn

ij

Δt
= −

[
(Rh)

n
ij + (Rp)

n
ij

]
. (4.11)

Figure 4.11 shows the evolution of the plasma velocity profile as computed by

explicit and implicit schemes. The upper plot shows the implicit computation at a

CFL number of 100, while the lower plot is the result of the explicit calculation at a

CFL number of 1. Both schemes show that the entire domain has been accelerated

up to near the steady plasma velocity after about one Alfvén time, based on the

length of the accelerator channel. This is just the time for the fast magnetosonic

wave to propagate the length of the channel. After that, the velocity profile oscillates

somewhat as the initially uniform density and pressure profiles adjust themselves as
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a quasi-steadystate is approached. During this time, the implicit scheme loses some

accuracy as compared to the explicit scheme, so the velocity profiles do not exactly

match. However, by ten Alfvèn times, both simulations find the same quasi-steady

profile.

Figure 4.12 shows the evolution of the magnetic field for the same simulations.

Again, the upper plot is the implicit result, while the lower one is the explicit result.

The long-time behavior of the convection of the magnetic field across the domain is

captured equally well at the larger CFL number, as expected. The explicit simulation

took 2600 time steps to advance the solution to t = 10.17, while the implicit simu-

lation required 26 time steps. However, the implicit scheme required approximately

30 iterations at each time step, and each iteration required about 10% more CPU

time than an explicit time step. So, in terms of CPU time, the implicit scheme ran

roughly three times faster than the explicit scheme for this problem.



Chapter 5

PLANAR SHEET PINCH

This chapter describes the first of the two applications in which we used the code

to explore physics issues related to relaxation. The planar sheet pinch is a simple

geometry for studying one of the basic instabilities in a resistive plasma: resistive

tearing modes. There are several reasons we chose to study this system. First,

it serves as another validation of the code, because the linear growth rates of the

tearing mode can be computed analytically. However, it is more than just a validation,

because when the modes grow into the nonlinear regime, there is no analytical solution

to compare with. The second reason is that the tearing mode is the prototype of the

type of resistive instability that could drive relaxation in configurations such as the

HIT experiment that have highly non-uniform current distributions.

The geometry for the planar sheet pinch is shown in Figure 5.1. Initially, there is

a planar current sheet of infinite extent, and with a finite thickness in the out-of-plane

coordinate. Over time, an instability develops in which the current sheet breaks into

filaments, as indicated by the thick arrows in the figure. The breakup into current

filaments involves the tearing and reconnection of magnetic field lines, which is why

it is called a tearing mode.

Assume that the current sheet lies in the x-z plane. In the most general case, the

sheet current and the equilibrium magnetic field on either side of the current sheet are

at some arbitrary angle with respect to each other, as shown in the figure. Without

loss of generality we let the current and fields be perpendicular, with B0 = B0x(y)

and the current in the z direction. Figure 5.2 shows the equilibrium magnetic field,

B0x, and geometry that was used for the simulations presented in this section. Here,
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Figure 5.1: Planar sheet pinch geometry.

a is the half-width of the current sheet.

5.1 Background

The planar sheet pinch resistive tearing instability was first treated analytically by

Furth, Killeen, and Rosenbluth [13]. Interest in resistive tearing modes dates back to

the early years of controlled fusion, when it became apparent that ideal MHD theory

could not explain the gross instabilities that were observed in some experiments [12].

The basic mechanism in a sheet pinch instability is that a thin sheet of current breaks

into individual current filaments. This instability is found to grow on a time scale

longer than the Alfvén time, but shorter than the resistive diffusion time.

The basic idea behind the theory of Furth, Killeen, and Rosenbluth is that as the

Lundquist number is increased, the resistivity acts over an increasingly thin layer at

the center of the current sheet. They solve for the linear growth rate of the tearing



55

0 1 2 3 4 5 6 7 8 9 10 11 12

x/a

-2

0

2

y/
a

Figure 5.2: Equilibrium magnetic field for sheet pinch calculations.

mode by matching asymptotic solutions from an outer layer governed by ideal MHD,

and a thin inner layer where the resistivity becomes important.

An alternative way to find the linear growth rates is to solve the incompressible,

resistive MHD equations as an initial value problem. This has the added advantage of

also yielding the eigenmodes as well as the growth rates. This technique is described

in Killeen and Shestakov [18] and is shown below.

In order to find the nonlinear behavior of the tearing mode, the full, nonlinear

MHD equations must be solved. This is the approach taken in our work. We follow the

approach taken by Schnack and Killeen [29]. In their approach, the initial equilibrium

was perturbed with the eigenmode solution of the linear equations, and then the

solution was advanced in time until the mode saturated. The details of this technique

will be explained in more detail in the following sections.

5.2 Linear Analysis to Determine Eigenmode

For the linear analysis, we assume that the plasma is incompressible and that the ion

pressure is negligible. Then the plasma is governed by the following equations:

∂B

∂t
= ∇× (v ×B) −∇× (η∇× B) , (5.1)
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∇×
[
ρ
dv

dt

]
= ∇× [∇× (B× B)] , (5.2)

∇ · B = 0, (5.3)

∇ · v = 0. (5.4)

For the linear approximation, we write the magnetic field as the sum of a back-

ground field, B0, and a perturbed field, B1. Similarly, the velocity and resistivity

are also written as the sum of a background value and a perturbation. However,

for the tearing mode, the perturbation in η is neglected. The zeroth order plasma

equilibrium is specified by B0x(y), η0(y), p(y), and v0(y). Here we take v0 = 0 and

dB/dt = 0. Ohm’s law is

E0 = −v0 × B0 + η0j0, (5.5)

where j0 = (∇× B0) /μ0. Taking the curl of both sides and noting that ∂B0/∂t = 0,

the result is

∇× (η0∇× B0) = 0 (5.6)

The other zeroth order equilibrium equations are

∇ · B0 = 0, (5.7)

j0 × B0 = 0. (5.8)

Similarly, the first order equations are

∂B1

∂t
= ∇× (v0 × B1 + v1 × B0) −∇× (η0∇×B1) , (5.9)

ρ0

[
∂v1

∂t
+ (v0 · ∇)v1

]
= ∇× [(B0 · ∇)B1 + (B1 · ∇)B0] , (5.10)

∇ · B1 = 0, (5.11)

∇ · v1 = 0. (5.12)

We assume perturbations of the form f1(y, t)exp(ikx). Substituting this form into the

above equations, they can be separated into a pair of equations that involve only By1
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and vy1. These equations are put into dimensionless form by defining the following

dimensionless variables:

ȳ = y/a, (5.13)

t̄ = t/τη, (5.14)

ψ = By1/B, (5.15)

w = −ivy1kτη , (5.16)

Bx0/B, (5.17)

F = Bx0/B, (5.18)

η = η0/ηref , (5.19)

and

ρ0/ρref = 1. (5.20)

The resulting differential equations are

∂ψ

∂t̄
= η

(
∂2ψ

∂ȳ2
− α2ψ

)
− Fw, (5.21)

and
1

α2S2

∂

∂t̄

(
∂2w

∂ȳ2
− α2w

)
= F

(
∂2ψ

∂ȳ2
− α2ψ

)
− F ′′ψ, (5.22)

where

α = ka. (5.23)

There are two free parameters for this equation set: the normalized wave number,

α, and the Lundquist number, S. Thus, these equations govern the behavior of a

particular mode, specified by α, for a particular Lundquist number.

The equilibrium field and resistivity must satisfy the zeroth order induction equa-

tion. We choose the functional form suggested by Furth that leads to simpler forms

for the analytical solution. The field is

F (ȳ) = tanhȳ, (5.24)
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Figure 5.3: Equilibrium B and η that satisfy zeroth order induction equation.

and the resistivity is

η(ȳ) = cosh2ȳ. (5.25)

These are plotted in Figure 5.3. We must also satisfy the zeroth order momentum

equation. When F (ȳ) is substituted into the momentum equation, the result is that

we must have

p(ȳ) =
1

2
+

1

2

[
1 − tanh2(ȳ)

]
. (5.26)

Note that p here is normalized by B2/2, so that this profile gives β = 1 at ȳ = 0.

5.2.1 Solutions of Linearized Equations

The procedure for finding the linear eigenmodes is as follows. First, a wave number

and Lundquist number are selected. Then, starting from an arbitrary initial guess, the

equations are integrated forward in time until the solution at each point is growing

at the same exponential growth rate (to within some epsilon, usually 10−6). The

equations are discretized using a finite difference formulation. The second derivatives
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Figure 5.4: Eigenmodes for symmetric tearing mode for α = 0.5 and S = 103.

in y are discretized using central differencing. For example

∂2ψ

∂y2
≈ ψi+1 − 2ψi + ψi−1

Δy2
. (5.27)

Similarly, the time derivatives are evaluated using forward differencing. The equations

are cast in implicit form to allow rapid integration regardless of S. Note that for

modest peak values of S at y = 0, it is easy to have S << 1 far away from the

current sheet, which can lead to very small time steps for an explicit scheme. When

the equations are cast in implicit form, they can be written as

[A]

⎡
⎢⎣ φ

w

⎤
⎥⎦

i−1

+ [B]

⎡
⎢⎣ φ

w

⎤
⎥⎦

i

+ [C ]

⎡
⎢⎣ φ

w

⎤
⎥⎦

i+1

= [D] . (5.28)

This is a block tridiagonal system and can be solved using standard techniques. At

each point the growth rate was calculated as

p =
ψn+1 − ψn

(ψn + ψn+1) /2
. (5.29)
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When the difference between the minimum and maximum growth rates was less than

10−6, then the solution was considered converged. A typical solution is shown in

Figure 5.4. This is for S = 103, α = 0.5, and with conducting walls at ȳ = ±5.

Roughly speaking, the layer near the ȳ = 0 plane, where the velocity perturbation

changes sign, corresponds to the resistive layer in the analytical theory. This layer

becomes thinner and more difficult to resolve as S is increased.

In order to confirm that the eigenmodes were correct, the growth rates computed

as above are compared with the analytical values from the theory of Furth, et al. As

expected, the agreement between the two improves as S is increased, as is shown in

Figure 5.5. This is the expected result since the theory is strictly true only in the

limit as S approaches infinity.
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5.3 Nonlinear Analysis Using EMI

In order to apply the linear eigenmodes as an initial condition for EMI, two additional

steps are required. First, the other two components of the perturbed vectors, Bx1 and

vx1, must be computed. These are obtained by applying ∇ · B1 = 0 and ∇ · v1 = 0.

Using these relations one can show that

Bx1 = −ψ
α

sin(2πx̄). (5.30)

and

vx1 = − w′

Sα2
cos(2πx̄). (5.31)

Second, the amplitudes of the perturbation are rescaled so that the maximum per-

turbation is about 0.01 of the equilibrium value.

For the following nonlinear calculation, we used S = 102, α = 0.5, and placed

conducting walls at ȳ = ±2.5. The viscosity was zero. This was solved on a two-

dimensional grid with 100 cells in the x̄ direction, and 200 cells in the ȳ direction. In
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the x̄ dimension, the grid ran from 0 to 2π/α = 12.57, which corresponds to one full

period of the mode.

5.3.1 Boundary Conditions

For this calculation, first order boundary conditions were used. At the left and right

boundaries, periodic boundary conditions were applied. If the indices of the real cells

in the x direction run from i = 2 to i = icels− 1, and the left and right ghost cells

are labeled i = 1 and i = icels, respectively, then the periodic boundary conditions

are

Q1 = Qicels−1 (5.32)

and

Qicels = Q2. (5.33)

The upper and lower boundaries are perfectly conducting walls. The magnetic

field boundary conditions at the lower boundary, for example, are

(By)1 = − (By)2 (5.34)

and

(Bx)1 = (Bx)2 . (5.35)

For the velocity, the boundary conditions are

(vy)1 = − (vy)2 (5.36)

and

(vx)1 = (vx)2 . (5.37)

Finally, the density and pressure are copied from the last real cell into the ghost cell.

That is,

ρ1 = ρ2 (5.38)

and

p1 = p2. (5.39)
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5.3.2 Results

There are several possible ways in which to measure the growth rate of the tearing

mode for these calculations. We chose to follow Schnack and Killeen [29] by computing

the growth of the ”reconnected flux.” As the tearing mode grows, lines of flux that

originally spanned the entire domain tear and reconnect, forming magnetic islands in

the vicinity of the developing current filaments. Thus, a convenient global measure

of the development of the tearing instability is growth rate of the reconnected flux,

Δφ, which is defined as

Δφ = φmax − φmin, (5.40)

where

φ(x) =
∫ 0

−yw

Bx(0, y
′)dy′ −

∫ x

0
By(x

′, 0)dx′. (5.41)

Figure 5.6 is a plot of the growth rate as a function of time. It starts out very

close to the rate predicted from linear theory, but then oscillates about the linear rate

during the linear phase of the growth. This unsteadiness in the growth rate is due to

slight plasma oscillations caused by the plasma being slightly out of equilibrium at

the beginning of the calculation, presumably due to roundoff errors. The amplitude

of the oscillations in the growth rate were reduced as the grid was refined. After

the mode had been growing for about 15 Alfvén times, the mode begins to saturate

as the amplitudes become large enough that the magnetic pressure in the islands

balances the attraction of the current filaments. By 25 Alfvén times, the mode has

stopped growing. Figure 5.7 is a plot of flux contours at saturation. The formation

of magnetic islands is evident. This solution was calculated using the implicit scheme

at a CFL number of 10.
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Chapter 6

3D PLASMA RELAXATION

In this chapter the relaxation of simple toroidal plasmas is studied. This is the

first three-dimensional plasma physics problem that was studied in detail using the

new code. The plasma configuration does not correspond to any particular fusion

device. Rather, it is a generic configuration for studying general principles of magnetic

relaxation that should be relevant to a variety of fusion and other applications. It is

hoped that this problem could serve as a pathfinder for eventual simulations of actual

fusion experiments, such as the HIT experiment.

The geometry is a torus with a square cross-section. Figure 6.1 shows one of the

two toroidal configurations that were studied. The characteristic length used in all of

the nondimensional numbers in this section is the length, L, of the sides of the square.

Another important parameter is the minor ”radius” of the torus, which we define as

a = L/2. The major radius is Ro = 1
2
(Rmin + Rmax). The aspect ratio of the torus

is defined as the ratio Ro/a. It is important to note that all the quantities plotted in

this chapter are normalized in the manner described in chapter 2. For example, the

poloidal flux is normalized by BoL
2, the helicity by B2

oL
4, the energy by B2

o/(2μo),

and so forth.

Initially, the plasma consists of a core of purely toroidal field surrounded by a

purely poloidal field. Figure 6.2 is a poloidal cross-section with contours of the

toroidal field overlayed with poloidal field vectors. The toroidal and poloidal fields are

separated by a current sheet. The density and pressure are uniform. The plasma is

roughly in equilibrium, because the magnetic pressure is balanced across the current
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Figure 6.1: Torus with square cross-section and an aspect ratio (Ro/a) of 1.5.
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Figure 6.2: Poloidal slice at φ = 0 showing contours of toroidal field overlayed with
poloidal field vectors at t = 0.
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sheet. The toroidal field in the core is

Bφ =
BoRo

R
. (6.1)

The formula for the poloidal field is simplest in ”tokamak” coordinates r and θ,

where r is the distance from the magnetic axis (in a poloidal plane), and θ is the

counter-clockwise angle about the magnetic axis. Then, the poloidal field is

BR = −
[
BoRo

R

] [
ro

r

]
sin θ, (6.2)

where ro = a/2. In the corners of the square (r > a) B is zero, so the plasma is

obviously not in equilibrium near the corners.

The plasma configuration we have chosen to study is somewhat unusual. It is

similar to the configuration modeled by Shumlak, et al. [32] It is essentially an

equilibrium for a torus of circular cross-section that is placed into a torus of square

cross-section. The reason for this choice of mixed geometries is simplicity. That is, the

equilibrium for a torus of circular cross-section is much simpler to calculate than that

for a square cross-section, whereas the force-free Taylor state that the configuration

evolves toward is much simpler in the square geometry. Another advantage is that the

helicity, which is an important quantity to track, is very easy to picture and calculate

initially since there is one large toroidal flux tube linking the poloidal flux.

Physically, the configuration corresponds most closely to a ”reverse field pinch”

(RFP) experiment. Imagine that initially there is a purely toroidal field created by

some set of external coils. Then, a toroidal current is driven along the outer part

of the plasma, creating the poloidal field that pinches and compresses the trapped

toroidal field, which moves inward. At this point all the coils are turned off, and

the plasma is allowed to decay. This is roughly the situation described by the initial

plasma condition (supposing it were bounded by a circular, rather than a square,

conducting shell). Another important aspect of this configuration is the fact that

the current lies initially in a sheet between the toroidal and poloidal fields, which
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roughly approximates the situation in HIT when the current is driven on the outer

(open) flux surfaces. As seen in the previous chapter, a current sheet is subject to

tearing instabilities that certainly provide a mechanism for a plasma to relax in the

Taylor sense toward a force free state. However, it must be noted that the simulations

described here were not long enough to allow resistive modes time to grow very much.

Another very important feature of this configuration is that the ”q” profile. In

toroidal devices, the q parameter measures the amount of helical twist in the field

lines. It is defined as the number of toroidal circuits required for a field line to make

one poloidal circuit. Initially q is infinite in the core of purely toroidal field, whereas

it is zero in the shell of purely poloidal field. Clearly, q must go through 1 in the

current sheet separating the two layers. It turns out that the q = 1 surface is unstable

to ideal MHD kink modes. This instability turns out to be important in the high

Lundquist number runs shown below.

6.1 Background

Before we plunge into the details of the calculations and the results, we will revisit

some of the theoretical issues that were introduced back in the first chapter. Recall

that Taylor’s theory [36] states that a plasma will tend to evolve or ”relax” over time

toward a state resulting from the minimization of the magnetic energy,

WB =
1

2

∫
B2dτ, (6.3)

subject to the constraint that the total magnetic helicity,

K =
∫

A · Bdτ, (6.4)

is an invariant. Physically, this means that the magnetic energy is reduced through

tearing and reconnection of field lines much more rapidly than the helicity resistively

decays, so that on the time scale of the changes in magnetic energy, the helicity is

approximately invariant.
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Because of the success of the theory in predicting the magnetic field configuration

for spheromaks and RFPs, it is generally agreed that the theory is valid. However,

the question of exactly why and how the relaxation occurs is still largely an open

one. That is, why should certain quantities like the magnetic energy be reduced more

rapidly than other quantities, such as the helicity?

One possible explanation is contained in a paper by Ting, et al. [37] They pos-

tulate that the dissipation of the magnetic energy occurs primarily at higher wave

number than the dissipation of helicity, resulting in more rapid dissipation of the

magnetic energy. The numerical evidence they have to support this consists of very

high resolution simulations using spectral codes. They are essentially doing direct

simulation of plasma turbulence, which limits the simulations to two dimensions.

Riyopoulos, et al. [26] used an approach similar to ours. They model a spheromak,

and initialize the domain with a superposition of the Taylor state and a smaller

amplitude, higher wave number force-free eigenmode. The resulting state is not in

equilibrium, but since the Taylor state eigenmode contribution is dominant, it is

not far from equilibrium or far from the Taylor state. Their calculations were done

with a finite difference scheme on fine grids, but the calculations were axisymmetric.

Most of their calculations were done 44 cells in the R direction and 30 cells in the

Z direction. They observed that the plasma did approach the Taylor state in a non-

smooth manner, with the bursts of relaxation activity coinciding with ”filamentation”

and reconnection events.

Horiuchi and Sato [16] used a similar approach, except that they used a three-

dimensional finite difference code on a rectangular domain with periodic boundary

conditions in the third coordinate direction to simulate a ”straight torus”. They

initialized the plasma as a force-free state that was not the Taylor state, and then

gave random perturbations to the magnetic field. They did their calculations on a

45x45x50 grid with a Lundquist number of 104. Based on the calculations we have

done, these calculations were probably under-resolved. However, they did achieve
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Figure 6.3: Contours of poloidal magnetic flux for Taylor state of torus with square
cross-section and R0/a = 1.5.

very interesting results in that depending on ratio of the length of the rectangular

domain to the width, the plasma would evolve to a helical flux tube with a ”toroidal”

mode number that corresponded to the minimum energy helical state for that geom-

etry.

6.1.1 Taylor State for 3D Toroid

For a plasma enclosed by a perfectly conducting toroidal shell, the resulting equilib-

rium satisfies

∇× B = λB, (6.5)

where λ is a constant. That is, the Taylor state is force-free (j ‖ B) with λ = j/B a

constant.

This equation is an eigenvalue problem. It can be rewritten in terms of a stream
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Figure 6.4: Contours of toroidal field magnitude for Taylor state of torus with square
cross-section and R0/a = 1.5.

function, Ψ, as (
∇2 + λ2

)
Ψ = 0. (6.6)

The components of B are related to Ψ by

Bφ =
∂Ψ

∂R
, (6.7)

BR = − ∂2Ψ

∂Z∂R
, (6.8)

and

BZ =
1

R

∂

∂R

(
R
∂Ψ

∂R

)
. (6.9)

The boundary conditions we use are that B = 0 at the walls. Note that this boundary

condition, while making the calculation of the Taylor state simple, is not consistent

with a perfectly conducting boundary (i.e. Bφ = 0 is not consistent with this). This

will be touched on again when the simulation boundary conditions are discussed.
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This equation can be solved using the technique of separation of variables. Here

we are interested in axisymmetric solutions, since they have the lowest energy, so we

assume Ψ = Ψ(R,Z). The solution for the largest eigenvalue (the minimum energy

state) is

Ψ = C

[
J0

(
λR

R

Rmin

)
− J1 (λR)

Y1 (λR)
Y0

(
λR

R

Rmin

)]
sin

(
π
Z

L

)
, (6.10)

where λR satisfies

J1 (λRRmax)Y1 (λRRmin) − J1 (λRRmin) Y1 (λRRmax) = 0, (6.11)

and λ2 = λ2
R + π2. Figure 6.3 is a contour plot of the poloidal magnetic flux for the

Taylor state with an aspect ratio (R0/a) of 1.5. Figure 6.4 shows contours of Bφ.

Note that in this case the minor radius (a) is half the length of the side of the square

cross-section (L).

For the Taylor state, it can be shown that

λ =
WB

K
. (6.12)

We verified this numerically, although it could be shown analytically as well. This

quantity is easy to calculate, and is a convenient way to measure the deviation of a

plasma from the Taylor state.

6.1.2 Calculating Helicity

As stated previously, the definition of helicity is given by

K =
∫

A · Bdτ. (6.13)

There are some subtleties involved with the actual calculation of this quantity. The

vector potential, A, is defined as

∇× A = B. (6.14)
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The vector potential is not gauge invariant since some function, ∇u, can be added

to A without changing B. Thus, the helicity as defined above is not generally gauge

invariant. However, for the case where B · n = 0, which is the case here, the helicity

is gauge invariant.

To actually calculate K, it is more convenient to rewrite the helicity in terms of

flux as

K =

Φt∮
ψ′dΦ, (6.15)

where ψ′ is the amount of poloidal flux linking the incremental toroidal closed flux

tube dΦ, and Φt indicates that the integral is performed on all flux tubes within the

closed volume. If we let ψ̄(R, φ, Z) denote the poloidal flux per unit toroidal angle

and note that dΦ = BφdRdZ, then the formula for the helicity becomes

K =
∫
ψ̄BφdRdZdφ. (6.16)

6.2 Approach

Since the plasma is initially far from a force-free state, the idea is to study how the

plasma relaxes back toward the force-free state. Some of the questions to be answered

are:

• Can relaxation be modeled with a resistive MHD code?

• When is a calculation fully resolved?

• How does one know when relaxation is occurring?

• Is 3D modeling required?

• What differences in behavior are expected for low aspect ratio toroids?
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We attempt to answer these questions by examining the data in two ways. The first

way is to track the evolution of global quantities such as the magnetic energy and

helicity. The second way is to look at the structure of the solution at various times

during the evolution. In particular, it is instructive to plot the λ profile at various

slices to see how it approaches the constant λ profile of the Taylor state.

The parameters we decided to vary are the Lundquist number, the aspect ratio

of the torus, and whether or not the calculation was axisymmetric or not. Varying

the Lundquist number helps address the first three questions. We know that Taylor

relaxation relies on a separation of time scales between resistive diffusion and re-

sistive tearing. This separation increases with increasing Lundquist number (S), as

previously discussed. However, as S is increased, the calculation becomes more costly

since the grid must be refined in order to maintain the same resolution. Comparing

axisymmetric and three-dimensional calculations addresses the second to last point.

Comparing different aspect ratios addresses the last question. The run matrix con-

sists of two Lundquist numbers (S = 103 and S = 104), two aspect ratios (Ro/a = 1.5

and Ro/a = 3.0), and each computed with and without invoking axisymmetry. This

gives a total of eight different test cases.

Another important parameter is β = 2p/B2. The original idea was to run with

as low a value of β as possible, because the Taylor theory is actually a zero β theory.

However, we found that it was difficult to run the three-dimensional simulations

with β less than about .05 without getting a negative pressure during the plasma

oscillations that occur as a result of the initial force imbalance in the corners. Thus,

the basic test matrix described above was run with β ≥ .05. However, we did run

some axisymmetric cases at lower β to allow comparison with the higher β runs.

All of the runs were done at a modified Reynolds number of 105. This amount of

viscosity was chosen to provide some numerical stabilization while also ensuring that

viscous effects are secondary to resistive effects.
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Figure 6.5: Single block of the 16-block grid used for the S = 103 runs with R0/a = 1.5.

6.3 Numerical Details

The three-dimensional runs required very large grids and thus were done on a parallel

computer. For the S = 103 cases, the torus was divided into 16 toroidal blocks, and

each block was sent to a separate processor. Each block was solved with a 60x60x4

grid (64x64x8 when including the ghost cells). Figure 6.5 shows the grid for one of

the toroidal blocks. The cells were uniformly spaced in each direction.

The grid spacing for the S = 103 runs was determined by performing a grid

resolution study on the axisymmetric problem with poloidal grids of 30x30, 60x60,

and 120x120. By comparing the solutions, we determined that the 60x60 solution was

fully resolved. Actually, this was very conservative, as the 30x30 solution was very

nearly converged at this S. Less resolution was required in the toroidal direction since

the toroidal gradients were much much less than the poloidal ones. We determined
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that 64 cells in the toroidal direction were sufficient.

For the S = 104 runs, the domain was divided into 32 blocks and sent to 32

processors. Each block was solved with a 100x100x2 grid. In this case, the grid

size was determined by computer and runtime constraints. That is, a formal grid

resolution study was not done at the higher Lundquist number. However, a simple

scaling argument shows that if the Lundquist number is increased by a factor of 10,

then the truncation error of the hyperbolic terms should be decreased by a factor

of 10 to ensure that the numerical diffusion from the hyperbolic truncation errors

remains safely below the physical diffusion in the parabolic terms. Since the method

is second order accurate in space, this argument suggests that if the 30x30 grid is very

nearly converged for S = 103, then going from 30x30 to 100x100 in the poloidal plane

should allow one to increase S by a factor of (100/30)2 = 11.1 and get comparable

accuracy.

Dividing the domain toroidally as done here is not the most efficient from a parallel

processing point of view. To minimize the amount of information passed between the

processors, it would be better to have the i, j, and k dimensions of the blocks more

nearly equal. However, dividing it toroidally had the advantage of avoiding the need

to pass data between diagonally adjacent blocks, which was not implemented in the

code at the time of these runs.

6.4 Boundary Conditions

The boundary conditions for these simulations were

v = 0, (6.17)

B = 0, (6.18)

∂p

∂n
= 0, (6.19)
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and
∂ρ

∂n
= 0. (6.20)

These were implemented using two layers of ghost cells, and thus were second order

accurate boundary conditions. The velocity boundary condition is just the no-slip

condition. The conditions on the magnetic field require some explanation.

The most physical boundary conditions for the magnetic field would be to have

perfectly conducting walls, since they would form a helicity barrier, which is necessary

for the Taylor theory to hold. The boundary conditions for a perfect conductor are

B · n = 0, (6.21)

and

n× j = 0. (6.22)

The condition that Bφ = 0 clearly does not satisfy the parallel current condition

for a perfectly conducting wall. However, Bφ = 0 is consistent with a Taylor state

throughout the domain, whereas the perfectly conducting wall is not [26]. The simu-

lations described in this chapter were not long enough to get appreciable toroidal field

from the inner core out to the boundaries, so for these simulations no appreciable

helicity was lost or gained through the boundaries. However, for longer simulations

it would be necessary to implement the more physically correct conducting boundary

conditions.

6.5 S = 103 Simulations

In this section we mostly consider the low aspect ratio torus (Ro/a = 1.5). Figure 6.6

is a plot of the initial poloidal flux contours. Note that initially there is no poloidal

field in the corners (where B = 0) or in the central core of purely toroidal field.

Figures 6.7 through 6.12 show contours of poloidal flux at intervals of 2 Alfvén times.

After two Alfvén times, the flux has already filled in the corners of the square, since
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Figure 6.6: Contours of poloidal flux for S = 103 and Ro/a = 1.5 at t = 0.
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Figure 6.7: Contours of poloidal flux for S = 103 and Ro/a = 1.5 at t = 2.
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Figure 6.8: Contours of poloidal flux for S = 103 and Ro/a = 1.5 at t = 4.
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Figure 6.9: Contours of poloidal flux for S = 103 and Ro/a = 1.5 at t = 6.
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Figure 6.10: Contours of poloidal flux for S = 103 and Ro/a = 1.5 at t = 8.
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Figure 6.11: Contours of poloidal flux for S = 103 and Ro/a = 1.5 at t = 10.
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Figure 6.12: Contours of poloidal flux for S = 103 and Ro/a = 1.5 at t = 12.

there is initially no magnetic pressure to hold the plasma in its original round shape.

In fact, the plasma flows into the corners and then bounces back as an oscillation

develops, and the motion in the corners leads to a radial oscillation of the toroidal

plasma column. This type of motion can be seen most easily seen by examining

”movies” of flux contours at shorter intervals than shown here. After 12 Alfvén

times, the plasma is still very far from a Taylor state, although there has been some

interpenetrating of the toroidal and poloidal fields. This is not surprising, since less

than one resistive tearing time has elapsed (0.19τtearing), and relaxation will certainly

require several tearing times in order to evolve. Also, the evolution of the fields is

very axisymmetric, even though this is a three-dimensional calculation.

Figures 6.13 through 6.15 show the velocity, density, and pressure at t = 12.

These plots are of a single poloidal slice at the φ = 0 plane (which is the half-plane

corresponding to z = 0 and x > 0 in the Cartesian system). The velocity vectors

show the plasma is still sloshing into the corners and back out at t = 12 as it tries

to establish an equilibrium. This movement to the corners leads to a smaller side-
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Figure 6.13: Contours of toroidal velocity and poloidal velocity vectors in φ = 0 plane
for S = 103 and Ro/a = 1.5 at t = 12.
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Figure 6.14: Contours of density in φ = 0 plane for S = 103 and Ro/a = 1.5 at
t = 12.
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Figure 6.15: Contours of pressure in φ = 0 plane for S = 103 and Ro/a = 1.5 at
t = 12.

to-side motion of the entire plasma column. The density is highest on the outside

as the plasma shifts outward and compresses the plasma against the outer wall. The

pressure plot shows that the pressure is being compressed on the outer portion of the

initially pure toroidal field portion of the plasma. An m = 3 structure is developing

as well, where m refers to the poloidal mode number. A mode developing over such

a short time scale must be an ideal MHD mode.

Figures 6.16 and 6.17 are plots of poloidal flux at t = 12 for the three-dimensional

and axisymmetric runs, respectively. They show the slight asymmetry that develops

in the magnetic field over time. This amount of asymmetry is not enough to make

the plasma relax at a different rate than the axisymmetric plasma, and is in marked

contrast to the higher Lundquist number runs shown in the next section.

The three-dimensional case was only run out to t = 12 due to runtime consider-

ations. The axisymmetric runs were not limited in this way. To look at some longer

time behavior, the axisymmetric case was run out to 40 Alfvén times (corresponds
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Figure 6.16: Contours of poloidal flux in φ = 0 plane for S = 103 and Ro/a = 1.5 at
t = 12.
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Figure 6.17: Contours of poloidal flux at t = 12 for axisymmetric calculation with
S = 103 and Ro/a = 1.5.
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Figure 6.18: Integrated magnetic, thermal, and kinetic energies as a function of time
for 3D calculation with S = 103 and Ro/a = 1.5.
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Figure 6.19: Integrated magnetic, thermal, and kinetic energies as a function of time
for axisymmetric calculation with S = 103 and Ro/a = 1.5.
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Figure 6.20: Decay of magnetic helicity as a function of time for 3D calculation with
S = 103 and Ro/a = 1.5.
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Figure 6.21: Decay of magnetic helicity as a function of time for axisymmetric cal-
culation with S = 103 and Ro/a = 1.5.
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Figure 6.22: Ratio of integrated magnetic energy to helicity as a function of time for
3D calculation with S = 103 and Ro/a = 1.5.
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Figure 6.23: Ratio of integrated magnetic energy to helicity as a function of time for
axisymmetric calculation with S = 103 and Ro/a = 1.5.
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to 0.63τtearing). The next series of plots shows the time evolution of the helicity, the

energy, and the ratio of the two. These global quantities provide a way of quantifying

how near the plasma is to the Taylor state, and also for comparing different runs.

Figures 6.18 and 6.19 show the magnetic, thermal, and kinetic energy integrals

as a function of time. The magnetic and internal energies are much larger than the

kinetic energy. The kinetic energy is largest early in the run as the plasma moves

toward an equilibrium. The side to side oscillations are apparent from the kinetic

energy plot. Figure 6.19 shows that the plasma is close to an equilibrium state by

20 Alfvén times, since the kinetic energy is close to zero. Note that as the magnetic

energy is reduced it is converted to thermal energy primarily through resistive heating

(and also some viscous heating). Since there are no thermal transport equations in

this version of the code, there was no way to dump the heat to the walls, as would

happen in a real plasma. The result is that the overall β of the plasma increases over

time.

Figures 6.20 and 6.21 show that the helicity decays over time due to resistive

diffusion. At this Lundquist number the decay is very monotonic. If the two plots

were shown on the same time scale they nearly overlay. The ratio of the magnetic

energy to the magnetic helicity as a function of time is shown in Figures 6.22 and 6.23.

Recall that for a Taylor state, this ratio is equal to the eigenvalue, λ. For this aspect

ratio, the Taylor state hasWB/K = 4.62. After 12 Alfvén times,WB/K has decreased

to just over 5 for both cases. Over this time span, there is very little difference between

the three-dimensional run and the axisymmetric run. The axisymmetric plot shows

that at later times, the relaxation stalls at WB/K = 5 and begins to increase. It

is not surprising that the axisymmetric runs has difficulty in relaxing all the way

to the Taylor state, since the axisymmetric assumption prevents helical distortions

that enable much more rapid reconfigurations of the plasma, as will become evident

when looking at the higher S runs. Another possible explanation for this long time

behavior is that the boundary condition is allowing helicity to cross the boundary as
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Figure 6.24: Contours of toroidal current density overlayed with poloidal current
vectors at t = 0 for Ro/a = 1.5 and S = 103.

the toroidal field diffuses enough so that it is non-zero at the boundary.

Another way to look at the data is in terms of the current. Figure 6.24 shows

contours of toroidal current density overlayed with poloidal current vectors at t = 0.

The current sheets are clearly visible. Figure 6.24 shows the currents after 12 Alfvén

times. The current sheets have spread considerably as the plasma evolves toward

uniform λ = j/B. One feature of the Taylor state that is present is that the magnetic

axis is offset from the point of maximum toroidal field, as was seen in the plots of the

Taylor state in Figures 6.3 and 6.4. Figure 6.26 shows contours of λ. There are large

regions of the plasma that are far above and far below the Taylor state λ of 4.62.

Perhaps an easier way to visualize the data is to examine the λ profile at the

Z/L = 0.5 midplane as it evolves in time. Figures 6.27 through 6.29 show the λ

profile at t = 0, t = 12, and t = 40, respectively. These are all for the axisymmetric

run. The λ profile for the three-dimensional run at t = 12 is very similar to the
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Figure 6.25: Contours of toroidal current density overlayed with poloidal current
vectors at t = 12 for axisymmetric calculation with Ro/a = 1.5 and S = 103.
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Figure 6.26: Contours of λ = j/B at t = 12 for axisymmetric calculation with
Ro/a = 1.5 and S = 103.
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Figure 6.27: λ = j/B versus R/L at midplane (Z/L = 0.5) at t = 0 for axisymmetric
calculation with Ro/a = 1.5 and S = 103.
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Figure 6.28: λ = j/B versus R/L at midplane (Z/L = 0.5) at t = 12 for axisymmetric
calculation with Ro/a = 1.5 and S = 103.
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Figure 6.29: λ = j/B versus R/L at midplane (Z/L = 0.5) at t = 40 for axisymmetric
calculation with Ro/a = 1.5 and S = 103.

axisymmetric one, and thus is not shown. After 40 Alfvén times, the extreme humps

in the profile that correspond to the initial current sheets have smoothed out, resulting

in a fairly monotonic profile having too much current at large R and too small at

small R.

Figure 6.30 compares the ratio of the magnetic energy to the helicity as a function

of time for all the S = 103 cases, including the axisymmetric case at an aspect ratio

of 3. (Note that the three-dimensional run at Ro/a = 3.0 was not done.) The most

important feature of the data is that the axisymmetric and three-dimensional runs

are virtually identical (for the aspect ratio of 1.5). In fact, the axisymmetric case

is approaching the asymptotic value of Wb/K = 4.62 slightly more rapidly than the

three-dimensional case, which is surprising and difficult to explain. The large aspect

ratio case falls more rapidly than the smaller aspect ratio case because it is evolving

toward a lower value of λ of 4.48.
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Figure 6.30: Ratio of integrated magnetic energy to helicity for all of the S = 103

runs.

6.6 S = 104 Simulations

These runs were done at a Lundquist number of 104, which is still several orders

of magnitude lower than most fusion experiments, but high enough that some high

S effects begin to be seen. As discussed previously, the three-dimensional runs re-

quired large grids and significant amounts of CPU time. In particular, each three-

dimensional simulation required approximately 24 hours on 32 processors of an IBM

SP2 to run out to 10 Alfvén times. Since the Lundquist number is larger for these

runs, 10 Alfvén times corresponds to an even smaller fraction of a tearing time (0.04)

than the S = 103 runs. Ideally, of course, one would like to have longer simulations,

but that was not possible in this case. The axisymmetric runs were also run to 10

Alfvén times for ease of comparison with the three-dimensional runs.
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Figure 6.31: Contours of poloidal flux for S = 104 and Ro/a = 1.5 at t = 5.

6.6.1 Low Aspect Ratio Simulations

Poloidal flux contours at t = 5 and t = 10 are shown in Figures 6.31 and 6.32. Unlike

the lower S runs, there is an obvious toroidal mode structure that develops after just

a few Alfvén times and is well developed by t = 10. Since this instability evolves on

an Alfvénic time scale, this must be an ideal MHD instability. Apparently these ideal

modes were heavily damped at S = 103. The dominant toroidal mode appears to be

n = 3.

Figures 6.33 and 6.34 show the large differences in the magnetic field configurations

between the axisymmetric and three-dimensional cases. Figures 6.35 and 6.36 show

similar differences in the pressure field. The pressure plots make it especially clear

that the instability seems to occur at the q = 1 surface and mostly disturbs the plasma

inside the q = 1 surface. This strongly suggests that the toroidal mode structure is

due to an n = 3 kink mode.

The toroidal structure and motion is quite complicated and difficult to visualize.

It appears to have some of the characteristics of a kink mode. Figures 6.37 through
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Figure 6.32: Contours of poloidal flux for S = 104 and Ro/a = 1.5 at t = 10.
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Figure 6.33: Contours of poloidal flux in φ = 0 plane for S = 104 and Ro/a = 1.5 at
t = 10.
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Figure 6.34: Contours of poloidal flux at t = 10 for axisymmetric calculation with
S = 104 and Ro/a = 1.5.
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Figure 6.35: Contours of pressure in φ = 0 plane for S = 104 and Ro/a = 1.5 at
t = 10.
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Figure 6.36: Contours of pressure at t = 10 for axisymmetric calculation with S = 104

and Ro/a = 1.5.

Figure 6.37: Contours of poloidal flux in φ = 0 plane at t = 10 for 3D calculation at
S = 104 and Ro/a = 1.5.
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Figure 6.38: Contours of poloidal flux in φ = 90 plane at t = 10 for 3D calculation
at S = 104 and Ro/a = 1.5.

Figure 6.39: Contours of poloidal flux in φ = 180 plane at t = 10 for 3D calculation
at S = 104 and Ro/a = 1.5.
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Figure 6.40: Contours of poloidal flux in φ = 270 plane at t = 10 for 3D calculation
at S = 104 and Ro/a = 1.5.
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Figure 6.41: Integrated magnetic, thermal, and kinetic energies as a function of time
for 3D calculation with S = 104 and Ro/a = 1.5.

6.40 show the poloidal flux at the φ = 0, φ = 90, φ = 180, and φ = 270 degree planes.

Plots of the evolution of energy, helicity, and the ratio of magnetic energy to

helicity reveal a finer structure than was seen in the S = 103 runs. That is, the

magnetic energy, the helicity, and their ratio all decay in a less smooth fashion than

for the S = 103 runs. Some of this may be due to the smaller time steps that

were required with the finer grid. However, it is more likely due to the ideal MHD

activity that is driving some relaxation in this case. Note that the plots for the

three-dimensional runs are missing data from about t = 7.5 to t = 9.5 due to a file

transfer problem. This accounts for the abrupt change in slope seen in the data at

those times.

The plots of WB/K indicate that the ratio has decayed to about 5.5 after 10

Alfvén times. This is not as low as the S = 103 case got after the same number of

Alfvén times, but that is not surprising. Since the Lundquist number is ten times as
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Figure 6.42: Integrated magnetic, thermal, and kinetic energies as a function of time
for axisymmetric calculation with S = 104 and Ro/a = 1.5.
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Figure 6.43: Decay of magnetic helicity as a function of time for 3D calculation with
S = 104 and Ro/a = 1.5.
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Figure 6.44: Decay of magnetic helicity as a function of time for axisymmetric cal-
culation with S = 104 and Ro/a = 1.5.
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Figure 6.45: Ratio of integrated magnetic energy to helicity as a function of time for
3D calculation with S = 104 and Ro/a = 1.5.
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Figure 6.46: Ratio of integrated magnetic energy to helicity as a function of time for
axisymmetric calculation with S = 104 and Ro/a = 1.5.

large, this solution has only evolved one tenth as far in terms of resistive diffusion

time, and thus should not be expected to have evolved as far.

Plots of the λ profiles are quite revealing. Figures 6.47 and 6.48 show λ versus

radius at the midplane for the three-dimensional and axisymmetric case, respectively.

The striking feature is that the kink instability has resulted in significantly enhanced

diffusion of the poloidal and toroidal fields in the core region of the three-dimensional

simulation. This enhanced diffusion is presumably due to the large gradients caused

by the thrashing of the toroidal flux tube. This can be seen by comparing the values

of λ at R/L = 0.8.

6.6.2 High Aspect Ratio Simulations

Poloidal flux contours at t = 5 and t = 10 are shown in Figures 6.49 and 6.50 for

Ro/a = 3.0. As in the lower aspect ratio case, the ideal MHD kink instability clearly
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Figure 6.47: λ = j/B versus R/L at midplane (Z/L = 0.5) at t = 10 for 3D
calculation with Ro/a = 1.5 and S = 104.
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Figure 6.48: λ = j/B versus R/L at midplane (Z/L = 0.5) at t = 10 for axisymmetric
calculation with Ro/a = 1.5 and S = 104.
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Figure 6.49: Contours of poloidal flux for S = 104 and Ro/a = 3.0 at t = 5.
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Figure 6.50: Contours of poloidal flux for S = 104 and Ro/a = 3.0 at t = 10.
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Figure 6.51: Contours of poloidal flux in φ = 0 plane at t = 10 for 3D calculation at
S = 104 and Ro/a = 3.0.

is affecting the magnetic field structure. In this case, the dominant toroidal mode is

n = 5 or n = 6 (recall that the Ro/a = 1.5 case had an n = 3 structure).

In order to highlight the differences between axisymmetric and three dimensional

results, plots at the φ = 0 poloidal plane are compared to the axisymmetric results.

Figures 6.51 and 6.52 compare the poloidal flux. Figures 6.53 and 6.54 compare the

pressure. The results are similar to the low aspect ratio results.

As before, we look at poloidal slices at four toroidal angles spaced 90 degrees apart.

Figures 6.55 through 6.58 show the poloidal flux at the φ = 0, φ = 90, φ = 180, and

φ = 270 degree planes. While the outer flux surfaces remain mostly unperturbed, the

inner flux tube clearly has the helical structure of a kink mode.

The global plots in Figures 6.59 through 6.64 are similar to ones for theRo/a = 1.5

aspect ratio. They are included here to give a complete record of all the high resolution

three-dimensional runs.
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Figure 6.52: Contours of poloidal flux at t = 10 for axisymmetric calculation at
S = 104 and Ro/a = 3.0.
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Figure 6.53: Contours of pressure in φ = 0 plane at t = 10 for 3D calculation at
S = 104 and Ro/a = 3.0.
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Figure 6.54: Contours of pressure at t = 10 for axisymmetric calculation at S = 104

and Ro/a = 3.0.

Figure 6.55: Contours of poloidal flux in φ = 0 plane at t = 10 for 3D calculation at
S = 104 and Ro/a = 3.0.
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Figure 6.56: Contours of poloidal flux in φ = 90 plane at t = 10 for 3D calculation
at S = 104 and Ro/a = 3.0.

Figure 6.57: Contours of poloidal flux in φ = 180 plane at t = 10 for 3D calculation
at S = 104 and Ro/a = 3.0.
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Figure 6.58: Contours of poloidal flux in φ = 270 plane at t = 10 for 3D calculation
at S = 104 and Ro/a = 3.0.
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Figure 6.59: Integrated magnetic, thermal, and kinetic energies as a function of time
for 3D calculation with S = 104 and Ro/a = 3.0.



111

2 4 6 8 10
t / τa

1.25

1.5

1.75

2

W
B

(m
ag

.e
ne

rg
y)

an
d

W
th

(t
he

rm
al

en
er

g
y)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

W
K

E
(k

in
et

ic
en

er
g

y)

WB

Wth

WKE

Figure 6.60: Integrated magnetic, thermal, and kinetic energies as a function of time
for axisymmetric calculation with S = 104 and Ro/a = 3.0.
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Figure 6.61: Decay of magnetic helicity as a function of time for 3D calculation with
S = 104 and Ro/a = 3.0.
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Figure 6.62: Decay of magnetic helicity as a function of time for axisymmetric cal-
culation with S = 104 and Ro/a = 3.0.
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Figure 6.63: Ratio of integrated magnetic energy to helicity as a function of time for
3D calculation with S = 104 and Ro/a = 3.0.
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Figure 6.64: Ratio of integrated magnetic energy to helicity as a function of time for
axisymmetric calculation with S = 104 and Ro/a = 3.0.
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Figure 6.65: λ = j/B versus R/L at midplane (Z/L = 0.5) at t = 10 for 3D
calculation with Ro/a = 3.0 and S = 104.
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Figure 6.66: λ = j/B versus R/L at midplane (Z/L = 0.5) at t = 10 for axisymmetric
calculation with Ro/a = 3.0 and S = 104.

Figures 6.65 and 6.66 show λ versus radius at the midplane for both cases. Al-

though less dramatic than the low aspect ratio runs, these plots also indicate the

contrast in the evolution of the three-dimensional and axisymmetric runs. The kink

instability again drives enhanced diffusion that allows the central core of the plasma

to approach the Taylor state more rapidly than possible with purely axisymmetric

diffusion. As a result, the λ profile is somewhat flatter for the three-dimensional

simulation, although still obviously far from the Taylor state.

Figure 6.67 compares the ratio of the magnetic energy to the helicity as a function

of time for all the S = 104 cases. The most important feature of the data is that

the three-dimensional runs show a more rapid approach toward the Taylor state than

the axisymmetric runs. This is due to an ideal kink instability originating from the

q = 1 surface that compresses the poloidal and toroidal fields together, thus greatly

enhancing the diffusion of the poloidal field into the central toroidal core as compared
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Figure 6.67: Ratio of integrated magnetic energy to helicity for all of the S = 104

runs.

to the axisymmetric case, for which the non-symmetric kink mode is not allowed.

This is not Taylor relaxation in the usual sense because the finite resistivity does

not play a significant role. However, it is very like Taylor relaxation in that an

instability allows the plasma to access lower energy states more rapidly than the

helicity is dissipated. It is analogous to the situation where an ideally stable plasma

undergoes resistive instabilities that drive the plasma toward the Taylor state.

The Ro/a = 3.0 plasma is at a lower WB/K than the Ro/a = 1.5 plasma at t = 10

because it is evolving toward a lower eigenvalue of 4.48 (versus 4.62). The difference

between the axisymmetric and the three-dimensional case is less for the higher aspect

ratio runs. This is probably because the ideal MHD instabilities are more violent and

disruptive at the lower aspect ratio.
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Figure 6.68: Contours of toroidal field at intervals of 0.5 Alfvén time.

6.7 Low Beta Simulations

This axisymmetric solution was done on a 62x62 poloidal grid. The torus has an

aspect ratio of 3. The Lundquist number was 103. Initially there is a uniform pressure

such that β = 0.01. This is the value of β that we would have liked to have used for

all of the simulations, because the Taylor theory is a zero pressure theory, and should

be strictly true only in the limit as β goes to zero. In practice, experiments at a few

percent β seem to be adequately explained by the Taylor theory. Unfortunately, at

lower aspect ratios and higher Lundquist numbers, the code could not be reliably run

at at β this low.

The purpose of this simulation was simply to see how different the time evolution

of the magnetic field is when comparing β = 0.01 with β = 0.05. Figures 6.68, 6.69,

and 6.70 show a time sequence of contours of the toroidal field. For comparison, we
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Figure 6.69: Contours of toroidal field at intervals of 0.5 Alfvén time.
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Figure 6.70: Contours of toroidal field at intervals of 2.0 Alfvén times.
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and Ro/a = 3.0.
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also show a contour plot of Bφ at t = 10 for an identical run at β = 0.5. This plot is

shown in Figure 6.71. The larger pressure tends to damp out the plasma oscillations,

and also leads to larger pressure gradients that appear to cause some pressure-induced

instabilities on the outer flux surfaces. This leads to a slightly greater distortion of

the flux surfaces at t = 10 for the higher β run.



Chapter 7

SUMMARY AND CONCLUSIONS

We presented new implicit and explicit algorithms for solving the non-ideal MHD

equations. The algorithms are designed for solving problems at high Lundquist and

Reynolds numbers. For this class of problems, the implicit algorithm is stable for any

CFL number. The algorithms feature an approximate Riemann solver for the hyper-

bolic terms. The approximate Riemann solver combines Powell’s multidimensional

technique with Harten’s discretization of the hyperbolic fluxes. The parabolic terms

are discretized with a finite volume technique that uses an offset, face-centered mesh

to calculate the interface fluxes. The implicit operator is inverted by using the the

LU-SGS iteration.

We then showed the results of several code validation test cases. The first was

a one-dimensional MHD Riemann problem that verified that Harten’s fluxes were

correctly implemented. The second was an oblique shock problem that demonstrated

that the approximate Riemann solver worked in two dimensions. It also showed that

the implicit scheme was roughly four times more efficient at relaxing to the steady-

state oblique shock solution than the explicit scheme. A Hartmann flow problem was

solved to validate the resistive and viscous terms. Finally, a transient problem involv-

ing the convection of a magnetic field into an MPD thruster channel demonstrated

that the implicit technique could maintain accuracy while taking time steps 100 times

larger than allowed by the explicit scheme, which translated into a factor of three in

CPU savings when the work required for the implicit iterations was accounted for.

We then applied the new code the planar sheet pinch. This is a two-dimensional

problem in which a current sheet of finite thickness and infinite extent out of the
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plane is subject to resistive instabilities that cause the sheet to break into current

filaments. The first step in our approach to solving this problem was to solve the

linear, incompressible MHD equations to determine the most unstable eigenmode

for a given wavelength. Then, this eigenmode was used to perturb the equilibrium

current sheet. The code was then used to follow the linear behavior of the mode

and the transition into nonlinear evolution and saturation. We were able to use the

implicit code to solve this problem at a time step ten times larger than the possible

with the explicit scheme.

Finally, the code was used to study the three-dimensional evolution and relaxation

of a generic, RFP-like toroidal configuration. Simulations were done at Lundquist

numbers of 103 and 104 and at aspect ratios of 1.5 and 3.0. These simulations were

done using the explicit version of the code, since the implicit version could not be made

to converge for these cases. The key aspect of these simulations was a comparison of

the three-dimensional results with axisymmetric simulations at the same conditions.

At the higher Lundquist number, the three-dimensional simulations displayed a more

rapid relaxation toward the Taylor state than equivalent axisymmetric simulations.

Specific conclusions from these runs are presented below.

7.1 Conclusions: Code Development

The chief advantage of this algorithm over an explicit approximate Riemann solver is

the flexibility in choosing the time step. That is, if one is following dynamics that are

occurring on time scales much longer than the shortest MHD time scales, then one

can select the time step based on the desired accuracy, rather than on the numerical

stability.

However, the major conclusion of the code development portion of this project

was that the LU-SGS implicit scheme, while adequate for two-dimensional simulations

such as the planar sheet pinch, was not able to converge for the three-dimensional
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toroidal simulations. Apparently, the implicit operator was too approximate to get

convergence for complicated three-dimensional simulations.

A suggestion for future work in this area would be to use a more accurate implicit

operator that could achieve convergence for a wider range of problems. A leading

candidate is a point-implicit scheme in which the hyperbolic terms are linearized

exactly, and then the implicit matrix is solved using symmetric Gauss-Seidel iteration.

Another advantage of this scheme would be that the parabolic terms could also be

handled implicitly, which could allow simulations with highly resistive areas that are

not practical with the current method.

7.2 Conclusions: 3D Relaxation of Toroidal Plasmas

The major conclusion of this portion of the work was that at S = 104, there was

a significant difference between axisymmetric and three-dimensional simulations of

toroidal relaxation. It was concluded that at this Lundquist number, the plasma was

subject to an ideal kink instability in the vicinity of the q = 1 surface that caused

enhanced diffusion that in turn led to rapid intermingling of the central toroidal

flux core with the surrounding poloidal field. This mode was not available in the

axisymmetric calculations, so for those simulations the fields intermingled more slowly

due to axisymmetric diffusion. At an aspect ratio of 1.5, the dominant toroidal mode

was n = 3, while at an aspect ratio of 3.0, the dominant mode was n = 5.

At S = 103, the ideal modes were damped out. In this case, there was virtually

no difference in the three-dimensional and axisymmetric results.

The major limitation in this work was the relatively short run times. The highly

resolved S = 104 runs were only run to 10 Alfvén times, which was only a small

fraction of a resistive tearing time. Thus, it was not long enough to observe relaxation

driven by resistive modes. In addition, the boundary conditions did not prevent

helicity from entering or leaving the domain, which would be necessary for longer time
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calculations. To continue this work in the future, it is recommended that perfectly

conducting boundary conditions be applied and that the simulations be run out for

several tearing times in order to observe resistively driven relaxation.
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Appendix A

EIGENVECTORS FOR APPROXIMATE RIEMANN

SOLVER

In this appendix the eigenvalues and eigenvectors of the modified Jacobian are

presented for three-dimensional generalized coordinates. The discretized hyperbolic

fluxes are

(
R̄h

)
ijk

= F̄i+1/2 − F̄i−1/2

+Ḡj+1/2 − Ḡj−1/2 + H̄k+1/2 − H̄k−1/2. (A.1)

Recall that

F̄ = ξxF + ξyG + ξzH, (A.2)

Ḡ = ηxF + ηyG + ηzH, (A.3)

and

H̄ = ζxF + ζyG + ζzH. (A.4)

The flux at each of the six cell faces is computed using the approximate Riemann

solver formulas. So, for the ξ flux at the i+ 1/2 face, for example, we have

F̄i+1/2 =
1

2

[
F̄i+1 + F̄i

]
+

1

2

∑
k

φ̄k
i+1/2r̄

k
i+1/2. (A.5)

The summation term depends on the eigenvalues and eigenvectors of the generalized

modified Jacobian, which is

Ā = ξxÃ + ξyB̃ + ξzC̃. (A.6)
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The eigenvalues of Ā are

λ = (U,U, U ± cf , U ± cs, U ± va)
T , (A.7)

where

U = ξxvx + ξyvy + ξzvz, (A.8)

c2f =
ξ2
x + ξ2

y + ξ2
z

2

⎧⎪⎨
⎪⎩a2 + c2a +

⎡
⎣(a2 + c2a

)2 − 4a2 v2
a(

ξ2
x + ξ2

y + ξ2
z

)
⎤
⎦

1/2
⎫⎪⎬
⎪⎭ , (A.9)

c2s =
ξ2
x + ξ2

y + ξ2
z

2

⎧⎪⎨
⎪⎩a2 + c2a −

⎡
⎣(a2 + c2a

)2 − 4a2 v2
a(

ξ2
x + ξ2

y + ξ2
z

)
⎤
⎦

1/2
⎫⎪⎬
⎪⎭ , (A.10)

and

va = ξx
Bx√
μoρ

+ ξy
By√
μoρ

+ ξz
Bz√
μoρ

. (A.11)

U is the contravariant velocity, cf is the fast magnetosonic speed, cs is the slow

magnetosonic speed, and va is the Alfvèn speed based on the ξ component of the

magnetic field. The eigenvalues of B̄ (here, the Jacobian of G) and C̄ (the Jacobian

of H) are obtained from the expression for Ā by substituting the corresponding metric

terms.

It turns out that it is much easier to determine the eigenvectors in terms of a

”parameter vector” [27]. Following Roe and Balsara [28], we chose the parameter

vector

W = (ρ, vx, vy, vz, Bx, By, Bz, p)
T . (A.12)

The Jacobian in terms of the parameter vector, denoted by Āp, is related to the

conservative variable form through

Āp =

[
∂Q

∂W

]−1

Ā
∂Q

∂W
. (A.13)

Let r̄p denote a right eigenvector of Āp and let r̄ denote the corresponding right

eigenvector of the conservative Jacobian, Ā. These are related by

r̄ =
∂Q

∂W
r̄p. (A.14)
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Similarly, the left eigenvectors are related by

l̄ = l̄p

[
∂Q

∂W

]−1

. (A.15)

It is relatively straight forward to find analytical expressions for the eigenvectors

of Āp using something like Mathematica. However, the difficulty lies in putting

the eigenvectors into a form that remains well defined for various degeneracies that

can occur. [3, 42] That is, for certain combinations of the magnetic field and ion

sound speed, some of the wave speeds coincide. If the eigenvectors are kept in their

non-normalized form, some of the terms go to infinity or to 0/0 for the degenerate

cases. By factoring the eigenvectors appropriately, it is possible to normalize them

in such a way that the eigenvectors will remain finite for all the degeneracies. Such

normalizations have been done before for the Cartesian case. Here, we follow Roe

and Balsara’s [28] Cartesian normalization, and extend it to generalized coordinates.

First, we introduce a number of new variables. The normalized grid metrics are

ξ̂x =

√√√√ ξ2
x

ξ2
x + ξ2

y + ξ2
z

(A.16)

and so on for the others. The component of the magnetic field in the coordinate

direction (the contravariant field) is

Bcon = ξ̂xBx + ξ̂yBy + ξ̂zBz. (A.17)

The component perpendicular to the coordinate direction is

Bperp =
√
B2 − B2

con. (A.18)

Then we introduce six variables that normalize the combinations of B components

that appear in the eigenvector expressions. These parameters are

β1 =
ξ̂yBz − ξ̂zBy

Bperp
(A.19)
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β2 =
ξ̂zBx − ξ̂xBz

Bperp
(A.20)

β3 =
ξ̂xBy − ξ̂yBx

Bperp

(A.21)

β4 =
ξ̂xξ̂yBy + ξ̂xξ̂zBz −

(
ξ̂2
y + ξ̂2

z

)
Bx

Bperp
(A.22)

β5 =
ξ̂y ξ̂xBx + ξ̂y ξ̂zBz −

(
ξ̂2
x + ξ̂2

z

)
By

Bperp
(A.23)

β6 =
ξ̂z ξ̂xBx + ξ̂z ξ̂yBy −

(
ξ̂2
x + ξ̂2

y

)
Bz

Bperp
. (A.24)

Note that

β2
1 + β2

2 + β2
3 = 1, (A.25)

and

β2
4 + β2

5 + β2
6 = 1. (A.26)

Finally, we also define

α2
f =

a
(
ξ2
x + ξ2

y + ξ2
z

)
− c2s

c2f − c2s
, (A.27)

and

α2
s =

c2f − a2
(
ξ2
x + ξ2

y + ξ2
z

)
c2f − c2s

. (A.28)

Not coincidentally, these factors remain finite for all possible magnitudes and direc-

tions of the magnetic field, as long as they are properly defined in the limit of Bperp

approaching zero. In that case, we set β1 through β6 equal to 1/
√

3.

Next, the normalized eigenvectors are presented. There are two eigenvectors cor-

responding to the two U eigenvalues. One corresponds to the entropy wave, and its

left and right eigenvectors are

lent =
(
1, 0, 0, 0, 0, 0, 0,−1/a2

)
, (A.29)

rent = (1, 0, 0, 0, 0, 0, 0, 0)
T
. (A.30)
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The second U eigenvalue is a direct result of the modification to the Jacobian. Since

this wave acts in such a way as to maintain ∇·B = 0, it has been called a divergence

wave. Its eigenvectors are

ldiv =
(
0, 0, 0, 0, ξ̂x, ξ̂y, ξ̂z, 0

)
, (A.31)

rdiv =
(
0, 0, 0, 0, ξ̂x, ξ̂y, ξ̂z, 0

)T
. (A.32)

The fast magnetosonic eigenvectors (U ± cf) are

lTf =
1

2a2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

±
[
ξ̂xαfcf + αscssgn(va)β4

]

±
[
ξ̂yαfcf + αscssgn(va)β5

]

±
[
ξ̂zαfcf + αscssgn(va)β6

]

−β4αsa/
√
ρ

−β5αsa/
√
ρ

−β6αsa/
√
ρ

αf/ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.33)
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and

rf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αfρ

±
[
ξ̂xαfcf + αscssgn(va)β4

]

±
[
ξ̂yαfcf + αscssgn(va)β5

]

±
[
ξ̂zαfcf + αscssgn(va)β6

]

−β4αsa
√
ρ

−β5αsa
√
ρ

−β6αsa
√
ρ

αfρa
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.34)

Similarly, the slow magnetosonic eigenvectors are

lTs =
1

2a2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

±
[
ξ̂xαscs − αfcf sgn(va)β4

]

±
[
ξ̂yαscs − αfcfsgn(va)β5

]

±
[
ξ̂zαscs − αfcf sgn(va)β6

]

β4αfa/
√
ρ

β5αfa/
√
ρ

β6αfa/
√
ρ

αs/ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.35)
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and

rs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αsρ

±
[
ξ̂xαscs − αfcf sgn(va)β4

]

±
[
ξ̂yαscs − αfcf sgn(va)β5

]

±
[
ξ̂zαscs − αfcf sgn(va)β6

]

β4αfa
√
ρ

β5αfa
√
ρ

β6αfa
√
ρ

αsρa
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.36)

The slow magnetosonic eigenvectors are obtained from the expressions for the fast

magnetosonic eigenvectors by replacing αf with αs, αs with −αf , and interchanging

cf with cs.

Lastly, the Alfvén wave eigenvectors (U ± va) are

la =

(
0,± β1√

2
,± β2√

2
,± β3√

2
,− β1√

2ρ
− β2√

2ρ
,− β3√

2ρ
, 0

)
(A.37)

and

ra =

(
0,± β1√

2
,± β2√

2
,± β3√

2
,−β1

√
ρ

2
,−β2

√
ρ

2
,−β3

√
ρ

2
, 0

)T

(A.38)



Appendix B

EMI DESCRIPTION AND USER’S GUIDE

This appendix provides a description of version v9701 of the EMI MHD solver.

The code is written in Fortran (mostly F77, but some F90). It is a parallel code, and

uses the Message Passing Interface (MPI) standard subroutine calls to transfer data

between parallel processors. The same code can also be run on a single processor.

Program Flow

The code consists of a main program, in pmain.f, that calls the various subroutines

in which the actual calculations are performed. The major subroutines are ”flux”,

”resistivity”, ”viscosity”, ”lower”, and ”upper”. ”Flux” finds the hyperbolic fluxes.

It is the implementation of the approximate Riemann solver. It calls ”average”, which

averages the data to the cell faces, and ”limiter”, which invokes the minmod limiter

function. ”Flux” is called separately for each coordinate direction. ”Resistivity” and

”viscosity” find the parabolic fluxes due to the resistive and viscous terms, respec-

tively. ”Lower” and ”upper” invert the lower and upper triangular matrices that

comprise the LU-SGS scheme. The following is a ”pseudocode” summary of pmain.f

that explains the program flow and the functions of the major subroutines.

read input file

initialize MPI

allocate arrays

call readgrid - reads in x,y,z arrays from grid file

call geometry - calculates volumes, areas, cell centers
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call init - sets up initial conditions

if restart=true, call rstread - read restart file

call bc - sets up external boundary conditions

pass data between blocks

call Bdrysend - sends data to buffers

call Bdryrecv - requests data from buffers into ghost cells

call BdryWait - waits until data received

call timestep - sets timestep according to input CFL number

call BdryWait - makes sure send buffers cleared

TOP OF OUTER TIME LOOP (for implicit, time-dependent calculations)

time = time + dt_phys

icount_phys = icount_phys + 1

store q from previous time n and n-1 in qn and qn1

TOP OF INNER TIME LOOP

tau = tau + dt

icount = icount + 1

call flux - puts hyperbolic fluxes in f,g, and h arrays

call src_divb - puts divergence source term into rhs array

if pseudo=true, call src_pseudo - adds time derivative source to rhs

call resistivity - adds resistive fluxes to rhs

call viscosity - adds viscous fluxes to rhs

if axi=true, call src_axi - adds axisymmetric source to rhs

rhs = f(i,..)-f(i-1,..) + g(..,j,..)-g((..,j-1,..) + ... - rhs

if imp_flag=false, dq = -dt*rhs - finds new q for explicit case

if imp_flag=true

call lower

call upper - finds dq for implicit case

endif
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if mod(icount,ncycdiv)=0

call cleandivb - clean up div B

call bc

call bdrySend, etc. - passes updated B between blocks

endif

call bc

call polflux - integrates B to get poloidal flux

call helicity - calculates magnetic helicity

call BdrySend, etc. - pass updated q between blocks

call timestep - find new time step

call converge - test for convergence of inner loop subiterations

dump output and restart files (for explicit case)

if tau > tfin, stop

BOTTOM OF INNER TIME LOOP

dump output files (for implicit case)

if time > tfin, stop

BOTTOM OF OUTER TIME LOOP

Indexing Conventions

The ”i” index for real cells runs from 2 to icels− 1. The ghost cells are labeled 0, 1,

icels, and icels+1. The i direction is also known as the ξ direction, the j direction as

the η direction, and the k direction as the ζ direction. The (i, j, k) triplet labels the

cell center. The cell faces are labeled by 1/2 indices. The ”left” face is (i− 1/2, j, k),

the ”right” face is (i+ 1/2, j, k), the ”bottom” face is (i, j− 1/2, k), the ”top” face is

(i, j + 1/2, k), the ”back” face is (i, j, k − 1/2), and the ”front” face is (i, j, k + 1/2).

Similarly, the cell vertices have 1/2 indices. For example, the left, bottom, back

vertex of cell (i, j, k) is labeled (i− 1/2, j − 1/2, k − 1/2).

In the program, of course, all the indices must be integers, so we use the convention
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that the i − 1/2 face is labeled as i, the j − 1/2 face as j, and so on. The only

exception to this rule are the f,g, and h hyperbolic fluxes. For those quantities, i

refers to the i + 1/2 face, and so on. The cell vertices use the convention that the

(i− 1/2, j − 1/2, k − 1/2) vertex is labeled (i, j, k).

For some of the arrays, the ξ face is given the index of 1, the η face is 2, and the

ζ face is 3. The blocks must also have labels. Using the same naming convention as

for a cell, the ”top” of the block is 1, the ”right” is 2, the ”bottom” is 3, the ”left”

is 4, the ”back” is 5, and the ”front” is 6.

Output Files

The output consists of terminal output, plot files, and restart files. The terminal

output consists of the cycle number, time, and helicity at each iteration. The terminal

output is currently set up for explicit runs only.

There are two types of plot files. One is the global output file, which writes the

globally integrated magnetic energy, kinetic energy, internal energy, and magnetic

helicity at each time to the file pemi global.tec. The .tec suffix indicates that the

file is in Tecplot format. For parallel runs, the integrals from each processor are

accumulated and summed into a single file.

In addition, there is a 3D plot file that is dumped every ncycdump iterations or

every multiple of tdump in terms of time. Each processor dumps output to a separate

file called p ppp cccccc.tec, where ppp is the three-digit processor number (e.g. 000,

001, etc.), and cccccc is the six-digit cycle number. A typical file header looks like:

VARIABLES = x,y,z,rho,u,v,w,bx,by,bz,p,vi,vj,vk,bi,bj,bk,psi

ZONE T="zone 1",I=65,J=65,K=6,F = POINT

xc(1,1,1,1) yc(1,1,1,1) zc(1,1,1,1) ro(1,1,1,1) ...

xc(2,1,1,1) yc(2,1,1,1) zc(2,1,1,1) ro(2,1,1,1) ...

...
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ZONE T="zone 2",I=65,J=65,K=6,F = POINT

...

The first line of the file lists the variables. Here, x, y, and z are the coordinates of the

cell centers, rho is the density, u, v, and w are the Cartesian velocity components,

bx, by, and bz are the Cartesian components of the magnetic field, p is the pressure,

vi, vj, and vk are the velocity components in the ξ, η, and ζ directions, bi, bj, and

bk are the magnetic field components in those directions, and psi is the helicity. For

each block or ”zone”, there is a zone header that contains the zone number (e.g. zone

1), the number of points in the i, j, and k directions, and the specification of the

Tecplot format (F = POINT). The POINT format means that at each point in the

mesh, all of the variable values are listed in order. The ordering of the points is such

that the i index varies fastest, followed by the j index, followed by the k index.

There is also a restart file that is dumped every ncycrst cycles or every multiple of

trst in terms of time. Each processor dumps a restart file to rst ppp cccccc.tec. This

file is similar to the p ppp cccccc.tec file, except that only the cell center locations and

Q are dumped at each point. In addition, there is a global restart file, rst cccccc.dat,

that saves the values of icount, icount phys, tau, time, dt, dt phys, and tnorm. Here,

icount is the number of explicit time steps, icount phys is the number of implicit

time steps, tau is the time for an explicit calculation, time is the time for an implicit

calculation, dt is the explicit time step, dt phys is the implicit time step, and tnorm

is the two-norm of the energy residual (meaningful for a steady-state iteration).

Input Files

For restart runs, the ”r cccccc.tec” and ”rst cccccc.dat” files are read from the ”out-

Dir” directory, where cccccc is the six-digit cycle number. For example, if the

restart file was output at 100 iterations, then the restart files are r 000100.tec and

rst 000100.dat. The r cccccc.tec file is created by concatenating the rst ppp cccccc.tec



140

files created by each processor, where ppp is the three-digit processor number. Note

that the processor numbers start with 000, rather than 001. For a single processor

run, the rst 000 cccccc.tec file is simply renamed as r cccccc.tec. A restart run is

indicated by setting the restart flag to ”true” and setting ncycrst select to the cycle

number corresponding to the desired restart file.

The grid file is a Tecplot format file that contains the (x, y, z) location of each

real and ghost cell vertex. The Tecplot format is discussed above.

The input file is called ”input”. It needs to be located in the directory that you

run EMI from. The file consists of two NAMELIST sets. The complete list of input

variables and their definitions is compiled in the following table.

Name Type Definition

icels(ndim) INTEGER number of cells in i direction

jcels(ndim) INTEGER number of cells in j direction

kcels(ndim) INTEGER number of cells in k direction

imp_flag LOGICAL if true, then implicit solve

alf REAL*8 1 for pure implicit (other choices obsolete)

kap REAL*8 weighting factor for LU-SGS (¿1 for stability)

newton LOGICAL if true, then Newton iteration for LU-SGS

mfs REAL*8 free stream ”Mach” number for oblique shock

flowangle REAL*8 angle between flow and plate for oblique shock

bang REAL*8 angle between B and plate for oblique shock

bmag REAL*8 magnitude of B for oblique shock

shockx LOGICAL if true, then x direction shock tube

shocky LOGICAL if true, then y direction shock tube

rol REAL*8 density of ”left” state for shock tube

ul REAL*8 u of ”left” state for shock tube

vl REAL*8 v of ”left” state for shock tube

wl REAL*8 w of ”left” state for shock tube

continued on next page
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continued from previous page

Name Type Definition

bxl REAL*8 Bx of ”left” state for shock tube

byl REAL*8 By of ”left” state for shock tube

bzl REAL*8 Bz of ”left” state for shock tube

pl REAL*8 pressure of ”left” state for shock tube

ror REAL*8 density of ”right” state for shock tube

ur REAL*8 u of ”right” state for shock tube

vr REAL*8 v of ”right” state for shock tube

wr REAL*8 w of ”right” state for shock tube

bxr REAL*8 Bx of ”right” state for shock tube

byr REAL*8 By of ”right” state for shock tube

bzr REAL*8 Bz of ”right” state for shock tube

pr REAL*8 pressure of ”right” state for shock tube

gam REAL*8 ratio of specific heats

etag REAL*8 1. if resistivity on, else 0.

lund1 REAL*8 inverse of Lundquist number

viscg REAL*8 1. if viscosity on, else 0.

reyn1 REAL*8 inverse of Reynolds number

first_order_space LOGICAL if true, drop to first order in space

first_order_time LOGICAL if true, first order in time (implicit)

cn_phys REAL*8 CFL number for implicit time steps

cn_pseudo REAL*8 CFL number for explicit time steps

eps_subiter REAL*8 convergence criterion for implicit subiterations

pseudo LOGICAL if true, then implicit, time-dependent

x0 REAL*8 reference scale length

b0 REAL*8 reference field strength

ro0 REAL*8 reference density

beta REAL*8 initialization pressure

roig REAL*8 initialization density

uig REAL*8 initialization u velocity

continued on next page
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continued from previous page

Name Type Definition

vig REAL*8 initialization v velocity

wig REAL*8 initialization w velocity

bxg REAL*8 initialization Bx

byg REAL*8 initialization By

bzg REAL*8 initialization Bz

xmin REAL*8 min radius (”R”) for torus

xmax REAL*8 max radius (”R”) for torus

ymin REAL*8 min ”Z” coordinate for torus

ymax REAL*8 max ”Z” coordinate for torus

axi LOGICAL if true, then axisymmetric about y axis

epseig REAL*8 eigenvalue smoothing for limiter

epseig INTEGER total number of blocks

cyl1 LOGICAL must be true if axi true

initflag CHARACTER string that specifies initialization

bctype(6,ndim) CHARACTER specifies BCs on each boundary of each block

blckData(7,ndim) CHARACTER specifies neighbors of each block

eps_div REAL*8 convergence criterion for divergence clean

ncycdiv INTEGER cycles between divergence cleans

ncycdump INTEGER cycles between plot dumps

ncycfin INTEGER stop after this many cycles

tdump REAL*8 time between plot dumps

tfin REAL*8 stop at this time

trst REAL*8 time between restart file dumps

ncycrst INTEGER cycles between restart file dumps

restart LOGICAL if true, read restart file

ncycrst_select INTEGER cycle number of restart file to be read

thetmin(ndim) REAL*8 min ”theta” (phi) per block for toroidal grids

thetmax(ndim) REAL*8 max ”theta” (phi) per block for toroidal grids
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Other Variables

Most of the major variables are arrays that are dynamically allocated in pmain. There

are also a small number of key variables that are passed through common blocks. The

following table describes these variables. The header file or program file in which they

are created is shown in parentheses. The index ”n” always refers to block ”n”.

Name Type Definition

x(i,j,k,n) REAL*8 x coordinate of vertex (i,j,k) (alloc.h)

y(i,j,k,n) REAL*8 y coordinate of vertex (i,j,k) (alloc.h)

z(i,j,k,n) REAL*8 z coordinate of vertex (i,j,k) (alloc.h)

xc(i,j,k,n) REAL*8 x coordinate of cell center (i,j,k) (alloc.h)

yc(i,j,k,n) REAL*8 y coordinate of cell center (i,j,k) (alloc.h)

zc(i,j,k,n) REAL*8 z coordinate of cell center (i,j,k) (alloc.h)

dsx(i,j,k,1-3,n) REAL*8 x components of face 1-3 of cell (i,j,k) (alloc.h)

dsy(i,j,k,1-3,n) REAL*8 y components of face 1-3 of cell (i,j,k) (alloc.h)

dsz(i,j,k,1-3,n) REAL*8 z components of face 1-3 of cell (i,j,k) (alloc.h)

vol(i,j,k,n) REAL*8 volume of cell (i,j,k) (alloc.h)

f(i,j,k,8,n) REAL*8 xi-direction hyperbolic flux vector (alloc.h)

g(i,j,k,8,n) REAL*8 eta-direction hyperbolic flux vector (alloc.h)

h(i,j,k,8,n) REAL*8 zeta-direction hyperbolic flux vector (alloc.h)

q(i,j,k,8,n) REAL*8 Q vector at time level n+1 (alloc.h)

qn(i,j,k,8,n) REAL*8 Q vector at time level n (alloc.h)

qn1(i,j,k,8,n) REAL*8 Q vector at time level n-1 (alloc.h)

dq(i,j,k,8,n) REAL*8 Q(n+1) - Q(n) (alloc.h)

rhs(i,j,k,8,n) REAL*8 vector containing parabolic and source terms (alloc.h)

etax(i,j,k,n) REAL*8 resistivity in x direction (alloc.h)

etay(i,j,k,n) REAL*8 resistivity in y direction (alloc.h)

etaz(i,j,k,n) REAL*8 resistivity in z direction (alloc.h)

visc(i,j,k,n) REAL*8 coefficient of dynamic viscosity (alloc.h)

continued on next page
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continued from previous page

Name Type Definition

phib(i,j,k,n) REAL*8 non-solenoidal magnetic field (alloc.h)

psip(i,j,k,n) REAL*8 poloidal magnetic flux (alloc.h)

ld INTEGER dimension of Q vector (8) (param.h)

ndim INTEGER max number of blocks (param.h)

TAG_FAK INTEGER used to uniquely determine MPI tags (param.h)

gm1 REAL*8 ratio of specific heats - 1 (common.h)

pie REAL*8 pi (common.h)

mu0 REAL*8 permeability of free space (common.h)

time REAL*8 time for implicit runs (common.h)

tau REAL*8 time for explicit runs (pmain.f)

icount INTEGER cycle counter for explicit runs (common.h)

icount_phys INTEGER cycle counter for implicit runs (pmain.f)

nblock INTEGER number of blocks on this processor (common.h)

MAXBLOCKS INTEGER max blocks per processor (parall.h)

nprocs INTEGER number of processors (parall.h)

taskID INTEGER processor ID number (0 to nprocs-1) (parall.h)

blockID INTEGER relates local block ID to global ID (parall.h)

flipTable LOGICAL orders indices for complex grids (parall.h)

griddir CHARACTER name of directory where grid file is (parall.h)

gridfile CHARACTER name of grid file (parall.h)

outdir CHARACTER name of output directory (parall.h)

mydt REAL*8 local dt (parall.h)

mydt_phys REAL*8 local dt phys (parall.h)

sendReq INTEGER array of MPI send request IDs (parall.h)

recvReq INTEGER array of MPI receive request IDs (parall.h)


