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Abstract

A Comparison between the Discontinuous Galerkin Method
and the High Resolution Wave Propagation Algorithm

for the Full Two-Fluid Plasma Model

Bhuvana Srinivasan

Chair of the Supervisory Committee:
Professor Uri Shumlak

Aeronautics & Astronautics

The high resolution wave propagation method and the Runge-Kutta discontinuous Galerkin

method are compared for applications of several hyperbolic equation sets. For the discon-

tinuous Galerkin algorithm, the conserved variable is defined as a linear combination of a

set of basis functions and the selection of these basis functions sets the spatial order of

the solution. A Runge-Kutta time integration scheme is used with this method. The high

resolution wave propagation algorithm is a finite volume method that uses cell averages

to define the conserved variable and it is essentially similar to a low order discontinuous

Galerkin method. Both methods compute the numerical flux at the cell edges with an

approximate Riemann solver. After benchmarking these numerical methods with simpler

equation sets such as the stress-strain relations in homogeneous and layered media, and the

Dispersive Euler equations, they are applied to the full Two-Fluid Plasma Model. The two

algorithms are compared for stability, accuracy, convergence and computational expense.
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Chapter 1

INTRODUCTION

1.1 Introductory Remarks

This thesis constitutes a study of algorithms that could be applied to solving inhomogeneous

partial differential equations containing hyperbolic homogeneous parts. There are a number

of equation systems that are either hyperbolic or contain hyperbolic parts such as the

Euler equations, Maxwell’s equations, Stress-strain relations, etc. It is useful to investigate

algorithms that provide accurate and precise solutions to such equation sets with reasonable

computational effort and minimum diffusive and dispersive errors. The equation systems

studied here are described by the following conservation law with source terms (also known

as balance laws),

∂Q
∂t

+∇ · F = S, (1.1)

where Q represents the conserved variables, F represents the fluxes and S represents the

source terms. The number of conserved variables, flux terms and source terms is determined

by the number of balance laws in the equation set. If the equation system contains m balance

laws, then there are m conserved variables and source terms. Due to the spatial dependence

of the flux, there are m flux terms for each dimension.

The flux Jacobian of a one-dimensional balance law is defined as

A ≡ ∂F
∂Q

(1.2)

A is an mxm matrix for a set of m balance laws. If the flux Jacobian has real eigenvalues and

a complete set of right eigenvectors[5, 7], that are linearly independent, then the equation

system can be stated to have hyperbolic, homogenous parts. If the matrix A has real and

distinct eigenvalues, then the homogeneous part is called strictly hyperbolic.
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Hyperbolic equations can have discontinuous solutions even if the initial conditions are

smooth, and this makes the approximation of the exact solution difficult. Lower order

methods do not capture such discontinuities effectively, while higher order methods tend

to develop large oscillations around the sharp gradients. The key is to develop and use

algorithms that would accurately capture such discontinuities as the solution evolves. Two

such algorithms are compared in this thesis: the high resolution wave propagation algorithm

[4] and the discontinuous Galerkin algorithm [10].

The wave propagation algorithm is a finite volume method that involves discretizing a

domain into cells and keeping track of the conserved variables, Q, at each time step. Cell

averages are used to approximate the conserved variables as a result of which the solution

need not be continuous at the cell edges. A Riemann problem is solved at each cell interface

using the interface value of Q (in this case the average value of the conservative variable in

that cell), and this is used to compute the numerical fluxes at each of the cell edges. Using

these computed values, the solution is then updated in a manner similar to the central

difference scheme that is described in detail in Chapter 2.

The discontinuous Galerkin algorithm is similar, in some respects, to the wave propaga-

tion algorithm, but it is a finite element method as it uses quadrature points within each

cell. While the wave propagation algorithm is of second order when the flux corrections

are implemented, the discontinuous Galerkin method can be of higher spatial orders. For

certain equation sets, all the physics might not be accurately captured at a lower spatial

order, so higher order methods might be more advantageous. Just like the case of the wave

propagation algorithm, the Riemann problem is solved at the cell interface. However, in-

stead of using cell averages and second order corrections, the balance law in each cell is

multiplied by a set of basis functions and the order of the polynomial determines the spatial

order of the method. A Runge-Kutta time stepping scheme is implemented here for the

solution update. This method is detailed in Chapter 3.

This thesis compares the two algorithms, the high resolution wave propagation algorithm

[7, 6] and the discontinuous Galerkin algorithm [2, 10], to solve hyperbolic equations such as

the stress-strain relations in homogeneous and layered media, the Dispersive Euler equation

system and the ideal Two-Fluid plasma model. The algorithms are compared for accuracy,
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stability, convergence and equally important, computational expense. It is known that

the discontinuous Galerkin method can offer higher orders of accuracy, however, is the

physics captured at these high orders of accuracy significantly different from that of the

wave propagation method and is it worth the computational effort involved? Is the wave

propagation method superior to the discontinuous Galerkin method for any applications?

These questions are investigated for several hyperbolic equation sets to determine which

method is superior in what context.

The wave propagation method and the discontinuous Galerkin method fall into the

category of Godunov methods which require that the Riemann problem be solved at each

cell interface in order to advance the solution. A study regarding the handling of source

terms also constitutes an essential part of the comparisons. Source term handling is detailed

in Chapter 2. The wave propagation method handles the source terms by performing

a splitting. There are limitations associated with the source term splitting that do not

appear with the discontinuous Galerkin method which is an unsplit method. Using source

splitting causes phase errors in the solution with the wave propagation method when the grid

resolution is low or when the oscillation frequency is high such that the Nyquist frequency

is violated for proper sampling. The effects of the split and unsplit schemes are described

in Chapter 6 with the results for each application. However, for systems with a single

characteristic speed, it appears that the wave propagation method captures the solution

almost exactly when used with a Courant number of 1 without any diffusive or dispersive

errors. These algorithms are described in detail in the following chapters. Chapters 4

and 5 describe the equation systems that are used for these comparisons. The applications

and results of the comparisons are detailed in Chapter 6.

1.2 Software Used

The wave propagation and the discontinuous Galerkin algorithms are written using the

same computing language, C++, for best comparisons. Both algorithms use the exact same

framework, and the only differences lie in the calculation of the interface fluxes and in the

time stepping schemes used. The algorithms call the exact same set of Riemann problem

solvers.
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The discontinuous Galerkin method uses the quadrature points to get the interface

values to the desired order while the Wave Propagation method uses cell averages. For the

Discontinuous Galerkin method, the Riemann problem is called as many times as the chosen

order of the algorithm to calculate each of the coefficients of the conserved variable. For the

wave propagation algorithm, the Riemann problem is only called once. This is an indication

that the discontinuous Galerkin method is expected to take more computing time than the

wave propagation method.

The time-stepping also varies depending on the algorithm used. The discontinuous

Galerkin algorithm uses the Runge-Kutta time integration scheme while the wave propaga-

tion algorithm uses an update formula for the conserved variable that resembles the central

difference formula.

wave step and rkdg step are the only functions in the code that contain algorithm-

specific calculations. These functions have been checked to make sure that there are no

additional unnecessary computations being performed. Both algorithms call the same func-

tions for the source and flux terms. For the initializations and applications of boundary

conditions, both algorithms call the exact same qinit.cc and bc.cc files.
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Chapter 2

HIGH RESOLUTION WAVE PROPAGATION METHOD

The high resolution wave propagation algorithm can be applied to equations that have

hyperbolic parts. Such equations, as mentioned previously, are of the form:

∂Q
∂t

+∇ · F = S, (2.1)

This chapter describes the wave propagation algorithm and the higher order corrections

that are implemented to increase the order of accuracy from first to second. The method

detailed here is for one spatial dimension and it can be extended to account for multiple

dimensions with the use of normal and transverse corrections in each dimension. The

hyperbolic equation sets that are studied in this thesis include the stress-strain relations

for homogeneous and layered media, the Dispersive Euler equation system and the five-

moment ideal two-fluid plasma equations. The application of this method to the stated

equation systems will be discussed in the chapters to follow. LeVeque describes this method

in much greater detail in [1, 6, 7]. This chapter follows the algorithm as detailed by LeVeque

and Hakim.

2.1 First Order Scheme

The scheme is detailed in one spatial dimension here since the applications considered are

in one dimension only. It can be extended to account for multiple dimensions. In one

dimension, a homogeneous hyperbolic equation is written as

∂Q
∂t

+
∂F
∂x

= 0, (2.2)

where Q represents the conserved variable and F represents the flux in the X direction. The

domain that this equation is discretized on is defined within the boundaries, [xa, xb]. The

cells are introduced as Ii = [xi−1/2, xi+1/2], for each cell interval, where xi−1/2 and xi+1/2

are the coordinates at the left and right edges of each cell. The cell center is defined as (xi),
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where xi ≡ (xi−1/2 + xi+1/2)/2. Now, taking the conservation law defined in Eq. (2.2), and

integrating it over cell Ii from time tn to tn+1 gives the update formula

Qn+1
i = Qn

i −
∆t

∆x

(
[F ]n+1/2

i+1/2 − [F ]n+1/2
i−1/2

)
(2.3)

where Qn
i represents the value of the conserved variable based on the cell average,

Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

Q(x, t)dx. (2.4)

Here ∆x ≡ xi+1/2 − xi−1/2, ∆t ≡ tn+1 − tn and the numerical flux at each of the cell

interfaces, [F ], is defined as

[F ]n+1/2
i−1/2 ≈

1
∆t

∫ tn+1

tn

F
(
Q(xi−1/2, t), xi−1/2

)
dt. (2.5)

It can be seen that the expression in Eq. (2.3) resembles the central difference formula.

This equation is a general update formula for finite volume schemes. The numerical flux

can be updated by using several different approaches and the choice of the flux update

forms the basis for the various finite volume schemes. This thesis focuses on a specific

finite volume method using an F-Wave approach that is introduced and described in [1],

the High Resolution Wave Propagation method. This method approximates the value of the

conserved variable in a given cell as the cell average. Therefore, for cells sharing a given

interface, the value at that interface will be discontinuous in general. A Riemann problem

needs to be solved at each cell edge to determine the numerical flux at each interface.

For the homogeneous, hyperbolic equation described by:

∂Q
∂t

+
∂F
∂x

= 0, (2.6)

the Riemann problem is an initial value problem described by the initial conditions Q(x <

0, 0) = Ql and Q(x > 0, 0) = Qr, where Ql,r are constant vectors. If a hyperbolic equation

system is linear then the Riemann problem has exact solutions. If it is a nonlinear equation

set, then valid solutions around x = 0 (i.e. at the interface) can be obtained for short time

intervals by introducing a linearization. As mentioned previously, the linear hyperbolic

equation system described by Eq. (2.6) can be written in the form

∂Q
∂t

+ A
∂Q
∂x

= 0, (2.7)
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where the flux Jacobian, A, is constant for the linear system described here. rp, lp and

sp represent the right eigenvectors, the left eigenvectors and the eigenvalues of A. This is

a hyperbolic system, so it is known that all the eigenvalues of the flux Jacobian are real

and the eigenvectors are assumed to be linearly independent, and in this case, orthonormal.

In order to obtain the wave equations for the wave propagation method, Eq. (2.6) can be

multiplied with the left eigenvectors, lp, to obtain

∂wp

∂t
+ sp ∂wp

∂x
= 0, (2.8)

where wp ≡ lp ·Q. To solve the Riemann problem for such linear systems exactly, wp(x, t)

needs to be determined. This is done by obtaining the initial condition for wp
0(x, t), where

w0(x) = lp ·Q(x, 0). Once this is done, Q(x, t) =
∑

p wprp is solved to obtain the solutions.

The wave propagation method involves solving the Riemann problem at each cell in-

terface and this solution is used to arrive at the following approximation to the numerical

fluxes by accounting for the right- and left-going fluctuations.

[F ]i−1/2 =
1
2
(
Fi + Fi−1

)− 1
2
(A+∆Qi−1/2 −A−∆Qi−1/2

)
. (2.9)

Taking this expression and plugging it in the update formula defined by Eq. (2.3), the

following equation is obtained:

Qn+1
i = Qn

i −
∆t

∆x

[A+∆Qi−1/2 +A−∆Qi+1/2

]
. (2.10)

The A±∆Qi−1/2 terms here are called the fluctuations and they are described by

A−∆Qi−1/2 =
∑

p:sp
i−1/2

<0

Zp
i−1/2 +

1
2
Zi−1/2 (2.11)

A+∆Qi−1/2 =
∑

p:sp
i−1/2

>0

Zp
i−1/2 +

1
2
Zi−1/2 (2.12)

where

Zp
i−1/2 = lpi−1/2 ·

(
Fi − Fi−1

)
rp
i−1/2 (2.13)

and

Zi−1/2 =
∑

p:sp
i−1/2

=0

Zp
i−1/2. (2.14)
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The above expression is the F-Wave method as developed by LeVeque. If using the Q-Wave

method, then Zp
i−1/2 will have the jump in the conserved variable, Q, instead of the jump

in flux, F. Treating the fluctuations in Eq. (2.10), the identity,

A−∆Qi−1/2 +A+∆Qi−1/2 =
∑

p

Zp
i−1/2 = Fi − Fi−1 (2.15)

follows from the definition of Zp
i−1/2 described by Eq. (2.13) (in this case for the F-Waves).

If using Q-Waves, then the F is replaced with Q in the flux difference expression defined

by Eq. (2.15). At each cell interface, the right and left eigenvectors, rp
i−1/2, lpi−1/2 and

the eigenvalues sp
i−1/2 are computed from the flux Jacobian. The eigensystem used for

linear systems is constant throughout, however, for nonlinear systems special treatments,

i.e. an appropriate averaging, must be performed (such as Roe averaging[11]). If Roe

averages are not used, the scheme still provides the appropriate solution and continues to

remain conservative when F-Waves are used as long as the method chosen to obtain the

eigensystem is consistent throughout. To elaborate, using F-Waves, one can consistently

choose arithmetic averages or just the left or right value for the conserved variables to

arrive at the values for the fluctuations, and the result will continue to remain conservative

as long as the same treatment is maintained throughout the domain and through all times.

With Q-Waves however, an appropriate averaging scheme such as Roe averaging must be

chosen for the solution to remain conservative. If Roe averages are used then a conservative

solution can be obtained using either F-Waves or Q-Waves. The method described in this

section can be applied to a variety of hyperbolic problems including those that have spatially

dependent conserved variables and flux functions.

2.2 High Resolution Corrections

The algorithm detailed in the previous section is only first order accurate and to increase

the order of accuracy from first to second, certain corrections need to be performed. This

is done by taking a Taylor series expansion of the conserved variables and the second order

terms from this expansion are retained. The new, second order accurate algorithm is now
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described by

Qn+1
i = Qn

i −
∆t

∆x

[A+∆Qi−1/2 +A−∆Qi+1/2

]

− ∆t

∆x

(
[F̃ ]i+1/2 − [F̃ ]i−1/2

)
, (2.16)

where the new term introduced here, [F̃ ]i−1/2, is the correction flux given by

[F̃ ]i−1/2 =
1
2

∑
p

sign(sp
i−1/2)

(
1− ∆t

∆x
|sp

i−1/2|
)
Zp

i−1/2. (2.17)

This correction increases the order of the High Resolution Wave Propagation method and

makes it equivalent to the standard Lax-Wendroff algorithm. As a result of this increased

accuracy to second order in Eq. (2.16), the algorithm can experience severe oscillations near

discontinuities similar to the case of the Lax-Wendroff. Limiters can be applied in regions

with sharp discontinuities. This limits the formal order of accuracy of the algorithm to first

in these regions by replacing Zp
i−1/2 in Eq. (2.17) by a limited wave Z̃p

i−1/2 = Zp
i−1/2φ(θp

i−1/2).

Here, φ(θ) is the limiter function that is chosen

θp
i−1/2 ≡

Zp
I−1/2 · Zp

i−1/2

Zp
i−1/2 · Zp

i−1/2

(2.18)

with I = i− 1 if sp
i−1/2 > 0 and I = i + 1 if sp

i−1/2 < 0. Some of the limiters that have been

used with the wave propagation Algorithm include the Min-mod limiter,

φ(θ) = minmod(1, θ), (2.19)

the Superbee limiter,

φ(θ) = max(0, min(1, 2θ), min(2, θ)), (2.20)

the Van Leer limiter,

φ(θ) =
θ + |θ|
1 + |θ| , (2.21)

and the Monotonized Centered limiter,

φ(θ) = max(0, min((1 + θ)/2, 2, 2θ)). (2.22)
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To extend these corrections to multi-dimensions, high resolution transverse corrections need

to be performed in a similar manner to account for flow that is transverse to the coordinates.

For the purposes of this thesis and the one-dimensional applications studied here, transverse

corrections have been ignored.

2.3 Source Term Handling

The source terms for the wave propagation method are handled in several ways to note

their effect on the solution and to make the algorithm more competitive. The balance law

considered here in one dimension, as mentioned before, is

∂Q
∂t

+
∂F(Q)

∂x
= S(Q). (2.23)

The first method of handling the source terms involves modifying Eq. (2.13) to use the

method described in [1]

Zi−1/2 = lpi−1/2 ·
(
[F1]i − [F1]i−1 −∆x[S]i−1/2

)
rp
i−1/2, (2.24)

where the value of the source term, [S]i−1/2, is calculated by taking an average between

the cells so that an approximate value is obtained at each cell interface. In Eq. (2.24), it

is noted that this method solves the Riemann problem by directly taking the source term

values into account. This method works fine for multiple dimensions as well but splitting the

source terms into separate components could become complicated for some balance laws.

Also, as long as the source terms are damped, this scheme would work. When there are

undamped oscillations in the source terms, this algorithm could become unstable because

explicit schemes in general are unstable to equations with undamped oscillations. This is

true for the source terms of the Two-Fluid Equations as will be discussed in Chapter 5.

The source terms can also be handled by performing a source term splitting method

which involves solving the homogeneous equation separately from the ordinary differential

equation (ODE). The ODE is the part that accounts for the source terms and it is described

by:

∂Q
∂t

= S. (2.25)
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For purposes of achieving higher order accuracy, i.e. second order accuracy in this case,

the ODE described by Eq. (2.25) is first advanced with a half time step of ∆t/2. Then the

homogeneous equation is solved over a full time step of ∆t following which, the ODE is

advanced again by another half time step of ∆t/2. The results from each time advancement

are used as initial conditions for the time steps that follow. To solve the ODE, any ODE

scheme can be used and the one chosen here is that of the fourth order Runge-Kutta scheme.

The source term splitting method detailed here is called Strang splitting. The trapezoidal

method can also be used here to solve the ODE,

Q(t + ∆t) = Q(t) +
∆t

2
(S(Q(t)) + S(Q(t + ∆t))) . (2.26)

Taking a Taylor series expansion for S(Q(t + ∆t)), a semi-implicit update formula for Q is

acquired,

Q(t + ∆t) = Q(t) + ∆t

(
I− ∆t

2
∂S
∂Q

)−1

S(Q(t)), (2.27)

with ∂S/∂Q being the source Jacobian and I being the identity matrix. Equally good

solutions can be obtained from both the ODE schemes. The advantage to using the Runge-

Kutta method is that the source Jacobian does not need to be computed each time the

source terms are modified or additional terms are added.

Yet another way to handle the source terms involves treating the problem implicitly by

rewriting Eq. (2.23) as

∂Q
∂t

+
∂F(Q)

∂x
= MQ (2.28)

where M is the source Jacobian. The update formula for this implicit case can be written

as

Q(t + ∆t) = Q(t) + ∆tL(Q(t)) + ∆tMQ(t + ∆t) (2.29)

where L represents the flux update part of the equation. The update formula reduces to

Q(t + ∆t) = (I−∆tM)−1 [Q(t)−∆tL(Q(t))] (2.30)

where the term within the square brackets is computed while calculating the flux up-

date. The solution from the flux update needs to be multiplied with the inverted matrix,
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(I−∆tM)−1, at every cell to obtain the updated formula with the source terms at every

time step.

This implicit source term method is explored for the electron acoustic problem detailed

in Chapter 6 to attempt to handle the phase errors that are obtained from the source term

splitting method when specific input parameters are used.

For linear ODEs, taking the source Jacobian can determine the solution type. If the

eigenvalues of the Jacobian are real, then the solution grows or decays for positive and nega-

tive eigenvalues respectively. For imaginary eigenvalues, however, the solution is oscillatory

and the frequency of these harmonics is governed by the magnitude of the eigenvalues. The

real component of the eigenvalues can lead to growing or decaying oscillations.

These imaginary solutions allow for dispersive effects to be captured. Refining the grid,

however, allows for more and more dispersive effects because waves of smaller and smaller

wavelengths are now captured. Such effects of grid refinement make it hard to do a grid

convergence study on dynamic problems when imaginary eigenvalues are present in the

source Jacobian (as with the Two-Fluid Plasma Model).

If there is a hyperbolic, homogeneous part to the equation system, then disturbances

propagate as waves with finite speeds in the medium. Capturing these wave-propagations

can play a significant role in understanding the physics described by the equation set. The

source terms need to be treated appropriately because they could significantly affect the

solution.
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Chapter 3

DISCONTINUOUS GALERKIN METHOD

The discontinuous Galerkin method is a generalization of the high resolution wave prop-

agation method presented in Chapter 2. The wave propagation method is of second order

in space and time after applying the flux corrections. In some cases it is useful to have

a higher order algorithm that will resolve the solutions and instabilities to higher orders

of accuracy both spatially and temporally. The discontinuous Galerkin (DG) method does

precisely that; the spatial accuracy depends on the choice of the basis functions and the

temporal accuracy depends on the choice of the time integration scheme. The following sec-

tions describe this algorithm in one-dimension and it can be applied to account for multiple

dimensions. This chapter follows the algorithm as detailed by Loverich, Hakim, Shumlak

[10].

3.1 The Base Scheme

A one-dimensional balance law, as noted before, is written as

∂Q
∂t

+
∂F
∂x

= S, (3.1)

with F representing the flux in the x direction and S representing the source term. The do-

main is defined within the boundaries, [xa, xb]. The cells are introduced as Ii = [xi−1/2, xi+1/2],

for each cell interval, where xi−1/2 and xi+1/2 are the coordinates at the left and right edges

of each cell. The cell center is defined as (xi), where xi ≡ (xi−1/2 + xi+1/2)/2. The wave

propagation method uses cell averages within the cell to account for the conserved variable

and solve the Riemann problem. The solution in each cell was piecewise-constant. The DG

scheme uses basis functions to represent the conserved quantities, so it assumes that the

solution in each cell is a piecewise-polynomial.

The basis-functions, vr(x), for r = 0, 1, . . . are locally defined within each cell, i.e.

x ∈ Ωi = [xi−1/2, xi+1/2]. Any function can be represented with the polynomial basis
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functions, and applying this idea to the conserved quantities within each cell, it is seen that

Q(x) =
∞∑

r=0

Qrvr(x), (3.2)

where Qr are the expansion coefficients. The number of terms that are retained in this

expansion is a representation of the spatial order of the solution. Usually only the first

two or three terms are retained to make sure that the spatial order does not exceed the

temporal order. The discontinuous Galerkin method requires temporal order ≥ spatial

order for stability. If this is violated, then the solution obtained can be subject to errors.

Orthogonal basis functions are selected,
∫

Ii

vr(x)vm(x)dx = ∆xCrδrm, (3.3)

where ∆x ≡ (xi+1/2−xi−1/2) is the grid spacing, Cr are normalization constants and δrm is

the Kronecker-delta symbol. Using this orthogonality equation described by Eq. (3.3), and

multiplying the orthogonal basis functions, vm(x), with Eq. (3.2) gives,

Qr =
1

Cr∆x

∫

Ii

Q(x)vr(x)dx, (3.4)

which are the expansion coefficients that are used to project any function onto the basis

function. Now applying this to the balance law described by Eq. (3.1), the equation is

multiplied by vr(x) and integrated over the cell to get

∂

∂t

∫

Ii

vr(x)Qdx +
∫

Ii

vr(x)
∂F
∂x

dx =
∫

Ii

vr(x)S. (3.5)

Use integration by parts on the second term to get:
∫

Ii

vr(x)
∂F
∂x

dx = vr(x)F(Q(x, t))|
x

i+1
2

x
i− 1

2

−
∫

Ii

dvr

dx
Fdx (3.6)

The conserved variables are then expanded into basis functions using

Q(x, t) =
∞∑

r=0

Qr(t)vr(x) (3.7)

to get

Cr
dQr

dt
+

Fi+1/2vr(xi+1/2)− Fi−1/2vr(xi−1/2)
∆x

− 1
∆x

∫

Ii

dvr(x)
dx

Fdx =
1

∆x

∫

Ii

vr(x)S.

(3.8)
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for r = 0, 1, . . ., where the interface fluxes at xi±1/2 are given by

Fi±1/2 ≡ F(Q(xi±1/2, t)). (3.9)

The discontinuous Galerkin method is described by Eq. (3.8) for the given balance law.

Rearranging the time-dependent and spatially-dependent variables, Eq. (3.8) is written as

dQr

dt
= Lr(Q) (3.10)

for r = 0, 1, . . ., where Lr(Q) is the operator containing all the operations for the spatially

dependent part of the equations (flux and source computations),

Lr(Q) = −Fi+1/2vr(xi+1/2)− Fi−1/2vr(xi−1/2)
∆x

+
1

∆x

∫

Ii

dvr(x)
dx

Fdx +
1

∆x

∫

Ii

vr(x)S.

(3.11)

After computing Lr(Q), the ODE described by Eq. (3.10) needs to be solved for the expan-

sion coefficients, Qr using any standard ODE solver. The Runge-Kutta time integration

scheme is used here (second, third and fourth orders) which makes this DG method specif-

ically a Runge-Kutta Discontinuous Galerkin (RKDG) scheme.

The RKDG method also requires the interface fluxes to solve the Riemann problem at

each interface. Computing these interface fluxes is identical to what was done for the wave

propagation method detailed in Eq. (2.9), Eq. (2.11) and Eq. (2.12) in Chapter 2.

3.2 Selection of Basis Functions

The Legendre polynomials are commonly selected as basis functions for this algorithm be-

cause they are orthogonal. The basis functions would be

vr(x) = Pr(η(x)), (3.12)

where the interval, Ii, needs to be mapped to lie within the interval, [−1, 1], because the

Legendre polynomials are only defined within this interval. This mapping is done using

η(x) ≡ x− xi

∆x/2
(3.13)
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for xi and ∆x as described in the previous section. The Legendre polynomials have a

convenient property that makes them useful for the RKDG algorithm, they are orthogonal.

They satisfy the property,
∫ 1

−1
Pn(x)Pm(x)dx =

2
2m + 1

δmn, (3.14)

where the coefficients Cr are found to be Cr = 1/(2r+1). Following the mapping, the value

of the basis functions can be obtained at the cell interfaces,

vr(xi±1/2) = Pr(±1) = (±1)r. (3.15)

To handle the second and third terms on the right hand side of Eq. (3.11), Gaussian quadra-

ture is used so that these integrals can be numerically evaluated. Applying this to a function,

Q(x), over interval Ii gives
∫

Ii

Q(x)dx =
1
2

∫ 1

−1
Q(x(η))dη =

1
2

∑

j

wjQ̄(ηj), (3.16)

where x(η) = η∆x/2 + xi, Q̄(η) ≡ Q(x(η)) and wj and ηj are weights and abscissa of the

chosen Gaussian quadrature scheme. The choice of the Gaussian quadrature depends on

the order of the basis polynomial used, i.e., it depends on the highest value of r selected in

Eq. (3.2).

Using the Legendre polynomial basis functions in Eq. (3.11) Lr is now written as

Lr(Q) = −Fi+1/2 − (−1)rFi−1/2

∆x
+

1
∆x

∫ 1

−1

dPr(η)
dη

F̄dη +
1
2

∫ 1

−1
PrS̄dη, (3.17)

where F̄(η) ≡ F(Q(x(η), t)) and S̄(η) ≡ S(Q(x(η), t)). The interface fluxes are computed

using the same method as the wave propagation method and the integrals in Eq. (3.17) are

computed using Gaussian quadrature. This is the DG scheme.

3.3 Limiters for the Discontinuous Galerkin Scheme

The DG scheme can produce large oscillations in the solution with the presence of sharp

gradients. Like with the case of the Wave Propagation algorithm, limiters can be applied

to the DG method as well around regions of discontinuities. For the wave propagation

method, the limiters are applied to the waves, for the DG method however, they are applied
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to either the conserved variables or the characteristic variables depending on the limiter

used. There are two types of limiters that are investigated with this algorithm. The first is

the characteristics-based limiter according to which, the conserved variables are transformed

to characteristic variables. For Qi
r defined as the expansion coefficients of the conserved

variable in cell i, ap ≡ lpQi
1, ap

+ ≡ lp(Qi+1
0 −Qi

0) and ap
− ≡ lp(Qi

0 −Qi−1
0 ). The coefficient

of the linear term is modified using the minmod limiter as

Qi
1 =

∑
p

rp mm(ap, ap
+, ap

−) (3.18)

where rp and lp are the right and left eigenvectors of the flux Jacobian computed from cell

averages. mm(a, b, c) is a modified min-mod function defined as

mm(a, b, c) = a if |a| < M∆x2 (3.19)

= m(a, b, c) otherwise, (3.20)

where M is a constant and the function, m(a, b, c) is defined by

m(a, b, c) = max(a, b, c) ifsgn(a) = sgn(b) = sgn(c) = + (3.21)

= min(a, b, c) ifsgn(a) = sgn(b) = sgn(c) = − (3.22)

= 0 otherwise. (3.23)

Once the limiting is done, the solution of the characteristic variables is transformed back to

that of the conserved variables. Just as with the wave propagation algorithm, the limiter

limits the order of the algorithm to a lower one in regions where it is applied. If limiters are

applied to the first order coefficients (i.e. for r = 1), then all the higher-order coefficients

are set to zero and the algorithm at those local points reduces to second order.

Component-based limiters can also be applied to the DG algorithm. These are faster

than characteristic-based limiters because they do not require computing the Jacobian and

performing an eigen-decomposition. They involve directly applying the limiters to the con-

served variables without transforming them. However, they are not TVDM so oscillations

can develop.
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3.4 Time Stepping Scheme

Once the right hand side of Eq. (3.10) is solved using the methods detailed above, the

solution can be advanced in time using the Runge-Kutta time stepping scheme. Usually,

the temporal order of the Runge-Kutta time integration scheme chosen is at least that of

the spatial order set by the basis functions and quite often it is even one higher than the

spatial order. Generally, for a spatial order of k, the temporal order chosen would need to

at least be k. The 3rd order Runge-Kutta time stepping scheme is

Q1 = Qn + ∆tL(Qn) (3.24)

Q2 =
3
4
Qn +

1
4
(
Q1 + ∆tL(Q1)

)
(3.25)

Qn+1 =
1
3
Qn +

2
3
(
Q2 + ∆tL(Q2)

)
(3.26)

Here, Qn represents the solution at time t and Qn+1 represents the solution at time t+∆t.

For the RKDG method, stability is ensured by using a CFL number of 1/(2k − 1) where k

is the spatial order of the scheme.
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Chapter 4

EXPLORED HYPERBOLIC EQUATION SYSTEMS

In order to understand the difference between the algorithms as thoroughly and com-

pletely as possible, it is useful to explore some simpler balance laws. The effects seen with

the simpler equation systems can provide insight into the more complex models such as the

full two-fluid model studied in Chapter 5. In one dimension, for example, the balance law

is written as

∂Q
∂t

+
∂F(Q)

∂x
= S(Q). (4.1)

The following sections describe two balance laws, the stress-strain relationship for homoge-

neous and layered media, and the “dispersive Euler” equation system.

4.1 Stress-Strain Relations

The equation system described in this section involves two simple hyperbolic equations to

study the longitudinal elastic strain waves that propagate through media. The equation

system is described by:

εt(x, t)− ux(x, t) = 0 (4.2)

(ρ(x)u(x, t))t − σx(ε(x, t), x) = 0 (4.3)

where ε(x, t) is the strain, u(x, t) is the velocity, ρ(x) is the density of the medium, and

σ(ε(x, t), x) is the stress. When the strains are small enough, the stress-strain relations can

be treated as linear equations.

σA(ε) = KAε, σB(ε) = KBε, (4.4)

where KA and KB are the bulk modulii of the two materials that form a layered medium[9].

For the homogeneous medium, the density and bulk modulus are initialized as constant
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values throughout the domain. For the layered medium however, the density and stress are

described by:

(ρ(x), σ(ε, x)) =





(ρA, σA(ε)) if jδ < x < (j + α)δ for some integer j,

(ρB, σB(ε)) otherwise.
(4.5)

Since the relations described by Eq. (4.4) are treated for the linear case only, the bulk

modulii and densities are constant values for each medium.

A solitary wave is initialized and its propagation is studied in both the homogeneous and

layered media. The details of the problem including the initial and boundary conditions are

described in Chapter 6.

4.2 Dispersive Euler Equations

Yet another model for benchmarking purposes is that of the Euler equations. The Dispersive

Euler equations[4], are an extension of the Euler equations with the use of source terms.

The reason for doing this is to create a nonlinear balance law that allows for dispersive

effects in the solution. The equation system is described by,

∂

∂t




ρ

ρu

ρv

ρw

e




+
∂

∂x




ρu

ρu2 + p

ρuv

ρuw

(e + p)u




=




0

λρ(vBz − wBy)

λρ(wBx − uBz)

λρ(uBy − vBx)

0




(4.6)

where the energy is,

e =
p

γ − 1
+

1
2
ρ(u2 + v2 + w2), (4.7)

B = B(x) is a spatially dependent vector that is independent of the conserved variables,

and λ is a constant. The source Jacobian of this system is

M =




0 0 0 0 0

0 0 λBz −λBy 0

0 −λBz 0 λBx 0

0 λBy −λBx 0 0

0 0 0 0 0




(4.8)
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and its eigenvalues are: 0, 0, 0,±iλB, where B is the magnitude of B. The presence of

the imaginary eigenvalue shows that this is not a growing or decaying system, instead it

is an oscillatory system that would maintain the dispersive effects without decaying the

oscillations that form. It is difficult to capture such dispersions accurately as refining the

grid excites waves of smaller and smaller wavelengths. This model is a much simplified

approximation of the two-fluid plasma model and applying it to certain problems shows

properties that are very similar to that of the two-fluid model. This equation system is

applied to the electron acoustic wave which is discussed in greater detail in Chapter 6 where

the results are examined as well.

This section introduces two balance laws, namely, the stress-strain relations for elasticity

and the Dispersive Euler equation system. As will be seen in the following chapter, the

equations of the plasma fluid models also have hyperbolic, homogeneous parts and can be

written in balance law form. Chapter 5 that follows extends the balance laws to a more

complicated model that forms the basis of this research.
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Chapter 5

FULL TWO-FLUID PLASMA MODEL

The full two-fluid plasma model that will be discussed in this section comes from taking

moments of the Boltzmann equation and treating the electrons and ions as two separate

fluids. These equations that result have homogeneous, hyperbolic parts and hence, can be

written in balance law form. In one-dimension, the equation is written as,

∂Q
∂t

+
∂F(Q)

∂x
= S(Q). (5.1)

5.1 Basic Equations

The equations described here are the five-moment equations that result from taking the 0th

and 1st moments of the Boltzmann equation in addition to using the moment that describes

the energy. These equations are then closed with an equation of state. There are five fluid

equations for electrons, five for ions and six Maxwell’s equations that result in the sixteen

equations of the two-fluid model. Hence, the three systems of balance laws in the form

defined by Eq. (5.1) are:

∂Qe

∂t
+

∂Fe(Qe)
∂x

= Se(Qe,Qem), (5.2)

for the electron fluid equations,

∂Qi

∂t
+

∂Fi(Qi)
∂x

= Si(Qi,Qem), (5.3)

for the ion fluid equations, and

∂Qem

∂t
+

∂Fem(Qem)
∂x

= Sem(Qe,Qi), (5.4)

for Maxwell’s equations, where subscripts em represent electromagnetic terms.
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The one-dimensional Euler Equation balance laws with additional source terms which

form the basis of the electron and ion fluid equations are defined by:

∂

∂t




ρs

ρsus

ρsvs

ρsws

es




+
∂

∂x




ρsus

ρsu
2
s + ps

ρsusvs

ρsusws

(es + ps)us




=




0

qsns (Ex + vsBz − wsBy)

qsns (Ey + wsBx − usBz)

qsns (Ez + usBy − vsBx)

qsns (Exus + Eyvs + Ezws)




(5.5)

where subscript s represents the species (electrons or ions) and the energy, e is given by

es =
ps

γ − 1
+

1
2
ρs(u2

s + v2
s + w2

s). (5.6)

It can be seen that the source terms of Eq. (5.5) contain the Lorentz forces on the electrons

and ions. These source terms relate the fluid equations to the electromagnetic terms of

Maxwell’s equations. The Lorentz forces act as body forces on the electrons and ions and

they have evolving electromagnetic source terms in them that can make the equation set

and the solutions rather complicated with a lot of dynamics. Maxwell’s equations in matrix

form in one-dimension are given by

∂

∂t




Ex

Ey

Ez

Bx

By

Bz




+
∂

∂x




0

c2Bz

−c2By

0

−Ez

Ey




=




− 1
ε0

(qeneue + qiniui)

− 1
ε0

(qeneve + qinivi)

− 1
ε0

(qenewe + qiniwi)

0

0

0




. (5.7)

This is how the two-fluid plasma model comes about with the sixteen balance laws. The full

two-fluid equations are applied to the one-dimensional Z-pinch equilibrium. Applications

and results of the two-fluid plasma model are detailed in Chapter 6.

5.2 The Two-Fluid Source Terms

When the source terms are collected from Eq. (5.5) and Eq. (5.7), the following ODE is

obtained by assuming that the advection terms disappear (spatial derivatives are assumed
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to vanish):

dQ
dt

= S. (5.8)

Q and S can be defined as shown below. It can be noted that Q only has 9 variables as

compared to the initial 16 variables. This is because the variables with source terms equal

to 0, i.e. the density and the magnetic fields, have been neglected here and the energy

equation has been neglected in this analysis as well. The reason for ignoring the energy

equation is that it does not explicitly appear in any of the source terms. The Q and S for

purposes of solving the ODE are given by:

Q =




ρeue

ρeve

ρewe

ρiui

ρivi

ρiwi

Ex

Ey

Ez




, S =




qene(Ex + veBz − weBy)

qene(Ey + weBx − ueBz)

qene(Ez + ueBy − veBx)

qini(Ex + viBz − wiBy)

qini(Ey + wiBx − uiBz)

qini(Ez + uiBy − viBx)

− 1
ε0

(qeneue + qiniui)

− 1
ε0

(qeneve + qinivi)

− 1
ε0

(qenewe + qiniwi)




. (5.9)

Eq. (5.8) indicates that S is linear in Q and studying the source Jacobian M can determine

the solution type of the ODE in Eq. (5.8). Examining the eigenvalues of this source Jacobian,

it is noted that the first three eigenvalues are 0,±iωp where ω2
p = ω2

pe + ω2
pi. The remaining

six eigenvalues are all imaginary roots of a 6th order polynomial. The non-zero eigenvalues

are all imaginary. The plasma frequency, ωps is defined as

ωps =

√
nsq2

s

ε0ms
, (5.10)

where subscript s represents each species (electrons and ions).

Therefore, it is evident that the source terms of the Two-Fluid model are not damped.

Since the source Jacobian has imaginary eigenvalues only, this plasma model is not diffusive

but instead is dispersive with undamped oscillations. The use of explicit schemes will be



25

unstable generally with the presence of these oscillations. Also, for the dynamics to be

properly resolved, the frequency of the waves in the system should be significantly larger

than the frequency of these oscillations in order to resolve the oscillations well. This ensures

adequate time steps per oscillation. In the F-Wave approach detailed by LeVeque, the

scheme will be extremely unstable if the source terms are directly incorporated in the

Riemann solver as described in the Source term handling section in Chapter 2 for the wave

propagation method. For this algorithm, source term splitting is the best approach to

handle this. The effects of handling source terms in several ways are seen in Chapter 6,

with the electron acoustic pulse application.

5.3 Radial Source Terms for 1D Cylindrical Coordinates

For purposes of modeling the one-dimensional radial Z-pinch described in Chapter 6, it

is important to understand how to treat the radial terms that arise from the Two-Fluid

balance laws. In this thesis, these additional radial terms that arise from the equations are

treated as source terms and they are incorporated into the source matrix described above

in Eq. (5.9). However, due to the presence of radial source terms in the density and energy

as well, the treatment of S will involve using the full Q vector of conserved variables. Using

the appropriate divergence and curl terms in cylindrical coordinates gives the modified S
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for one-dimensional radial problems:

Q =




ρe

ρeue

ρeve

ρewe

ee

ρi

ρiui

ρivi

ρiwi

ei

Er

Eφ

Ez

Br

Bφ

Bz




, S =




−ρeue

r

−ρeu2
e

r − pe

r + ρev2
e

r + pe

r + qene (Er + veBz − weBφ)

−2ρeueve
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. (5.11)

For the radial source terms, u represents the radial component of the velocity, v represents

the azimuthal and w represents the z component. The first five terms in Q and S represent

electron variables, the next five represent ion variables and the last six represent electro-

magnetic terms. Subscripts e and i stand for electron and ion variables respectively. In this

manner the radial source terms can be taken into account and applied to the radial Z-pinch

problem. It is assumed that the pressure is isotropic, so prr = pφφ = p is assumed for both

electron and ion fluids.
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Chapter 6

APPLICATIONS AND RESULTS

The three applications that have been studied in this thesis for purposes of comparing

the high resolution wave propagation algorithm to the discontinuous Galerkin algorithm

include: the stress-strain relations, the Dispersive Euler equation set, and lastly the full two-

fluid plasma equations. The goal is to compare the algorithms, determine the advantages

and disadvantages of each algorithm and note if there are any problem dependent issues

relating to each algorithm. This will shed some light on which algorithm is most suited

for applications of the two-fluid plasma equations. It is essential to analyze the algorithms

with simpler equation systems to gain a more complete understanding of their applicability

before applying them to complicated equation sets.

6.1 Strain Waves

The stress-strain equations were implemented with linear and nonlinear dependence of the

stress on the strain. Only the linear equations are detailed here. The equation sets that

are used to simulate the strain waves are described in Chapter 4 in Eq. (4.3). There are no

source terms in this system.

Q =


 ε

ρu


 , F =


 −u

−Kε


 , S =


0

0


 , (6.1)

where ε is the strain, u is the velocity, ρ is the density, and K is the bulk modulus. A

description of the problem and the results comparing the algorithms to each other and to

LeVeque’s solution in [9] are detailed in this section.

6.1.1 Description of Problem

The problem involves initializing a homogeneous medium and a layered medium with a

strain wave. The homogeneous medium has constant density and constant bulk modulus
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throughout the domain. The layered medium has two materials that are layered such

that they alternate with each other at every user-specified interval in the x-direction. The

layering is implemented as follows:

(ρ(x), σ(ε, x)) =





(ρA, σA(ε)) if jδ < x < (j + α)δ for some integer j,

(ρB, σB(ε)) otherwise.



 , (6.2)

with σ representing the stress. For the layered medium, the simulations are performed

with matched and mismatched impedances. Impedance is defined as Z =
√

Kρ, with K

representing the bulk modulus and ρ denoting the density of the medium. For matched

impedances, i.e. ZA = ZB, the results obtained differ from the mismatched impedances

(ZA 6= ZB) and the ability of both the algorithms to capture these differences and provide

adequate resolution and accuracy is studied through a grid convergence study.

Both the conserved quantities, ε and ρu are initialized to zero. The strain wave is

initialized on the left boundary using

u(0, t) =





u(1 + cos(π(t− 10)/10)) 0 ≤ t ≤ 20,

0 t > 20.



 , (6.3)

where u is a constant chosen to be 0.2 here. This resembles pulling the left edge outward

for time 0 ≤ t ≤ 20 and generating a strain wave that propagates to the right. The right

boundary condition used is that of zero-order extrapolation. The results are displayed in

the following section.

6.1.2 Results

The homogeneous solution obtained is smooth and free of discontinuities, so both algorithms

capture the solution rather effectively.

A better comparison lies in capturing a complicated solution, with a number of discon-

tinuities that evolve as the solution progresses in time, and with disturbances propagating

with different speeds. A layered medium for the strain waves equation system is better

suited to compare the effectiveness of the algorithms in capturing complexities in the solu-

tion accurately. All the results shown in this section are for layered media with mismatched

impedances allowing for waves to propagate and reflect at each layer interface.
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The layering described in Eq. (6.2) is implemented to reproduce the solutions from LeV-

eque’s paper [9]. It is noted that as the grid resolution is increased, the results obtained

seem to be converging to a specific solution. Hence, a grid convergence study is performed.

The simulation is run with 1000 grid points using both the wave propagation algorithm

and the discontinuous Galerkin method, and these are compared to determine which one is

suitable for use as the converged solution.

The wave propagation algorithm is run with CFL=0.5 to maintain stable results. For

higher CFL numbers, the solution goes unstable instantly for this problem. This issue was

studied by Fogarty and LeVeque in [3] where the application of a new method of limiting

is introduced for such problems to obtain more stable results. For the Riemann problem

to be valid within each cell, it is important to ensure that the positive- and negative-going

waves within each cell do not interact with each other. If this interaction happens, then

the solution can go unstable. The fastest wave speeds are +c and −c for this problem,

where c is the eigenvalue of the equation system. It is possible that waves traveling with

speed +c interact with waves traveling with speed −c within a cell. This is possibly the

reason why, for larger CFL numbers, the solution develops significant oscillations for this

problem because there are waves that are constantly propagating through and reflecting

as they hit each layer. The layers change at every x=0.5 in space, i.e. every 1/100 of the

domain, so there is a high probability that positive- and negative-going waves are interacting

within the cells. Hence, by reducing the CFL number, i.e. taking smaller time steps, the

algorithm becomes more stable as the fastest waves do not travel far enough within each

cell to interact.

The discontinuous Galerkin method is run with CFL=0.3 based on the stability require-

ment of this algorithm: CFL = 1/(2n − 1) where n is the spatial order. A characteristics-

based limiter is used for the purposes of this comparison because despite taking a long time

to run, the best solution is obtained with the use of this limiter. Figure 6.1 displays both

the algorithms with 1000 grid points when run until time, t = 40. The plot is that of the

strain Vs grid location. It is evident that the solutions obtained from both methods are

rather similar. The solution is discontinuous at every layer in the region where the strain

wave propagates. The solution from discontinuous Galerkin method is rather straight at
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Figure 6.1: Strain Wave problem: Solutions computed for Strain Vs X to determine the
result that is used for the grid convergence study as the converged solution. wave propaga-
tion algorithm with 2nd order corrections (red line) and 2nd order discontinuous Galerkin
solution (blue line) are shown for 1000 grid points at time t=40. This figure is for a layered
medium with mismatched impedances.

the top and bottom of each step (within the layers) and this makes it similar to LeVeque’s

solution. For the same resolution however, the wave propagation method has curved solu-

tions within each layer between the jumps. The discontinuities themselves match closely

when comparing the two algorithms.

Figure 6.2 compares the average values of the discontinuous Galerkin method (i.e. only

the first coefficient of the conserved variable) with that of the solution constructed by

taking the expansion coefficients of the basis functions into account as well. This is done by

taking the appropriate Gauss-Legendre quadrature points into account within each cell and

multiplying the higher order coefficients with the appropriate point, η, in local coordinates.
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Figure 6.2: Strain Wave problem: Strain Vs X shown for the discontinuous Galerkin method.
Upper panel: 2nd order scheme. Lower panel: 3rd order scheme. Red line shows the first
expansion coefficient of the strain only, blue line shows the fully constructed solution using
the linear term as well. Both solutions at 1000 grid points and time t=40. These figures
are for layered media with mismatched impedances.
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The coordinate transformations and quadrature points are described in Chapter 3. The

upper panel of Figure 6.2 refers to the 2nd order RKDG method and the lower panel contains

the comparisons for the 3rd order scheme. It is evident from these plots that there is very

little difference between just using the first order coefficients and constructing the entire

solution with the appropriate quadrature points. Therefore, it is possible to state that taking

only the first order coefficients will suffice for the purposes of the comparisons performed

here. The very subtle differences could be attributed to the limiters that are only applied

to the first order coefficient.

The above comparisons are just performed to justify the choice of solution used as the

converged result. Both solutions are extremely similar at 1000 grid points, but there are

small, subtle differences. To be fair to both the schemes for the grid convergence study,

the converged result used is that of 5000 grid points using the wave propagation algorithm

for the study of the wave propagation scheme, and 5000 grid points using the 3rd order

RKDG scheme with characteristics-based limiting for the RKDG convergence study. The

accuracy of the methods are compared by computing the l2-norm of each of the algorithms

with various grid resolutions. A more fair and accurate comparison of the two methods

follows through a grid convergence study. In the paragraphs that follow, RKDG is used to

denote the Runge-Kutta discontinuous Galerkin method.

The various limiters of the wave propagation method described in Chapter 2 provide

results that are either identical to each other or they vary by an insignificant amount. The

two limiters of the RKDG method however, produce different results and involve varying

computational effort. The characteristics-based limiter produces the best results with the

drawback of larger computational effort as compared to the component-based limiter. Fig-

ure 6.3 displays the 300 grid point solution with respect to the converged solution for both

algorithms.

Figure 6.3 shows that the Wave Propagation algorithm is diffusive for lower grid resolu-

tions. The RKDG method however, is still quite competitive even at the lower resolutions.

Therefore, for a thorough comparison, it is useful to run the WAVE algorithm at a higher

grid resolution until its solution is comparable to that of the RKDG at 300 cells. Then, the

computational effort involved is compared to determine which algorithm performs better to
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Figure 6.3: Strain Wave problem: Strain Vs X solutions computed using wave propagation
scheme (upper panel) and the RKDG 2nd order scheme with characteristics based limiters
(lower panel) on 300 cells as shown by the blue line. The red line is the converged solution
at 5000 cells. These figures are for layered media with mismatched impedances.
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Figure 6.4: Strain Wave problem: l2-norm of strain Vs Grid Resolution for the wave propa-
gation Scheme (red), 2nd order RKDG with characteristics based limiters (blue), 2nd order
RKDG with component based limiters (black), and 3rd order RKDG (green) for the strain
at time t=40 based on the converged result with 5000 cells.
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Algorithm CFL Order Time(sec)

J=1000 cells

WAVE 0.5 2 19

RKDG with characteristic limiters 0.3 2 221

RKDG with component-based limiters 0.3 2 131.5

RKDG with characteristic limiters 0.2 3 426.5

J=800 cells

WAVE 0.5 2 11.6

RKDG with characteristic limiters 0.3 2 140.7

RKDG with component-based limiters 0.3 2 84.2

RKDG with characteristic limiters 0.2 3 273.2

J=500 cells

WAVE 0.5 2 4.71

RKDG with characteristic limiters 0.3 2 53.9

RKDG with component-based limiters 0.3 2 32.3

RKDG with characteristic limiters 0.2 3 107.8

J=300 cells

WAVE 0.5 2 1.75

RKDG with characteristic limiters 0.3 2 19.5

RKDG with component-based limiters 0.3 2 12.3

RKDG with characteristic limiters 0.2 3 38.4

Table 6.1: Strain Waves problem: Some computational times for the wave propagation
algorithm and the RKDG algorithm with both characteristic-based and component-based
limiters for several grid resolutions.
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Figure 6.5: Strain waves problem: Computational time(sec) Vs Grid Resolution for the
wave propagation method (red), 2nd order RKDG with characteristics-based limiters (blue),
2nd order RKDG with component-based limiters (black), and 3rd order RKDG with
characteristics-based limiters (green). It is clear that the wave propagation method takes
very little computational effort, followed by the 2nd order RKDG scheme with component-
based limiting, then comes the 2nd order RKDG scheme with characteristics-based limiting,
and finally the 3rd order RKDG method with its large computational effort.
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achieve roughly the same level of accuracy. This is detailed in the paragraphs that follow.

Both algorithms are run with a number of grid resolutions and they are compared to the

converged results using an l2-norm to quantify the convergence. The l2-norm is described

by,

|∆y| = 1
n

√√√√
n∑

x=1

(ycalc − yconverged)2 (6.4)

where ycalc is the obtained solution, yconverged is the converged solution and the solution is

evaluated at every point in x. Linear interpolation is performed to determine the value of

the converged solution at the desired locations. For this problem the values of the strain

are used to determine the l2-norm for a number of grid resolutions. Figure 6.4 shows

that the l2-norm decreases as the grid resolution is increased, i.e. both algorithms show

a convergence. Initially, at lower grid resolutions (on the order of 300-400), the RKDG

method outperforms the wave propagation method. The Wave Propagation algorithm is

rather diffusive at these resolutions while the RKDG method does not deviate significantly

from the converged result. However, as the grid resolution is increased, the Wave scheme

rapidly catches up with the RKDG method at a grid resolution of about 500 and seems to

perform well for resolutions higher than this. The wave propagation algorithm is compared

to the RKDG method with component-based limiters at the point where they have the

same accuracy in Figure 6.4 (i.e. where the red line crosses the black line). It is seen that

even with the exact same accuracy at a grid resolution of about 500, the wave propagation

algorithm takes only 1/9 the computational time of the 2nd order RKDG algorithm and

about 1/25 the computational time of the 3rd order RKDG scheme, making it the preferred

method for this equation system. It would be useful to study the computing time for the

RKDG method at 300 grid points as compared to the WAVE scheme at 500 to get a better

picture of the effectiveness of the methods. Table 6.1 displays the computational effort of

both algorithms for several grid resolutions. The point to note is that, in addition to the

stability and accuracy of the algorithms, the computational effort involved is much higher

for the RKDG than it is for the Wave method. At 300 cells, the 2nd order RKDG method

takes about 20seconds with the characteristics based limiters, and about 12seconds with the
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component based limiters. At 500 cells, the WAVE scheme takes about 5seconds to provide

a reasonable solution. Also, it is seen that the 3rd order RKDG method is not superior to the

2nd order scheme with characteristics-based limiting. The blue and green lines in Figure 6.4

overlap. The wave propagation method seems to achieve the same accuracy as the 3rd order

RKDG method at a grid resolution of about 750 following which, the Wave Propagation

scheme provides better accuracy. Beyond a grid resolution of about 500 cells, the wave

propagation scheme performs very well both in terms of accuracy and computational effort

(and better than the RKDG method with component-based limiting). If accuracy is the

biggest requirement and computational time is not an issue, then the RKDG 2nd order

method with characteristic-based limiting is the best option for grid resolutions lower than

about 750 for this problem. This accuracy does not differ much from that of the wave

propagation algorithm if the grid resolution is higher than 500 cells. Therefore, for an

overall accurate solution with an efficient use of computing time, the wave propagation

algorithm performs better for grid resolutions of over 500.

For the RKDG algorithm, the characteristic-based limiting can be made to be as com-

petitive or even better than component-based limiting in terms of computational time. This

is done by applying a problem specific characteristics-based limiter routine than using a gen-

erally supplied characteristics-based limiter routine that is applicable for all problems. To

elaborate, characteristics-based limiters involve splitting the higher order coefficients and

the coefficients of the forward and backward differences of the averages to compute the

waves. These waves are used to determine the conserved quantities that are limited using

the modified min-mod limiter described in Chapter 3. When used in a general routine, the

Riemann problem solver needs to be called several times to split each of these coefficients

and this can increase the computation time. Hence, it is computationally effective to write

a separate problem-specific routine that calculates the coefficients and the waves for each

application and saves the computation time involved in each additional call to the Riemann

problem solver. In this way, the use of the characteristic-based limiters can now be justified

for all problems over the use of component based limiters due to its increased accuracy in

addition to its comparable computational effort. For the problems in the following sections,

this local problem-specific characteristics-based limiting is applied and it is evident that the
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characteristics-based limiters are superior to the component-based ones.

It is noted from Table 6.1 that the wave propagation algorithm takes less than 1/10 the

time to provide a solution as compared to the 2nd order RKDG method and it takes about

1/25 time as compared to the 3rd order RKDG algorithm for the same grid resolution at

the same user-specified time. Hence, for this problem, it is more computationally effective

to run the wave propagation method at a higher grid resolution and obtain an accurate,

stable result in much less time as compared to an almost equally accurate RKDG solution

with a much lower grid resolution. Figure 6.5 clearly displays the computational effort.

This problem only has one significant speed for disturbances to propagate, and with such

problems the WAVE algorithm provides good results. In fact, if the WAVE scheme can

be run with a CFL of 1.0 for problems with only one characteristic speed, the solution

propagates almost exactly without any diffusive or dispersive errors.

6.2 Electron Acoustic Waves

The Dispersive Euler equation system is used for the electron acoustic wave problem. The

equation set used is described in Chapter 4 in Eq. (4.6). The Euler equations are taken and

are modified to contain source terms that would allow for dispersions. These dispersions

lead to a solution for the electron acoustic pulse. The source terms that are used are

equivalent to having an electron cyclotron frequency. The reason for using this equation

system instead of the two-fluid model here is to be able to analyze a simpler system of

equations that would provide exactly the same solution as the full two-fluid model. Once

the algorithms are analyzed and compared using simpler models, they are then applied to

the full two-fluid model. The advantage of the electron acoustic wave problem is that it has

an exact solution.

6.2.1 Analytical Solution

The electron acoustic pulse problem has an exact solution and the derivations leading to

this exact solution for the dispersion relation using the Dispersive Euler model are displayed

here. As noted earlier, the Euler equations are modified to contain dispersive source terms

which is the reason these equations are referred to as Dispersive Euler by Hakim [4]. In
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non-conservative form, the continuity, momentum and energy equations are,

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0 (6.5)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+ ρv

q

m
Bz (6.6)

ρ

(
∂v

∂t
+ u

∂v

∂x

)
= −ρu

q

m
Bz (6.7)

∂p

∂t
+ u

∂p

∂x
= −γp

∂u

∂x
, (6.8)

where p is the pressure, q is the charge, m is the mass and Bz is any spatially dependent

vector which in this case is chosen to be the magnetic field in the z-direction. In this manner,

the cyclotron frequency, ωc = q
mBz can be introduced into the source terms of these Euler

equations. Bx = By = 0 is assumed for simplicity. These equations are linearized such that

ρ = ρ0 + ρ1, p = p0 + p1 and u0 = v0 = 0, where subscript 0 denotes the equilibrium state

terms and subscript 1 stands for the perturbations. After introducing the linear terms the

products of the perturbations are neglected as they are assumed to be very small and the

equilibrium terms are canceled appropriately to get the linear system,

∂ρ1

∂t
= −ρ0

∂u1

∂x
(6.9)

ρ0
∂u1

∂t
= −∂p1

∂x
+ ρ0v1

q

m
Bz (6.10)

ρ0
∂v1

∂t
= −ρ0u1

q

m
Bz (6.11)

∂p1

∂t
= −γp0

∂u1

∂x
. (6.12)

Assume that the perturbations are of the form described by the Fourier transform,

f(x, t) =
∞∑

n=0

fnei(knx+ωnt) (6.13)

where kn represents the wave number and ωn stands for the frequency for each term of the

expansion. Applying the Fourier transform to the linear equations,

iωnρ1 = −iknu1ρ0 (6.14)

iωnu1ρ0 = −iknp1 + λv1bz (6.15)

iωnv1ρ0 = −ρ0λu1bz (6.16)

iωnp1 = iγp0knu1 (6.17)
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are obtained. Solving the equation system,



iωnρ0 −ρ0
q
mBz ikn

ρ0
q
mBz iωnρ0 0

iγp0kn 0 iωn







u1

v1

p1


 = 0 (6.18)

by setting the determinant of the matrix equal to 0, the following dispersion relation is

obtained:

ωn = ± (
k2

nc2
s0 + ω2

c

)1/2 (6.19)

where ωc is the cyclotron frequency described previously and cs0 is the speed of sound that

is given by
√

γp0/ρ0. It is noted that the dispersion relation is not linear in k due to the

second term in Eq. (6.19) and instead is quadratic, leading to the dispersions.

6.2.2 Description of Problem

The problem involves initiating a square pulse that is approximated with a Fourier expan-

sion. This is done for the velocity, such that u =
∑∞

n=0 u1(x, t) with u being a function of

x and t. p0 and ρ0 are initialized as constant values with

u1(x, t) = U0

N∑

n=0

i

2n + 1
eiknxeiωnt (6.20)

such that kn = 2π(2n + 1) is defined for the function approximation. It is seen that as

N → ∞, Eq. (6.20) represents a step function for the interval [0, 1]. Therefore, at each

Fourier component, n,

u
(n)
i ≡ iU0/(2n + 1)ei(knx+ωnt) (6.21)

ρ
(n)
1 = −knρ0

ωn
u

(n)
1 (6.22)

v
(n)
1 = −i

qBz

mωn
u

(n)
1 (6.23)

p
(n)
1 = −γknp0

ωn
u

(n)
1 , (6.24)

are defined such that when each of these variables is summed over n = 0 . . . N , the exact

solution to the linear problem is obtained. Bz can be spatially dependent in these equations.
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The exact solution for u(x, t) is given by

u(x, t) = −
∞∑

n=0

U0

2n + 1
sin(2π(2n + 1)x + ωnt) (6.25)

for the step function approximation and this is used to analyze the numerically obtained

solutions. The ωn used is from Eq. (6.19).

Figure 6.7 shows the initial condition for N = 9 and Figure 6.6 shows the exact analytical

solution for t = 1000, γ = 2, q/m = 10, ρ0 = p0 = 1, Bz = 1, and N = 5000, such that

cs =
√

2 and ωc = 10. x is discretized on a domain [0, 1] with 512 cells. It is evident that

there are a large number of oscillations and sharp gradients in the exact analytical solution

that could be mistaken for numerical dispersion. This problem has quite complex solutions

that need to be properly resolved by the algorithms used. This is a good test problem

to assess how the algorithms resolve the small scale features in comparison to the exact

solution and at what computational expense. These studies are performed in the following

section where the limitations of both algorithms are considered.

6.2.3 Results

Figure 6.7 shows the initial condition when N = 9 Fourier modes are taken into account. As

mentioned earlier, the parameters used are γ = 2, q/m = 10, Bz = 1, ρ0 = p0 = 1, cs =
√

2

and ωc = 10 with the 9 Fourier modes. The wave propagation scheme is compared to the

RKDG scheme for these same parameters. The interest is in the linear regime here; to ensure

a linear solution, U0 = 10−8 is used. Based on Eq. (6.21-6.24), the initial conditions for all

the other variables are given by the exact solutions of these variables at time t = 0 after

adding these calculated perturbed quantities to the equilibrium values. The CFL numbers

used here are 1 for the wave propagation method and 1/3 for the 2nd order RKDG scheme.

The temporal order of the RKDG method is 3rd. All the results that are compared, are for

time t = 3. The analytical solution in all the results is for all the same parameters described

in the problem.

Figure 6.8 compares the wave propagation scheme to the RKDG scheme with both of its

limiters, and both schemes are compared to the analytical solution. It is seen that even at

a resolution of 40 cells, the wave propagation algorithm performs rather well. The RKDG
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Figure 6.6: Electron Acoustics problem: The exact solution for N=5000 at t=1000, u Vs x
with cs =

√
2 and ωc = 10. This is an example of an exact solution using Eq. (6.25). Notice

that the solution is rather complicated with a number of small wavelength dispersions that
need to be well resolved.
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however, is quite diffusive and does not capture some of the smaller wavelength features at

all. Also, the results from both RKDG limiters are quite comparable for this problem.

Figure 6.9 shows the WAVE and the RKDG schemes as compared to the analytical

solution for 120 grid points. It is noted that using a CFL of 1 for the wave propagation

scheme eliminates the errors introduced by diffusion and dispersion to a large extent in this

problem. The wave propagation solution is almost that of the analytical solution, whereas

the RKDG solution is diffusive at the points with smaller wavelength possibly due to the

presence of limiters along with the smaller time steps that are taken to maintain the CFL

stability condition of this scheme. Using a 3rd spatial order RKDG scheme would resolve

these diffusive issues, however it would be even more computationally intensive.

The solutions from both the algorithms are compared to the analytical solution by taking

an l2-norm of the velocities for a number of grid resolutions. This offers a way to quantify

the accuracy of both algorithms. Figure 6.10 displays the l2-norms of both the algorithms

as the grid resolution is increased. It is very clear that the wave propagation method is

superior to the RKDG scheme for this problem for the given parameters. This could be

attributed to the fact that if there is only one significant wave speed in the system, the wave

propagation algorithm can be run with CFL = 1 to give almost an exact result. This is the

case with the electron acoustic pulse problem using the Dispersive Euler model.

Table 6.2 displays the computational time taken for both the Wave algorithm and the

RKDG scheme with characteristics based and component-based limiters for several grid

resolutions. Since the computational times with the use of both RKDG limiters are com-

parable, the 3rd order RKDG method is only explored with characteristics-based limiting.

It is seen that, just like with the case of the strain waves problem, the wave propagation

algorithm takes about 1/10 the time to provide results to higher order accuracy as compared

to the 2nd order RKDG method and about 1/30 the time of the 3rd order RKDG method

to provide results with an accuracy that is slightly lower. Comparing the wave propagation

scheme to the 3rd order RKDG scheme at a grid resolution of about 80 cells, it is seen

from Figure 6.10 that at this grid resolution, both methods have the same accuracy. Com-

paring the times for these two methods at this resolution, the wave propagation method

takes 1 sec. to run while the 3rd order RKDG method takes 28 sec. Hence, this makes
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Figure 6.8: Electron Acoustics problem: Plots are of u Vs x for 40 cells with cs =
√

2 and
ωc = 10. The upper panel shows the WAVE algorithm (blue) and the analytical solution
(red) and the lower panel shows the RKDG algorithm with its characteristics-based limiters
(blue) and component-based limiters (black) along with the analytical solution (red).
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Figure 6.9: Electron Acoustics problem: Plots are of u Vs x for 120 cells with cs =
√

2 and
ωc = 10. The upper panel shows the WAVE algorithm (blue) and the analytical solution
(red) and the lower panel shows the RKDG algorithm with its characteristics-based limiters
(blue) and component-based limiters (black) along with the analytical solution (red).
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Algorithm CFL Order Time(sec)

J=512 cells

WAVE 1.0 2 39.8

RKDG with characteristic limiters 0.3 2 432.1

RKDG with component-based limiters 0.3 2 437.7

RKDG with characteristic limiters 0.2 3 1129.4

J=256 cells

WAVE 1.0 2 15.5

RKDG with characteristic limiters 0.3 2 109.3

RKDG with component-based limiters 0.3 2 110.4

RKDG with characteristic limiters 0.2 3 282.5

J=120 cells

WAVE 1.0 2 2.21

RKDG with characteristic limiters 0.3 2 24.1

RKDG with component-based limiters 0.3 2 24.6

RKDG with characteristic limiters 0.2 3 62.7

J=40 cells

WAVE 1.0 2 0.24

RKDG with characteristic limiters 0.3 2 2.82

RKDG with component-based limiters 0.3 2 2.85

RKDG with characteristic limiters 0.2 3 7.2

Table 6.2: Dispersive Euler Electron Acoustic Wave problem: Some computational times for
the wave propagation algorithm and the RKDG algorithm with both characteristic-based
and component-based limiters for several grid resolutions.
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effort while the wave propagation algorithm takes very little.
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the wave propagation algorithm more computationally effective. The two limiters applied

to the RKDG scheme are comparable in this case in terms of computational effort. As

discussed previously with the strain waves problem, the use of characteristics-based limiters

can be justified for all problems over the use of component-based limiters if the limiting is

implemented appropriately for each problem. In this case, the characteristics-based limiters

take less time and provide higher accuracy as compared to the component-based limiters.

With the 2nd spatial order RKDG scheme taking such large computing time for a solution

that is not better than the wave propagation algorithm, it is possible to say that the wave

propagation method performs better. However, if increased accuracy is desired for this

problem, and computational effort is not an issue, then the 3rd order RKDG method is

the best option. It is noted from Figure 6.10 that the 3rd order RKDG method gives the

most accurate results as compared to both the 2nd order RKDG and the wave propagation

schemes but Figure 6.11 shows that it is very computationally intensive. Therefore, it can be

concluded that for overall performance in terms of high accuracy and efficient computational

time, the wave propagation method is superior for this equation system and this is evident

from Table 6.2. However, if high accuracy is the biggest requirement with computational

time not being a deciding factor, the 3rd order RKDG scheme is the best option.

Based on the information noted above, it is evident that the wave propagation scheme

outperforms the RKDG method significantly for this problem as well. It provides a better

solution and uses only 1/10 of the computational time of the RKDG method. There is an

exception to this behavior though. If the problem is run with ωc = 100 instead of 10, the

Wave algorithm encounters phase errors that the RKDG does not at lower grid resolutions.

This can be seen in Figure 6.12. The reason for these errors is that in general, there are

larger source terms from ωc as compared to the other parameters in the advection part.

Hence, the source term handling becomes significant in this case. The wave propagation

method uses the source term splitting detailed in Chapter 2 and this splitting is the reason

for the phase errors. A typical time scale can be described by τc = 2π/ωc which represents

an oscillation time for the solution. A typical time for information to propagate is described

by τs = ∆x/c where c is a wave propagation speed in the model. Now, for the oscillation to

be well resolved, τc must be greater than τs by a few magnitudes. For the case of the wave
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propagation method with 100 cells, this requirement is violated because τc = 0.063 while

τs = 0.071 leading to the phase error in Figure 6.12 because the oscillations are not well

resolved. The RKDG method is superior in this regard as it provides a solution that is more

comparable to the exact solution for the same order of accuracy. For the wave propagation

scheme, there are two ways around this phase error. One is to increase the grid resolution

significantly, and the other is to take smaller time steps (i.e. lower CFL number). Taking

smaller time steps however, makes the solution diffusive and this is not desirable.

It can be seen from Figure 6.13 that as the grid resolution is increased with higher ωc, the

wave propagation algorithm overcomes the phase shift error. The solution in Figure 6.13 is

for 512 cells and it is seen that the phase shift errors are almost gone at this resolution.

For lower grid resolutions and higher ωc, the RKDG method is superior. It does not resolve

the smaller wavelengths as well at 2nd order but increasing the spatial order to 3rd makes

the solution a little better. The 3rd order method does take about twice as long to run as

the 2nd order method, and the solution is not significantly better in terms of accuracy as

noted from the lower panel of Figure 6.12. It can be argued that a slightly diffusive solution

(RKDG) is preferable to a phase shifted solution. In general, the RKDG method handles

problems with large source terms without introducing additional errors even when running

at lower grid resolutions.

Several source term handling methods are explored with this problem that include the

semi-implicit source term handling described by Eq. (2.27) and the implicit source term

handling described by Eq. (2.30). The semi-implicit source term handling is first explored

here. This is a split scheme as well, but instead of using the Runge-Kutta time stepping

method, the trapezoidal method is used. The results obtained by applying this source term

handling method are shown in plots of Figure 6.14 for both 160 cells and 512 cells. For

the same parameters as Figures 6.12 and 6.13, i.e. with cs =
√

2 and ωc = 100, the semi-

implicit scheme takes slightly more computational time and it displays phase errors similar

to the Runge-Kutta time stepping scheme. The phase errors here, however, seem to be

more severe than earlier. Increasing the grid resolution reduces these phase errors just like

with the case of the Runge-Kutta scheme. For 160 cells the semi-implicit scheme takes 1

second more computing time than the Runge-Kutta time stepping scheme and produces
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Figure 6.12: Electron Acoustics problem: u Vs x for 100 cells with cs =
√

2 and ωc = 100.
Upper panel: wave propagation scheme (blue) as compared to the analytical solution (red)
where the phase shift is noted, Lower panel: RKDG 2nd order (blue) and 3rd order (black)
with characteristics-based limiters as compared to the analytical solution (red).
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Figure 6.13: Electron Acoustics problem: u Vs x for the Wave Propagation method with
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√
2 and
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Figure 6.14: Electron Acoustics problem: u Vs x for 100 and 512 cells with cs =
√

2 and ωc =
100 using the semi-implicit source term handling for the wave propagation Algorithm. Upper
panel: Semi-implicit source term handling (blue) as compared to the analytical solution
(red) and Runge-Kutta scheme source handling implemented previously (green) with 100
cells. Large phase shift noted here; Lower panel: Semi-implicit source term handling (blue)
as compared to the analytical solution (red) and Runge-Kutta scheme source handling
implemented previously (green) with 512 cells.
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larger errors. Therefore, the Runge-Kutta time stepping scheme is used for future handling

of source terms with the wave propagation method.

Increasing the grid resolution of the Wave Propagation scheme to a little higher than the

512 cells shown in Figure 6.13 can provide results very close to the analytical solution with

still less computational effort than running the 3rd or even the 2nd order RKDG method

with just 256 cells. Depending on the problem parameters, i.e. the magnitude of the source

terms, the problem could be run accordingly with the 3rd order RKDG scheme at a lower

grid resolution or the wave propagation scheme at a higher grid resolution.

Exploring the implicit source term handling method for the wave propagation scheme,

as discussed in Chapter 2, Figure 6.15 indicates the result of the implicit method. This

is an unsplit scheme and it is explored to check if using an unsplit scheme provides a

better solution by eliminating the phase errors that occur when the source term splitting is

applied. In this case, it is evident that the implicit source term handling method provides a

diffusive solution. An analytical evaluation is performed to the implicit equation described

in Eq. (2.29) to verify this diffusive nature. A Taylor series expansion is taken and the

solution arrived at is described by:

Q(t + ∆t) =Q(t)−∆tL(Q(t)) + ∆tMQ(t)−∆t2ML(Q(t))

−∆t2M2Q(t) + ∆t3M2L(Q(t)) . . . (6.26)

where L represents the flux update part of the equation and M represents the source

Jacobian. It is noted that an M2 term is present. M contains imaginary eigenvalues for

this equation system. So M2 contains negative, real values. This indicates a decaying system

leading to the diffusive nature of the solution. It is seen that the wave propagation method

with implicit source term handling is extremely diffusive, more so than the RKDG method;

while the source term splitting introduces phase errors when the source terms are significant.

The implicit handling of the source terms is not recommended for this application. The

phase error problem is easily fixed by increasing the grid resolution. Therefore, it can be

concluded that although source term handling could be an issue with the wave propagation

algorithm with certain parameters, this is easily fixed by increasing the grid resolution.

Hence, this leaves the Wave Propagation method still numerically and computationally



58

more effective than the RKDG algorithm.

6.3 Radial Z-Pinch

The goal of this thesis is to determine which algorithm is best suited for the application of

the full two-fluid plasma model. The two-fluid plasma model contains 16 equations making

it quite a complex system. This means a lot of information could be propagating through

the domain at a given time and capturing all that could be a challenge. This section involves

a comparison of the two algorithms for an application of the Full Two-Fluid Plasma Model

- the Radial Z-Pinch Equilibrium problem.

6.3.1 Description of Problem

Chapter 5 describes the equation system and the radial source terms used for this one-

dimensional radial Z-pinch problem. The use of Magnetohydrodynamic (MHD) equilibrium

is not expected to maintain equilibrium with the two-fluid plasma model; it turns out to be

diffusive. Hence, a true two-fluid equilibrium derived by Loverich and Hakim is used. The

equilibrium used is defined by

pe = j2
0

(
1
4
r2 − 12r4 +

512
3

r6

)

pback = pe at r=a

p0 =
pback

1− α

p = p0 − pe

Pe =
p

2

jze = j0(1− 64r2)

Pi =
p

2

Bφ = j0(0.5r − 16r3)

for the variables within the pinch which in this case is of radius a. Subscript e denotes

electrons and i stands for ions. α determines the amount of initial pressure at the pinch

radius, p0, and consequently helps set the background pressure to prevent errors due to
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negative pressure or density anywhere in the domain. jze represents the current in the

pinch flowing in the z-direction. Similarly, the parameters outside the pinch are described

by,

pe = j2
0

(
1
4
a2 − 12a4 +

512
3

a6

)

p0 =
pe

1− α

p = p0 − pe

Pe =
p

2

jze = 0

Pi =
p

2

Bφ = j0

(
0.5a− 16a3

)
a
1
r

with r being the position outside the pinch radius. Using the expressions described above

and based on the location within the domain, the conserved variables are initialized as:

ρe = me
p

p0
(6.27)

mez =
jzeme

qe
(6.28)

ee =
Pe

γ − 1
+ 0.5

j2
zem

2
e

q2
eρe

(6.29)

ρi = mi
p

p0
(6.30)

ei =
Pi

γ − 1
(6.31)

mez is the z-direction electron momentum and Bφ sets the azimuthal magnetic field of the

Z-pinch. All other conserved variables are initialized to zero. Figure 6.16 shows plots of the

initial conditions chosen.

Axis boundary conditions are used on the left edge and conducting wall boundaries are

assumed on the right edge. In applying the boundary conditions, care needs to be taken to

handle the higher order coefficients of the RKDG appropriately. Because it is a polynomial

approximation, treating the higher order coefficients at the boundaries in exactly the same

manner as the first coefficient could lead to incorrect solutions. Therefore, the higher order
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Figure 6.16: Z-pinch Two Fluid Equilibrium initial conditions for electron density, z-
direction momentum and pressure; ion density and pressure; and azimuthal magnetic field.
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terms are treated such that all the odd order coefficients have a flipped sign from the even

order coefficients i.e.,

Scalar and Axial terms:

Q(ghost cell) = Q(boundary) for even order coefficients (6.32)

Q(ghost cell) = −Q(boundary) for odd order coefficients (6.33)

Radial and Azimuthal terms:

Q(ghost cell) = −Q(boundary) for even order coefficients (6.34)

Q(ghost cell) = Q(boundary) for odd order coefficients, (6.35)

where Q(ghost cell) refers to the ghost cell values while Q(boundary) refers to the value

at the axial edge of the domain. This is how Legendre polynomials are to be treated at

the boundaries. Similar implementation is done for the conducting wall boundary on the

right edge of the domain. This boundary requires that the fluid normal velocities, the radial

magnetic field and the tangential electric fields be negated while the rest of the variables are

copied over. With these initializations and boundary conditions, the comparisons of both

the algorithms are detailed in the following section to determine which algorithm is better

suited for this equation system and which one holds equilibrium better.

6.3.2 Results

The wave propagation scheme is compared to the 2nd and 3rd order RKDG method with

characteristics-based and component-based limiting. It is expected as in the previous prob-

lems that the characteristics-based limiters dominate over the component-based ones for

the RKDG scheme. This will be shown in the following paragraphs once the l2-norm is

computed. Therefore, only the RKDG characteristics-based limiters are compared here.

Figure 6.17 shows the Wave and RKDG algorithms with a grid resolution of 32 cells as

compared to the initial condition. This figure compares the algorithms based on the elec-

tron density and the azimuthal magnetic fields. The results shown with these two variables

are sufficient for the comparisons as the other conserved variables vary in a similar manner.

The initial conditions chosen for purposes of the comparisons, and to compute the errors,
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are shown in Figure 6.16 with 5000 cells. The algorithms are compared for their abilities to

maintain equilibrium. The results shown are for simulations run until a characteristic tran-

sit time of t = 10 on a domain going from x = 0 to x = 1 = 7rLi with the left being the axis

and the right being the conducting wall. The parameters used here are γ = 1.6667, speed

of light c0 = 1.0, ion and electron charge-to-mass ratios of qi/mi = 10, qe/me = 500, ion-

to-electron mass ratio of mi/me = 50, ion Larmor radius-to-domain length of rLi/x0 = 1/7,

and ion skin depth-to-domain length of δi/x0 = 1/10.

It is evident from Figure 6.17 that at a low grid resolution of 32 cells, the wave propa-

gation scheme is rather diffusive, while the RKDG scheme performs really well at holding

equilibrium. The reason for this diffusive behavior of the wave propagation scheme could be

attributed to the slower characteristic speeds in the system getting diffused away. Increas-

ing the CFL number of the wave propagation scheme from 0.9 to 1.0 leads to oscillations

in the axis that destroy the solution. Decreasing the CFL number even lower makes the

solution even more diffusive and this is not desired. The RKDG, being an unsplit scheme,

seems to be superior. It appears that the 2nd and 3rd order RKDG schemes do not differ

significantly as a result of which it can be concluded that the use of the 2nd order RKDG

scheme is the best choice at this resolution based on the closeness of the solution to the

initial condition and the computational effort involved. At a grid resolution of 100, the al-

gorithms still differ from each other rather significantly. The wave propagation algorithm is

diffusive even at this resolution as compared to the 2nd and 3rd order RKDG schemes. Even

the RKDG scheme differs slightly from the initial condition at this resolution. This can be

seen from Figure 6.18. Increasing the grid resolution to 256 provides the results shown in

Figure 6.19. With 256 cells, all the algorithms appear to have a solution pretty close to

the initial equilibrium condition. Figure 6.20 provides a comparison of all the algorithms

based on the l2-norm described previously. For this problem, the l2-norm is computed for

the magnetic field, Bphi, at numerous grid resolutions. It is noted that the 3rd order RKDG

scheme performs the best of all the algorithms but not significantly better than the 2nd

order RKDG method. For low resolutions, the wave propagation method performs poorly

and in fact, it continues to perform poorly until the resolution is about 200 cells. The

accuracy of the wave propagation scheme with 200 cells is comparable to that of the RKDG
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Figure 6.17: Z-pinch Two Fluid Equilibrium with 32 cells for the Wave Propagation al-
gorithm (red), the 2nd order RKDG scheme with characteristic-based limiting (blue) and
the 3rd order RKDG scheme with characteristic-based limiting (green) as compared to the
initial condition (black) for the electron density (upper panel), and azimuthal magnetic field
(lower panel).
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Figure 6.18: Z-pinch Two Fluid Equilibrium with 100 cells for the Wave Propagation al-
gorithm (red), the 2nd order RKDG scheme with characteristic-based limiting (blue) and
the 3rd order RKDG scheme with characteristic-based limiting (green) as compared to the
initial condition (black) for the electron density (upper panel), and azimuthal magnetic field
(lower panel).
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Figure 6.19: Z-pinch Two Fluid Equilibrium with 256 cells for the Wave Propagation al-
gorithm (red), the 2nd order RKDG scheme with characteristic-based limiting (blue) and
the 3rd order RKDG scheme with characteristic-based limiting (green) as compared to the
initial condition (black) for the electron density (upper panel), and azimuthal magnetic field
(lower panel).
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schemes (both 2nd and 3rd order) with only 64 cells. A look at the computational efforts

will determine which algorithm is superior. Table 6.3 displays the CPU times for each of the

algorithms using several grid resolutions and this is better seen in Figure 6.21. Comparing

the computational time of the wave propagation scheme at 200 cells to the 2nd order RKDG

method with characteristics-based limiting at 64 cells, it is seen that the RKDG method

takes less than half the computational effort to provide a solution with the same accuracy.

Therefore, for these chosen parameters, the RKDG algorithm provides better results for the

two-fluid plasma equation system.

Upon testing both the algorithms with several different values for qe and qi results in

the comparisons being consistent to that presented with qi = −qe = 10 in terms of both

accuracy and computational effort. Increasing the electron mass, me to 1/25 and comparing

the results from the two algorithm leads to the consistent comparisons as well. It does

not appear to take longer to run the simulation to the same characteristic transit time,

tend = 10. In fact it is noted that the solutions (especially the RKDG) are so stable that it

would take an incredibly long time to develop physical instabilities in this equilibrium. Both

the algorithms are initialized with the same equilibrium and are run out to a very long time

to see which one performs better at holding equilibrium. Figure 6.22 displays the result

of running the wave propagation and the 2nd order RKDG scheme with 128 grid points

to time tend = 500. It is evident that, at the same grid resolution, the RKDG method is

superior to the wave propagation algorithm at maintaining equilibrium. In fact the RKDG

method holds equilibrium almost exactly as compared to the initial conditions while the

wave propagation method is very diffusive. A good comparison would involve running the

Wave Propagation and the 2nd order RKDG schemes with the same computational effort

and comparing the results obtained for both of them in this case. To do this, both algorithms

are run out to the same final time, t = 500 but the wave propagation algorithm is run with

256 cells while the RKDG is run with 128. The results of these comparisons are shown in

Figure 6.23 for the electron density and azimuthal magnetic field plots. At these resolutions,

the RKDG method requires 11000s of CPU time and the Wave Propagation method requires

10000s. Comparing the equilibria, it is concluded that the RKDG method performs better

for purposes of maintaining equilibrium using the two-fluid plasma system.
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Figure 6.20: Radial Z-pinch problem: l2-norm of Bphi Vs Grid Resolution for the wave prop-
agation method (red), 2nd order RKDG with characteristics-based limiters (blue), 2nd order
RKDG with component-based limiters (black), and 3rd order RKDG with characteristics-
based limiters (green) as compared to the initial condition with 5000 cells with γ = 1.6667,
c0 = 1.0, qi = −qe = 10, mi = 1.0 and me = 1/50. It is seen that the RKDG algorithm is
far superior to the wave propagation scheme in terms of accuracy.
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Algorithm CFL Order Time(sec)

J=256 cells

WAVE 0.9 2 200

RKDG with characteristic limiters 0.3 2 925

RKDG with component-based limiters 0.3 2 1003

RKDG with characteristic limiters 0.2 3

J=128 cells

WAVE 0.9 2 50.5

RKDG with characteristic limiters 0.3 2 232.8

RKDG with component-based limiters 0.3 2 254.6

RKDG with characteristic limiters 0.2 3 538.4

J=64 cells

WAVE 0.9 2 12.9

RKDG with characteristic limiters 0.3 2 59.7

RKDG with component-based limiters 0.3 2 64.6

RKDG with characteristic limiters 0.2 3 137.1

J=32 cells

WAVE 0.9 2 3.35

RKDG with characteristic limiters 0.3 2 15.5

RKDG with component-based limiters 0.3 2 16.8

RKDG with characteristic limiters 0.2 3 36.1

Table 6.3: Two-Fluid Plasma Model Radial Z-Pinch problem: Some computational times
for the wave propagation algorithm and the RKDG algorithm with both characteristic-based
and component-based limiters for several grid resolutions.
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Figure 6.21: Radial Z-Pinch problem: Computational time(sec) Vs Grid Resolution for the
wave propagation method (red), 2nd order RKDG with characteristics-based limiters (blue),
and 3rd order RKDG with characteristics-based limiters (green) for γ = 1.6667, c0 = 1.0,
qi = −qe = 10, mi = 1.0 and me = 1/50. It is noted that the 3rd order RKDG method takes
much higher computational effort while the wave propagation algorithm takes very little.
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Figure 6.22: Z-pinch Two Fluid equilibrium with 128 cells for the Wave Propagation al-
gorithm (red), the 2nd order RKDG scheme with characteristic-based limiting (blue) run
out to a long time tend = 500 as compared to the initial condition (black) for the electron
density (upper panel), and azimuthal magnetic field (lower panel).
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Figure 6.23: Z-pinch Two Fluid equilibrium with 256 cells for the Wave Propagation algo-
rithm (red) and 128 cells for the 2nd order RKDG scheme with characteristic-based limiting
(blue) run out to a long time tend = 500 as compared to the initial condition (black) for
the electron density (upper panel), and azimuthal magnetic field (lower panel). At these
chosen resolutions, both algorithms have comparable computational efforts.
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The full two-fluid plasma model has imaginary eigenvalues for the source terms. Per-

forming a source splitting for the wave propagation scheme is the reason the equilibrium

decays over time. Bale, LeVeque, Rossmanith and Mitran [1] study this problem and dis-

cuss the treatment of the source terms. They determine that the source term handling

through the process of Strang splitting that has been applied to the wave propagation

method might not work well for solutions close to a steady-state. An alternate solution is

provided according to which the algorithm takes into account only those waves that contain

the information propagating relative to the steady-state. There is a process of distribu-

tion of the eigen-decomposition of the source terms into the neighboring cells based on the

sign of the corresponding eigenvalues. This, however, is not applicable to the case of the

two-fluid plasma model. The source Jacobian for this equation system has all imaginary

eigenvalues, so this unsplit scheme is not suitable here. Finding a suitable unsplit scheme

for this equation system is a good topic for future study.

The wave propagation scheme is superior for equation systems with one characteristic

speed. The equilibrium problem has been applied here to the two-fluid plasma model. For

the case of dynamic problems, however, when there are many speeds present, such as with

the full two-fluid plasma model, the wave propagation scheme might not accurately capture

the information propagating with speeds much lower than the fastest characteristic speed.

The slower speeds are diffused away while the faster ones are well captured.

The wave propagation scheme captures the solution almost exactly when it is run with

CFL=1 and there is only one characteristic speed in the system as with the case of both the

strain wave and the dispersive Euler problems. For the two-fluid model, however, there are

many characteristic speeds in the system and running the problem with CFL=1 causes the

slower speeds to get diffused away because the CFL=1 requirement cannot be maintained

for all the characteristic speeds in the system. The RKDG algorithm appears to be rather

stable and accurate for this equation system. It captures the information in the system

reasonably well even at lower grid resolutions. Therefore, it is possible to conclude that

for radial Z-pinch equilibrium with the two-fluid plasma model, the RKDG algorithm is

superior in maintaining equilibrium in terms of accuracy and computational effort.

A study of dynamic applications of the full two-fluid plasma model would be an im-
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portant topic for further study as well. The drawbacks of the wave propagation algorithm

for steady-state problems might not appear in dynamic problems. The use of split source

schemes for the wave propagation algorithm might work better for dynamic problems. Also,

with information propagating within the domain, the algorithms might compare in a totally

different light versus steady-state problems.
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Chapter 7

CONCLUSIONS

7.1 Concluding Remarks

The wave propagation method and the Runge-Kutta Discontinuous Galerkin (RKDG)

method are compared. Applications of these methods to equation systems containing only

one characteristic speed such as the Strain Wave and the Dispersive Euler models indicate

that the wave propagation algorithm is superior in terms of both desired accuracy and com-

putational expense. When the wave propagation method is run with a Courant number of 1

for such simpler models that have only one characteristic speed of disturbance propagation,

the solution obtained is very close to the analytical or converged solution without signifi-

cant dispersive or diffusive errors. However, the wave propagation algorithm is subject to

phase errors when tested with the electron acoustic pulse problem using the Dispersive Euler

equation set. This is because the parameters chosen, specifically the cyclotron frequencies,

were too high for the grid resolutions and the time for information to propagate through

the domain was not sufficient to be able to resolve the oscillation frequency. The wave

propagation algorithm applies source term splitting and this is the main reason that these

phase errors occur. These phase errors are also observed with the semi-implicit source term

handling method using the trapezoidal method instead of the Runge-Kutta time stepping

scheme. With the semi-implicit scheme, the errors are more severe and the computational

effort is slightly higher. Upon applying implicit source term handling to the wave propaga-

tion scheme it is seen that the phase errors are avoided but the solution now is extremely

diffusive even at higher grid resolutions. Hence, the use of both the semi-implicit and the

implicit source term handling methods could not be justified over just a higher grid resolu-

tion Runge-Kutta source term splitting based on both the accuracy and the computational

effort involved. These phase errors do not occur with the RKDG method which is an un-

split scheme and this would be preferable so that accurate solutions are obtained. However,
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increasing the grid resolution resolves these issues for the wave propagation method and

provides a better solution than the 2nd order RKDG method which appears to be rather

diffusive even at high grid resolutions. The 3rd order RKDG method captures the solution

rather accurately but it is very computationally intensive. Increasing the grid resolution of

the wave propagation method to overcome these errors takes less computational effort than

the RKDG method with lower grid resolution and provides a better solution.

For the Two-Fluid Plasma Model however, there is a notable difference in the perfor-

mance of the algorithms as compared to their applications to simpler equation systems. The

two-fluid equation system contains 16 equations and it is a rather complicated system with

information propagating at a number of different speeds. The speed of sound and the speed

of light play significant roles in resolving the information in the system and the large dif-

ference between these speeds requires an appropriate algorithm to capture the information

accurately. For this model, the RKDG method provides a more accurate, well resolved and

computationally efficient solution. The wave propagation method is rather diffusive at lower

grid resolutions for this model and does not do a good job at maintaining equilibrium in the

radial Z-pinch. Near equilibrium the speed of information propagating is much less than

the characteristic speed. The Courant number chosen is applied to the fastest characteristic

wave speed to ensure stability. As a result, the waves traveling at slower characteristic

speeds get diffused away since the Courant condition cannot be maintained for information

propagating at all different speeds, and this leads to a diffusive solution. In addition, this

diffusive behavior of the wave propagation method could be attributed to the source term

handling (the use of split source terms) which could introduce errors in the solution. This

is a problem with equilibrium applications and has been studied by Bale, LeVeque, Ross-

manith and Mitran in [1]. For problems close to steady state, the hyperbolic fluxes should

balance the electromagnetic source terms because it is the discrepancy between these terms

that is decomposed into propagating waves. Using Strang splitting for the source terms

could introduce errors in the solution. These errors might upset the balance between the

source terms and the hyperbolic flux gradients, causing the solution to become diffusive

over time. There are unsplit schemes available to resolve these source term splitting issues,

but they are not applicable to the two-fluid plasma model because the source Jacobian in
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this equation system has imaginary eigenvalues. The RKDG method performs well and

it is sufficient to use the 2nd order method which provides accurate and computationally

effective results. Hence, to maintain equilibrium in a radial Z-pinch using the full two-fluid

plasma model, the RKDG method is the superior of the two algorithms.

7.2 Further Study

There is potential for further study that could involve modifying the algorithms to make

them more competitive. For the wave propagation scheme, it is possible to use a combined

method with implicit source term handling and source term splitting such that they can be

applied independently in the domain based on the times for the wave propagation and the

oscillation frequency. In this manner the phase errors can be eliminated and there would

be proper sampling of all the frequencies in the domain.

It is also possible to extend these comparisons to multi-dimensions and see if the per-

formance of the algorithms is consistent in 2D and 3D domains. Loverich and Hakim have

already implemented multiple dimension applications of the discontinuous Galerkin [10] and

the wave propagation [4] methods for the Two-Fluid Plasma Model. Performing the com-

parisons in multi-dimensions could give a good idea of how the algorithms compare with

effects of transverse propagation.

Implementing vacuum boundaries is yet another area to be explored to allow for realistic

boundary conditions and problem specifications without worrying about negative pressures

and densities in the domain. Also, the relaxation methods detailed by LeVeque and Pelanti

in [8] could be further studied for applicability to the full two-fluid plasma model. It would

require additional equations and might seem to make the system rather complicated initially,

but it could result in better solutions.

To verify the comparisons of the Z-pinch equilibrium problem, it would be useful to per-

form the comparisons with a simpler equation system equilibrium problem. An equilibrium

can be derived for the Dispersive Euler equation system and the algorithm comparisons can

be applied here as well to make sure the results are consistent. Dynamic applications of

the two-fluid plasma model would make a good study for these comparisons as well because

the performance of the algorithms in equilibrium might not be consistent with their perfor-
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mance in dynamics problems. Lastly, the unsplit schemes for the wave propagation method

could be studied in greater detail to see if there is a possible way to apply them to a system

where the source Jacobian has imaginary eigenvalues. Doing this could be the solution to

resolving the diffusive nature of the wave propagation algorithm for equilibrium problems.
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