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Abstract

High Resolution Wave Propagation Schemes for Two-Fluid Plasma
Simulations

Ammar H. Hakim

Chair of the Supervisory Committee:
Professor Uri Shumlak
Mechanical Engineering

Algorithms for the solution of the five-moment ideal Two-Fluid equations are pre-

sented. The ideal Two-Fluid model is more general than the often used magneto-

hydrodynamic (MHD) model. The model takes into account electron inertia effects,

charge separation and the full electromagnetic field equations and allows for sepa-

rate electron and ion motion. The algorithm presented is the high resolution wave

propagation method.

The wave propagation method is based on solutions to the Riemann problem at cell

interfaces. Operator splitting is used to incorporate the Lorentz and electromagnetic

source terms. To preserve the divergence constraints on the electric and magnetic

fields two different approaches are used. In the first approach Maxwell equations

are rewritten in their mixed-potential form. In the second approach the so called

perfectly-hyperbolic form of Maxwell equations are used which explicitly incorporate

the divergence equations into the time stepping scheme.

The algorithms are implemented as the WarpX library for the solution of gen-

eral hyperbolic balance laws in three-dimensions. WarpX is written in C++ and is

scripted using Python. Parallel processing using the Message Passing Library (MPI)



is also supported. The software is tested on a one dimensional Riemann problem,

ion-acoustic soliton propagation, a Weibel Instability and magnetic reconnection.

A detailed study of Lower-Hybrid Instability (LHDI) in Field-Reversed Configu-

rations (FRCs) is performed. The strong azimuthal electron flow in the FRC causes

LHDI, which can be captured if the ion-gyroradius is well resolved. The LHDI is

known to be a possible source of anomalous resistivity in many plasma configura-

tions. The study is concluded with a analysis of the LHDI in the simpler Harris

current sheet configuration. It is seen that the short wavelength LHDI sets in late

but then grows very rapidly, soon destroying the confinement of the plasma.
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Chapter 1

TWO-FLUID MODELS

1.1 Introduction

A plasma is a gas that is significantly ionized, through heating or photo-ionization,

and thus is composed of electrons, ions and neutrals. Plasmas are usually permeated

by electromagnetic (EM) fields. In addition to long range smoothed or averaged

EM fields there are localized short range micro-fields on individual particles. The

long range fields act like body forces while the short range fields like collisions. The

micro-fields are responsible for the transmission of pressure and viscous forces, for the

conduction of particle energy, and for diffusion between components of the plasma[41].

The dynamical behavior of a plasma is more complex than that of a neutral fluid.

This dynamical complexity has two main origins:

1. The dominant form of inter particle interaction in a plasma, electrostatic Coulomb

scattering, is so weak that the mean free paths of the electrons and ions are often

on the same order or even larger than the plasma’s macroscopic length scales.

This allows the particle’s distribution function to deviate significantly from the

equilibrium Maxwellian forms, and in some cases become highly anisotropic.

2. The electromagnetic fields in a plasma are of long range. This allow particles to

couple to each other electromagnetically and act in concert and lead to complex

collective dynamics. Much of kinetic theory of plasmas consists of study of these

collective modes of interaction.
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The dynamical behavior of plasmas is also strongly dependent on frequency. At

the lowest frequency the motion of the electrons and ions are locked together by

electrostatic forces and the plasma behaves like an electrically conducting fluid. This

is the regime of magnetohydrodynamics (MHD). At somewhat higher frequencies the

electrons and ions can move relative to each other, behaving like two separate, inter-

penetrating fluids. At still higher frequencies the distribution function of the plasma

species is driven by anisotropies in the velocity space. This regime is best described

by the collisionless Boltzmann equation or Vlasov equation of kinetic theory.

In this thesis numerical schemes are developed to simulate two-fluid plasma dy-

namics, i.e physics in the intermediate frequency regime between MHD and full kinetic

theory. In the Two-Fluid models each plasma species is described by a set of fluid

equations with electromagnetic body forces. The electromagnetic fields are modeled

using Maxwell equations of electromagnetism. The fluids and EM fields are coupled

through source terms: Lorentz forces acting on the fluid couple the fluid to fields and

currents and charges appearing in Maxwell equations couple the fields to the fluid.

1.2 Examples of plasmas and their density-temperatures regimes

The density-temperature regime in which matter behaves as a non-relativistic plasma

is shown in Fig. 1.1. In this figure the density-temperature ranges of various plasma

applications are also indicated. For example, the interstellar medium and the solar

wind filling up the solar system are examples of low density plasmas. In these regimes

the two-fluid and kinetic effects are particularly important. Fusion devices are ex-

amples of high density-temperature plasmas. Most fusion experiments are modeled

using low-frequency MHD models, although high-frequency two-fluid and kinetic ef-

fects are important to understand effects of turbulence. The dissipation provided by

turbulence is commonly termed “anomalous resistivity” and is a poorly understood

aspect of plasma physics. The density of the plasma in the Sun’s core is much higher

and in such regimes the MHD approximation is appropriate. The “Degenerate” la-
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Figure 1.1: The density-temperature regime in which matter, made largely of hydro-

gen, behaves like a non-relativistic plasma. The boundaries of the the plasma regime

are marked by thick lines. The number density of electrons, n, is plotted horizontally

at the top, and the corresponding mass density ρ is plotted at the bottom. The tem-

perature T is plotted at the left in units of degree Kelvin and at the right edge kBT

is plotted in units of electron volts, where kB is Boltzmann’s constant.
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Plasma ne T B λD ND ωp ωc rL

(m−3) (K) (T) (m) (s−1) (s−1) m

Gas Discharge 1016 104 – 10−4 104 1010 – –

Tokamak 1020 108 10 10−4 108 1012 1012 10−5

Ionosphere 1012 103 10−5 10−3 105 108 106 10−1

Magnetosphere 107 107 10−8 102 1010 105 103 104

Solar Core 1032 107 – 10−11 1 1018 – –

Solar Wind 106 105 10−9 10 1011 105 102 104

Table 1.1: Typical density, temperature and magnetic field strength of plasmas in

various environments. The various plasma parameters and their meanings are defined

in the text.

bel marks the boundary at which the electrons are so tightly packed together that

quantum effects become important.

Table 1.2 lists order of magnitude values of density, temperature and magnetic

field strength for various plasma environments. Using these the values of some basics

plasma parameters are also listed. These parameters determine the length and time

scales at which physical processes occur. Some of these parameters appear naturally in

the two-fluid equations as is shown in a later section. Below, some plasma parameters

are listed and their importance to two-fluid physics is briefly described.

• Plasma frequency. The plasma frequency, ωp, is defined by

ω2
p =

nq2

ε0m
=

ρ

ε0

( q

m

)2

. (1.1)

where ρ is the mass density.
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• Cyclotron Frequency. The cyclotron frequency, ωc, is defined by

ωc =
qB

m
. (1.2)

• Thermal Velocity. The thermal velocity, vT , is defined by

v2
T =

2T

m
=

2p

ρ
. (1.3)

Often the factor 2 is replaced by γ or 1.

• Deby Length. The Deby length, λD, is defined by

λD =

√
ε0T

nq2
=
vT

ωp

. (1.4)

• Lamor Radius. The Lamor radius, rL, is defined by

rL =
vT

ωc

. (1.5)

• Plasma Beta. The plasma beta, β, is defined by

β =
p

B2/(2µ0)
. (1.6)

• Skin Depth. The skin-depth (inertial length), lc, is defined by

lc = c/ωp (1.7)

• Alfven Velocity. The Alfven velocity, vA, is defined by

vA =
B√
µ0mn

. (1.8)

From the figure and the table it is evident that plasmas densities, temperature and

magnetic fields differ by several orders of magnitudes between environments. Thus,

various plasma models have been proposed to study the physics occurring in each
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environment. The Two-Fluid model is applicable to those environments in which

the plasma is magnetized and has skin-depths and Lamor radii comparable to the

macroscopic length scales. For example, Two-Fluid effects are important in the solar

wind, the Magnetosphere and certain fusion devices like the Field Reversed Configu-

rations (FRCs). Even in regimes in which the skin depth is small Two-Fluid effects

can lead to micro-instabilities which in turn cause turbulence and anomalous resistiv-

ity. Anomalous resistivity, although poorly understood, is an important factor in the

design of modern fusion devices like FRCs and Spheromaks. In a later chapter micro-

instabilities, like the Lower Hybrid Drift instability, a common cause of anomalous

resistivity, are studied in detail. It is shown that using a low-frequency model like

MHD is not appropriate for such instabilities, as these instabilities never show up in

MHD models.

1.3 Vlasov-Maxwell equations and the derivation of fluid approxima-
tions

In this thesis numerical methods for low-collisional plasmas are developed. Discrete

particle interactions, i.e. collisions, are neglected and collective interactions are as-

sumed to dominate the plasma dynamics. In this case the dynamics is described using

the Vlasov-Maxwell equations. These describe the temporal evolution of a particle

distribution function in a six dimensional spatial and velocity space. The distribu-

tion function evolves under the influence of electromagnetic forces which are in turn

determined by moments of the distribution function taken over velocity space. Each

species in the plasma is described by a distribution function f(x,v, t) defined such

that f(x,v, t)dxdv is the number of particles located in a phase-space volume element

dxdv. As long as discrete particle interactions are negligible the distribution function

evolves according to the Vlasov equation[13] which, in the non-relativistic case, may
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be written as

∂f

∂t
+ vj

∂f

∂xj

+
q

m
(Ej + εkmjvkBm)

∂f

∂vj

= 0. (1.9)

Here E is the electric field, B is the magnetic flux density, q and m are the charge

and mass of the plasma species and εkmj is the completely anti-symmetric Cevi-Levita

pseudo-tensor which is defined to be ±1 for even/odd permutations of (1, 2, 3) and

zero otherwise. Summation over repeated indices is assumed. A number of auxiliary

quantities are defined by taking moments of the distribution in velocity space. For

use in Maxwell equations the number density n(x, t) and mean velocity u(x, t) are

required, and are defined by

n ≡
∫
fdv (1.10)

uj ≡ 1

n

∫
vjfdv, (1.11)

where dv = dv1dv2dv3 represents a volume element in velocity space. The electro-

magnetic fields in Eq. (1.9) are determined using Maxwell equations[17]

∇× E = −∂B
∂t

(1.12)

∇×B = µ0J +
1

c2
∂E

∂t
(1.13)

∇ · E =
%c

ε0

(1.14)

∇ ·B = 0. (1.15)

Here µ0 and ε0 are the permeability and permittivity of free space, c = (µ0ε0)
−1/2 is

the speed of light and, %c and J are the charge density and the current density defined

by

%c ≡
∑

qn (1.16)

J ≡
∑

qnu. (1.17)
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The summations in Eqs. (1.16) and (1.17) are over all species present in the plasma.

Eqs. (1.9) to (1.17), referred to as the Vlasov-Maxwell equations, completely deter-

mine the evolution of the distribution function for each plasma species and provide a

complete description of plasma dynamics.

In the high-frequency regime of kinetic theory the full Vlasov-Maxwell equation

must be solved to capture the complete physics, specially collective phenomena like

collisionless damping, wave-wave, wave-particle interactions and micro-turbulence.

Jean’s theorem, first developed in the context of stellar dynamics, shows that follow-

ing individual particle orbits in a self-consistent manner is equivalent to solving the

Vlasov-Maxwell equations. This is the approach taken in Particle-in-Cell (PIC) algo-

rithms, in which particle positions and velocities are advanced using Newton’s laws

of motion and the electromagnetic fields are evolved self-consistently from Maxwell

equations. Presently, efficient PIC codes are limited to simple geometries and small

space-time scales due to the heavy demand they place on computation resources. Di-

rect discretization of the Vlasov-Maxwell equations has also been attempted. The

basic idea is to descretize the velocity space by carefully selecting a few velocity space

“points”, i.e. directions of particle propagation. The resulting system of equations

depends only spatial coordinates and is hyperbolic and the algorithms described in

the next chapter can be directly applied. This method is similar in spirit to the

discrete-ordinates method used for neutron transport and radiative transfer applica-

tions.

For many applications, however, the full physics described by the Vlasov-Maxwell

equations is not needed. Further, as the distribution function evolves in a seven

dimensional space numerical solutions of the Vlasov-Maxwell equations for realistic

length and time scales are not computationally feasible. To reduce the number of

independent variables fluid approximations are derived by taking moments of the

Vlasov equation over velocity space. Although the infinite-set of moment equations

is formally equivalent to the full Vlasov equation, in practice the moment series is
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terminated after just a few terms. This set of finite moment equation needs to be

supplemented by closure relations which then completely determine the evolution

of the retained moments. The selection of closure relations is difficult and usually

determines what physics, specially the kinetic effects, that are captured by the reduced

model. In a certain sense the closure relations are equivalent to assuming that the

distribution function has certain symmetries resulting from weakly collisional effects.

For example, the Two-Fluid model presented below assumes the distribution function

is Maxwellian, while the Ten-Moment model assumes the distribution function is a

Gaussian. It is also possible to use the moment-equations to develop a complete model

for the Vlasov-Maxwell equation. The idea here is to write the distribution function

as f = f0 + δf , where f0 is a symmetric equilibrium function like a Maxwellian or

a Gaussian. The moment equations (Two-Fluid or Ten-Moment) can then be used

to determine f0 and a PIC code can be used to determine δf . This method, called

the Quiet-PIC method, was first proposed by Barnes, and is more efficient (and less

noisy) than the full PIC, specially if the solution is not far from equilibrium at most

spatial locations.

As in classical theory of the Boltzmann equation there are a number of ways in

which moments are taken of the Vlasov equation. The simplest is to multiply the

Vlasov equation in turn by tensors defined by products of the velocities and integrate

over the velocity space. For example, in addition to the number density and mean

velocities defined by Eqs. (1.10) and (1.11) the following higher order moments are

defined.

Pij ≡ m

∫
vivjfdv (1.18)

Qijk ≡ m

∫
vivjvkfdv (1.19)

Kijkl ≡ m

∫
vivjvkvlfdv. (1.20)

These definition are most convenient to derive the moment equations although they
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do not have a convenient physical interpretation. In classical fluid mechanics the

following related, and physically more relevant, definition are used.[12].

Pij ≡ m

∫
(vi − ui)(vj − uj)fdv (1.21)

Qijk ≡ m

∫
(vi − ui)(vj − uj)(vk − uk)fdv (1.22)

Kijkl ≡ m

∫
(vi − ui)(vj − uj)(vk − uk)(vl − ul)fdv. (1.23)

The fluid equations displayed below suggest, for example, interpreting Pij as a fluid

stress tensor and Qijk as a heat flow tensor. As is easily shown, the moment set

Eqs. (1.18)–(1.20) and Eqs. (1.21)–(1.23) are related by

Pij = Pij + nmuiuj (1.24)

Qijk = Qijk + u[iPjk] − 2nmuiujuk (1.25)

Kijkl = Kijkl + u[iQjkl] − u[iujPkl] + 3nmuiujukul. (1.26)

In these equations square brackets around indices represent the minimal sum over per-

mutations of free indices needed to yield completely symmetric tensors. For example

u[jPik] = ujPik + uiPkj + ukPji.

Multiplying the Vlasov equation in turn with 1, vi, vivj, vivjvk, and integrating

over velocity space leads to the set of exact moment equations listed below

∂n

∂t
+

∂

∂xj

(nuj) = 0 (1.27)

m
∂

∂t
(nui) +

∂Pij

∂xj

= nq(Ei + εijkujBk) (1.28)

∂Pij

∂t
+
∂Qijk

∂xk

= nqu[iEj] +
q

m
ε[iklPkj]Bl (1.29)

∂Qijk

∂t
+
∂Kijkl

∂xl

=
q

m
(E[iPjk] + ε[ilmQljk]Bm) (1.30)

Equations (1.41)–(1.30) are 20 equations (1+3+6+10) for 35 unknowns (Kijkl has 15

independent components). In general any finite set of exact moment equations will

always contain more unknowns than equations. To reduce the number of unknowns
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and make the system determinate closure relations must be employed. These relations

express some of the unknowns in terms of others. With appropriate closure relations

the set of moment equations is termed as a hydrodynamic or fluid approximation. The

accuracy of hydrodynamic approximations is limited by the accuracy of the closure

relations used.

Developing closure relations is difficult. In general the closures developed are spe-

cific to certain classes of problems and hence are not applicable in all situations. For

example, Chew Goldberg and Low (CGL) have developed a set of closures relations

for magnetized plasmas by expanding the distribution function using the inverse mag-

netic field as a small parameter. This is analogous to the Chapman-Enskog expansion

for neutral fluids in which the mean free path is used as a small parameter. Obviously,

this approach only works when the magnetic field is large and a power-series in 1/B

converges rapidly.

Examining the moment equations listed above it is clear that in order to make

the system determinate Kijkl must be expressed in terms of the other lower-order

moments. One approach would be to use the CGL scheme and develop closures specific

to magnetized plasmas. In this case the plasma generalization of Grad’s 13-moment

equations are obtained. A simpler approach is to simply set Kijkl,l = 0, where comma

represents partial derivatives. With this Eqs. (1.41)–(1.30) with Maxwell equations

Eqs. (1.12) and (1.13) form a closed set of balance laws. This model is called an ideal

Two-Fluid twenty-moment model or a Twenty-moment model for short. For a two

species plasma (say an electron and one ion species) it has 2× 20 + 6 = 46 equations.

The system of equations are simplified further if we retain only the first 10 mo-

ments and use a closure relation for Qijk. This reduced set of equations is called a

Two-Fluid ten-moment model or a Ten-moment model for short. For a two species

plasma it has 2 × 10 + 6 = 26 equations. The Ten-Moment model can properly ac-

count for the anisotropic pressure tensor effects which are important in several plasma

applications. For example, it is thought that anisotropic pressure tensor effect (also
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called Finite-Lamor Radius (FLR) effects in the plasma science community) can damp

certain instabilities. This is particularly relevant to fusion devices like FRCs in which

fluid theories that ignore the FLR effects predict the FRC to be unstable while they

are found to be stable in experiments. In Appendix[I] explicit forms of the flux and

sources for the Ten-Moment model are listed. Some results of solutions to Riemann

problems for the Ten-Moment model are also presented.

Although the Twenty- or Ten-moment models capture more physics which may

be important in certain plasma regimes, in this thesis a further simplification is made

to make the computational problem more tractable. These simplification, described

in the following section, reduce the number of fluid equations for each species to 5

and thus for a two species plasma form a 2× 5+6 = 16 equation model. Throughout

the rest of the thesis this reduces model is called the ideal Two-Fluid model or the

Two-Fluid model for short.

1.4 The ideal Two-fluid model

As indicated in the previous section a closed set of Twenty- or Ten-moment equations

are obtained obtained by using appropriate closure relations. Although the numerical

methods developed in the next chapter can be directly applied to the Twenty- or Ten-

moment model the large number of equations makes severe demands on computational

resources. In this section a simpler ideal Two-Fluid five-moment model (or simply

ideal Two-Fluid model) is derived in which the pressure tensor is replaced by a scalar

pressure and heat conduction is neglected. For many physical systems of interest,

specially in space and fusion plasma physics, this is an adequate description.

With a scalar pressure defined by p ≡ Pii/3 the pressure tensor is written as

Pij = pδij + Πij, (1.31)

where Πij is a trace free stress tensor. The stress tensor Πij represents anisotropic

effects (FLR effects) and in the presence of weak collisions, which have an isotropizing
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effect, are very small. Setting Πij = 0 the momentum equation Eq. (1.28) reduces to

m
∂

∂t
(nuk) +

∂

∂xj

(pδjk +mnukuj) = nq(Ek + εijkuiBj) (1.32)

The continuity equation Eq. (1.41) and moment equation Eq. (1.42) are 4 equations

for the 5 unknowns n, ui, p. To get an equation for the scalar pressure the pressure

equation Eq. (1.29) is contracted, and the approximation Πij = 0 and Qijk,k = 0 are

used to get

∂p

∂t
+ ui

∂p

∂xi

=
5

3
pi
∂ui

∂xi

. (1.33)

Another form of the equation is obtained by multiplying the Vlasov equation by vivi

and integrating over velocity space to get

∂E
∂t

+
∂

∂xj

(
1

2
Qkkj + ukPkj + ujE

)
= qnujEj. (1.34)

where

E ≡ 1

2
m

∫
vivifdv. (1.35)

Equation (1.34) indicates that E is has an interpretation as total energy. Using

Eq. (1.35) it is easily shown that the scalar pressure and total energies are related

by

E =
3

2
p+

1

2
mnuiui. (1.36)

This equation (and Eq. (1.33)) also shows that in the Two-Fluid model each plasma

species is an ideal fluid with gas-constant γ = 5/3. Assuming a scalar pressure and

that heat fluxes vanish, the energy equation reduces to

∂E
∂t

+
∂

∂xj

(ujp+ ujE) = qnujEj. (1.37)

The set of equations Eq. (1.41), Eq. (1.42) and Eq. (1.33) or Eq. (1.37) is the ideal

Two-Fluid model and for a plasma with s species contains 5s+ 6 balance laws.
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In summary, the two-fluid equations are a set of Euler equations for each species

s in the plasma which, in non-conservative form, are written as

∂ns

∂t
+∇ · (nsus) = 0 (1.38)

msns

(
∂us

∂t
+ us · ∇us

)
= −∇ps + qsns(E + us ×B) (1.39)

∂ps

∂t
+ us · ∇ps = −γps∇ · us. (1.40)

The electromagnetic fields are governed by Maxwell equations of electromagnetism

Equations (1.12)–(1.15). Here ns is the number density, us is the fluid velocity, ps is

the fluid pressure, ms is the particle mass, qs is the particle charge, E is the electric

field, B is the magnetic flux density, µ0 and ε0 are the permeability and permittivity

of free space, c = (µ0ε0)
−1/2 is the speed of light and, %c and J are the charge density

and the current density defined by Eqs. (1.16) and (1.17). The fluid equations can

also be written in conservative form as follows

∂n

∂t
+

∂

∂xj

(nuj) = 0 (1.41)

m
∂

∂t
(nuk) +

∂

∂xj

(pδjk +mnukuj) = nq(Ek + εkijuiBj) (1.42)

∂E
∂t

+
∂

∂xj

(ujp+ ujE) = qnujEj. (1.43)

In these equations the subscript s has been dropped. The total fluid energy E is

defined by Eq. (1.36).

Numerical methods are developed for the ideal Two-Fluid model in the following

chapter. These same numerical methods can also be applied to the Twenty- and

Ten-moment models and further important physics captured.

1.5 Two-Fluid effects

As mentioned in the introduction the usual approach in plasma physics, specially

for analytical stability studies of fusion devices, is to use single fluid theory as it is
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analytically more tractable than the more accurate Two-Fluid theory. In this section

plasma parameters are derived at which Two-Fluid effect as studied in this thesis

become important and single-fluid theory is no longer adequate.

The momentum equation, Eq. (1.42), is written in the non-conservative form as

m

(
∂u

∂t
+ u ·∇u

)
= −∇p

n
+ q(E + u×B), (1.44)

where a scalar pressure is assumed. Introducing scalar and vector potentials, φ, A,

in terms of which the electric and magnetic fields are expressed as

E = −∇φ+ ∂A/∂t, (1.45)

B = ∇×A, (1.46)

the divergence equations, Eqs. (1.14) and (1.15), are identically satisfied. Defining a

generalized momentum, P ≡ mu + qA and a generalized vorticity, Ω ≡ ∇ × P =

mω + qB, where ω = ∇× u is the fluid vorticity, Eq. (1.44) is written as

∂P

∂t
− u×Ω = −∇p

n
+ ∇(mu2/2 + φ), (1.47)

which is a balance law for the generalized momentum[37]. The vector identity

∇(u2/2) = u ·∇u + u×∇u (1.48)

is used to derive Eq. (1.47). Taking the curl of Eq. (1.47) gives

∂Ω

∂t
−∇× (u×Ω) = −∇× (∇p/n). (1.49)

This equation applies to each species in the plasma and, for example, for a hydrogen

plasma there are two such equations. Equation (1.49) can be compared to the ideal

MHD result

∂B

∂t
−∇× (v ×B) = 0, (1.50)
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where v is the “bulk” or MHD single-fluid velocity, the Hall-MHD result[7]

∂B

∂t
−∇× (ue ×B) = −∇× (∇pe/en), (1.51)

where e is electron charge, and the Euler (neutral) fluid result

∂ω

∂t
−∇× (v × ω) = −∇× (∇p/ρ), (1.52)

where ρ is the mass density. From these equations it is clear that the Two-Fluid

theory spans the complete range from neutral fluids, to MHD to Hall-MHD: B → 0

corresponds to neutral fluid limit, ω → 0 corresponds to MHD limit, whileme/mi → 0

corresponds to Hall-MHD limit.

Examining the generalized vorticity Ω = m(ω + qB/m) it is clear that for Two-

Fluid effects to be important

ω/ωc ≥ O(1), (1.53)

where ωc is the cyclotron frequency defined by Eq. (2.12). Using the fluid thermal

velocity uT ≡
√

2p/(mn) as a reference speed and some reference length L, ω ≈ uT/L

and hence the condition

uT/(Lωc) = rL/L ≥ O(1), (1.54)

where rL ≡ uT/ωc is defined as the Lamor radius, is obtained. Instead of the fluid ther-

mal velocity if the typical speed is assumed to be the Alfven speed1, uA ≡ B/
√
µ0mn,

then the condition

uA/(Lωc) = (c/ωp)/L ≥ O(1), (1.55)

where where ωp is the plasma frequency defined by Eq. (2.11), is obtained.

We can thus conclude that Two-Fluid effects are important when rL/L ≥ O(1)

and/or when l/L ≥ O(1), where l ≡ c/ωp is the skin-depth, i.e., when the Lamor

1This can happen when there is an equipartition between the kinetic, mnu2/2, and electromag-
netic energy B2/(2µ0) + ε0E

2/2 ≈ B2/(2µ0).
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radius and/or the skin depth becomes comparable to the macroscopic length scales

of the plasma. In the limit l/L → 0 a single-fluid MHD description is adequate and

in the limit le/L→ 0, where le is the electron skin depth, a Hall-MHD description is

adequate.

1.6 Divergence constraints in Maxwell equations

At first sight Maxwell equations, Eqs. (1.12)-(1.15), seem to be overdetermined: there

are eight equations for the six field components E and B. It is commonly believed

that the divergence equations, Eqs. (1.14) and (1.15), are simply constraints and if ini-

tially satisfied only the curl equations are sufficient to evolve the EM fields correctly.

Thus, often the divergence equations are simply ignored in numerical electromagnet-

ics. However this is strictly true only for initial value problems, i.e. for problems on

an infinite domain. As Jiang, Wu and Povinelli[18] have shown for initial-boundary

value problems Maxwell equation are in fact not overdetermined and the divergence

equations need to be explicitly included in the solution. Even for numerical solution

to initial value problems, the evolving numerical fields may not satisfy the divergence

equations and hence spurious solutions may be obtained. In this thesis two different

approaches, described below, are used to take the divergence equations into account.

The first approach is to introduce a scalar potential, φ, and a vector potential, A,

in terms of which the EM fields are calculated as

E = −∇φ+ ∂A/∂t, (1.56)

B = ∇×A. (1.57)

Introducing these expressions in Maxwell equations it can be shown that the potentials

satisfy inhomogeneous wave equations

∇2φ− 1

c2
∂2φ

∂t2
=
%c

ε0
, (1.58)

∇2A− 1

c2
∂2A

∂t2
= −µ0J. (1.59)
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In deriving these equation the Lorentz gauge condition

∇ ·A = − 1

c2
∂φ

∂t
(1.60)

is used. Another gauge that can be used is the Coulomb gauge, ∇ · A = 0. With

this the equation for the scalar potential reduces to a Poisson equation. The main

disadvantage of the Coulomb gauge over the Lorentz gauge is that now an elliptic

equation needs to be solved in addition to the hyperbolic fluid equations which is

not convenient for numerical solution. The mixed potential equations are now used

instead of Maxwell equations to advance the EM fields. The inhomogeneous wave

equations can be rewritten as a system of first order equations. In this way a solver

for second order equations is avoided. However, the disadvantage of this approach is

that in three dimensions the two second order equations give 16 first order equations,

thus increasing computation time. Further, the Lorentz gauge condition needs to be

enforced. However, a peculiar feature of the gauge condition is that the derivatives

appearing in it do not appear in the computation of the EM fields. Thus it might

be simpler to apply a “gauge cleaning” procedure at each step. The simulations

performed with this model show that the gauge condition usually is satisfied to within

numerical precision and no such cleaning is needed.

The second approach is to modify Maxwell equations by adding two more field

variables to take into account the two divergence equations. In fact, by introducing

two extra variables Jiang, Wu and Povinelli[18] were able to prove that Maxwell

equations are not overdetermined. However, these authors then went on to derive

second order, so called “curl-curl”, equations in which these extra variables do not

appear. An attractive feature of adding more variables is that modified equations of

hyperbolic type can be obtained, in contrast to the mixed hyperbolic/elliptic type of

the original equations. These perfectly hyperbolic Maxwell equations (PHM) read[28,
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27, 29]

∂B

∂t
+∇× E + γ∇ψ = 0 (1.61)

ε0µ0
∂E

∂t
−∇×B + χ∇φ = −µ0J (1.62)

1

χ

∂φ

∂t
+∇ · E =

%c

ε0
(1.63)

ε0µ0

γ

∂ψ

∂t
+∇ ·B = 0. (1.64)

Here ψ and φ are “correction potentials” and γ and χ are error propagation speeds.

As γ, χ → ∞ the divergence constraints are satisfied exactly. Thus more accurate

solutions can be obtained with large values of these speeds, however at the expense

of larger computational time. Usually γ, χ = c or 2c gives a good compromise be-

tween accuracy and speed. Thus, unlike the mixed-potential formulation the PHM

formulation preserve the divergence constraints only approximately.

A number of simulations were performed to compare the mixed potential and

PHM equations approaches. It was observed that both mixed-potential and PHM

approaches could satisfy the divergence equations to second-order accuracy as needed

by the Wave-Propagation scheme described in the next chapter. In the results pre-

sented the PHM model is used for all simulations.
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Chapter 2

HIGH RESOLUTION WAVE PROPAGATION SCHEME
AND IT GENERALIZATIONS

2.1 Introduction

Inhomogeneous partial differential equations with hyperbolic homogeneous parts are

called balance laws and arise in a large number of physical applications. Balance laws

are put in the generic conservation-law form

∂q

∂t
+∇ · f = s, (2.1)

where q represents the conserved variables, f the fluxes and s the source terms. For

m balance laws in d spatial dimensions q, s ∈ Rm and f ∈ Rm×d. A conservation law

is said to have a hyperbolic homogeneous part if for all unit vectors ω ∈ Rd the flux

Jacobian, A ∈ Rm×m, defined by

A ≡ ∂(f · ω)

∂q
(2.2)

has real eigenvalues and a complete set of right eigenvectors[19, 22]. If, further, the

eigenvalues are all distinct the homogeneous part is called strictly hyperbolic. It can

be shown that the Twenty- and Ten-moment models as well as the Two-Fluid models

have hyperbolic homogeneous parts.

A distinctive property of hyperbolic equations is that the admit discontinuous so-

lutions even if the initial conditions are smooth. Special methods have been developed

to accurately capture such discontinuities. In this thesis the High Resolution Wave

Propagation Scheme[21, 22] is used to solve the ideal Two-Fluid model.

The Wave Propagation scheme belongs to the class of Godunov methods which

rely on the solution of Riemann problems to construct the basic numerical method.
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The essential idea is as follows. The domain is discretized into cells and the solution

in each cell is assumed to be represented by a polynomial. For the base scheme the

polynomials are piece-wise constant in each cell. At each cell interface the solution

in either cell attached to the interface will not be continuous. This discontinuity

is used as an initial condition for a Riemann problem. The solution of the Riemann

problem gives the conserved variables at the interface which are then used to compute

interface fluxes. Once the fluxes are known the solution in each cell is updated by

tallying how much flux flows into the cell. This process is described in detail in the

following sections.

2.2 A class of balance laws

The plasma models discussed in the previous chapter can be all put into the balance

law form Eq. (2.1). In one dimension, for example, the balance law is written as

∂q

∂t
+
∂f(q)

∂x
= s(q). (2.3)

In this section a particular class of such balance laws is studied and it is shown that

the plasma fluid models all belong to this class.

The Two-Fluid model has a hyperbolic homogeneous part, which crudely means

that disturbances propagate as waves with finite speed in the medium. Thus wave-

propagation plays an important role in the physics described by hyperbolic equations.

The presence of source terms, however, significantly affects the dynamics. In plasmas

the source terms for the momentum equations are the Lorentz forces which act like

body forces on the fluid. Further, as the sources themselves are evolving due to the

changing electromagnetic (EM) field complex dynamics can occur. To classify the

mathematical behavior of the balance law, the ordinary differential equation (ODE),

∂q

∂t
= s(q), (2.4)

obtained by setting to zero all spatial derivative in Eq. (2.3), is considered. From the

theory of ODEs the nature of the solutions to Eq. (2.4) can be determined from the
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mathematical structure of the source Jacobian defined by

M ≡ ∂s(q)

∂q
. (2.5)

If the ODE is linear then the complete solution type (and the solution itself) can be

determined by examining the eigensystem of M which is now a constant matrix. If all

eigenvalues are real, the system admits decaying (growing) solutions if the eigenvalues

are positive (negative). If the eigenvalues are all imaginary, the solution is a superpo-

sition of harmonics with frequencies given by the magnitude of the eigenvalues. For

complex eigenvalues, the solution is a combination of decaying/growing oscillations.

The case when the eigenvalues are all real has been widely studied under the class

of “relaxation systems”. In such systems the decay rate can be much faster than

the fastest wave speed of the homogeneous hyperbolic equation and thus the time

step in any algorithm needs to be much smaller to capture the effect of the source

terms properly. Examples of relaxation systems are reacting flows and large Knudsen

number fluid flows in micro-mechanical machine (MEMs) devices.

The case when the eigenvalues are all imaginary has not been not widely studied,

at least to the knowledge of the author. Such systems, in contrast to relaxation sys-

tems, do not have any dissipation and, on the contrary, admit dispersive solutions.

This dispersion can be difficult to capture correctly in a numerical scheme as refining

the grid excites waves of smaller and smaller wavelengths (i.e. of higher and higher

frequencies). Further, the dispersion combined with nonlinear waves from the hyper-

bolic part can result in interesting nonlinear phenomena like like solitons. Examples

of soliton propagation in the Two-Fluid model is shown in the next chapter.

The eigenvalues of the source Jacobian have units of inverse time. Let a typical

eigenvalue be iω, where i =
√−1. This eigenvalue provides a typical time scale,

Tc = 2π/ω, which represents the time period at which the solution can oscillate. Let

c be a typical wave propagation speed of the homogeneous system (i.e an eigenvalue

of the flux Jacobian ∂f/∂q). If Ts is smaller than ∆x/c, where ∆x is the grid spacing,
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the time steps needs to be much smaller than that determined from the wave speed

c alone. Further, if the oscillation is to be properly resolved the time step needs to

be a fraction of Ts. Thus, as in relaxation systems, the source terms can severely

restrict the time-step. Unlike the relaxation system, however, where methods have

been developed to overcome this restriction, smaller time steps must be used if the

oscillations are not to be damped out. Further, the source term now also provides a

typical length scale Ls = c/ω which must be resolved to capture the complete physics

correctly.

The following model equations, Euler equation with a source, is a simple example

of a nonlinear balance law with dispersive source terms.

∂

∂t




ρ

ρu

ρv

ρw

E




+
∂

∂x




ρu

ρu2 + p

ρuv

ρuw

(E + p)u




=




0

λρ(vbz − wby)

λρ(wbx − ubz)

λρ(uby − vbx)

0




(2.6)

where

E =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (2.7)

and b = b(x) is a spatially dependent vector and λ is a constant. The source Jacobian

of this system is

M =




0 0 0 0 0

0 0 λbz −λby 0

0 −λbz 0 λbx 0

0 λby −λbx 0 0

0 0 0 0 0




(2.8)

and has eigenvalues 0, 0, 0,±iλb, where b is the magnitude of b. This equation is a

good model of the full Two-Fluid equations and shows some of the same qualitative
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properties. The numerical methods developed in this chapter are applied to this

equation and some results presented. Later in this chapter this model is referred to

as the dispersive Euler equations.

2.2.1 The Two-Fluid source terms

Collecting the terms that have sources in the full Two-Fluid equation and assuming

that the advection terms vanish (i.e. all spatial derivatives vanish) the following

ordinary differential equation

dQ

dt
= S (2.9)

is obtained, where Q = [ue, ve, we, ui, vi, wi, Ex, Ey, Ez] and

S =




re(Ex + veBz − weBy)

re(Ey + weBx − ueBz)

re(Ez + ueBy − veBx)

ri(Ex + viBz − wiBy)

ri(Ey + wiBx − uiBz)

ri(Ez + uiBy − viBx)

−(reρeue + riρiui)/ε0

−(reρeve + riρivi)/ε0

−(reρewe + riρiwi)/ε0




(2.10)

Here the subscripts α = {e, i} stand for electron and ion variables, rα ≡ qα/mα and

uα, vα, wα represent the components of the velocity vector. The energy equations are

not included in the analysis as energy does not appear in the source terms explicitly.

Further, for the Ten-moment model the pressure equation, Eq. (1.29), is decoupled

from the other equations for vanishing advection terms and can be treated separately.

From Eq. (2.9) it is clear that S is linear in Q (as there are no source terms for

the density and magnetic field) and hence the solutions of Eq. (2.9) are classified by
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examining the eigenvalues of the source Jacobian J. Using a computer algebra system

like Maple it can be proved that the non-zero eigenvalues of J are all purely imaginary.

Defining the plasma frequency, ωpα, and cyclotron frequency, ωcα, by

ωpα =
√
nαq2

α/ε0mα, (2.11)

ωcα = qαB/mα, (2.12)

the first three eigenvalues of J are 0,±iωp, where ω2
p = ω2

pe + ω2
pi and i =

√−1. The

other six eigenvalues are the roots of a sixth order polynomial with imaginary roots.

The above analysis shows that the source terms of the Two-Fluid model are not

dissipative but describe undamped oscillations. This has some important implications

for the numerical methods that can be used for the solution of the full (with advection

term) system. First, low order explicit time stepping schemes cannot be used as these

are unstable to the oscillation equations. Second, if the physics is to be resolved then

several time steps must be taken per oscillation. Finally, in the f-wave approach of

LeVeque described further on the source terms cannot be directly incorporated in the

Riemann solver as the resulting scheme is unstable. As shown later the quality of the

numerical solution strongly depends on the numerical scheme used to solve the ODE

Eq. (2.9). In summary the Two-Fluid equations do not have any dissipative terms

and can hence model only ideal effects.

2.3 High Resolution Wave Propagation Scheme

Inhomogeneous partial differential equations with hyperbolic homogeneous parts are

called balance laws and arise in a large number of physical applications. Balance laws

are put in the generic divergence form

∂q

∂t
+∇ · f = s, (2.13)

where q represents the conserved variables, f the fluxes and s the source terms. For

m balance laws in d spatial dimensions q, s ∈ Rm and f ∈ Rm×d. A conservation law
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is said to have a hyperbolic homogeneous part if for all unit vectors ω ∈ Rd the flux

Jacobian, A ∈ Rm×m, defined by

A ≡ ∂(f · ω)

∂q
(2.14)

has real eigenvalues and a complete set of right eigenvectors[22, 19]. If, further,

the eigenvalues are all distinct the homogeneous part is called strictly hyperbolic.

It can be shown that the five-moment ideal Two-Fluid equations have hyperbolic

homogeneous parts. It can also be shown that higher-moment approximations to the

Vlasov equations are also hyperbolic. Hence the high resolution wave-propagation

method, briefly described below, can be directly applied to such equations. For a

complete description of this method see LeVeque[2, 21, 22].

2.3.1 First order scheme

In two dimensions a homogeneous hyperbolic equation is written as

∂q

∂t
+
∂f1
∂x

+
∂f2
∂y

= 0, (2.15)

where f1 and f2 are the fluxes in the X and Y direction respectively. This equation

is discretized on a rectangular domain Ω ∈ [xa, xb] × [ya, yb] by introducing cells

Iij = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2], where xi−1/2 and yj−1/2 are coordinates along

cell edges and (xi, yi), where xi ≡ (xi−1/2 + xi+1/2)/2 and yj ≡ (yj−1/2 + yj+1/2)/2,

are the coordinates of the cell center. Integrating the conservation law Eq. (2.15) over

cell Iij and from time tn to tn+1 the update formula

Qn+1
ij = Qn

ij −
∆t

∆x

(
[F1]

n+1/2
i+1/2,j − [F1]

n+1/2
i−1/2,j

)

− ∆t

∆y

(
[F2]

n+1/2
i,j+1/2 − [F2]

n+1/2
i,j−1/2

)
(2.16)

is obtained. In this expression Qn
ij represents the cell average

Qn
ij ≈

1

∆x∆y

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

q(x, y, t)dxdy, (2.17)
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∆x ≡ xi+1/2 − xi−1/2, ∆y ≡ yj+1/2 − yj−1/2, ∆t ≡ tn+1 − tn and [F1,2] are numerical

fluxes at the cell interfaces defined as

[F1]
n+1/2
i−1/2,j ≈

1

∆t

∫ tn+1

tn

f1
(
q(xi−1/2, yj, t), xi−1/2, yj

)
dt, (2.18)

[F2]
n+1/2
i,j−1/2 ≈

1

∆t

∫ tn+1

tn

f2
(
q(xi, yj−1/2, t), xi, yj−1/2

)
dt. (2.19)

Equation (2.16) is a general update formula for finite volume schemes and several

different methods can be constructed by selecting various approximations for the

numerical fluxes. In this paper a specific finite volume method, the high-resolution

wave propagation method, introduced by LeVeque is used. To introduce this method

it should be first noted that at a given cell interface the value of the cell averages in

the cells sharing that edge will be, in general, discontinuous. This suggest that the

numerical flux at the cell edge be determined by solving a Riemann problem at that

edge.

The Riemann problem is an initial value problem

∂q

∂t
+
∂f1
∂x

= 0, x ∈ R (2.20)

with initial conditions q(x < 0, 0) = ql and q(x > 0, 0) = qr, where ql,r are constant

vectors. For linear hyperbolic systems the Riemann problem has exact solutions. For

nonlinear problems a linearization is introduced to obtain solutions valid around x = 0

for short times interval. Assuming that Eq. (2.20) is a linear hyperbolic equation it is

written as

∂q

∂t
+ A1

∂q

∂x
= 0, (2.21)

where A1 is the flux Jacobian and is constant for the assumed linear system. Let lp,

rp and sp be the left eigenvectors, right eigenvectors and eigenvalues of A1. As the

system is hyperbolic the eigenvalues must be all real and the eigenvectors are assumed

to be orthonormal. Multiplying by the left eigenvector lp a system of uncoupled wave
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equations

∂wp

∂t
+ sp∂w

p

∂x
= 0, (2.22)

is obtained, where wp ≡ lp · q. This has solutions wp(x, t) = wp
0(x − spt), where

w0(x) = lp · q(x, 0). Once wp(x, t) is determined q(x, t) =
∑

pw
prp and hence the

Riemann problem for linear systems (or linearized systems) is solved exactly.

In the wave propagation method the solution to the Riemann problem at each cell

interface is used to derive the following approximation to the numerical fluxes

[F1]i−1/2,j =
1

2

(
[f1]i,j + [f1]i−1,j

)
+

1

2

(A+
1 ∆Qi−1/2,j −A−

1 ∆Qi−1/2,j

)
. (2.23)

Introducing this expression in the update formula along with a analogous expression

for the Y direction numerical flux gives

Qn+1
ij = Qn

ij −
∆t

∆x

[A+
1 ∆Qi−1/2,j +A−

1 ∆Qi+1/2,j

]

− ∆t

∆y

[A+
2 ∆Qi,j−1/2 +A−

2 ∆Qi,j+1/2

]
. (2.24)

In these expressions the fluctuations A±
1 ∆Qi−1/2 (dropping the j subscript) stand for

A−
1 ∆Qi−1/2 =

∑

p:sp
i−1/2

<0

Zp
i−1/2 +

1

2
Zi−1/2 (2.25)

A+
1 ∆Qi−1/2 =

∑

p:sp
i−1/2

>0

Zp
i−1/2 +

1

2
Zi−1/2 (2.26)

where

Zp
i−1/2 = lpi−1/2 ·

(
[f1]i − [f1]i−1

)
rp
i−1/2 (2.27)

and

Zi−1/2 =
∑

p:sp
i−1/2

=0

Zp
i−1/2. (2.28)
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In deriving Eq. (2.24) the identity

A−
1 ∆Qi−1/2 +A+

1 ∆Qi−1/2 =
∑

p

Zp
i−1/2 = [f1]i − [f1]i−1 (2.29)

which follows from the definition of Zp
i−1/2 (see Eq. (2.27)) is used. The eigenvectors

rp
i−1/2, l

p
i−1/2 and the eigenvalues sp

i−1/2 needed in these expressions are computed using

the flux Jacobian at the cell interfaces. For linear system this eigensystem is constant

and does not depend on the solution. For nonlinear systems an appropriate averaging

must be used before determining the eigensystem. In the simulations presented here

Roe averages [34] are used for the Euler equations. Unlike conventional Godunov

schemes the wave propagation method presented above can also be applied directly

to situations in which the fluxes explicitly depend on spatial coordinates. Further, it

is not necessary that Roe averages be used (or even exist) for the hyperbolic system

being solved: simple arithmetic averages are usually sufficient. It can be shown that

even when Roe averages are not available the scheme continues to be conservative[2].

Further, if Roe averages are used (or the system is linear) it can be shown that the

zero wave, Zi−1/2, vanishes.

2.3.2 High resolution corrections

The scheme Eq. (2.24) is only first order accurate. To achieve second order accuracy

high resolution corrections are added. These corrections are derived by taking into

account second order terms in a Taylor series expansion of the conserved variables.

The scheme Eq. (2.24) is modified to read

Qn+1
ij = Qn

ij −
∆t

∆x

[A+
1 ∆Qi−1/2,j +A−

1 ∆Qi+1/2,j

]

− ∆t

∆y

[A+
2 ∆Qi,j−1/2 +A−

2 ∆Qi,j+1/2

]

− ∆t

∆x

(
[F̃1]i+1/2,j − [F̃1]i−1/2,j

)

− ∆t

∆y

(
[F̃2]i,j+1/2 − [F̃2]i,j−1/2

)
, (2.30)



30

where [F̃1]i−1/2 (dropping the j subscript) is a correction flux given by

[F̃1]i−1/2 =
1

2

∑
p

sign(sp
i−1/2)

(
1− ∆t

∆x
|sp

i−1/2|
)
Zp

i−1/2. (2.31)

With this correction the high resolution wave propagation method is equivalent to

the standard Lax-Wendroff method. Although the scheme Eq. (2.30) is second order

accurate spurious oscillations can occur at or near discontinuities. The scheme can

be limited to reduce the formal accuracy to first order at discontinuities by replacing

Zp
i−1/2 Eq. (2.31) by a limited wave Z̃p

i−1/2 = Zp
i−1/2φ(θp

i−1/2), where φ(θ) is a suitable

limiter function and

θp
i−1/2 ≡

Zp
I−1/2 · Zp

i−1/2

Zp
i−1/2 · Zp

i−1/2

(2.32)

with I = i− 1 if sp
i−1/2 > 0 and I = i+ 1 if sp

i−1/2 < 0. For the results presented here

the Monotonized Centered limiter, defined by,

φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)) (2.33)

is used. With the limiters the scheme is second order accurate in smooth regions when

the flow is nearly aligned along one coordinate direction. At or near discontinuities

the limiters reduce the scheme to first order accuracy. To make the scheme formally

second order even when the flow is not aligned along a coordinate direction transverse

corrections, discussed below, must be added.

2.3.3 Transverse corrections

In the first order and high resolution correction schemes waves are assumed to prop-

agate normal to the cell interface. However, in multiple dimensions, due to the addi-

tional degrees of freedom, waves may also propagate in transverse directions. To take

this into account transverse corrections are added to the update formula. The solution

of the Riemann problem at cell edge (i− 1/2, j) produces fluctuations traveling into

cells (i, j) and (i − 1, j). For two dimensional problems, however, these fluctuations



31

should also affect the cells (i − 1, j − 1), (i − 1, j + 1), (i, j + 1) and (i, j − 1). To

compute how these cells are affected first define left and right going fluctuations to

which high resolution corrections have been added as

A±
1 ∆Q∗i−1/2 ≡ A±

1 ∆Qi−1/2 ∓
∑

p

sign(sp
i−1/2)

(
1− ∆t

∆x
|sp

i−1/2|
)
Z̃p

i−1/2. (2.34)

Next, to determine how much of each fluctuation travels in the transverse direction the

fluctuations are decomposed using the flux Jacobian in the other coordinate direction.

For example, the left and right going (±X-direction) fluctuations are decomposed

using the Y direction flux Jacobian and vice–versa, i.e.

A±
1 ∆Q∗i−1/2,j = A+

2 A±
1 ∆Q∗i−1/2,j +A−

2 A±
1 ∆Q∗i−1/2,j. (2.35)

Thus, for example, A+
2 A+

1 ∆Q∗i−1/2,j indicates how much of the right going fluctuation

is up going, while A−
2 A+

1 ∆Q∗i−1/2,j indicates how much of it is down going. Note

that Eq. (2.35) is analogous to Eq. (2.29) which describes the splitting of the flux

jump across an interface into fluctuations. As decomposition Eq. (2.35) again requires

the eigenvalues, eigenvectors and, fluctuations it can be called a transverse Riemann

solution. For three-dimensional problems further Riemann problems need to be solved

to determine how much of the transverse waves travel in the third direction[21].

Once the transverse Riemann problem is solved the high resolution correction flux

in Eq. (2.30) is replaced by

[F̃2]i,j+1/2 = [F̃2]i,j+1/2 − ∆t

2∆x
A+

2 A+
1 ∆Q∗i−1/2,j (2.36)

[F̃2]i,j−1/2 = [F̃2]i,j−1/2 − ∆t

2∆x
A−

2 A+
1 ∆Q∗i−1/2,j (2.37)

[F̃2]i−1,j+1/2 = [F̃2]i−1,j+1/2 − ∆t

2∆x
A+

2 A−
1 ∆Q∗i−1/2,j (2.38)

[F̃2]i−1,j−1/2 = [F̃2]i−1,j−1/2 − ∆t

2∆x
A−

2 A−
1 ∆Q∗i−1/2,j. (2.39)

A similar method can be used to decompose the up and down going fluctuations into

the right and left directions. The correction flux [F̃1]i−1/2,j, for example, can then be

modified in a analogous fashion as [F̃2]i,j+1 shown above.
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With the transverse terms included into the update formula the high resolution

wave propagation method is formally second order in space and time for general

smooth two–dimensional flow problems. It should be mentioned that even if the

transverse terms are not used the scheme still gives second order accuracy. However,

with the transverse terms the scheme is stable with Courant numbers up to one. Fur-

ther the solution with and without the transverse terms can be significantly different

in some situations. For example, in the reconnection simulation discussed in Section

3.5 if the transverse terms are not included “magnetic islands”, a numerical artifact,

are observed. With the transverse terms such spurious solutions do not occur.

2.4 Handling source terms

In the high resolution wave propagation method the source terms are handled in two

different ways. The first is to modify Eq. (2.27) to[2]

Zi−1/2 = lpi−1/2 ·
(
[f1]i − [f1]i−1 −∆x[s]i−1/2

)
rp
i−1/2, (2.40)

where [s]i−1/2 is some average value of the source term calculated at the cell inter-

face. Usually simple arithmetic averaging is sufficient. In this approach the source is

directly taken into account while solving the Riemann problem. For solutions near or

at equilibrium this is specially advantageous. However this method suffers from two

disadvantages. The first is that for two dimensional balance laws the source must be

split into two parts s = s1 + s2 such that at equilibrium they satisfy

∂f1
∂x

≈ s1 (2.41)

∂f2
∂y

≈ s2. (2.42)

This may not be possible for all balance laws. However, for the Two–Fluid system

with Maxwell equations replaced by mixed potentials such a splitting can be achieved

although no such splitting exists with the PHM equations. The second disadvantage

is specific to the source terms in the Two–Fluid equations. As the Two–Fluid source
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terms represent undamped oscillations explicit time stepping schemes are unstable.

As the wave propagation method is an explicit single step method the scheme resulting

from using Eq. (2.40) is observed to be unstable.

The other approach is to use operator splitting and solve the homogeneous sys-

tem separately and incorporate the source term by solving the ordinary differential

equation (ODE)

∂q

∂t
= s. (2.43)

To achieve second order accuracy, and advance the complete solution by ∆t, the ODE

is first solved with time step ∆t/2. Then the homogeneous equation is solved with

time step ∆t. Finally the ODE is again solved with time step ∆t/2. Obviously, at

each stage the results from the previous stage are used as initial conditions. This

particular operator splitting scheme is known as Strang splitting. To solve the ODE

Eq. (2.43) any standard ODE solution scheme (second order or higher) can be used.

In this paper a fourth order Runge-Kutta scheme is used. Another approach is to use

the trapezoidal method

q(t+ ∆t) = q(t) +
1

2
(s(q(t)) + s(q(t+ ∆t))) . (2.44)

Using a Taylor series expansion for s(q(t+ ∆t)), after some rearrangements, a semi-

implicit update formula for q is written as

q(t+ ∆t) = q(t) + ∆t

(
I− ∆t

2

∂s

∂q

)−1

s(q(t)). (2.45)

Here ∂s/∂q is the source Jacobian and I is the unit matrix. Both these ODE solution

methods give equally good results and all the simulations presented below use the

fourth order Runge-Kutta method. This method makes it simple to add additional

source terms without having to compute the source Jacobian.
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2.5 The Discontinuous Galerkin Scheme

The High Resolution Wave Propagation Scheme presented in the previous section is

second order in space and time. Although it is shock-capturing and can be imple-

mented efficiently, for certain problems, like turbulent flows, it is advantageous to have

a scheme which has higher spatial and/or temporal order. In this section, one such

scheme the Discontinuous Galerkin (DG) Scheme, is presented which is a generaliza-

tion of the Wave Propagation scheme presented above. The scheme is developed only

in one-dimensions, the higher-order generalization being straightforward extension of

the one-dimensional case.

2.5.1 The base scheme

In one dimension a balance law is written as

∂q

∂t
+
∂f

∂x
= s, (2.46)

where f is the flux in the X direction and s is the source term. This equation is

discretized on a domain Ω ∈ [xa, xb] by introducing cells Ii = [xi−1/2, xi+1/2], where

xi−1/2 are coordinates along cell edge and xi, where xi ≡ (xi−1/2 + xi+1/2)/2, are the

coordinates of the cell center. In the Wave-Propagation scheme the solution in each

cell is assumed to be piece-wise constant. The DG scheme generalizes this concept

by assuming that the solution in each cell is a piecewise-polynomial.

Let vr(x), r = 0, 1, . . . for x ∈ Ωi = [xi−1/2, xi+1/2] be a set of polynomial “basis-

functions”. The basis functions are local, i.e they vanish outside the cell Ii. The set

of basis functions is complete, i.e., any function q(x) can be expressed as

q(x) =
∞∑

r=0

qrvr(x), x ∈ Ii (2.47)

where qr are expansion coefficients. In practice only a few terms (say 2 or 3) are



35

retained in the expansion. The basis functions are orthogonal, i.e.,
∫

Ii

vr(x)vm(x)dx = ∆xCrδrm, (2.48)

where ∆x ≡ (xi+1/2 − xi−1/2) is the grid spacing, Cr are normalization constants and

δrm is the Kronecker-delta symbol. Multiplying Eq. (2.47) by vm(x), integrating over

Ii gives, after using the orthogonality relation Eq. (2.48),

qr =
1

Cr∆x

∫

Ii

q(x)vr(x)dx, (2.49)

using which any function can be “projected” onto the basis function.

To derive the basic DG scheme, multiply Eq. (2.46) by vr(x) and integrate over Ii

to get

∂

∂t

∫

Ii

vr(x)qdx+

∫

Ii

vr(x)
∂f

∂x
dx =

∫

Ii

vr(x)s. (2.50)

Integrate the second term by parts and expand the conserved variables in the basis

functions using

q(x, t) =
∞∑

r=0

qr(t)vr(x) (2.51)

to get

Cr
dqr

dt
+

fi+1/2vr(xi+1/2)− fi−1/2vr(xi−1/2)

∆x
− 1

∆x

∫

Ii

dvr(x)

dx
fdx =

1

∆x

∫

Ii

vr(x)s.

(2.52)

for r = 0, 1, . . ., where

fi±1/2 ≡ f(q(xi±1/2, t)) (2.53)

are the interface fluxes at cell interface xi±1/2. Equation (2.52) is the basic equation

used in the DG scheme. Moving all time-independent terms to the right-hand side

Eq. (2.52) is written as

dqr

dt
= Lr(q) (2.54)



36

for r = 0, 1, . . ., where Lr(q) is

Lr(q) = −fi+1/2vr(xi+1/2)− fi−1/2vr(xi−1/2)

∆x
+

1

∆x

∫

Ii

dvr(x)

dx
fdx+

1

∆x

∫

Ii

vr(x)s.

(2.55)

Once Lr(q) is computed Eq. (2.54) is a ODE for the expansion coefficients which can

be solved using any standard ODE solver like a third– or fourth–order Runge-Kutta

method. With Runge-Kutta time stepping the DG method is called a Runge-Kutta

Discontinuous Galerkin (RKDG) scheme.

To compute the interface flux the same method (see Eq. (2.23), and Eqs. (2.25)–

(2.26)) as used in the Wave-Propagation method is used.

2.5.2 Selection of basis functions. Numerical quadrature

A convenient choice of basis functions is provided by the Legendre polynomials Pn(x),

in terms of which

vr(x) = Pr(η(x)), (2.56)

where

η(x) ≡ x− xi

∆x/2
(2.57)

maps the interval Ii to the interval [−1, 1] over which the Legendre polynomials are

defined. Using the orthogonality property of the Legendre polynomials

∫ 1

−1

Pn(x)Pm(x)dx =
2

2m+ 1
, (2.58)

the coefficients Cr are found to be simply Cr = 1/(2r + 1). Further, the value of the

basis functions at cell interfaces is

vr(xi±1/2) = Pr(±1) = (±1)r. (2.59)
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To numerically evaluate the integrals appearing in Eq. (2.55) Gaussian quadrature

is used. Thus, any function q(x) integrated over Ii is evaluated using

∫

Ii

q(x)dx =
1

2

∫ 1

−1

q(x(η))dη =
1

2

∑
j

wj q̄(ηj), (2.60)

where x(η) = η∆x/2+xi, q̄(η) ≡ q(x(η)) and wj and ηj are weights and abscissa of a

suitably selected Gaussian quadrature scheme. In general, if the expansion Eq. (2.51)

is truncated after R terms, a Gaussian quadrature of order R needs to be used.

Introducing the Legendre polynomial basis functions in Eq. (2.55) Lr is written as

Lr(q) = −fi+1/2 − (−1)rfi−1/2

∆x
+

1

∆x

∫ 1

−1

dPr(η)

dη
f̄dη +

1

2

∫ 1

−1

Prs̄dη, (2.61)

where f̄(η) ≡ f(q(x(η), t)) and s̄(η) ≡ s(q(x(η), t)). With interface fluxes com-

puted using the Wave-Propagation scheme and the integrals computed using Gaussian

quadrature, the DG is completely specified.

2.5.3 Limiters for the Discontinuous Galerkin Scheme

Just as in the Wave Propagation scheme limiters need to be applied to the DG scheme

to avoid spurious oscillations near discontinuities and for stabilization of non-linear

systems. Unlike the Wave Propagation scheme limiters for the DG scheme typically

are applied directly to the conserved variables rather than the waves computed from

the solution to the Riemann problem. The conserved variables can be limited in terms

of characteristics. Let qi
r be the expansion coefficients of the conserved variables in

cell i. Let ap ≡ lpqi
1, a

p
+ ≡ lp(qi+1

0 − qi
0) and ap

− ≡ lp(qi
0 − qi−1

0 ). Then the limiter

modifies the coefficient of the linear term as follows

qi
1 =

∑
p

rp mm(ap, ap
+, a

p
−). (2.62)

In these equations rp, lp are the right and left eigenvectors of the flux Jacobian

computed from cell averages and mm(a, b, c) is a modified min-mod function defined
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as

mm(a, b, c) = a if |a| < M(∆x)2 (2.63)

= m(a, b, c), (2.64)

where M is some constant and m(a, b, c) is defined by

m(a, b, c) = max(a, b, c) ifsgn(a) = sgn(b) = sgn(c) = + (2.65)

= min(a, b, c) ifsgn(a) = sgn(b) = sgn(c) = − (2.66)

= 0 otherwise. (2.67)

The higher-order coefficient (r > 2) are set to zero if the r = 1 coefficient is modified

by the limiting process.

Another simpler method is to apply the limiters component-wise without doing any

eigen-decomposition of the flux Jacobian. This is equivalent to using unit vectors for

the right and left eigenvectors (for example r2 = [0, 1, 0, . . .]T ) in the above equations.

The constant M is problem specific and for all simulations shown below is set to 0.

2.5.4 Time stepping scheme

To advance the solution in time, i.e., solve the ODE Eq. (2.54), Runge-Kutta time

stepping is used. For 3rd order temporal accuracy the following scheme is used.

q1 = qn + ∆tL(qn) (2.68)

q2 =
3

4
qn +

1

4

(
q1 + ∆tL(q1)

)
(2.69)

qn+1 =
1

3
qn +

2

3

(
q2 + ∆tL(q2)

)
(2.70)

In these equations qn is the solution at time t and qn+1 at time t+ ∆t. Other higher

order schemes like the standard fourth-order Runge-Kutta scheme can be used. In

general, for a kth order spatial scheme the time-scheme should be at least of order k.

The CFL number for a spatial scheme of order k is 1/(2k − 1).
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2.6 Benchmarking applications

In this section the Wave Propagation scheme and the DG scheme are applied to the

dispersive Euler equations, Eq. (2.6). This system shows some of the same qualitative

behavior as the full Two-Fluid equations and thus is a good model problem. Two

problems are studied below. The first is a linear acoustics problem which shows strong

dispersion due to the source terms. For this linear problem an exact solution can be

computed and shows very small scale features. The higher-order accuracy of the DG

scheme is advantageous to capture these features. The second problem is the stan-

dard Sod shock-tube problem now applied to the dispersive Euler equation. Again,

the source term modifies the solution, but in this case, due to the presence of the

discontinuities, both the schemes give similar accuracy for the same grid resolution.

However, the Wave Propagation scheme runs about 5 times faster, making it a better

choice for problems with discontinuities or strong non-linearities.

2.6.1 Propagation of an acoustic pulse

In the linear regime the dispersive Euler equations support sound waves, however the

dispersion relation of these wave is modified due to the presence of the source terms.

To derive the modified dispersion relation Eq. (2.6) is written in non-conservative form

as

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0 (2.71)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+ ρλvbz (2.72)

ρ

(
∂v

∂t
+ u

∂v

∂x

)
= −ρλubz (2.73)

∂p

∂t
+ u

∂p

∂x
= −γp∂u

∂x
, (2.74)
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where, for simplicity, bx = by = 0. Linearizing these equations about a constant state

ρ = ρ0, p = p0, u = v = 01 the following linear system is obtained.

∂ρ1

∂t
= −ρ0

∂u1

∂x
(2.75)

ρ0
∂u1

∂t
= −∂p1

∂x
+ ρ0λv1bz (2.76)

ρ0
∂v1

∂t
= −ρ0λu1bz (2.77)

∂p1

∂t
= −γp0

∂u1

∂x
, (2.78)

where the variables with subscript 1 are perturbations of the constant initial state,

and all products of perturbations are neglected. As the equations are linear a solution

of the form

f(x, t) =
∞∑

n=0

fne
i(knx+wnt) (2.79)

for f ∈ {ρ1, u1, v1, p1}, and where kn is the wave number and ωn is frequency, is

assumed. Substituting in Eqs. (2.75)–(2.78) the following algebraic equations for each

Fourier component of the variables are obtained.

iωnρ1 = −iknu1ρ0 (2.80)

iωnu1ρ0 = −iknp1 + λv1bz (2.81)

iωnv1ρ0 = −ρ0λu1bz (2.82)

iωnp1 = iγp0knu1. (2.83)

For this the dispersion relation

ωn = ± (
k2

nc
2
s0 + ω2

c

)1/2
(2.84)

is obtained. Here cs0 ≡
√
γp0/ρo is the speed of sound and ωc ≡ λbz is the eigenvalue

of the source Jacobian. Equation (2.84) shows that the source Jacobian eigenvalue

1For the equation system of the type Eq. (2.3) the initial conditions must lie in the null space of
the source Jacobian if solid body motion is to be avoided. Thus, examining Eq. (2.8) it is clear
that u and v must identically vanish.
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modifies the linear dispersion relation of the Euler equations (ωp = ±kncs0) to a

quadratic one. For small ωc the dispersion is still linear, but for large ωc the propa-

gating sound wave can undergo significant dispersion as shown below.

To test the numerical algorithms simulations were initialized with uniform ρ0 and

p0 and a velocity perturbation given by u1(x, 0) where

u1(x, t) = U0

N∑
n=0

i

2n+ 1
eiknxeiωnt (2.85)

with kn = 2π(2n+1). For N →∞ this represents a the propagation of a step function

perturbation. Letting u
(n)
i ≡ iU0/(2n + 1)ei(knx+ωnt) the Fourier components of the

other flow variable perturbations are given by (see Eqs. (2.80)–(2.83))

ρ
(n)
1 = −knρ0

ωn

u
(n)
1 (2.86)

v
(n)
1 = −iλbz

ωn

u
(n)
1 (2.87)

p
(n)
1 = −γknp0

ωn

u
(n)
1 , (2.88)

summing which over n = 0, . . . , N gives the exact solution to the linear problem.

Figure (2.1) shows the exact solution at t = 1000 on x ∈ [0, 1] and for N = 5000,

cs =
√

2 and ωc = 10. It is clear that the exact solution has many fine scale features

due to the strong dispersion from the source terms. It is also evident that unless

very fine grid are used these features can not be resolved as all waves less than the

grid spacing get diffused away due to numerical dissipation. This figure also shows

a feature peculiar to the dispersive system Eq. (2.3), i.e., what appears as dispersion

due to the numerical scheme used is actually due to the mathematical nature of the

equation system itself.

To test the numerical methods and to not have to resolve all the frequencies

in the exact solution of a square pulse, only N = 9 Fourier modes were retained.

Further, ρ0 = p0 = 1, γ = 2, λ = 10 and bz = 1 were selected. With this choice

cs =
√

2 and ωc = 10. The Wave Propagation scheme and the 2nd and 3rd order
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Figure 2.1: Exact solution of the linear dispersive Euler equation at t = 1000 with

cs =
√

2, ωc = 10 and N = 5000. Fine scale features due to the dispersive source

terms are observed. These features can be difficult to capture using a numerical

scheme and may be mistaken for numerical “noise” or numerical dispersion.



43

spatial and 3rd order temporal RKDG schemes were used to solve the dispersive

Euler system. The 2nd and 3rd RKDG order schemes were run at CFL number of

1/3 and 1/5 respectively and the Wave-Propagation scheme was run at a CFL of 1.

To ensure that the simulation remained in the linear regime in Eq. (2.85) U0 was set

to 10−8. All other variable were initialized by the exact solutions at t = 0 given by

the sum of their constant background values and their perturbed values computed

from Eqs. (2.86)–(2.86). The simulations were run to t = 3 and the results compared.

Figure (2.2) show the solutions computed using the DG 2nd and 3rd order schemes

on 40 cells. From this figure it is evident that the 2nd order scheme has difficulty

resolving the smaller wavelength features, but the 3rd order scheme captures these

features better. Figure (2.3) shows the results on 40 cells with the Wave Propagation

scheme. From this figure it appears that the Wave Propagation scheme resolves the

features as well as the 3rd order RKDG does. This is not surprising as for CFL of 1

the Wave Propagation scheme shows very little numerical dissipation and dispersion

and hence is able to capture the solution better.

Figure (2.4) shows the solution computed using the DG method on 80 cells. It is

clear that the 3rd order method has captured the solution very well while the 2nd

order solution still under-resolves the small wavelengths. Figure (2.5) shows the results

on 80 cells with the Wave Propagation scheme. As expected the Wave Propagation

scheme also captures all the flow features as well as the 3rd order DG scheme for this

particular problem.

Figure (2.6) shows the solution computed using the DG method on 160 cells. For

this grid resolution the 2nd order solution matches the exact solution very well while

the 3rd order solution is indistinguishable from the exact solution.

From this set of simulations it would seem that the Wave Propagation method is

superior to the DG 2nd and 3rd order method. However, although these results are

correct for this simulation this conclusion is not always true. When the above simu-

lations are run with ωc = 100 the Wave Propagation scheme performs poorly when
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Figure 2.2: Solutions computed using the Discontinuous Galerkin 2nd (dashed line)

and 3rd order (thin line) schemes on 40 cells. The thick line is the exact solution at

t = 3. The 2nd order scheme has difficulty resolving the smaller wavelength features,

but the 3rd order scheme captures these features better.
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Figure 2.3: Solutions computed using the Wave Propagation (thin line) schemes on

40 cells. The thick line is the exact solution at t = 3. The solution is captured well

as the Wave Propagation scheme has very little dissipation when run at CFL of 1.
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Figure 2.4: Solutions computed using the Discontinuous Galerkin 2nd (dashed line)

and 3rd order (thin line) schemes on 80 cells. The 2nd order scheme has difficulty

resolving the smaller wavelength features, but the 3rd order scheme matches the exact

solution very well.
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Figure 2.5: Solutions computed using the Wave Propagation (thin line) schemes on

80 cells. The thick line is the exact solution at t = 3. The solution is captured well

as the Wave Propagation scheme has very little dissipation when run at CFL of 1.
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Figure 2.6: Solutions computed using the Discontinuous Galerkin 2nd (dashed line)

and 3rd order (thin line) schemes on 160 cells. For this grid resolution the 2nd

order solution matches the exact solution very well while the 3rd order solution is

indistinguishable from the exact solution.
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Figure 2.7: Solutions computed using Wave Propagation scheme (upper panel) and

the Discontinuous Galerkin (DG) 2nd order schemes (lower panel) on 160 cells for

ωc = 100. The Wave Propagation scheme has significant phase error while the DG

scheme resolves the exact solution (thick line) without any phase error.
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compared to the DG scheme. This is as ωc increases the contribution of the source

term as compared to the advection terms increases and the source-term splitting used

in the Wave Propagation scheme introduces a phase error in the solution as is seen

in Fig. (2.7). Taking smaller time steps (i.e., CFL number less than 1) helps reduce

this phase error but now significant diffusion is introduced in the solution and small

wavelength features are not captured well. In this case of ωc = 100 the DG shows

much superior performance for the same grid resolution. However, it must be kept

in mind that the Wave Propagation scheme runs about 5-9 times faster than the DG

method and hence the advantages of the DG scheme can be offset by simply refining

the grid, reducing the phase error, but still using the same computational resources.

Another caveat on comparing the two schemes is that the DG will perform better

if the eigenvalues of the flux Jacobian are are significantly different. This is because

the CFL number is computed using the fastest speed and when CFL of 1 is used this

fastest wave has very little dissipation in the Wave Propagation scheme. However,

the slower waves will be dissipated and hence the physics at slow time scales will not

be captured as accurately. The DG scheme, on the other hand, is not very sensitive

to the CFL number used as long as it is less than that required by stability. Thus

all waves, even the slow wave physics will be captured about as well as the fast wave

physics. Thus in those systems of equations in which there is a significant spread in

the flux eigenvalues the DG method may perform better.

2.6.2 A shock-tube problem

In the previous section it was shown that the DG scheme is beneficial for linear prob-

lems when ωc is large or when the eigenvalues of the flux Jacobian have a significant

spread. In this section a non-linear test problem, the Sod shock-tube problem of Euler

equations, is solved for the dispersive Euler equations. In the absence of dispersion

(ωc = 0) the solution is shown in Fig. (2.8).
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Figure 2.8: Solution to Sod shock-tube problem without dispersion (ωc = 0). The var-

ious parts of the solution are labeled as follows: contact discontinuity: CD, rarefaction

wave: R, shock: S.
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Simulations were performed for ωc = 100, and with initial conditions given by


ρ
p


 =


3.0

3.0


 x < 0.5 (2.89)

and

ρ
p


 =


1.0

1.0


 x ≥ 0.5 (2.90)

on a domain x ∈ [0, 1] with 400 cells and γ = 1.4. Figure (2.9) shows the solution

computed using the Wave Propagation scheme. It is clear that most flow features,

except the small wavelength waves, are captured well. Figure (2.10) show a detail

view of the solution near the “compound wave”. It is seen that in this region the

numerical method is unable to capture the small oscillations that occur in the fluid

density. Figure (2.11) shows the solution computed using the DG 3rd order spatial

scheme. Comparing these results with those in Fig. (2.9) shows that both methods

give almost identical results for this problem.

This simulation illustrates a number of interesting things. First, the presence

of dispersive source terms significantly changes the global solution of the equation.

Second, in the presence of discontinuities or strong non-linearities the Wave Propa-

gation scheme and the DG scheme give equally accurate solutions. This is because

the limiters in the DG scheme, required for stability in presence of shocks, reduce its

accuracy. Developing limiters that do not affect the accuracy of the DG scheme away

from discontinuities is a active research area.

The simulations presented in this section show that the higher order accuracy of

the Discontinuous Galerkin scheme is useful for linear problems when (a) the disper-

sive source term dominates (b) the flux Jacobian eigenvalues show a large spread. For

non-linear problems, specially in the presence of discontinuities, the DG and Wave

Propagation schemes give equally accurate results. For those non-linear problems in

which the solution varies rapidly but is still smooth and limiters do not need to be
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Figure 2.9: Solution to Sod shock-tube problem on 400 cells using the Wave Prop-

agation scheme (dashed line) compared to “exact” solution (solid line). Except for

small scale features the numerical solution compares well with the exact solution.
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Figure 2.10: Details of Sod shock-tube problem on 400 cells using the Wave Propa-

gation scheme (dashed line) compared to “exact” solution (solid line). The scheme is

unable to follow the small wavelength features near the “compound” wave.
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Figure 2.11: Solution to Sod shock-tube problem on 400 cells using the Discontinuous

Galerkin 3rd order scheme (dashed line) compared to “exact” solution (solid line).

Except for small scale features the numerical solution compares well with the exact

solution. The DG solution is almost exactly the same as the the Wave Propagation

solution.
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applied the DG scheme should be superior, at least for the same grid resolution as

for the Wave Propagation scheme.

The aspects of the two schemes mentioned in this section are not well studied and

need to be investigated further. In this thesis all results are computed using the Wave

Propagation scheme. Results with the DG scheme have been published by Loverich,

Hakim and Shumlak[23] and show that both the schemes work equally well for most

problems to capture Two-Fluid physics studied in this thesis.
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Chapter 3

APPLICATIONS OF THE TWO-FLUID MODEL

3.1 Introduction

In the following sections several example applications of the Two-Fluid algorithms

developed in this thesis are presented. The applications studied are a one-dimensional

Riemann problem, propagation and interaction of solitons in a homogeneous plasma, a

two-electron fluid instability and collisionless reconnection. Results for these problems

obtained with reduced fluid models exist in the literature and hence are used to

benchmark the Two-Fluid results. For all simulations the speed of light is set to

c = 1. Distances and times are measured, unless otherwise noted, in units of light

transit time across the domain.

3.2 Two-Fluid Riemann Problem

In many ways the one dimensional Riemann problem defined by

∂q

∂t
+
∂f

∂x
= s, x ∈ R, (3.1)

with initial conditions q(x < 0, 0) = ql and q(x > 0, 0) = qr, where ql,r are constant

vectors, is fundamental to the solution of hyperbolic balance laws. Solutions to the

Riemann problem for the Two-Fluid equations are presented in this section. The

Riemann problem selected is a generalization of the Brio-Wu shock-tube problem[6]
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commonly used to benchmark MHD codes. The initial conditions are
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(3.2)

where me/mi = 1/1832.6. The only remaining unspecified quantity is the ion charge

to mass ratio, ri ≡ qi/mi. In terms of this ratio the ion Larmor radius is rLi ∝
1/ri and the ion skin depth is li ∝ 1/ri. Thus it is clear from the discussion of

Two-Fluid effects (Eqs. (1.54) and (1.55)) that as ri increases the Larmor radius and

skin depth become smaller and the solutions obtained with the Two-Fluid model

should approach the solutions obtained with MHD model. Simulations with qi/mi =

1, 10, 100, 1000 were carried out. These charge to mass ratios correspond to ion skin

depth of 1, 1/10, 1/100, 1/1000, calculated with a reference magnetic field of 1. Thus,

for example, for the qi/mi = 1 simulation the domain length is the same as the ion-

skin depth and for the qi/mi = 1000 the domain length is 1000 times the ion-skin

depth. With decreasing ion-skin depth the plasma regime tends toward the ideal
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Figure 3.1: Fluid mass density at t=10 from a ideal MHD simulation. The various

parts of the shock are labeled as follows: contact discontinuity: CD, compound wave:

CW, fast rarefaction wave: FR, slow shock: SS.

MHD limit, as our simulations below confirm. The results are presented for a grid of

50000 cells. Although the number of grid cells may seem excessive the complex flow

physics shown below cannot be resolved on coarser grids, specially with the correct

value of the electron-ion mass ratios used.

Figure 3.1 shows the mass density computed at t = 10 with the ideal MHD model.

The solution was computed using an existing shock-capturing non-ideal MHD code[?]

by turning off all non-ideal effects. The initial conditions used for the ideal MHD

simulation are the same as the standard Brio-Wu shock problem described above. The
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Figure 3.2: Electron (light line) and ion (heavy line) number density at t=10 with

qi/mi = 1.

MHD fluid density was initialized using the ion density and fluid-pressure using total

electron and ion pressure. The MHD result serves to compare the solutions obtained

with the Two-Fluid model. Comparing the computational time for the ideal-MHD

and the full Two-Fluid simulations we found that the Two-Fluid simulations took

about 100 times longer. This is not surprising as in the full Two-Fluid system the

fastest wave speed is the speed of light which is much larger than the fastest wave

speed of the ideal-MHD system (the fast magnetosonic speed).

In Fig. 3.2 the number densities of electrons and ions are plotted for qi/mi = 1.

This figure shows that for low q/m ratio as the Lorentz force is smaller the fluids can
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Figure 3.3: Ion mass density (red line) at t=10 with qi/mi = 10. Also plotted is the

ideal MHD mass density (blue line). The Two-Fluid solution shows the compound

wave and slow shock developing while the contact discontinuity is at the correct

location.

have significant charge separation. In MHD and Hall MHD it is assumed that the

electron and ion fluids have the same number densities, i.e. ne = ni.

Figure 3.3 shows the mass density of the ion fluid for qi/mi = 10. For comparison

ideal MHD results are superimposed. Even though the Two–Fluid solution is sig-

nificantly different from the MHD results the contact discontinuity is in the correct

location and the compound wave has started to form. A close-up view of the number

densities of the electrons and ions around the compound wave is shown in Fig. 3.4.
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Figure 3.4: Ion (heavy line) and electron (light line) number densities at t=10 with

qi/mi = 10 around the compound wave. The dispersive waves are formed due to

charge separation effects.
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It is seen that there is significant charge separation around the forming compound

wave. In general charge separation leads to dispersive waves as is clearly visible in

this plot. Dispersive effects due to charge separation play an important role in the

formation of ion-acoustic solitons as discussed in a later section.

Figure 3.5 shows the mass density of the ion fluid for qi/mi = 1000. The Two–

Fluid solutions are now clearly MHD like: the compound wave has now formed and

fast rarefaction waves (upstream and downstream) and contact discontinuity are all

in the correct locations. The slow shock, however, seems to be moving slower than

the MHD result. A close-up of the solutions is shown in Fig. 3.6. Dispersive waves

are clearly seen and these are conjectured to be dispersive magnetosonic waves, as

evidenced from dispersion relations computed and presented as Fig. (11) in Loverich

and Shumlak[36].

In conclusion, the Two–Fluid Riemann problem serves not only as an important

benchmark for the algorithms, but also highlights the complex Two–Fluid physics not

captured in the simpler MHD model.

3.3 Weibel Instability

The Weibel instability[40] is an efficient mechanism for the generation of magnetic

fields in anisotropic (i.e. anisotropic distribution function) plasmas. To illustrate

the versatility of the algorithms developed here the Weilbel instability is simulated

in which an anisotropic electron distribution is mimicked using two electron fluids

streaming in opposite directions. A third ion fluid is added, however, its dynamics

is not simulated. The Weibel instability cannot be simulated using any single fluid

model like MHD or Hall MHD.

The physical mechanism for the Weibel instability is easy to understand. When

the electric currents carried by the electron fluids are displaced, one with respect

to the other, the repulsion of the two oppositely directed currents reinforces the

initial displacement. As a result larger and larger magnetic field is produced as time
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Figure 3.5: Ion mass density (red line) at t=10 with qi/mi = 1000. Also plotted is

the ideal MHD mass density (blue line). The compound wave has now formed in

the Two-Fluid solution. The fast rarefaction waves (upstream and downstream) and

contact discontinuity are all in the correct locations. The slow shock, however, seems

to be moving slower than in the MHD solution.
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Figure 3.6: Close up of ion mass density (red line) around the slow shock at t=10

with qi/mi = 1000. Also plotted is the ideal MHD mass density (blue line). The ion

density oscillations are due to dispersive magnetosonic waves.
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advances. Within the linear regime of the instability it is shown that the magnetic

field is localized and eventually becomes singular. For short time periods (on the order

of a few electron cyclotron periods 2π/ωce) the ions are assumed to be a stationary

neutralizing background.

In this section the one-dimensional evolution of the Weibel instability in an inho-

mogeneous plasma is studied[9, 10, 8]. The electron streams are spatially nonuniform

and the plasma density may vary in the direction perpendicular to the streams. This

situation arise in the wake of a ultra-short ultra-intense laser propagating in a under

dense plasma. In this inhomogeneous case the electron fluid develop a spatial sin-

gularity around which the magnetic field generated by the instability becomes more

and more concentrated. In the simple case of two symmetric electron beams (equal

density, opposite and equal speeds) the location of the singularity can be calculated

analytically.

Two electron fluids denoted by the subscripts 1, 2 are initialized with equal den-

sities and equal and opposite velocities, i.e. u1 = −u2 = u(y)ex, where ex is a

unit vector along X axis. This ensures that there is no net initial current and

hence no initial magnetic field. The ion density is initialized to ensure neutrality,

i.e %c = e(ni−n1−n2) = 0 which means there is no initial electric field. The velocity

profile is calculated using[9]

u(y) = u∞ +
δ

2
[1 + tanh(y/l)]ex. (3.3)

The calculations are carried out in the domain y ∈ [−Ly, Ly] where Ly = 70l and

all lengths are measure in units of electron skin depth c/ωce and time in units of

inverse electron cyclotron frequency. Outflow boundary conditions are imposed in

the Y direction. For the simulations presented here l = 1, u∞ = 0.25, δ = 0.25. This

equilibrium is perturbed using very small perturbations in each of the flow variables.

The form of the perturbation, f(y), is

f(y) = ∆ exp(−y2/σ) sin(k0y − π/2), (3.4)
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where ∆ = 10−12 and σ = 80/l. To measure growth rated the mean amplitude of a

perturbed variable, q, is calculated using the expression

〈q〉(t) ≡
[

1

Ly

∫ Ly

−Ly

q(y, t)2dy

]1/2

. (3.5)

Simulations were performed with wave numbers k0 = 0.01, 0.2, 1.0, 2.0, 5.0. The per-

turbed out of plane magnetic field 〈Bz〉 was tracked to calculate the growth rate of

the instability.

Figure 3.7 shows the mean amplitude of the out of plane magnetic field, 〈Bz〉,
versus time. It is seen that the growth rates vary between 0.47 and 0.55 are hence

almost independent of wave number. This is consistent with the linear analysis of the

instability[31]. Figure 3.8 shows the evolution of the magnetic field in time. A strong

peak of magnetic field is formed near y = 0, where the equilibrium gradients in the

electron beams are maximum. This process develops on a characteristic time scale of

t ≈ 5 which depends on the inhomogeneity scale length l, while it is independent of

the wave number k0. After t = 5, Bz increases exponentially and eventually becomes

singular. A linear analysis[31] shows that the singularity occurs at the point y0 where

2u(y0) − γ2 = 0, where γ is the growth rate. For the results shown in the figure,

k0 = 0.2 and γ = 0.5488. Using Eq. (3.3), gives y0 = 1.09 which is consistent with the

location in Fig. 3.8.

3.4 Soliton Propagation

Soliton propagation in fluids and plasmas is an active area of research[1, 25, 26]. Much

previous work has been done in plasma physics on soliton propagation in the weakly

nonlinear limit. In this limit, using expansion techniques, the Korteweg-de Vries

(KdV) equation can be derived and either solved numerically or a particular class of

solutions studied analytically. An example of this approach is the study of ion-acoustic

solitons[12] in which the electrons are assumed to be a massless isothermal fluid and

the ions are assumed cold (i.e. the ion pressure vanishes). With these assumptions
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Figure 3.7: Mean amplitude of the magnetic field 〈Bz〉 versus time for u∞ = 0.25 and

δ = 0.25. The curves labeled 1 to 5 correspond to wave numbers k = 0.01, 0.2, 1.0, 2.0

and 5.0 respectively.
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is seen to localize and eventually become singular near y = 0.1. The simulation

parameters are k0 = 0.2, u∞ = 0.25, δ = 0.25.
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a KdV equation can be derived which describes the propagation of soliton structures

in the ion fluid. An important outcome of this analysis is that the dispersive effects

needed to support soliton formation arise from non-neutral (charge-separation) effects.

Thus ion-acoustic solitons cannot be simulated using fluid models which assume quasi-

neutrality, like the MHD and Hall MHD models.

In this section simulations are carried out to show that ion-acoustic solitons can

form from an initial density hump or “slug”. These solutions are in the strongly non-

linear regime and hence cannot be described with a standard KdV equation. Similar

structures have been observed experimentally[11]. Numerical simulations of density

slug induced solitons were carried out by Baboolal[1] who assumed an isothermal

electron fluid and an adiabatic ion fluid with adiabatic index γ = 3. With these

assumptions there is no need to solve an energy equation as the equation of state

pρ−γ = constant is used to calculate the pressure. In the simulation performed here

these assumptions are not made. It is shown that a stable stationary structure, not

observed in the simulations of Baboolal, arises in addition to the traveling solitons.

Such stationary density structures cannot be supported in adiabatic fluids as a density

gradient implies a pressure gradient which in turn implies flow.

The plasma is assumed to be stationary, i.e. ue(x, t = 0) = ui(x, t = 0) = 0. The

electron and ion number densities are initialized as ne = ni = n(x) where

n(x) = 1 + exp(−1

2
|x− xc|), (3.6)

where x ∈ [0, Lx] and xc = Lx/4. The ion-electron temperature ratio (where tem-

perature, T , is computed from the relation p = nT ) is set to 1/100. The initial

pressure profile is set using pα(x, t = 0) = nαTα for α ∈ {e, i}. The domain size is

Lx = 12c/ωpi calculate using ni = 1 and qi/mi = 1, and is discretized using 1500

cells. The electron-ion mass ratio is me/mi = 1/25. The boundary conditions are

periodic. The value xc and boundary conditions were selected to ensure that solitons

leaving the domain from one side would reappear from the opposite side and soliton
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interaction would occur inside the domain and not on the boundaries.

Figures 3.9 and 3.10 show the time evolution of the ion density. It is seen that two

solitons emerge from the initial slug and travel in opposite directions. The soliton

speed is calculated and is approximately 1.01csi, where csi is the ion fluid sound

speed. This value agrees well with a linear analysis of ion-acoustic solitons. A trail

of decaying plasma waves are also seen in the soliton wake. This feature is common

to solitons generated in dispersive systems. As the boundary conditions are periodic

the solitons reenter the domain and collide at x = 10. After collision the solitons

reemerge with their shapes unchanged. Later in time the solitons merge with the

stationary structure at x = 4 approximately recreating the initial conditions. The

stationary structure is seen to be stable to interactions. For the grid (1500 cells) used

the solitons cross the domain about 40 times before becoming significantly damped

out. For a coarser grid the solitons damp out faster due to the grid diffusion.

The results obtained here compare well with those obtained by Baboolal. However

in Baboobal’s[1] simulations the central stationary structure does not form due to the

selected equation of state. In the simulations performed here the pressure is constant

across the stationary structure and hence the density there remains constant in time.

3.5 Collisionless Reconnection

Magnetic reconnection[33] is the process by which the topology of the magnetic field

lines changes. In ideal MHD or ideal Hall MHD the field line topology cannot change

and this is described by saying that field lines are “frozen” into the fluid (frozen into

the electron fluid in case of ideal Hall-MHD). The situation is analogous to neutral

ideal fluid flow in which vortex tube topology remains constant. However even small

resistivity (viscosity in neutral fluids) can make the topology change and the field

lines reconnect and this process is adequately described in the framework of resistive

MHD or Hall-MHD.

However, in a collisionless plasma magnetic reconnection is also observed to occur
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Figure 3.9: Ion mass density for soliton propagation and interaction. The frames cor-

respond to, from top to bottom, t = 0, 100, 200, 250, measured in inverse ion-cyclotron

frequency. The arrows show direction of propagation of the solitons. Solitons collide

and reemerge without charge in shape.
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Figure 3.10: Ion mass density for soliton propagation and interaction. The frames

correspond to, from top to bottom, t = 400, 415, 450, 500, measured in inverse ion-

cyclotron frequency. The arrows show direction of propagation of the solitons. The

two solitons combine with the central stationary structure to approximately recreate

the initial conditions. The central structure is stable to interactions.



74

and at a much faster rate than in collisional plasmas. This fast collisionless reconnec-

tion is important in understanding many space plasma phenomena, for example, solar

flares and the dynamics of the Earth’s magnetotail during a geomagnetic substorm.

To understand the mechanism of collisionless reconnection a number of plasma mod-

els were used to study collisionless reconnection of oppositely directed magnetic fields

separated by a thin current sheet. This effort went under the rubric of Geospace

Environmental Modeling (GEM) Reconnection Challenge[14]. The various models

used were electron MHD[15], Hall MHD with anisotropic pressure[5], MHD and Hall

MHD[30, 35, 24], full particle[32] and hybrid[20] models. It was found that the al-

though reconnection initiates at length scales on the order of the electron skin depth

the reconnection rate is governed by ion dynamics. The Two-Fluid model can de-

scribe the physics at electron skin depth scales and hence can describe collisionless

reconnection correctly. On the electron-skin depth scales the field lines are no longer

frozen to the electron fluid and this allows the reconnection to initiate without the

need for resistivity. On the other hand in the Hall MHD model[24] the reconnection

needs to be initiated by using a small resistivity.

In this section simulations are performed with the same initial conditions and

parameters as used in the GEM Challenge problem. The ideal Two-Fluid model used

here was not among one of those used in the original studies and hence serves as

an important benchmark. The results obtained here also provide additional insight

into the structure of the flow, specially after the reconnection has occurred. As is

described below, complex flows, not observed in the results reported in the original

studies, are obtained.

The simulation is initialized with oppositely directed magnetic fields separated by

a thin current sheet. The magnetic field is given by

B(y) = B0 tanh(y/λ)ex. (3.7)
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The initial current is carried only by the electrons:

Je = −B0

λ
sech2(y/λ). (3.8)

The number densities of the ions and electrons are initialized as ne(y) = ni(y) = n(y),

where

n(y) = n0

(
1/5 + sech2(y/λ)

)
. (3.9)

Finally the electron pressure is set to pe(y) = p(y) and ion pressure to pi(y) = 5p(y)

where

p(y) =
B0

12
n(y). (3.10)

These initial conditions describe an equilibrium solution of the Two–Fluid equations.

To initiate reconnection in a controlled manner the magnetic field is perturbed with

δB = ez ×∇ψ, where

ψ(x, y) = ψ0 cos(2πx/Lx) cos(πy/Ly), (3.11)

and [−Lx/2, Lx/2]× [−Ly/2, Ly/2] is the simulation domain. This form of the pertur-

bation assures that ∇·B = 0 at t = 0. Periodic boundaries are applied at x = ±Lx/2

and conducting wall boundaries at y = ±Ly/2. Simulations presented below are for

a 512 × 256 grid, although coarser grids were also used. The other parameters used

are me/mi = 1/25, Lx = 8π, Ly = 4π, B0 = 0.1, ψ0 = B0/10 and λ = 0.5. The unit

length scale is the ion skin-depth and the unit time scale is in inverse ion cyclotron

frequency. For the selected electron-ion mass ratio the electron skin depth is 1/5

and is resolved by the grid. These parameters are identical with the GEM challenge

problem.

To compare results with the models used in the GEM challenge problem the

reconnected flux, φ, was computed using

φ(t) =
1

2Lx

∫ Lx/2

−Lx/2

|By(x, y = 0, t)|dx. (3.12)
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As the reconnection proceeds the reconnected flux, which is a measure of the net Y

direction magnetic field, increases and indicates the reconnection rate. Figure 3.11

shows the reconnected flux history. It is observed that the reconnection occurs at

about t = 10 and the reconnected flux increases rapidly after that. The computed

flux history is in excellent agreement with flux histories from full particle and hybrid

models used in the original GEM Challenge problem (see Fig. 3.12). From the GEM

results it is also clear that the resistive Hall-MHD model also predicts the correct

reconnected flux. However, in contrast to resistive Hall-MHD the Two-Fluid model

presented here does not have any resistivity. The reconnection initiates due to the

demagnetization of the electrons at electron skin depth scales, and thus resistivity is

not required to break the field lines as in Hall-MHD. Thus, in the Two-Fluid model

the magnetic field-line topology is not tied to the electron fluid as it is the in ideal

Hall-MHD.

As the domain is periodic in the Y direction and there are conducting walls on

the x = ±Ly/2 the total energy of the system remains constant in time. Figures 3.13

and 3.14 show the history of the electromagnetic and fluid energies of the system.

The initial configuration of the system is an unstable equilibrium and via the process

of reconnection the magnetic field “relaxes”, i.e. the electromagnetic energy stored

in the magnetic field is transfered to the fluid energy. The electromagnetic energy

decays rapidly after about t = 10 and is transfered to the fluid energy. After t = 25

the fluid kinetic energy decreases and is transfered to the fluid thermal energy. Even

though the fluids are inviscid this conversion occurs due to adiabatic compression of

the fluid. Further, the fluid undergoes shock-heating as the shock waves, visible in

Figs. 3.16 and 3.17, pass through the fluid.

Fig. 3.15 shows the total energy of the system. The total energy should be con-

served as the Two-Fluid system does not have any dissipation and conducting wall

boundary conditions are used. However, due to numerical diffusion the total energy

reduces slightly. From the figure it is clear that the loss in energy is only about 0.7%,
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Figure 3.11: Reconnected flux verses time. The reconnected flux increases rapidly

after the reconnection occurs at about t = 10.
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Figure 3.12: Two-Fluid reconnected flux compared to GEM results. Solid dots are

results obtained using Two-Fluid model. Two-Fluid results compare well with those

obtained by particle and hybrid models.
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Figure 3.13: Electromagnetic energy as a function of time. After reconnection oc-

curs the electromagnetic energy decays, the released energy being transfered to fluid

thermal and kinetic energies.

showing that the scheme used here is conservative even in the presence of complex

flow features.

Electron and ion momentum at t = 25 and t = 40 are shown in the gray-scale

plots, Figs. 3.16 and 3.17. At t = 25 shocks waves traveling inwards (towards the Y

axis) are observed. These shocks are formed due to the interaction of the outward

flowing jets (along the X axis). At t = 40 complex flow structures are seen in the

ion fluid. The shocks at x ≈ ±5.5 are now moving outwards (away from the Y axis).

The ion flow is not symmetric and this may be due to grid driven instabilities. The

nature of the flow at late times seems to be governed by instabilities driven from the
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Figure 3.14: Electron thermal energy (top left), ion thermal energy (top right), elec-

tron kinetic energy (bottom left) and ion kinetic energy (bottom right). The electro-

magnetic energy released is transformed into kinetic and thermal energy of the fluids.

After about t = 25 fluid kinetic energies decay as fluids become turbulent.
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Figure 3.15: Total energy for the GEM magnetic reconnection challenge problem.

The total energy should remain conserved, however, is seen to decay slightly due to

numerical diffusion. The total loss in energy is 0.7% for the time period considered.
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counter streaming fluid jets.
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Figure 3.16: Electron momentum (top) and ion momentum (bottom) at t = 25.

Inward traveling shock waves are visible in both the fluids. Thin jets flowing along

the X axis are also visible.
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Figure 3.17: Electron momentum (top) and ion momentum (bottom) at t = 40.

Complex flow features are visible, specially in the ion fluid. Flow structure is thought

to develop due to instabilities.
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Chapter 4

AXISYMMETRIC TWO-FLUID EQUILIBRIA AND
FIELD REVERSED CONFIGURATIONS

4.1 Introduction

Fusion promises to be an efficient mechanism for the generation of clean energy. An

objective of fusion research is the application of fusion energy in a manner acceptable

to society. This concerns not only its economic benefit, but also safety and environ-

mental issues. A number of fusion devices are currently under investigation and can

be classified into two broad classes based on the device geometry. The first, and more

rigorously studied and funded, is the class of toroids (donut shaped devices). ITER

(http://www.iter.org/) is an example of a international collaboration on building

a facility to produce fusion power using toroidal devices. The device is expected to

produce power by 2015. The other class of fusion devices are the compact toroids

with cylindrical geometry and are also actively under investigation for use in fusion

power reactors.

The Field Reversed Configuration (FRC) and Spheromak[3] belong to the fam-

ily of compact toroids. These devices do not have any internal material structures

(“compact”) allowing the plasma to extend to the device axis. The magnetic field

topology is that of a closed donut-shaped surface (“toroidal”). Figure 4.1 shows a

schematic diagram of an FRC.

Several FRC experiments are currently being carried out at the Redmond Plasma

Physics Lab (RPPL) of the University of Washington 1. For example, the star thruster

experiment investigated the formation of FRCs using rotating magnetic fields. The

1http://depts.washington.edu/rppl/



86

Figure 4.1: Schematic diagram of a Field Reversed Configuration. The device is

cylindrical and a r − z plane slice through the axis is shown.

Translation, Confinement and Sustainment (TCS) FRC experiment is being con-

structed to investigate, among other things, the ability to use Rotating Magnetic

Fields (RMF) to both build up and sustain the flux of FRCs that have been formed

in Field Reversed Theta Pinches.

It is known that Two–Fluid effects play an important role in FRC physics. Two

fluid formalism to study FRC stability[16, 38, 39, 42, 43] has been extensively de-

veloped. Relaxation of Two–Fluid equlibria has also been studied[37]. However no

detailed numerical studies of FRCs using the Two–Fluid model have been performed

before although some results have been obtained using particle simulations[4].

In this chapter a detailed study of Field-Reversed Configuration (FRC) stability

and formation is performed. The study is divided into two parts. In the first, FRC

stability is studied. The needed theory for computing Two-Fluid equilibia is first

developed. Simulations are initialized with various FRC equilibria and perturbed.
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The growth rates are calculated and compared with MHD results. It is shown that

the FRCs are indeed more stable within the Two-Fluid model than the MHD model.

In the second part formation of FRCs is studied. In this set of simulations a cylin-

drical column of plasma is initialized with a uniform axial magnetic field. The field

is reversed at the walls. Via the process of magnetic reconnection FRC formation is

observed. Simulations of FRCs in the r − θ plain are performed showing the LHDI

formation. It is shown that the current sheet thickens due to the instability and

eventually breaks up into structures which are an ion Larmor radius thick. To un-

derstand the mechanism of the LHDI better a simple slab geometry is used to study

the instability in a Harris current sheet. In these simulations it is shown that the

short-wavelength LHDI is induced even thought the initial perturbation is of long

wavelength.

4.2 Single Particle Motion; Canonical Momentum and Vorticity

Before developing the equilibrium equations for axisymmetric configurations it is in-

structive to look at single particle motion in a electromagnetic field. The Lagrangian

describing this motion is

L =
1

2
mu2 + qsu ·A− qϕ (4.1)

where u is the particle velocity, m and q are particle mass and charge, A is the vector

potential and ϕ is the electric potential. In terms of the potentials the magnetic and

electric fields are given by

E = −∇φ+ ∂A/∂t, (4.2)

B = ∇×A. (4.3)

From the Lagrangian the canonical mometa is computed as

p =
∂v

∂L = mu + qA (4.4)
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From this it is clear that the canonical momentum for particle motion is not the same

as the linear momentum but is modified by the magnetic field vector potential. How-

ever, for vanishing particle mass the canonical momentum and the linear momentum

coincide.

In cylindrical coordinates u = ṙ2 + r2θ̇ + ż, where (r, θ, z) are cylindrical coor-

dinates. Thus for axisymmetric systems the azimuthal component of the canonical

momentum, pθ is conserved. Thus, in canonical momentum space particles move on

surfaces of pθ = constant. Such surfaces are called as drift-surfaces and are important

in axisymmetric equilibrium configurations studied below.

4.3 Axisymmetric Two-Fluid Equilibrium

To come...

4.4 LHDI in cylindrical plasma Configurations

Field Reversed Configuration (FRC) is a plasma fusion device where the magnetic

field is used to confine the plasma until fusion temperatures are reached and fusion

initiates. In this section FRC simulations are performed in the r − θ plane showing

the formation of the Lower-Hybrid Drift Instability (LHDI) in FRCs. The Two-Fluid

simulation performed in this section are for elongated FRCs in which ∂/∂z ≡ 0. The

initial conditions were computed from the Two-Fluid equilibrium equations obtained

by setting ∂/∂θ ≡ 0, ur = 0, which, for stationary ions, are written as

−mnu
2
θ

r
= −∂p

∂r
− enuθBz (4.5)

∂Bz

∂r
= eµ0mnuθ. (4.6)

Here uθ is the electron azimuthal velocity, Bz is the magnetic field in the Z-direction,

p is the pressure and −e is the electron charge. For an FRC, from Fig. (4.1) it is clear

that the magnetic field Bz(r) changes sign across the domain. A number of “reversed

field” magnetic profiles were selected. The electron current needed to support this
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Figure 4.2: Electron momentum in the r − θ plane for a field reversed pinch. The

electrons have an azimuthal velocity which support an out-of-plane magnetic field Bz.

field were computed from Eq. (4.6). Once uθ was determined the pressure profile was

determined from Eq. (4.5). Figure (4.2) shows the total electron momentum for one

such magnetic field profile. The various simulation were performed by varing the

magnetic field profile so as to control the thickness of the current sheet needed to

support the field. An initial m = 1 mode perturbation was applied to the electron

momentum and the simulation was run to t = 20. This initial perturbation corre-

sponds to a long-wavelength (on the order of the current sheet length) perturbation.

Time in these simulations was measured in light transit times across the domain.

Figure (4.3) shows the electron momentum at t = 10, for the current profile in
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Fig. (4.2). It is clear that the current sheet has broken up into smaller structures,

each about an ion Lamor radius long. These smaller structures have a much shorter

wavelength than the applied perturbation thus showing that the short-wavelength

instability is more unstable than the long wavelength one.

Figure (4.4) shows the electron momentum at t = 10, for a thinner current profile

than in Fig. (4.2). With this current profile the sheet breaks up into finer structures.

It is also seen that the sheet has become thicker, which is a typical signature of

anomalous resistivity. Figure (4.5) shows the electron momentum at t = 20. The

current sheet has become thicker and the small scale instability has spread outwards

towards the pinch walls.

Figure (4.6) shows the electron momentum at t = 10, for thinner current profile.

The magnetic field changes very rapidly across the sheet and has an almost shock-

like structure. With this current profile the sheet breaks up into finer structures and

shows an fine-scale plasma turbulence.

4.5 LHDI in planar plasma Configurations

To understand the mechanism of the LHDI better simulations were also performed in

planar current sheet geometry. A Harris current sheet equilibrium was selected. The

electron and ion number densities were set to ne = ni = n(x) where

n(x) = n0sech
2(y/L) (4.7)

where L is the half-width of the current sheet. The magnetic field was initialized by

B(y) = ẑB0tanh(y/L), (4.8)

where ẑ is a unit vector in the Z-direction. The electron and ion velocities were set

to vi = x̂vi and ve = x̂ve where vi and ve are constants and x̂ is the unit vector in

the X-direction. The initial equilibrium values were perturbed using a perturbation

with wavelength given by the domain lenght.
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Figure 4.3: Electron momentum in the r−θ plane for a field reversed pinch at t = 10.

The current sheet has broken up into smaller structures, each of which is about an

ion Lamor radius long.
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Figure 4.4: Electron momentum in the r−θ plane for a field reversed pinch at t = 10.

The current sheet is thinner than in the previous simulations and is seen to break up

into larger number of pieces.
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Figure 4.5: Electron momentum in the r − θ plane for a field reversed pinch at

t = 20. The current sheet has now completely diffused away, and shows many fine

scale features in the electron flow. pieces.
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Figure 4.6: Electron momentum in the r−θ plane for a field reversed pinch at t = 10.

The magnetic field profile for this simulation is very sharp, almost shock-like. The

sheet has broken up into small scale structures and the fluid shows an almost turbulent

flow.
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The current sheet is neutrally stable to the long wavelength perturbation applied.

As the simulation progresses the sheet simply oscillates about its equilibrium position

and appears to “slosh” inside the domain. Figure (4.7) shows the electron momentum

at t = 100. The initial perturbation has kinked the sheet, though the kink does not

grow. Figure (4.8) shows the electron density at t = 200. It is now seen that small

structures are forming at the edge of the current sheet. These structures are each

about 1 Lamor radius wide. These structures are a typical signature of the onset

of the LHDI which starts at the location where the density gradient is maximum.

Figure (4.9) shows the electric fields at the same time (t = 200). The structure of

the electric fields in this figure is typically seen in hybrid simulations and typically

indicates the onset of the LHDI.

After t = 200 the LHDI instability grows very rapidly, and the “finger” like struc-

tures elongated ultimately breaking up the sheet. Figure () shows the electron density

at t = 250 just as the sheet is about to break up. Two separate perturbations are

clearly seen in this figure. The long-wavelength applied kink-mode perturbation is

still clearly visible while the short wavelength LHDI has now almost saturated the

flow. This figure dramatically illustrates that the although the sheet is stable to the

long-wavelength perturbations it is unstable to the shorter wavelength LHDI.
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Figure 4.7: Electron Density at t=100 for a Harris current sheet kink mode. The

sheet is neutrally stable to the applied initial long-wavelength perturbation and simply

oscillates about its initial position.
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Figure 4.8: Electron Density at t=100 for a Harris current sheet kink mode. The

Lower-Hybrid drift instability has just started to form at the edge of the current

sheet and is visible as small bumps about a Lamor radius thick. The instability grows

rapidly after this point soon breaking up the sheet completely.
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Figure 4.9: Out-of plane electric field Ez (upper panel) and in-plane electric field Ex

at t=200. The structure of the electric fields seen is a signature of the LHDI in the

sheet.
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Figure 4.10: Electron Density at t=250 for a Harris current sheet kink mode. The

Lower-Hybrid drift has now completely set in and the sheet has broken up into thin

structures. A secondary Kelvin Helmholtz instability is also visible as there is a

significant velocity shear at the edge of the instability.
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Chapter 5

CONCLUSIONS

A high resolution wave propagation scheme for ideal Two-Fluid Plasma equations

is developed. The algorithm presented here can be successfully used to in multiple

dimensions. The algorithm can also be extended to general quadrilateral geometries

easily. An important aspect of this work was to highlight Two-Fluid physics which is

not included in the commonly used Magnetohydrodynamics (MHD) and Hall MHD

models. The three applications presented here each show the importance of Two-

Fluid physics. In the one dimensional Riemann problem it was shown that a smooth

transition from neutral ideal fluid shocks to MHD shocks can be obtained. The ion-

acoustic soliton propagation showed the importance of charge separation. In fact, the

dispersive effects due to charge separation balance the tendency of the fluid to shock

and hence lead to soliton propagation. In both MHD as well as Hall MHD ion-acoustic

solitons can not be supported as quasi-neutrality (ne = ni) is assumed. The Geospace

Environmental Modeling (GEM) Reconnection Challenge problem showed that the

Two-Fluid model can correctly explain fast reconnection observed in collisionless plas-

mas. In other fluid models of reconnection some mechanism (like resistivity in Hall

MHD) needs to be incorporated to initiate the reconnection. Complex flows, possi-

bly turbulent, can be seen late after the reconnection has occurred. The algorithm

presented here can also be applied directly to higher–moment fluid approximation to

collisionless plasmas. For example, the next two set of collisionless fluid equations

contain, for s species plasma, 10s and 20s fluid equations. These higher–moment

equations incorporate anisotropic pressure and heat tensor effects and hence extend

the usefulness of fluid plasma models.
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Non-ideal effects like resistivity and radiation can also be added to the basic al-

gorithm presented here. In this case the equation system is no longer hyperbolic but

has parabolic parts from the non-ideal terms. Although the High-Resolution Wave-

Propagation scheme is designed for hyperbolic equations these non-ideal terms can

be incorporated as source terms, which now contain second or higher-order deriva-

tives. Such an approach has been discussed by LeVeque[22] for the diffusive Burgers

equation. Including non-ideal terms will also effect the results presented here. For

example, it is known that gyroviscous stress-tensor can anisotropically heat the ions

near the reconnection point during magnetic reconnection. However, this should not

change the reconnected flux significantly. The focus of this thesis being the ideal full

Two-Fluid model we have ignored all non-ideal effects for the results presented.

A detailed study of Lower-Hybrid Instability (LHDI) in Field-Reversed Configu-

rations (FRCs) is performed. The strong azimuthal electron flow in the FRC causes

LHDI, which can be captured if the ion-gyroradius is well resolved. The LHDI is

known to be a possible source of anomalous resistivity in many plasma configura-

tions. The study is concluded with a analysis of the LHDI in the simpler Harris

current sheet configuration. It is seen that the short wavelength LHDI sets in late

but then grows very rapidly, soon destroying the confinement of the plasma.

A primary contribution of this thesis was to develop the first fully nonlinear solver

for the full Two-Fluid plasma equations. In the plasma sciences community the

importance of Two-Fluid effects has long been recognized, but the community has

not yet developed the numerical tools to study such effects. One main reason is the

vast variety of physics described by this model, which, moreover, occurs on widely

separated time and space scales. Also, the traditional approach in plasma fluid models

has been to start with the MHD equations and then add more physics to it. The

approach in this thesis was the reverse. The full Two-Fluid equations do not make

any assumptions about displacement currents, electron inertia or charge neutrality.

This way the basic model is described by familiar ideal fluid equations and Maxwell



102

equations of electromagnetism. Standard schemes developed for hyperbolic equations

can thus be applied to this model, thus creating a tool to solve many fascinating

plasma physics problems which were hitherto not available from other plasma fluid

models. The magnetic reconnection is one such problem as is the Lower-Hybrid Drift

Instability. Both these physically phenomena are difficult to simulate using MHD or

Hall MHD without the addition of some artificial ad-hoc resistivity. In the Two-Fluid

model, on the other hand, these problems become easy to solve, as shown in the

previous chapters. Our ongoing research will focus on applying the Two-Fluid model

and its generalization to fusion devices, plasma accelerators and FRC thrusters.
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Appendix A

THE TEN-MOMENT PLASMA EQUATIONS

The Ten-Moment equations are obtained by taking moments of the Vlasov equa-

tions and retaining only the equations for number density, momentum and the pres-

sure tensor. In tensor notation they are listed below.

∂n

∂t
+

∂

∂xj

(nuj) = 0 (A.1)

m
∂

∂t
(nui) +

∂Pij

∂xj

= nq(Ei + εijkujBk) (A.2)

∂Pij

∂t
+

∂

∂xk

(u[iPjk] − 2nmuiujuk) = nqu[iEj] +
q

m
ε[iklPkj]Bl (A.3)

In deriving these we have set Qijk,k = 0 in Eq. (1.25). In one dimension, in Cartesian

coordinates identifying the subscripts (1, 2, 3) ≡ (x, y, z), these equations can be put

into the conservation law form where the conserved variables and fluxes are

q =




ρ

ρu

ρv

ρw

ρu2 + Pxx

ρuv + Pxy

ρuw + Pxz

ρv2 + Pyy

ρvw + Pyz

ρw2 + Pzz




, f =




ρu

ρu2 + Pxx

ρuv + Pxy

ρuw + Pxz

ρu3 + 3uPxx

ρu2v + 2uPxy + vPxx

ρu2w + 2uPxz + wPxx

ρuv2 + uPyy + 2vPxy

ρuvw + uPyz + vPxz + wPxy

ρuw2 + uPzz + 2wPxz




(A.4)
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and sources are

s =




0

rρ(Ex + vBx − wBy)

rρ(Ey + wBx − uBz)

rρ(Ex + uBy − vBx)

2rρuEx + 2r(BzPxy −ByPxz)

rρ(uEy + vEx) + r(BzPyy −ByPyz −BzPxx +BxPxz)

rρ(uEz + wEx) + r(BzPyz +ByPxx −ByPzz −BxPxy)

2rρvEy + 2r(BxPyz −BzPxy)

rρ(vEz + wEy) + r(ByPxy −BzPxz +BxPzz −BxPyy)

2rρwEz + 2r(ByPxz −BxPyz)




. (A.5)

Here r ≡ q/m is the charge to mass ratio of the particle and ρ ≡ mn is the mass

density. Note that there is one such set of equations for each of the s plasma

species. These 10s equations, coupled to Maxwell equations of electromagnetism,

Equations (1.12)–(1.15) are the Ten-Moment plasma equations.
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