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This paper describes a study of the effects of the overall spatial resolution, polynomial degree and
computational grid directionality on the accuracy of numerical solutions of a highly anisotropic thermal
diffusion equation using the spectral element spatial discretization method. The high-order spectral
element macroscopic modeling code SEL/HiFi has been used to explore the parameter space. It is shown
that for a given number of spatial degrees of freedom, increasing polynomial degree while reducing the
number of elements results in exponential reduction of the numerical error. The alignment of the grid
with the direction of anisotropy is shown to further improve the accuracy of the solution. These effects
are qualitatively explained and numerically quantified in 2- and 3-dimensional calculations with straight
and curved anisotropy.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Modeling in the presence of significant anisotropy is required
in a variety of fields including image processing [1], electromag-
netics [2], medical imaging [3], geological science [4], and plasma
science [5].

When modeling anisotropic behavior with low-order spatial
discretization schemes, prohibitively high spatial resolution is of-
ten required to achieve the desired degree of accuracy. As demon-
strated below, local grid alignment with the direction of anisotropy
reduces resolution requirements. However, in systems where the
field representing the anisotropy is topologically complex, only
approximate grid alignment is possible and solution representa-
tions with exponential spatial convergence rates may be necessary.
High-order spectral element representations [6] meet this need.
Increasing element order allows a reduction of total degrees of
freedom to reach a given accuracy, and can often lead to an im-
provement of overall computational efficiency [7]. The work pre-
sented here, focusing on anisotropic thermal diffusion and con-
ducted with the SEL/HiFi high-order spectral element macroscopic
modeling code [8–10], clearly demonstrates the expected reduction
in total degrees of freedom and exponential convergence. Also, the
effect of grid alignment on accuracy is quantified.
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In magnetic confinement fusion device simulations, it is partic-
ularly important to properly capture thermal diffusion anisotropy.
In these systems, characteristic rates of heat conduction parallel
and perpendicular to the local direction of magnetic field can differ
by as many as nine orders of magnitude and any spurious leak-
age of parallel heat flow into the perpendicular direction would
destroy the simulations’ predictive capabilities [5]. Complex mag-
netic topologies which preclude grid alignment occur in tokamak
edge plasmas and in other devices when islands or regions of er-
godic field are present. For an example of a successful high-order
finite element computation involving complex magnetic topology
and strong anisotropy, see the non-linear tearing mode evolution
study in [5].

It should be noted that special methods have been proposed to
allow low-order elements to accurately capture anisotropic behav-
ior — see [11], for example. However, the present research concen-
trates on developing a computational framework that is broadly
applicable.

Three anisotropic thermal diffusion test problems are described
in Section 2. These problems are designed to explore straight
anisotropy in two and three dimensions and curved anisotropy in
two dimensions. In Section 3, error in modeling anisotropic diffu-
sion is briefly discussed from an analytical standpoint to provide
an intuitive picture of the source of inaccuracy in the results. Re-
sults are presented and discussed in Section 4, and, finally, the
main points are summarized in Section 5.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:etmeier@u.washington.edu
http://dx.doi.org/10.1016/j.cpc.2009.12.018


838 E.T. Meier et al. / Computer Physics Communications 181 (2010) 837–841
Fig. 1. Setup for test problem one (TP1). On the left is the domain and initial condition with temperature contours shown. Plotted on the right are slices of temperature
perpendicular to the anisotropy as time progresses. (The decrease in peak temperature is exaggerated for illustration.) Initial peak temperature is T0 = 1. The Gaussian profile
is always centered at x = 10, y = 10.
2. Test problem descriptions

2.1. Thermal diffusion model

The equation studied is the thermal diffusion equation,

∂T

∂t
+ ∇ · (−D

↔ · ∇T ) = 0. (1)

Here, T is temperature, and D
↔

is the anisotropic thermal conduc-
tivity tensor. In 3D,

D
↔ =

⎛
⎝

D‖cos2(φ) + D⊥sin2(φ) (D‖ − D⊥) sin(φ) cos(φ) 0

(D‖ − D⊥) sin(φ) cos(φ) D‖sin2(φ) + D⊥cos2(φ) 0

0 0 D⊥

⎞
⎠ ,

where D‖ and D⊥ are parallel and perpendicular heat conduction
coefficients, and φ is the angle in the x–y plane from the positive
x-direction to the direction of high parallel conductivity. φ = 0◦
indicates perfect alignment of the grid with the anisotropy. In 2D,

D
↔

reduces to the 2-by-2 tensor in the upper left of the 3-by-3 3D
tensor.

2.2. Domain and initial condition

The domain and initial condition for test problem one (TP1) are
shown in Fig. 1. Perpendicular to the direction of anisotropy, the
temperature profile is a Gaussian: T = exp(−x2⊥/λ2) where x⊥ is
the distance from the Gaussian peak, and λ is the characteristic
width of the Gaussian. Note that the peak temperature is one. The
initial analytical temperature profile is uniform in the direction of
anisotropy. The domain is square with 20 length units per side, and
the characteristic width of the Gaussian temperature profile is 0.2.
The relatively large domain size makes boundary effects negligible.
Grid alignment is varied from 0 to 60 degrees. (As expected, results
for φ = 60◦ are identical to results when φ = 30◦ .)

Test problem two (TP2) is similar to TP1 except that the do-
main is 3D such that isosurfaces of the Gaussian temperature pro-
file are cylindrical. Fig. 2 shows the problem setup. The direction
of high parallel thermal conductivity is rotated 30 degrees from
the x-direction in the x–y plane (φ = 30◦). The grid alignment is
not varied. This problem demonstrates the spectral element per-
formance in 3D. As in TP1, the characteristic width of the Gaussian
temperature profile is 0.2. The x–y domain is a 10-by-10 square.
(In TP1, a 20-by-20 square is used; TP2 is more computationally
demanding, and a 10-by-10 domain is found to sufficiently remove
boundary effects.) Rotation of the Gaussian occurs only in the x–y
Fig. 2. Setup for test problem two (TP2). Temperature is shown in nested semi-
transparent red isosurfaces. The Gaussian temperature profile is cylindrical instead
of linear as on TP1. Initial peak temperature is T0 = 1. The mesh is composed of
cubic grid cells. The angle of the Gaussian to the anisotropy is fixed at φ = 60◦ . (For
interpretation of color in this figure, the reader is referred to the web version of
this article.)

Fig. 3. Setup for test problem three (TP3). Temperature contours are shown. Initial
peak temperature is T0 = 1. The peak of the Gaussian profile is 1 unit from the
center of the domain.

plane and the chosen z-direction domain extent of 2 units is large
enough to prevent boundary effects.

The test problem three (TP3) initial condition is shown in Fig. 3.
In this 2D problem, the Gaussian peak is a function of radius from
the center of the domain. The Gaussian peak is at 1 unit from the
center and the characteristic width is 0.2 as in TP1 and TP2. As
shown in Fig. 3, this forms a circular “ridge” of high temperature.
The anisotropy is aligned in the polar direction, that is, aligned
with the circular temperature contours. The x–y domain is a 3-by-
3 square — large enough to prevent boundary effects.
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(a) (b)

Fig. 4. In (a) and (b), the Gaussian temperature profile is poorly resolved with h = 0.4, and np = 2. x̂ indicates the Cartesian direction of grid orientation and â is the direction
of anisotropy. When the grid is aligned as in (a), the profile does not vary in the parallel direction. In (b), the grid is misaligned by φ = 30◦ , and the temperature profile
varies in the parallel direction and numerical perpendicular diffusion occurs.
2.3. Boundary conditions

A zero flux boundary condition,

n̂ · (D
↔ · ∇T ) = 0, (2)

is applied to all boundaries (edges in the 2D problems and sur-
faces in the 3D problem), implying that the domain is perfectly
insulating.

2.4. Resolution

Resolution in the x-, y- and z-directions is identical in these
simulations. The range of polynomial degree (np) studied is np = 2
to 6. Element size (h) ranges from approximately 0.07 to 0.33. The
number of degrees of freedom per unit length (dof ) is useful in
comparisons, and is defined to be dof = nx ∗ np, where nx is the
number of elements per unit length (and nx = ny). dof = 18, 24,
and 30 are studied.

2.5. Time evolution

Data is collected with uniform, constant parallel thermal con-
ductivity (D‖ = 1) and zero perpendicular thermal conductivity
(D⊥ = 0). When numerical error allows leakage in the transverse
direction, the Gaussian profile diffuses. The total simulation dura-
tion for all runs is 10 time units.

3. Analytical considerations

Though not mathematically rigorous, the following analysis pro-
vides an intuitive feel for the source of numerical perpendicular
thermal diffusion.

For finite elements representations of order np, error is of order
O (hnp+1), provided the following conditions are met [12]: the con-
verging quantity is well behaved, i.e. has finite strain energy; the
basis functions are sufficiently uniform; the solution is sufficiently
smooth. Because SEL/HiFi, a C0-continuous spectral element code,
solves PDEs in weak form such that only first derivatives of depen-
dent variables are needed, the strain energy constraint is satisfied
globally. The requirements on basis function uniformity and solu-
tion smoothness are easily met in the simulations for this work
which involve rectangular (and hexahedral) cells with fixed aspect
ratio and infinitely differentiable Gaussian profiles. In realistic ap-
plications, the challenges of maintaining solution smoothness and
basis function uniformity require attention to mesh generation and
provision of sufficient spatial resolution (perhaps via mesh adapta-
tion).
The source of perpendicular numerical diffusion error due to
anisotropy is best understood by rewriting Eq. (1) in terms of a
numerical solution, T̃ = T − δT , where T is a solution that exactly

satisfies ∇ · (−D
↔

‖ · ∇T ) = 0, where D
↔

‖ is just D
↔

with D⊥ = 0, and
δT is the numerical error of order O (hnp+1). Setting D⊥ = 0, the
evolution equation for T̃ is

∂ T̃

∂t
+ ∇ · (−D

↔
‖ · ∇ T̃ ) = 0,

or equivalently,

∂ T̃

∂t
+ ∇ · (−D

↔
‖ · ∇(−δT )

) = 0.

The finite element gradient operators are analytically exact, and

the tensor D
↔

‖ is also analytically specified. Therefore, diffusion can
arise only due to the numerical error, δT , in representing the tem-
perature itself.

As illustrated in Fig. 4, for a uniform anisotropy as in the first
test problem, numerical error only arises when the computational
mesh is misaligned with the anisotropy. The same relatively low-
resolution mesh is used in Fig. 4(a) and (b). When the computa-
tional mesh is aligned with the anisotropy, as in Fig. 4(a), the same
(flawed) perpendicular temperature profile is perfectly replicated
at all parallel locations, and ∇‖δT = 0 everywhere. However, if the
computational mesh is not aligned, as in Fig. 4(b), the perpendicu-
lar profile is different at various parallel locations and ∇‖δT �= 0.

4. Results and discussion

Numerical error is evaluated by evolving the solution for a fixed
total time, and then comparing the final maximum temperature in
the domain (Tfinal) to the initial maximum temperature (T0). All
simulations are fully resolved in time. Parallel conductivity is unity
for all results. To relate �Tnum. ≡ T0 − Tfinal to actual perpendicu-
lar diffusion, �Treal is computed for a range of non-zero D⊥ values.
These calculations are fully spatially resolved. Fig. 5 shows �Treal
vs. D⊥ for TP1. In simulations with D⊥ = 0, numerical perpen-
dicular diffusion error can cause a non-zero �Tnum. . A power fit
equation relating D⊥ to �Treal is found and used to convert �Tnum.

to an effective numerical diffusion, D⊥,num. . Note that parallel con-
ductivity is unity for all results. This approach is used to determine
effective numerical diffusion, D⊥,num. , as a function of �Tnum. for
all three test problems.

Fig. 6 shows results from TP1. D⊥,num. is plotted for φ = 5◦ to
60◦ for dof = 24. Equivalent plots for dof = 18 and 30 are omitted,
but show similar trends. As shown, D⊥,num. → 0 as φ → 0◦ .
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Fig. 5. �Treal , the final maximum temperature minus initial maximum temperature
due to non-zero simulated transverse conductivity, is plotted vs. D⊥ . Results are
from fully resolved simulations (in space and time). This data is used to define nu-
merical perpendicular diffusion, D⊥,num. , given a �Tnum. found in simulations with
D⊥ = 0. The data shown is for TP1. A similar approach is used to define D⊥,num. for
all three test problems.

Fig. 6. Numerical perpendicular diffusion versus φ for np = 2 to 6 with dof = 24. (At
φ = 0◦ , D⊥,num. is exactly zero and cannot be plotted on the log scale.) Increasing
np at a given dof provides the expected exponential reduction of error.

The dip in D⊥,num. near φ = 45◦ indicates an enhanced accu-
racy when the anisotropy approaches alignment with one of the
two diagonals of each cell. This enhancement could be related to
the symmetry across the diagonals.

Grid alignment is fixed to φ = 30◦ in Fig. 7 and the effect
of element size on D⊥,num. is presented for np = 2 to 6. Re-
sults for other grid alignment angles show similar trends. Refining
polynomial degree at fixed element size results in an exponen-
tial reduction in D⊥,num. . Theoretical predictions outlined in Sec-
tion 3, also shown in Fig. 7, predict slightly slower convergence
rates than seen in the simulation results, especially for high np. In
Figs. 8 and 9, similar results are shown for TP2 and TP3, respec-
tively. Grid alignment is φ = 30◦ for the TP2 results and there is,
of course, no alignment in the TP3 results which involve curved
anisotropy.

As illustrated by the data, high np allows a given accuracy with
significantly fewer total degrees of freedom. This result is valid not
only for 2D problems with straight anisotropy as shown in Fig. 7,
but also for 3D problems and for curved anisotropy, as shown in
Figs. 8 and 9. For example, in Fig. 7, with np = 5 and dof = 18,
D⊥,num. = 10−5 while with np = 3, dof = 30 is required to reach
the same accuracy. By reducing the total number of degrees of
freedom, high-order accuracy methods offer reduced memory re-
Fig. 7. TP1 (2D straight anisotropy): Numerical perpendicular diffusion vs. h for var-
ious np at φ = 30◦ . Data points corresponding to dof = 18, 24, and 30 are indicated
by the dashed ellipses. The effect of np can be seen for constant h: at h 0.17, in-
creasing np from 3 to 5 reduces D⊥,num. by two orders of magnitude. Theoretical
predictions based on O (hnp+1) scaling are provided for np = 2, 4, and 6. The theo-
retical predictions are scaled to match the simulation data for dof = 24.

Fig. 8. TP2 (3D straight anisotropy): Numerical perpendicular diffusion vs. h for var-
ious np. Data points corresponding to dof = 18, 24, and 30 are indicated by the
dashed ellipses. Convergence trends are very similar to trends for TP1.

Fig. 9. TP3 (2D curved anisotropy): Numerical perpendicular diffusion vs. h for var-
ious np. Data points corresponding to dof = 18, 24, and 30 are indicated by the
dashed ellipses. Convergence trends are very similar to trends for TP1.

quirements. Overall computational efficiency is also improved in
many applications — for example, in [7] it is shown that computa-
tional efficiency is improved for long-time simulations of unsteady
flows.
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5. Conclusions

By modeling anisotropic heat conduction with a spectral ele-
ment technique, it has been shown that high-order elements yield
a given accuracy with less total degrees of freedom than lower-
order elements. Similar results are found for problems in 2D and
3D and for straight and curved anisotropy. Convergence with grid
alignment has been explored, and results show that even small
grid misalignment cause significant numerical error. This error can
be efficiently controlled by using high-order spectral spatial repre-
sentation.

In the study of grid alignment error, a subtlety has been found
in which accuracy improves near a 45◦ alignment angle. Some grid
adaptation schemes (like the one implemented for SEL/HiFi) use
grid refinement algorithms based on error minimization, and the
fact that there is a local minimum in numerical error due to grid
misalignment should be noted.

Theoretical predictions of numerical diffusion error are pre-
sented and, for a given grid alignment, these predictions are in
good agreement with computed results. Error estimates that take
grid alignment into account have not been made.

Employing spectral element representations may be beneficial
in fields as diverse as fusion science, image processing, and medi-
cal imaging. For example, high-order finite element techniques are
gaining favor in electromagnetic wave modeling where direction-
dependent numerical dispersion error must be controlled [2,13].
The present research provides a basis for quantifying the bene-
fits of the spectral element approach when modeling anisotropic
behavior.
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