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University of Washington
Abstract
A Finite Volume Algorithm for the Two-Fluid Plasma System in One Dimension
by John Loverich

Chair of Supervisory Committee:

Professor Uri Shumlak
Aeronautics and Astronautics

In this thesis an algorithm is developed to numerically solve the two-fluid plasma system
in one dimension. The two-fluid plasma system consists of electron and ion continuity
equations, electron and ion momentum equations and electron and ion energy equations.
The full Maxwell’s equations are solved including displacement current and electron and
ion currents. The fluids are assumed to be non-relativistic and collisionless. The fluids are
coupled to the electromagnetic field through the Lorentz forces. The homogeneous part of
the fluid equations and Maxwell’s equations are solved numerically using a Roe approximate
Riemann solver while the source terms are updated either implicitly or explicitly. The
algorithm is tested on several model problems including an electromagnetic shock problem
for which it is compared against the MHD solution, an electrostatic shock, and a Debye
shielding problem. It is shown that the algorithm is able to accurately resolve various plasma

waves including electron plasma waves, R-mode, L-mode, and whistler mode waves.
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Chapter 1

INTRODUCTION

Many plasma fluid equations describing ion-electron plasmas are reductions of the two-
fluid plasma model. Ideal MHD (Magnetohydrodynamics) assumes massless electrons and
quasi-neutrality between the electron fluid and the ion fluid. It ignores terms such as the
hall term, diamagnetic drift, electron convective terms, and displacement current. The ideal
MHD model can be improved with the Hall MHD model by including the Hall term in the
Ideal MHD Ohm’s law. The term Hall MHD or sometimes two-fluid MHD [6] refers to ideal
MHD with the Hall current and sometimes the diamagnetic drift added to Ohm’s law, but
the electron convective derivative is still ignored. At the other end of the spectrum of fluid
models is EMHD or Electron MHD. In EMHD the low frequency ion effects are ignored
and only the fast waves are considered. Displacement current, and electron inertia are
important effects in EMHD. Finally, another plasma regime corresponds to that of small
scale effects and low density plasmas where charge separation is important, in this case
quasi-neutrality is not an accurate assumption. The full two-fluid equations encompass all
regimes and include the the displacement current and electron convective derivative and a
separate electron continuity and energy equations.

The Ideal MHD system is computationally simple to solve and has been studied exten-
sively including certain non-ideal terms such as resistivity and viscosity [29, 15, 1, 2, 7, 30,
10, 31]. The system is hyperbolic and the shortest important time scale is on the order of
the Alfven time. Numerical solutions to the more complete Hall MHD system have been
driven by the geophysics [22, 13, 6] and fusion [21] community and the desire to understand
magnetic reconnection and other effects beyond MHD. The space propulsion community

is also interested in more complete models as evidenced by work on the Hall and MPD



thrusters [8, 24]. Work on non-MHD type fluid plasmas have been performed to help un-
derstand weakly ionized gas flow [5] and low density non-neutral plasmas [25]. Research
has increasingly pushed to more complete fluid plasma models.

Ideal MHD has a limited range of applicability although simple to solve. Hall MHD is
more difficult to solve because the whistler wave is resolved numerically. When electron
inertia and displacement current are ignored the maximum whistler wave velocity increases
with grid resolution in such a way that increasing the resolution of a simulation increases the
stiffness of the problem [6]. These problems can be alleviated by introducing displacement
current which limits the whistler wave velocity to the speed of light or introducing electron
inertia which creates a cutoff for the whistler wave which effectively limits the maximum
speed of the whistler wave [22]. In addition, electron inertia is partly responsible for mag-
netic reconnection [4] and so including electron inertia may allow this phenomena to be
modeled. In the two-fluid model these two terms are included in addition to the rest of the
electron convective derivative and simplify the numerical solution to certain types of fluid
plasma problems. In the two-fluid plasma equations, separate ion and electron continuity
equations are used so that quasi-neutrality is not assumed. This allows non-neutral effects
such as electron plasma waves and Debye shielding to be modeled. By moving two a two-
fluid model fluid plasma regimes spanned by ideal MHD, Hall MHD, EMHD and low density
plasmas can be solved with a single algorithm in addition to many effects which cannot be
described using any of these simpler models. This type of algorithm will be particularly
applicable to fast processes such as z-pinches [26].

The algorithm has been developed with an eye on eventually creating a three dimensional
two-fluid algorithm that works on arbitrary geometries. The finite volume method is par-
ticularly suited to this problem. Finite volume methods are common in the computational
fluid dynamics community [19, 16, 28, 14, 3] and have been developed for electromagnetics
[20]. In some regards the two-fluid model is numerically simpler to model than Hall MHD
because the whistler wave has a maximum velocity which is independent of grid resolution.
However, the tradeoff is that the plasma frequency and the speed of light must be resolved.
The system can be written as a balance law with a hyperbolic part set equal to source

terms. In the ideal two-fluid system the source terms do not have any derivatives in them



which means that if one wishes to solve the source terms implicitly a local matrix inversion
on a finite volume grid is all that is required. In contrast, in Hall MHD, a semi-implicit
treatment requires the solution of a global matrix which can be very time consuming [6].
In the first part of this thesis the two-fluid system of equations is introduced and a
non-dimensionalization in terms of important plasma parameters is developed. Next, a
derivation of the MHD equations from the non-dimensionalization of the two-fluid equations
is presented so that the approximations in the MHD equations are apparent. Two-fluid
plasma waves are also discussed in terms of their high and low frequency limits. The
numerical algorithm is then presented and the conditions for the stability of the algorithm.
The results of various simulations are presented and compared to analytic solutions or to

published numerical solutions. Finally, the conclusions are discussed in the last chapter.



Chapter 2

THE TWO-FLUID PLASMA SYSTEM

The equations for the two-fluid plasma system consists of two sets of fluid equations and
the full Maxwell’s equations. The fluid equations differ slightly from the traditional Euler
equations because the Lorentz force is added as a source term. The two fluids are the electron
fluid and the ion fluid which are both charged fluids. Each fluid is characterized by its
own continuity, momentum and energy equations. Maxwell’s equations have a source term
which is the sum of the electron and ion currents. In addition to the fluid characteristics,
ion/electron bulk velocity and ion/electron bulk velocity + the speed of sound and the
Maxwell characteristics + the speed of light, the two-fluid system admits a continuous
range of linear waves. It is the purpose of this section to present the two-fluid system of
equations and then proceed to identify a non-dimensionalization and then take a look at
the large number of simplifications that lead to the much simpler and widely used MHD
approximation. A section on two-fluid plasma waves is also included. It is hoped that this
analysis will help the reader gain some appreciation for the wide variety of physics that the

two-fluid system admits and that the MHD system does not.

2.1 Assumptions

The two-fluid system of equations used in this thesis assumes the electrons are in thermal
equilibrium, the ions are in thermal equilibrium and an accurate representation of the
currents effecting the electromagnetic fields can be obtained by assuming a Maxwellian
distribution of particle velocities. There must be enough particles to make the Maxwellian
distribution an accurate representation of the particle distribution function. There are no
collisions between particles so there is no viscosity, thermal conduction or resistivity. Debye
length is the distance at which the electric field from a point charge is shielded out. Scales

smaller than the Debye length can be resolved provided the conditions just discussed are



assumed.

2.2 The Two-Fluid Plasma Equations

In the following the subscript « will denote species and other Greek subscripts and super-

scripts will represent Cartesian tensor elements. Important variables are,
e m, = mass of species «,
e g, = charge of species «,
e n, = number density of species a,
® p, = mass density of species a,
e P, = pressure of species «,
e ¢, = energy of species a,
e U, = fluid velocity in direction 3 of species «,
e FEjg = electric field in direction 3,
e Bg = magnetic field in direction £,
e ¢ = speed of light,
e ¢y = permittivity of free space.

€787 is the Levi-Cevita tensor which in this case is simply.

0 when two or more of the superscripts are the same;
P = 1 when v B v are an even permutation of 1,2,3; (2.1)

—1 when v § v are an odd permutation of 1,2,3.

The two-fluid equations with source terms are the following,



e species continuity

0 (pa) + V5 (palE) =0, (2.2)
e species momentum
01 (paU") + Vi (palUBUL + 67 Pa) = naga (B + 77038, ), (23)
e species energy
8 (ea) + V3 (Ug e+ UP Pa) = 0o BsUE (2.4)
e Ampere’s law
1
HE" — PVpe"PIB, = —— Z 109U, , (2.5)
€0
e Faraday’s law
0B +Vse’PIE, =0, (2.6)
¢ Poisson’s equation
1
VsEP = " > dana, (2.7)
o
e Magnetic flux condition
VB =0. (2.8)

When (2.6) and (2.5) are solved exactly, (2.7) and (2.8) are satisfied automatically.
However, when the system is discretized errors in (2.7) and (2.8) appear.

In one dimension (2.8) is satisfied exactly because there is no change in the B field in the
x direction. This issue will be addressed when the solver is extended to 3 dimensions. The
technique of Munz [20] is used in order to satisfy (2.7). Maxwell’s equations are re-written
to include a correction potential, ¢, which propagates the error in (2.7) out of the domain

at the speed I'. To accommodate the new variable, (2.6) and (2.7) are altered as follows,
e Modified Ampere’s law

1
OE" — Vg (e"’g737 + 5Vﬂ¢) =- Znaanay, (2.9)
0 o



e Modified Poisson’s equation

1‘\2
O+ T2V4EP = - ; Jo T - (2.10)
In all cases it will be indicated whether the modified or unmodified equations are used.

2.3 Non-Dimensionalization

The two-fluid system describes fluid behavior over several different regimes including the
MHD regime where the electron fluid and ion fluid are tightly bound through electromag-
netic fields and a decoupled regime where the coupling between fluids is so weak that the
fluids move independently. These different regimes are simple to describe. Several non-
dimensional factors are developed that are composed of common plasma variables; these

variables characterize the regime. The non-dimensional barred variables are defined as

follows
° i‘:;—o,
o ﬂa_z_‘;a
ci= g,
o g =T,
o 0ﬁa— U[goaa
* Pa:mling’
® €q = mln%Ug’
. i=i,

[ ]
IS
|

5



The dimensional variables of the previous section are re-written in terms of these non-

dimensional variables as,

¢ Non-dimensional form of species continuity (2.2)
0; (o) + F vﬁ (ﬁaﬁg) =0,

with
Upt
Fo— 00’
o

e Non-dimensional form of species momentum (2.3)

95 (paUL) + F Vg (ﬁanUg + (55”13a) = L na@aB” + L noGa (Us x B)” ,

t g B
[, — 040 20 ’

mo

¢ Non-dimensional form of species energy (2.4)

¢ Non-dimensional form of Ampere’s law (2.9)

8tEV —A v/g (61/,3737) =-C Z/ﬁQQQUaVa
o

with

s
and

C = 1o 1o o

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



¢ Non-dimensional form of Faraday’s Law (2.6)

OB’ +F Vs (¢/71E,) =0, (2.19)

e Non-dimensional form of Poisson’s equation (2.7)

vﬂEﬂ =C 2604 Mg, (2.20)
@

¢ Non-dimensional magnetic flux (2.8)

VgBf =0. (2.21)

In the process of non-dimensionalization, four non-dimensional factors have appeared. These
factors will be re-written in terms of the following common plasma physics parameters which
are discussed in any book on basic plasma physics [9, 12]. The plasma parameters of interest

are described in the following list,

e Electron thermal speed

The electron thermal speed,

1
2P\ 2
vthe:( e) ) (2.22)
Pe

is the average speed of an electron due to thermal forces. In this case we use the

two-dimensional thermal speed which is also the isothermal electron acoustic speed.

e Ion thermal speed

The ion thermal speed,

1
2P\ 2
vmiz( ) , (2.23)

pi
is the average speed of an ion due to thermal forces. The two-dimensional thermal
speed is used to eliminate irrational factors in the non-dimensionalization and is the
correct speed to use in the calculation of Larmor radius since particles gyrate in a

two-dimensional plane.
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e Ion thermal transit time

The thermal transit time,
Zo

(2.24)

Tthi:’l)h )
thi

is the time it takes an thermal ion to travel the distance zo. The two-dimensional

thermal velocity is used for consistency.

e Light transit time

The light transit time,

o
c= 2.2
=t (229

is the time it takes electromagnetic waves in free space to propagate the distance x

e Alfven speed

The Alfven speed

1
2 B2 9
Val = (C €0 0) (226)

nom;

is the speed of propagation of perturbations in the magnetic field lines of a MHD

plasma.

e Ion plasma frequency

The ion plasma frequency,

2\ 2
wy; = (”“%'> , (2.27)

€0 My

is a low frequency oscillation in the ion plasma density.

e Electron plasma frequency

A small perturbation in the electron density of a plasma sets up an oscillation which

oscillates at the electron plasma frequency,

1
2\ 2
Ww:(%%> . (2.28)

€0 e

This typically defines smallest important time scale in a plasma except when the speed

of light defines a smaller time scale (2.25).
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e Ton cyclotron frequency

In the presense of a magnetic field, an ion will gyrate around the magnetic field at the

ion cyclotron frequency,

(2.29)

e Electron cyclotron frequency

In the presence of a magnetic field, an electron will gyrate around the magnetic field

at the electron cyclotron frequency,

— C]eBO

Wee . (2.30)
e Ton Larmor radius
The ion Larmor radius,
roi = (2.31)

is the radius of gyration of a thermal ion traveling perpendicular to a magnetic field.

e Electron Larmor radius

The electron Larmor radius,
Me Vthe

?
ge Bo

(2.32)

Tge ==

is the radius of gyration of a thermal electron traveling perpendicular to a magnetic

field. Recall that in this thesis the two-dimensional thermal speed is used.

e Debye length

The Debye length,

1
2 2
eomevthe>
g = [ 2 Vine )" 2.33

4 ( noqg ( )

is the characteristic length at which the potential of a point charge is shield out by the
re-arrangement of the plasma around the point charge. This is typically the smallest
important length scale in a plasma. Once again, the two-dimensional thermal velocity

is used.
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In all cases it is assumed that the characteristic velocity of the electron fluid is given by
1

Vthe = (%) ? Uh - 1t is possible that vy, . will be completely independent of the ion char-
acteristic velocity, however, this assumptions simplifies the non-dimensionalization. The
non-dimensionalization (2.3.1) given below is used in this thesis when magnetic fields are
present. The non-dimensionalization (2.3.2) is used in problems that are essentially electro-

static.

Zo

2.3.1 Uy = vuhi, to = g, Lo = BoUp, g0 = gi, mo = my

Zo

L = Tthi Wei — —, (2.34)
Tgi
Wy i x Toi

C = (Tini wpi) (w—m) = ()\—3) ()\idz) : (2.35)

Cct

2
A= =2, (2.36)

Vth i
F=1. (2.37)

i U2
2.8.2  Uo = vni, to = g2, Bo = Eo/Uo, Eo = 735, g0 = gi, mo = m;

L=1, (2.38)
2 2 Lo 2
C =Typiwy; = ) (2.39)
c? 9
A = 2— = C ; (2.4:0)
Uth
F =1. (2.41)

The non-dimensionalizations (2.3.1) and (2.3.2), suggest that assuming the species charges
are equal and opposite, there are four independent parameter which define the type of a
problem. They are from (2.3.1), i—z, %, e and “24 alternatively wei, wpi, Teni and E.

In the remainder of this thesis the bars on the non-dimensional variables will be dropped.
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2.4 The MHD Equations

In order to help understand the differences between the two-fluid system of equations and the
MHD system of equations, the two-fluid system will be re-written in MHD variables and then
the MHD limit will be taken. The various failures of the MHD system can be seen explicitly
while helping to explain when the MHD equations do and don’t apply. A derivation of ideal
MHD can be found in [11], a derivation based on my non-dimensionalization is provided
next.

In the following the MHD equations are derived using the non-dimensional variables
defined above to show how the MHD limit can be achieved using the two-fluid equations.

The following definitions are used
® n; = ne = n, is the quasi neutrality condition,

® P = Pi+t Pe,
L U:Ui‘i‘%Ue,

i

e J=nq (U —U,),

P = P; + P,, total pressure,
e e =¢; + e, total energy,
e ¢ — 0, is the massless electron assumption.

The MHD equations are obtained by combining the electron and ion fluid equations and

eliminating terms which drop out when *&i — 0, Ay — 0, and r4; — 0.

c

e MHD Ampere’s Law

Letting ®2¢ — 0 the displacement current disappears, Ampere’s Law becomes,

Vs (e¢77B,) = %J”. (2.42)
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MHD Faraday’s Law

Faraday’s Law remains unchanged,

aB” +F Vs (¢/71E,) =0. (2.43)

MHD Continuity

Add the electron and ion continuity equations to get one equation

8 (p)+ F Vg (pUﬂ) ~0. (2.44)

MHD Momentum

Add the electron and ion momentum equations to get,

d
p=U" +F V; (677P) =Le?7J5B,, (2.45)

which can be expanded to obtain,

O (pU”) +F Vg (pU"UP +°7P) = Le P38, . (2.46)

Substitute the curl of B for J as in (2.42), to get,

LA
i (pU) +F Vs (pU"U° +6°7P) = (7) €3,V (F2°Ba) B (247)

)-()

Note that,

MHD energy

Add the electron and ion energy equations to get,

dre+ F V3 (UPe+UPP) = L By’ (2.49)
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Substitute curl B for J as given by (2.42), to get,

de+F Vg (UP e+ U P) = (%) EgV, (¢#778,) . (2.50)

MHD Ohm’s Law

Multiply the ion momentum equation by % to get the ion current equation and
multiply the electron momentum equation by — mie to get the electron current equation

and then add the two equations,

(5) () 7 = (5) Vs (377, -

(2.51)
nq(E” + ¢ P1UgB,) — ¢/$1.JsB,.
Substitute curl B for J as given by (2.42), to get,
e A d « F _
() () SV (£2Ba) — () V5 (6°7P) = -
nq (B + &P TUsB,) = (&) 63,V (#22B,) B7.
The first term is the rate of change of current,
Me A d BAia
— |l — ] = B 2.53
(q)(LC)dtv)‘<e a)’ (2:53)
with, \
A A\ (Vthi)?
— = — . 2.54
The second term is the diamagnetic drift,
F
(f) Vs (Wpe) : (2.55)
with,
F Tgi
— == 2.56
(T)-2. (2.56)

and the last term is the Hall current,

A
(5) euﬂ’Yv)\ (eﬂ)\aBa) BY (257)
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with,

A ¢ \? ( /\3 )
2 - . 2.58
(C) ('Uthz’) Tgi %o (2.58)
2.5 The Ideal MHD Limit

Consider the terms in Ohm’s law (2.52) and limits on the parameters A4, r4;. In the case
that both Ay — 0 and r4; — 0 the rate of change of current (2.53), the diamagnetic drift
(2.55) vanish. The Hall current (2.57) vanishes provided %‘% — 0. This limit is the ideal
MHD limit.

The ideal MHD equations are,

Ideal MHD Continuity

dp+F Vg (pUﬂ) ~0, (2.59)
e Ideal MHD momentum
v virB o B LA Bra
0 (pU”) + F V; (pU UB 45 7P) = (5 ) @B VaBa, (260

Ideal MHD Energy equation

LA
de+ F Vg <U5 e+ UP P) = - (7) eV Yegr U, B,V B" (2.61)

Ideal MHD Ohm’s Law

0=E"+¢PUsB,, (2.62)

Ideal MHD Faraday’s Law

8,B" — F V, (e“ﬂ”’e”\"U)\Bn) =0, (2.63)

Ideal MHD Magnetic Flux
VB =0. (2.64)
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This simple system of equations has been modeled numerically by numerous authors as
discussed in the introduction. A homogeneous form of this system exist and it’s character-
istics are combinations of the fast and slow magnetosonic waves, the Alfven wave and the
bulk fluid velocity. The approximation ignores electron plasma waves, cyclotron waves and
and electromagnetic waves. Consequently, the system is much less stiff than the two-fluid
system and therefore easier to solve numerically. Later on it will be shown that some of
the effects that are ignored are significant in certain situations and a two-fluid solution is

appropriate in these situations.

2.6 Two-Fluid Dispersion Relations

A number of different waves are described by the two-fluid equations, many of which are
not immediately obvious. Although the two-fluid system has only 8 unique characteristics,
+c, U, Ue £ vge, Ui, U; £ v44, a number of dispersive linear waves appear. Any basic
plasma text will cover the simple dispersion relations which describe many different waves
in a plasma. The derivation of many dispersion relations can be found in [9, 12, 27]. In this
section an extensive derivation of plasma waves is developed starting from a linearization
of the complete two-fluid system.

The linearized two-fluid equations are obtained by setting
L. pa = pao + Pa;

2. ng = Ngo + Na,

3. UL =U’, + UL,

4. Py =Poo + Fa,

5. B = B} + EF,

6. B = Bf + B~
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The terms with 0 subscripts are background constants and terms with a tilde are small
linear perturbations from the background value. These variables are substituted into the
non-linear two-fluid equations and terms that are small, i.e. terms that are a multiple of
two or more perturbed quantities, are set to zero. The perturbed variables are assumed to

have a linear solution,

1. po = peliklcos@ztsin(@)y+wt))

2. iy = 7, e(tk(cos(0)z+sin(0)y+wt)) ,

3. ﬁaﬁ — ﬁaﬁ elik(cos(0)x+sin(0)y+wt)) ,

4. P, = Pa elik(cos(0)x+sin(0)y+wt)) ,
5. EB = EB e(ik(cos(0)z+sin(0)y+wt)) ’
6. BP = BB elik(cos(9)z+sin(0)y+wt))

The angle 0 is measured between the direction the wave travels and the background
magnetic field, Bg = (1,0,0), which points along the z axis. Without loss of generality
the wave vector k? is assumed to lie in the z, y plane, k% = k (cos (8), sin (8),0). The
background fluid velocity is assumed to be zero, thus, U(’f o = 0. This assumption is not
necessary, but leads to a simpler dispersion relation. Also, Eg = 0 so that no external electric
fields are being applied to the fluid. It is assumed that, P.g = P;o, and, peo = %Pio, SO
that the electron fluid and ion fluid have the same background temperature and background
number density, n.y = m;jg. The electron fluid and ion fluid, however, do have different
perturbed number densities and pressures. Using these assumption, the linearized two-fluid

equations are as follows,

e linearized species continuity

w po + kg pao UL =0, (2.65)



linearized species momentum

iwpaoU” + ik’ Py = ngo qa (E’f—}_e”ﬂ’Y{]‘ﬂBw) ,

linearized species energy

wPy+vyPokgUP =0,

linearized Ampere’s law

A N 1 -
Z.’IUEV—Z'CQI{)IBGU’B’YB/y = —gznaOQ(anua
a

linearized Faraday’s law

wB”+kge”ﬂ7E7:O.
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(2.66)

(2.67)

(2.68)

(2.69)

The magnetic flux condition and Poisson’s equation are not linearized because they

contain redundant information. The linear system of equations (2.65)-(2.69), can be written

in the matrix form A B = 0, where,

A1—8 —

and

O O OO0 Ooooo O o ©

tw ingkcos(d)

ing k sin(0)

inow 0
0 inow
q
0 ~ e Bono
i Poykcos(8) i Poyk sin(9)
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
_4an0 0
€0
ang
0 s
0

B = (ﬁe 0me 0ye 0ze pe 7ty Ugi

0
0

me
q_ ik sin(09)
me Bono m

inow
0

O OCOoOOCOoO O OO0 o

)
3
(=

a
o

yi

ik cos(6)

2

o o ccocooo oooos'

0

0

o O O o o

0 0
0 0
0 0
0 0
0 0
iw ingkcos(d) ingksin(f)
Tw 0
0 LW ng
0 miiBO no
ik Pycos(8) ik Py sin(0)
0 0
0 0
0 0
ang 0
€0
ang
0 s
0 0

O O OOoOo0O O O oo

U.iPi B, By B. B, By B, )",

(2.70)

. (2.71)



0 0 0 0 0 0 0 0
( 0 0 0 0 0 -4 ng 0
€
0 0 0 0 0 0 L p, 0
me

0 0 0 0 0 0 0 L p,

me

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0  thees® o 0 — %, 0 0

3
ik sin(6

29-16 _ | —; Bomo % 0 0 0 0 —ino 0
iwng 0 0 0 0 0 0 4 ng

my

0 iw 0 0 0 0 0 0
0 0 w0 0 0 0  iksin(0)
0 0 0 iw 0 0 0 ik cos(8)

0 0 0 0 iw —iksin(0) ikcos(8) 0

0 0 0 0 —ic?ksin(f) iw 0 0

0 0 0 0 —ic%kcos(9) 0 iw 0

70 0 0 0 ic?ksin(@) —ic?kcos(f) 0 iw
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(2.72)

The solution to this system occurs when det (A) = 0. The characteristic equation that

is obtained gives a dispersion relation which describes the way that linear two-fluid plasma

waves propagate. The determinant is written in terms of common two-fluid variables by

setting,

me
3. By = wciTla

4. m; = %jme.

The dispersion relation written in terms of wc;, Wpe, Wee, and v4 . The result is immediately
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6 .6 ,,6
P me €5 W. .
divided by the common factor, —53%+2¢, to obtain!
TP wd, ’

1
§w4 ws, (—8w4 (Wee + wei)? (WP (Wee + wei) — 207 K wei) wh,

+4w? (Wee +wei) (6wee (Wee +wes) W +2 (=02, (w2e + 6weiwee +w?;) k?
—2wWee (Wee +wei) (K + weewes)) wh + k2 weq (257 (wee + Wei) Voo
+2wee (4% K* + Bweewe;) V2, + 3wk, (wee +wei)) w? — 402, c? k4 w2 w?;) wﬁe
=2 (w—ck) (w+ ck) wee (12wce (wee + wej) w® —4 (21}36 (wge + 3Wei Wee + wgz) k2
+wee (Wee + Wei) <c2 E? 4+ (wee + wci)z)) w8+ 2 (P wee (402, wei k2 + (wee + wei)
(wge + Wei Wee + wfz)) E? 4+ we; (41}38 (Wee + wei) k* 4 02, wee
(5'wge + 8We; Wee + 5w§i) K2+ 2wg’e Wei (Wee + wci))) wh 4+ 2k wee wei
(=2 kK2 wei (wee + weq) Uge — 2 (C2 (wge + wgz) K + wz#"gi) Vae
—wl, wei (Wee +wei)) w? + 302, ? kK wl, wd)) wh, + (w— ck)? (w + ck)? w?
(8wcew8 -8 (vZe (Wee + wei) k2 + wee (wge + wfz)) wb +4 ( e Wei k4
02, (wee + wes) (wce + Wei Wee + wm) k? + 2wcewfz) w* — 4vgek2 Wej
(v2, (w2, +w?) K +wlowei (Wee +wei)) w? +3vg K w?,wd;)
—4 K> wge (—w2 Wei (Wee + Wei) ((w2 (Wee + Weq) — 41)26/4:2 wci) 2+ ZvZew2 wci) w;}e
+(w—ck) (w+ck) (((we +wg) w'—we; (205, (wge +wE;) K
w2, wei (Wee + Wwe;)) w? + 202 K w?, wgz) 402, w? we
(3w2 (wge + wgz) —2w.; (vge (Wee + wes) k2 + wge wm-))) w;e+
Ve (w—ck) (wtck)® (= (w)e +wl) w' +wei (V7 (Wi +w};) K
w2, wei (wee + We;)) w® — 2 K w?, wd, i) cos (260) + vkt (w—ck)
(w+ ck) wﬁewg’i (vge (w—ck) (w+ck) — 2¢2 wze) cos (40)) =0. (2.73)
(2.73) can be reduced significantly by assuming the waves propagate either parallel or

perpendicular to the background magnetic field. Further simplification can be achieved by

taking low frequency or high frequency limits. These simplifications follow.

!The entire derivation was done using Mathematica and the results copied and pasted into this thesis.
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2.6.1 R-mode, L-mode and Alfven waves

The dispersion relation (2.73), can be reduced to a dispersion relation for waves propagating
parallel to the background magnetic field by setting # = 0. The dispersion relation is greatly

simplified and the resulting relation for parallel propagating waves is given by

(weew* — (wee + wei) (V2 K2 + w2,) w? + vZ kPweq (v2 k4 2wl,))
((w2 - 02k2) Wee (W + Wee) (W — Weq) — w? (Wee + wei) wge) (2'74)
((w? = k) wee (W — wee) (w4 wei) — WP (Wee + Wes) U’;e) =0.
This relation has three different factors, each of which describes a different type of wave.
Setting any of these factors to zero is equivalent to solving (2.74). (2.74) can be written as

three separate equations which are

weew® — (Wee + wei) (V2 k% + w2,) w® + 3 kPwei (v2 k2 + 2wk ,) =0, (2.75)
(w2 — chQ) Wee (W + Wee) (W — Wei) — w? (Wee + We;) wf,e =0, (2.76)

and
('LU2 - 02k2) Wee (W — Wee) (W + wei) — w? (Wee + weq) w;?)e =0. (2.77)

In the high frequency limit ion motion is assumed to be negligible and so w,; is set to 0. In

this limit, (2.75) reduces to,

w? = v2 k% + wzz,e ) (2.78)
which is the electron plasma wave. (2.76) reduces to,
2 a2 WU
w? = ?k* 4 —25 (2.79)
W+ Wee
which is the high frequency L-mode wave. (2.77) reduces to,
2 _ 20, WU
w® =ck*+ ———, (2.80)
W — Wee

which is the high frequency R-mode wave. These reduced dispersion relations match those

described in [9]. In the low frequency limit w <€ we; €K Wee, (2.75) reduces to,

2

w

w® =2k + v2 k2 (m) . (2.81)
ae pe
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If v2 k% < wf,e this simply becomes,
w® = 202 k2, (2.82)

which is the acoustic velocity v, of the plasma assuming the ion fluid and electron fluid

have equal pressures. (2.76) and (2.77), reduce to the equation for the Alfven wave.

w? = chQ% =2 k%, (2.83)
pe

2
with the Alfven speed v,; defined as ’Uzl = c? (%)

Wp 4

2.6.2 X-mode, O-mode and Magnetosonic Waves

If 0 is set to 7 in (2.73) an equation describing wave propagation perpendicular to the
background magnetic field is obtained. The dispersion relationship for perpendicular prop-
agating waves is given by,

— (Wee + wci)2 ('w2 (Wee + wey) — 21)26132 wc,') wge

+ (Wee + we;) (3wce (Wee + Wei) w* + (—'Uge (wge + 6 We; Wee —I—wgi) k2

—2Wee (Wee + Wes) (02 K2+ wcewci)) w? + k? wei
(k2 (Wee + wej) Ufw + 2w, (2 Ak + wcewci) UZe
+ w?, (wee +wc,~))) wﬁe
—(w—ck) (w+ck) wee (3wce (Wee + wei) wh
- (21;26 (wge +3we; wee + 'wzz) E? + wee (Wee + wey)
(@82 + (e +we0)?) ) 0P+ wes (202 K% + wee (wee + )
(vae (Wee +wei) k2 + wee (¢ k? +weewes))) wye

+ (w—ck)? (w+ck)® w?, (w? -2, k* —w?,)

(w2 Wee — Wej (Ugek2 + wcewci)) =0. (2.84)

This relation does not have obvious simple factors so the relation is simplified immedi-

ately to obtain high and low frequency limits. In the high frequency limit ion motion is
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ignored so w,; is set to 0. In this limit the following equation is obtained,

(w2 — 2k - w;ge)

(wf,e — (2w2 — (vge—I—CQ) k2) wf,e—i- (w—ck) (w+ck) (w2 —v2 k? —wze)) =0.
(2.85)

This equation has two factors which when set to zero will satisfy the equation. This
leads to two dispersion relations. The first dispersion relation is called the ordinary mode

or O-mode dispersion relation,

w® = Pk + wf,e . (2.86)
The second dispersion relation is the extraordinary-mode or X-mode dispersion relation.
The X-mode dispersion relation is given by,

2 _ .2 2 (.2 2) 1.2
,w2 — 02k2 +w12;e <w> +w12)e (w (Uae +c ) ) (287)

2 _ a2 2 _ a2
w We e w Wee

If it is assumed that v, < ¢ then (2.88) becomes,
w? — w2 2 _ 212
w® =2k 4+ wl, (FM +wl, <u> : (2.88)

which is identical to the X-mode dispersion relation given in [9], although written in a

slightly different manner. The Magnetosonic wave can be obtained by letting r = :Z_j’
1 1
Wpe = Wej (%)2 i, Wee = wci% and v, = Vg (%)2 in 2.84. The result is expanded

in powers of r and all terms are dropped except those containing the lowest power of 7.

Eliminating common factors the dispersion relation becomes,
(02K ) (22 (12, +42) — o2y ) 2s0)
+(c? +vg) (2K (207, +v) — (¢ +v5y) w?) wg; = 0. '

Assuming w.; — oo the first term can be ignored and the dispersion relation is then,

2 2 2
w 9 205, + vy
— =c =%, 2.90
k? e+ (2.90)

which is the same result given in [9].



25

Chapter 3

NUMERICAL ALGORITHM

3.1 The Two-Fluid System as a Balance Law

A favorite technique of engineers doing research in computational fluid dynamics is the finite
volume method based on hyperbolic conservation laws. Starting from this background both
Maxwell’s equations and the fluid equations have been formulated in the form of conservation
laws, or more precisely, balance laws [19] and a finite volume method is used to solve the two-
fluid system in one dimension. An outline of the technique for a general conservation laws
with source terms follows. The theory of this technique is explained in detail in [19, 18, 28]
from which this discussion is derived.

A balance law can be written in the form,

0iq” + Vaf® (a) =" (a) (3.1)

with ¢ a vector of conserved variables and f a flux tensor. The script § runs from 1 to 3
while the script v can be as large as the number of elements in the vector ¢. (3.1) can be

transformed to an integral equation by integrating over an arbitrary volume

v B _ v
Jocavs [ vorrwav= [ w@av, (3.2)

and using the divergence theorem,

Jogave [ 1@ das= [ v av. (3.3)

This integral form is the basis for the finite volume method. Physically, (3.3), suggests
that the rate of change of a quantity inside a volume is equal to the flux of that quantity out
of the surface. The two-fluid equations of the previous chapter are written in balance form

and can, therefore, be written in this manner. The next step is to discretize the domain of
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Figure 3.1: Fn, Fm, Fp are fluxes normal to each cell face. In the finite volume method the
flux out of each volume is calculated in order to update the solution.

the problem. The simplest discretization is to cut the region of interest into a number of
blocks or cells so that the balance law can be updated in each of these cells. See Figure 3.1.

The normal vectors to each cell face are constant everywhere on that face. If the coor-
dinate system is rotated such that the z direction lines up with the cell face normal vector
then only the flux in the z direction needs to be calculated because all other fluxes are zero.
A one-dimensional Riemann problem is solved across each face to update the solution. With

this in mind, the balance law reduces to the following one-dimensional equation

[ ave [ 5 da = [ 9@ av. (3.4)
1% 1% 14
The vector of conserved variables for the electron fluid is,
3 [ 1
PeUze Mge
Qe = peUye = mye |- (3.5)
PeUse Mze
1peUse U + 71}1 \ e
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and the corresponding flux in the x direction is given by,

(

pe UIE

peUpeUsge + P

fe= peUyeUze
PeUzeUse

Uge (€e + Pe)

(3.6)

The source vector for the electron fluid equation is given by,

0

QeneL(Ex + UyeBz - UzeBy)

e = gene L (Ey +U,e By — Uge Bz) : (37)

Ge e L (Ez + UweBy - Uye Bw)
QeneL(Ez Uge + Ey Uye + E, Uze)

The ion conserved variables and flux in the z direction are identical to the electron conserved

variables and electron z flux except that the subscript e is replaced with 1.

The electromagnetic conserved variable vector is,

dem =

[ B,
BZ/

SRR

S|

S

with the corresponding flux in the z direction,

fem:
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and the source term,

0
0
0
Yem = . (3.10)
C (Qe NeUge + qimi Uwz)
C (Qe Ne Uye +qin; in)

C(Qene Uze +qin; Uzz)

Consider only the homogeneous part of each system of equations. The three homogeneous
systems are completely decoupled and can be solved independently. It is only through the
source terms that the systems interact which provides the option to choose the solver which
works best for each of the hyperbolic system. A Roe approximate Riemann Solver is used

to solve the homogeneous part of each of the equations.

3.2 Calculating the Homogeneous Flux

The balance law (3.3) is written as the following,

/th"dV—l—/ qumaﬂzf Yv dV . (3.11)
1% ov 14

The first step is to decompose (3.11) into a system of n linearly independent variables. If f
is a nonlinear function of ¢ then the system can only be decomposed locally. For systems
that are homogeneous of order one (g—g) (%) = (%) and A can be chosen to be (g—{;).
In cases where f is a linear function of ¢, as in the case of Maxwell’s equations, this choice of

A also happens to be a Roe matrix [23]. In general, when f is non-linear a more complicated

A matrix must be calculated. The discrete analog of the condition,

dq Of
A—=—*= .
0r Oz’ (3.12)
is
AAzqg=A, f. (3.13)

Roe developed a criteria for constructing such a matrix [23]; the A matrix is called the

Roe matrix. The condition on the A matrix is less strict than condition required for true
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differentials (3.12). The Roe matrix is important because it reduces the number of calcu-
lations necessary to calculate numerical fluxes in the discretized system while satisfying a
discrete analog to the continuous condition. The eigenvalues and eigenvectors are calculated
from this matrix and a conservative flux function F can be determined. The discretized

equation is written,
A/~ ~
Qn+1 — Qn — At v ( ir_li_l/Z - -Fln_l/Q) , (314)

with Fi+1 /2 any chosen explicit numerical flux. The fluxes are defined at the cell centers,
but the formulation chosen requires the fluxes at the cell interface. Some approximate flux
F~'i+1 /2 must be defined at the cell interface. The solution used in this algorithm is the same
as that used by Leveque [17]. The numerical flux is a simple first-order upwind flux with a
correction flux that adds second order accuracy in smooth regions by the use of flux limiters.

The numerical flux given in terms of its Godunov and corrected flux is given by,

Fivio=Fip1o+ Fq0,s (3.15)

with the correction flux F¢ defined as,

c 1 v At ., » V
Fivijz = 2 Z j+1/2‘ [1 N ‘)‘j+1/2” Wit1/2T541/29 (3.16)
where,
Fipijp=A"Qi+ A" Qi1 (3.17)
and
+ L/ Y , ,
AT= Z 2 ( i+1/2 T )‘i+1/2‘> Wit1/2Tiv1/25 (3.18)
_ 1/, . o
A” = Z 9 ( i+1/2 ~ )\i+1/2‘> Wiy 9T 2 - (3.19)

The subscript i + 1/2 quantities are interface average quantities. Roe averaging is used
for the fluid variables. For the electromagnetic variables arithmetic averaging (taking the
average of the quantities at the two adjacent cells) is used which is a Roe average for the
electromagnetic system. " is a flux-limited wave, ¥ is a right eigenvector and M\ is the

associated eigenvalue.
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i-3 i-2 i-1 i i+1 i+2 i+3

i—7/2 i—-5/2 i—-3/2 i—-1/2 i+1/2 i+3/2 i+5/2 i+7/2

Figure 3.2: Stencil for the calculation of the net flux ﬁ’i+1/2 - Fi—l/z

The flux-limited right-going wave is defined as,

Wiy172 = Wiy1/2S (0) (3.20)
with wy /o @ Wave associated with the eigenvalue A/, /2 The limiter is the minmod limiter
defined as,

S (0) = minmod (1,6) , (3.21)
with 6 defined,

wl/
0=—L 3.22
e (322

and
I i+3/2 ifA>0 . (3.23)
i—1/2 if A <0
The stencil for a single flux calculation is five wide in one dimension as shown in Figure
3.2. The stencil is passed to a function which calculates both ﬁ’i_l /2 and ﬁ’iﬂ /2-
For each system a matrix A is calculated as discussed previously. For the fluid systems,
A is the Roe matrix [23]. For Maxwell’s system, A is simply the Jacobian matrix. The

eigenvalues, eigenvectors, and characteristic waves are calculated from the A matrix. Given

A, the homogeneous flux can be calculated explicitly as just described.

3.3 Source Treatment

The source terms are calculated in either an explicit or implicit manner. The explicit source
is used when the source terms are small compared to the homogeneous fluxes and this

algorithm is similar to that described by Schneider and Munz in [25] for their electrostatic
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two-fluid code. The implicit source is used when the source terms are of the same magnitude
or larger than the homogeneous fluxes. The implicit source helps to ensure numerical
stability for stiff problems and can be used any time the explicit source is used. The implicit
source is computationally slower than the explicit source. The numerical discretization of

the explicit and implicit source is given by,

e explicit source

A /-~ .
Q" =Q" - At v ( i1/~ Fi711/2> +Aty", (3.24)
e implicit source
A/~ -
Q" = Q" - At v ( iv1/2 Fi"_1/2) + Aty (3.25)

The explicit source is updated simply using the values @) calculated on the previous time
step, time step n.

The implicit source is updated using a Newton iteration. The Newton iteration is ob-
tained by expanding 1" t! in a Taylor series to first order, at which point the discretization
can be written,

ok 1 1 A= 2
(Gt ar) 20 = (@ -0) - (Rp-Fup) 1ot 029

After the numerical fluxes are calculated explicitly the the source terms are solved im-
plicitly as shown in (3.26). The k index is the kth iteration to convergence. The Jacobian
in (3.26) is recalculated and @ is updated after each iteration until the 2-norm of A @ has
dropped by several orders of magnitude. Inside each iteration the linear system, (3.26), is
solved using about three symmetric Gauss-Seidel steps. It is important to note that %
is local; 9 does not depend on the value of ) in neighboring cells. This means that the
computational work required to solve (3.26) increases linearly with the number of cells in
the domain, even if the scheme is extended to three dimensions.

Because 1 is a simple algebraic function of @), the Jacobian is calculated analytically.

Eleven of the sixteen equations have non-zero source terms and these equations must be
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updated implicitly. The full Jacobian is a 11 x 11 matrix. In many cases of interest the
electron source terms are much stiffer than the ion source terms and a second Jacobian
matrix is used consisting of only the electromagnetic and electron equations. This system
requires a 7 X 7 Jacobian matrix. The electromagnetic and electron equations are solved
implicitly at every step while the full system (electromagnetic, electron, ion) is updated
implicitly periodically. The bottleneck in the algorithm becomes the implicit solution of
the electromagnetic and electron equations. Speed up can be obtained by updating the
electromagnetic terms explicitly for several steps and then updating the electron equation
with the electromagnetic equation implicitly every few steps. The stability of this last
technique is unpredictable and even when the solution remains stable, unphysical oscillations
can appear. In general, it is better to solve for the electrons and electromagnetic field
implicitly at every step.

The full implicit conserved variable vector is,

T
Q= ( Myre Mye Mze € Mgy My; My €4 Ey Ey E, ) : (3.27)
Letting r. = ge/m, and ; = g;/m; the source terms associated with these 11 variables are,

( Lre(pe Ex +mye B, —m,e By)
Lre(pe By —mye By +mye By)
Lre(pe E; + mge By — mye By)

Lre(mge By + mye By +m; . E,)
Lr;(pi Ex + my; B, —m,; By)
Y= Lr; (pi Ey — mg; B, +m,; By) : (3:28)
Lr; (pi E; +mg; By —my; By)
Lri(mgi By + my; By +my; E,)
C(rimgi +Temge)

C(rimy; +remye)

C('rimzi +7'emze)
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The source Jacobian matrix g—w is,

Q
0 LreB, —LreBy 0 0 0 0 0 L7e pe 0 0
—Lre B, 0 LreB; 0 0 0 0 0 0 Lre pe 0
Lre By —Lrte By 0 0 0 0 0 0 0 0 Lre pe
LreE, LreEy LreE, 0O 0 0 0 0 Lremge Lremye LTemze
0 0 0 0 0 Lr;B, —Lr;B, 0 L7 p; 0
0 0 0 0—-Lr; B, 0 Lr; By 0 0 Lr;p; 0
0 0 0 0 LrB, —Lr;By 0 0 0 0 L7 p;
0 0 0 0—-Lr;Ey —Lr; B, 0 Lrimg; Lrimy; Lrimy;
—C're 0 0 0 —Cry 0 0 0 0 0 0
0 —Cre 0 0 0 —Cr; 0 0 0 0 0
0 0 —Cre 0 0 0 —Cr; 0 0 0 0
(3.29)
The electromagnetic and electron source Jacobian g—g is,
T
Q=(moe mye mie e Bs By B ) (3.30)
and the related source terms are,
( Lre(pe Ex +mye B, —m,e By)
L""e (pe Ey —Mge Bz + mye Bz)
Lre(pe E; + mye By — mye By)
Y= Lre(mge By + mye By +m,. E,) | (3.31)
C (Ti Myi+ Te mme)
C(rimy; +remye)
C(Ti My + 'remze)
with their associated Jacobian matrix defined as,
0 LreB, —LreBy 0 Lr7epe 0 0
—L7re B, 0 LreBz 0 0 Lre pe 0
oY LreBy —LreB, 0 0 0 0 Lre pe
— | = LreEy; LreEy LreE; 0Lremge Lremye LTemze . (3.32)
oQ —Cr. 0 0 0 0 0 0
0 —Cre 0 0 0 0 0
0 0 —Cre 0 0 0 0
3.4 Stability
The scalar equation,
Oru+alu=1iAu (3.33)

may be a good model for the two-fluid system in terms of numerical stability. The above
describes a wave equation with an oscillating source term provide A is real. A Von-Neumann

stability analysis of this equation using the explicit scheme shows that the explicit scheme
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is amplifying, this is in agreement with the observed behavior of the explicit scheme applied
to the non-linear system. However, for problems which aren’t too stiff, solutions can be
obtained faster with the explicit scheme than with the implicit scheme. Step for step the
explicit scheme is about 30% faster than the implicit scheme. The problem is that given
enough time, the explicit scheme will always go unstable because it is amplifying.

The implicit scheme has a definite stability region which corresponds to significant two-
fluid plasma parameters. The fluid equations produce the characteristics

v v () - (22)" (330

while Maxwell’s equations produce the characteristics c. If it weren’t for the source terms
the time step for a simulation could be based on the Courant number At % |v| < 1 where
v is the fastest characteristic. However, as has already been stated, the two-fluid system
admits many additional linear waves. Two waves in particular, the electron cyclotron wave
(2.30), and the electron plasma wave (2.28) must be resolved in order for the system to
be stable. For stability the smaller time scale calculated from the Courant condition, the
electron plasma frequency (2.28), and the electron cyclotron frequency (2.30), must be
chosen. When the electron cyclotron frequency and the electron plasma frequency are of
the same magnitude, the necessary time scale is defined by the upper hybrid frequency
why = w2, + 'wg .- The necessary spatial scale depends on the existence of shocks. In
the presence of shocks, spatial scales on the order of a Debye length (2.33), appear to be
necessary for accurate solutions although they are not required for stability. This is an issue

which will require more research.

3.5 Boundary Conditions

All the simulations used in this thesis use the most simple boundary conditions, either copy
or periodic. The copy boundary condition simply copies the data at the very edge of the
computational domain onto the boundary. Periodic boundary conditions copy the edge data

from the left half of the domain to the right half of the domain and visa versa.
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Chapter 4

SIMULATIONS

4.1 Debye Shielding

If a point charge is introduced into a plasma, the plasma will quickly surround the charge in
a manner that shields out the charge in approximately one Debye length. This simulation
uses the correction potential (2.20), (2.9), to maintain a potential in the middle of the
domain. The fluids move around and eventually shield out the electric field as predicted by
theory. The problem was run until numerical dissipation brought the simulation to steady
state. Figures 4.1, 4.2 and 4.3 show the charge distribution, the electric field, and the
correction potential at steady state, respectively.

The correction potential has been tried on a number of other problems without much
success. As a result, the correction potential is not used in the remainder of the simula-
tions. For fixed background charges a much simpler method can be used to ensure that the
background electric field does not decay away. Specifically a permanent background electric

field can be defined and the correction potential can be removed.
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Figure 4.1: Steady state charge distribution for the Debye shielding problem. This dia-
gram shows the fluids in steady state after they have moved from and initially uniform
distribution. The electron fluid is attracted to the charge while the ion fluid is repelled.
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Figure 4.2: Steady state E, distribution for the Debye shielding problem. This plot shows
the steady state electric field decaying away from the shielded point charge. The analytic
results assumes heat conduction, our plasma model does not include heat conduction and
so the steady state solution is slightly different from the analytic solution.
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Figure 4.3: Steady state correction potential for the Debye shielding problem. The correc-
tion potential propagates out of the domain so at steady state there is only a potential spike
at the point where the point charge exists.
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Figure 4.4: Electron current verses time for an electron plasma wave. A small sinusoidal
electron density perturbation was set up in the domain. The time evolution of velocity at a
point in the middle of the domain is measured and plotted in this figure. The analytic and
calculated solutions agree.

4.2 Electron Plasma Waves

Electron plasma waves or Langmuir waves are electrostatic stationary electron waves that
are not seen in the MHD equations. The electron plasma frequency is a function of plasma
density (2.28) and is used to determine the density of plasma in the upper atmosphere.
Electromagnetic waves with frequency less than the Langmuir frequency cannot propagate
in a plasma because the electrons adjust quickly enough to cancel out the electric fields in
the waves. The Langmuir frequency can be obtained from the dispersion relation derived

from the linearized two fluid equations.
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The electron plasma wave simulation was performed with negligible temperature using
the implicit and explicit schemes. The implicit scheme gives rise to a slowly decaying
solution while the explicit scheme gives rise to a slowly amplifying solution. A calculated

verses exact solution for a Langmuir wave is plotted in Figure 4.4.

4.3 Electromagnetic Shock

As has already been discussed, the MHD equations are a limiting case of the two-fluid
equations. A number of plasmas of interest including fusion plasmas fall into a regime
where Debye length and Larmor radius are small. This makes the MHD model a reasonably
accurate approximation to the plasma physics involved, however, as will be shown, the
MHD model still misses potentially important phenomena even when the Debye length and
Larmor radius are small. In addition it will be shown how the two-fluid solution varies as
the Debye length and Larmor radius are changed. Here the well known Brio and Wu shock
[7] is solved with finite Debye length and Larmor radius. The solutions are compared to the
limiting cases of MHD and gas dynamic shocks.

The non-dimensionalization given in section 2.3.1 is used. In the following v, ; = 1 and
¢ = 100. In these simulations % =1836 and g; = —¢. = 1 and \g = ﬁrgi.

The ideal MHD system uses the following variable definitions with respect to the two-

fluid system,

( P Pi + Pe Pi
PiVzitPe Vze )
Uz pitpe Vi
Pi Uy i+pe Uye .
Uy pitpe Uyi
PiVzitPeVze
Vz . BT I — Vzi
= lim Pitpe = : (4.1)
me
p m 20 Pt P P+ P
By By By
By By By
\ B, B, B,

The shock used here is identical to the Brio and Wu shock except that the ratio of the ion

acoustic velocity to the speed of light must be specified.
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Initial conditions on the left half of the MHD shock are,

p 1.0
Vg 0
Uy 0
o= 7 |= |, (4.2)
P 1.0
B, 0.75
B, 1.0
B, 0
and on the right
p 0.125
Vg 0
Uy 0
ren=| = = " | (4.3)
P 0.1
B, 0.75
B, -1.0
B, 0

The equivalent initial conditions for the two-fluid shock follow. L are the initial condi-

tions on the left half of the shock and R are the initial conditions on the right half of the



shock. L and R are given by,
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Pe [1.0me Pe 0.125 e
Uge 0 Uge 0
Vye 0 Uye 0
Vze 0 Vze 0

Pe 0.5 Pe 0.05
pi 1.0 p; 0.125
Uz i 0 Ugpi 0

L=| " 0 R=| "™ 0 (4.4)

Vzi 0 Vzi 0

Di 0.5 Di 0.05
B, 0.75 B, 0.75
B, 1.0 B, -1.0
B, 0 B, 0

E, 0 E, 0

E, 0 E, 0

E, 0 E, 0

The initial conditions for the total fluid number density will differ slightly from the MHD

density because the electrons have finite mass.

4.8.1 MHD limit: rg; — 0, A\q =0

With the two-fluid system the true MHD limit cannot be achieved because the stiffness
of the problem increases with decreasing Larmor radius. This is apparent because wp,
increases and thus the time step that needs to be resolved becomes smaller. In the true
MHD limit the time step would drop to zero and no solution could be obtained. In addition
the spatial scale that needs to be resolved decreases as some multiple of the Debye length,
and so the grid resolution would become infinitely large. Running simulations on a single
machine over the course of about five days, the following two-fluid results to the shock
1

problem were obtained with ry; = ﬁ and Ay = 550550 While the number of grid cells is 4000.
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Figure 4.5: Two-fluid density profile for ry; = ﬁ verses the MHD solution. The contact
discontinuity, right rarefaction wave, left rarefaction wave and compound wave are well
resolved in the two-fluid solution, but the slow shock is traveling slightly slower in the two-
fluid solution than it is in the MHD solution. It is not clear whether or not this problem
will be resolved with smaller ry4; and higher grid resolution.
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Figure 4.6: Two-fluid V,, profile for r4; = ﬁ verses the MHD solution. V, originates at the
shock front in both the MHD and two-fluid shock solutions. The Larmor radius is slightly
larger on the right hand side of the shock, therefore, the right hand side of the two-fluid
solution will differ from the Ideal MHD solution. Low frequency waves are seen on the right
hand side.
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Figure 4.7: Two-fluid V}, profile for ry; = ﬁ verses the MHD solution. This figure shows
that a shock induces a Vj in both the MHD and two-fluid solution. The sharp spikes in the
two-fluid solution support the B, magnetic field induced by the Hall term.
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Figure 4.8: Two-fluid V, profile for ry; = ﬁ verses the MHD solution. This figure of
V, gives the first indication that the two-fluid solution differs substantially from the MHD
solution. In the two-fluid system the magnetic field is different from the fluid current because
displacement current is not ignored. As a result a fluid current is necessary to support the
shock in By. The two-fluid equations show net velocity in the y direction when the ideal
MHD equations suggest there should be no such velocity. This points to one additional
problem with numerically modeling the two-fluid system. In the limit of small Larmor
radii, a true magnetic shock must be supported by a delta function in J. Not only is it
necessary to resolve shocks, it is also necessary to resolve current spikes which become delta
functions in the MHD limit.
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Figure 4.9: Two-fluid P profile for ry; = ﬁ verses the MHD solution. The pressure profile
is comparable for the two-fluid solution and the MHD solution. Features similar to those
in Figure 4.5 appear.
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Figure 4.10: Two-fluid By profile for ry; = ﬁ verses the MHD solution. An additional
structure in B, appears to be forming in the two-fluid solution near the center of the domain.
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Figure 4.11: Two-fluid B, profile for ry; = ﬁ verses the MHD solution. The Hall term
has created a B, in the two-fluid solution. The sharp spikes are necessary to support the
current in the y direction
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4.8.2  Non-neutral gas dynamic limit: r4; — 00, Tge — 00, Ag — 00

In this case by setting ¢ = 0 the non-neutral gas dynamic limit can be achieved. This
limit is called non-neutral because the electrons are not bound to the ions, large charge
separation occurs and the simulation is sub-Debye length. In this sense, this simulation
is non-physical because in most cases it is likely that the fluid equations do not apply in
this regime, i.e. a particle approach would be required. However, in this regime, the two-
fluid equations predict a shock structure that is identical to that of gas dynamics and it
is the purpose of this section to show that this is in fact the solution that is obtained. In
Figures 4.12-4.14, notice that the electron fluid is plotted at a different time than the ion
fluid. Figure 4.12 shows the number density profile of ions verses electrons. Figure 4.13
shows the electron and ion V, distribution. Figure 4.14 shows the electron and ion pressure
distribution. All three figures show exactly gas dynamic structure. In Figure 4.15 the
simulation produces and electromagnetic shock which is identical to the solution predicted
by the sourceless Maxwell’s equations. Figures 4.12-4.15 illustrate that in the limit of large
rg; and large A\gq the two-fluid equations reduce to a pair of sourceless fluid equations and
sourceless Maxwell’s equations. Additional simulations will show more physically realistic

solutions which lie between the MHD and non-neutral gas dynamic limits.
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Figure 4.12: Number density in the non-neutral gas dynamic limit. This figure is deceiving
because the electron number density is plotted at a different time than the ion number
density (notice the legend). The electrons travel much faster than the ions because of their
reduced mass. The electron shock quickly leaves the domain and the electrons reach an
equilibrium before the ions reach the end of the domain. In this case large charge separation
occurs because the fields that develop are negligible.
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Figure 4.13: V, in the non-neutral gas dynamic limit. This figure shows the electron and
ion fluid V. When the electrons are not bound to the ions they move at the electron
acoustic speed which approaches the speed of light. Recall that the speed of light for these
simulations is 100. In future algorithms it may be appropriate to formulate the electrons

relativistically because they can reach such high speeds.
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Figure 4.14: Pressure in the non-neutral gas dynamic limit. Initially the pressure distribu-
tion is set evenly between the electrons and ions. Because the two fluids are identical except
for particle mass, the pressure profiles have identical structure, but evolve at different rates.
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Figure 4.15: By and E, in the non-neutral gas dynamic limit. Since there is no coupling
between the fluid and the electromagnetic field, the shock in B, propagates out at the speed
of light. The electromagnetic wave is propagating at the right speed because it has traveled
across % of the domain in 0.257,.
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4.8.8  Solutions between the gas dynamic and MHD limits

The two-fluid equations can be used to solve the Brio and Wu [7] shock problem at different
Debye lengths and Larmor radii. In the following the Larmor radii will be presented since
the Debye lengths are dependent on the Larmor radii in these particular simulations. The
MHD solution differs substantially from the two-fluid solution for larger Larmor radii. When
the Debye length and Larmor radius are relatively large, terms that are neglected in the
MHD approximation become important. In particular, the Hall current and the ion current
become important as well as the rate of change of current. In Figures 4.16-4.22, physics

beyond MHD is apparent.

Scaling

The non-dimensionalizations in Section 2.3.1 suggests a simple scaling relation. In this
problem the ratio % gives the ratio of Alfven speed to the speed of light and the ratio is
kept constant in these problems. However L = f—g% and C' = % so if Aq and ry; are kept
constant and zq is allowed to change, the coupling of the equations can be altered. This
means that increasing Ay and ry; is equivalent to decreasing the time and space scales while
decreasing A\q and 7g4; is equivalent increasing the time and space scales. Consequently the
problems that follow are exactly the same problem with different time and space scales. In
particular, if r4; = 0.1 in one simulation at a length scale of 1 and a time scale of 107, this

is equivalent to looking at the simulation ry; = 1 at a length scale of 10 and a time scale of

Tqgi .
1007; 2—‘3 and o are scaling parameters.
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Figure 4.16: Density profile for several values of ;. The complexity of the shock problem is
evident when the Larmor radius is varied. For example, r4;=0.1 is not bounded by r,;=0.01
and ry;=1 as one might expect.
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Figure 4.17: V, profile for several values of r4;. The large bumps outside of the shock are
waves quickly propagating out of the domain. If the scaling relation is considered then it
should be noticed that as r4; is decreased there are fewer of these waves. There are fewer
waves because the fast waves have propagated out of the domain in the snapshot given by
the smaller ry;. Recall that decreasing r4; by a factor of 100 is equivalent to leaving r4;
the same and increasing the spatial scale of the grid by 100 and increasing the time scale
to 10007.. If a fast wave is generated sometime after the shock is created it will appear in
the plots at large r4;, but not in the plots for small ry;.
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Figure 4.18: V, profile for several values of r4;. As ry; is decreased, the waves are more
confined to the immediate region of the shock. What is really happening, though, is that
only the slow waves are being observed because the fast waves have left the domain. When
rg; = 0.1 more fast waves are observed because they are generated early in the shock
formation and haven’t left the domain.
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Figure 4.19: V, profile for several values of r4;. V, supports B, and spans the length of the
By, shock. For ry; = 1 the shock hasn’t formed yet and the waves seen in r4; = 0.1 have not
yet been created. When the shock forms there should be spikes in V, to support the shock
in B,.
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Figure 4.20: Pressure profile for several values of ry;. The gas dynamic pressure drops
to roughly half its initially value because the electron shock quickly propagates out of the
domain leaving an average background electron pressure. Even with a Larmor radius on the
scale of the plasma size, r4; = 1, the effects of the magnetic field produce a very different
solution from the non-neutral gas dynamic shock.
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Figure 4.21: B, profile for several values of ry;. The smaller the Larmor radius the more
the magnetic field is frozen into the fluid. It is clear that the propagation speed of the
magnetic shocks is related to the Larmor radius. However, early in time the shock should
propagate like an electromagnetic wave at near the speed of light because the currents
that are generated are small. Eventually the low frequency magnetic fields will generate
significant currents which will slow down the low frequency electromagnetic waves so that
at a much later time, the same shock appears to have slowed down. The high frequency
components leave the domain while the very low frequency components freeze into the fluid.
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Figure 4.22: B, profile for several values of r4;. In both the MHD and non-neutral gas
dynamic limits, the B, drops to zero. When r,;=1, the magnetic field is frozen into the
fluid slightly and has not had time to propagate out. The magnitude of B, decreases as r¢;
decreases, just as the MHD limit predicts.
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4.8.4 Convergence

Many of the previous simulations have been run at several grid resolutions to look at con-
vergence of the solutions. As the MHD limit is approached the problem becomes stiffer
and convergence to the correct solution becomes more difficult. In the MHD limit a shock
wave in By must be supported by a delta function in J,. Similarly, a shock in P must be
supported by a delta function in E, according to the description of a plasma shock as an
electron shock and an ion shock separated by a small distance. Similar statements can be
made about other plasma variables where a shock in one variable requires a delta function
in another variable to support the shock. Delta functions cannot be resolved numerically
so at these points, no matter how fine the grid resolution is made, the error would remain
infinitely large. Fortunately with finite Ay and r4; none of the shocks that occur in the
two-fluid system are true discontinuities and so none of the delta functions which would
be associated with these shocks are true delta functions, the are merely large spikes in the
data. These spikes can be resolved numerically. From now on the word “delta function”,
or “spike”, is used to mean a finite spike in the solution which is associated with a shock in
some other variable.

In Figures 4.23-4.32, it is observed that the solution is well resolved in smooth regions.
However, all the profiles have delta functions where the solution changes substantially for
each grid refinement. Ultimately it is expected that the solutions near these spikes will
eventually be resolved, but at a substantially higher grid resolution than the rest of the
solution. It is interesting to note that several of the profiles corresponding to Figures 4.23,
4.24, 4.27, 4.28, 4.32, are well resolved over the majority of the solution with 1000 grid
cells. On the other hand the profiles corresponding to Figures 4.26, 4.29, 4.30, 4.31, exhibit
substantial differences between 4000 grid cells and 2000 grid cells. The characteristic of the
later plots is that all of them have several delta functions which dominate the profile. It
should be noted that the Debye length is not resolved in these simulations, Figures 4.23-
4.32. This seems to suggest that it is not necessary to resolve the Debye length except in

the vicinity of shocks or steep gradients.
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Figure 4.23: Convergence of MHD p as the grid is refined. The solution is well resolved
except at sharp corners.
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Figure 4.24: Convergence of MHD V, as the grid is refined. The solution is well resolved
everywhere except for in the vicinity of the spikes. It is unclear if these small spikes are
numerical or physical.



66

Convergence of MHD Vy

05
0
_05 = -
B — 4000 cells
: — — 2000 cells
: — 1000 cells
> | <+ 500 cells
o -1F :
g 1 -
s ;
151
oL
-25 1 1 1 1 1 1 1 1 1 J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 4.25: Convergence of MHD Vj as the grid is refined. Although the homogeneous
solution is TVD and should therefore not produce any oscillations, the existence of the
source terms and the delta functions at the shocks may be introducing extra oscillations
behind the delta function which are non-physical.
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Figure 4.26: Convergence of MHD V, as the grid is refined. The large delta function
indicates a region of the fluid that is traveling at almost the speed of light. It may be more
appropriate to include relativistic electrons in these simulations. The finer the grid gets,
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the larger velocities in the spikes will get until the solution is well resolved.
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Figure 4.27: Convergence of MHD P as the grid is refined. Several spikes occur in this

pressure profile, some of which may be numerical.
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Figure 4.28: Convergence of By as the grid is refined. 500 cells resolves this component of
the B field well.
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Figure 4.29: Convergence of B, as the grid is refined. B, is not well resolved even at 2000
cells. The presense of several delta functions may contribute to the fact that this component

of the B field changes so much with grid resolution.
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Figure 4.30: Convergence of E, as the grid is refined. In this profile a spike at 2000 cells
breaks into two spikes at 4000 cells indicating that grid resolution is not high enough to
resolve the structure. At 4000 cells the Debye length is not resolved. The large spike in
E, is expected because it corresponds to the shock in number density. A finite separation
between the electron shock and the ion shock produces this shock in F,.
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Figure 4.31: Convergence of E, as the grid is refined. Large changes in E; are observed as
the grid is refined. At a resolution of 4000 cells short wavelength oscillations appear on the

right hand side of the solution.
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Figure 4.32: Convergence of E,
resolution of 1000 cells.
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as the grid is refined. FE, is fairly well resolved at a grid
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4.83.5 Fast waves

The following simulations, Figures 4.33, 4.34, 4.35, are the same as those in section 4.3.3,
except that the simulations are plotted at 0.257.. Most of the waves that appear here are
fast waves which quickly propagate out of the domain. One common theme is that as the
Larmor radius is decreased the high frequency waves travel slower and slower. In ideal
MHD the magnetic field is frozen in to the fluid, which is to say that the magnetic field does
not move unless the fluid moves as well, therefore the magnetic field should freeze to the
bulk fluid shock. Figure 4.34 shows the magnetic field freezing into the fluid as the Larmor
radius is reduced. At ry;=10 the B, shock moves at about the speed of light, whereas at
r¢;=0.1 the wave is much slower. Notice also that the low frequency waves travel slower
than the high frequency waves. The MHD equations assume the fast waves (high frequency)
are insignificant and propagate out of the domain quickly which is a valid assumption as

demonstrated by Figure 4.34.
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Figure 4.33: V,, profile for various ry;. As the coupling between the electromagnetic field and
the fluid increases, the shock in B, is supported by higher and higher frequency components
of the electron current. The electron current becomes several current spikes in the MHD
limit.
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Figure 4.34: B, profile for various ry;. Notice that the high frequency waves travel faster
than the low frequency waves. Furthermore, on the high density side of the shock the
electromagnetic waves slow down where r4;=0.1 and form a spike right near the shock.
This looks like numerical dispersion, but it is actually a result of electromagnetic wave
dispersion in a plasma.
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Figure 4.35: B, profile for various r4;. Propagating electromagnetic waves from the B,
shock should produce an E,. If B, was supported entirely by E,, E, would have the same
magnitude as By. It is clear that because the magnitude of E, is decreasing with respect
to By as the Larmor radius is decreased, more and more of B, is being supported by J,.
In the MHD limit, the effect of the displacement current disappears altogether, which is
consistent with these simulations.
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4.4 Two-Fluid Plasma Waves

The two-fluid dispersion relationships can be observed in the electromagnetic shock problem.
Using the result from the electromagnetic shock with a ry; = 0.1, the results are Fourier
decomposed for all space for the first 57, and then the log of the magnitude of the resulting
matrix are taken. Red indicates a region of high amplitude whereas blue represents a region
of small amplitude waves. The R-mode, L-mode, whistler and electron plasma waves are

clearly observed as is demonstrated in Figures 4.36-4.38.



79

Actual waves calculated from the transtorm of B,

250

200

150

100

50

50 100 150 200 250

Figure 4.36: Calculated dispersion diagram. The two-fluid Riemann problem for r=0.1 was
Fourier decomposed for the first 57, and over all space to create this dispersion relationship.
W is a scaled frequency and K is a scaled wave number for waves in the plasma. The
graph clearly indicates the presense of several dispersion relationships. In the following it
will be shown that these are actually two-fluid plasma waves and not a result of numerical
dispersion.
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Actual vs predicted waves given by left initial conditions
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Figure 4.37: Analytic verses calculated dispersion diagram using the initial conditions on the
left half of the shock for the analytic solution. The R-mode, L-mode, whistler, and electron
acoustic waves match the solution calculated by the two-fluid algorithm. The dispersion
relations given in the previous section apply for high frequency therefore it is reasonable
that the waves should differ slightly from the predicted values on the low wave number side
of the plot.
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Figure 4.38: Analytic verses calculated dispersion diagram using the initial conditions on
the right half of the shock for the analytic solution. On the right side of the shock, only
the L-mode wave and whistler wave seem to match the the dispersion graph. In fact, from
the very beginning the L-mode wave is traveling at nearly the speed of light. It is assumed
that the majority of waves on the right side of the shock are of such low frequency that the
high frequency components do not show up in the dispersion diagram.
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4.5 Electrostatic Shock

The electromagnetic shock can be made into an electrostatic shock by setting the magnetic
field to zero. In this case there should be no electromagnetic waves. In the following the
number density for both the electrons and ions is plotted. Notice that in all cases the quasi-
neutrality condition is maintained except in the vicinity of shocks where the electron and
ion number densities differ substantially. The non-dimensionalization in Section 2.3.2, is
used in these simulations. It should be noted that the scaling given in Section 4.3.3, applies
and the following simulations can be considered the same problem plotted at different times
and with different spatial scales. In this regard Figure 4.39 can be considered a plot of the
formation of the shock early in time and Figure 4.42 can be considered a plot of the shock
at a spatial x scale 1000 time greater at a time 1000 times later. Figures 4.40 and 4.41 give
solutions at intermediate Debye length. It is unclear if the spikes are physical or are a result

of numerical errors.
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number density with A d=1x10‘1

Figure 4.39: Electrostatic shock with A; = 0.1. The electron fluid separates from the ion
fluid in all regions except those far from the shock. Electric fields should be shielded out in
roughly %0 the domain in steady state.
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Figure 4.40: Electrostatic shock with Ay = 0.01. The electron fluid is bound tighter to
the ion fluid and the first signs are visible that spikes in the ion fluid are appearing. The
ions in the leading edge ion shock appear to be accelerating to match the electron shock
speed. The ion number density builds up on the front of the leading edge shock which in
turn allows more electrons to propagate forward. Through this process the electron fluid
accelerates the ion fluid until an equilibrium is reached.
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Figure 4.41: Electrostatic shock with Ay = 0.001. Three spikes are fully developed near the
shocks of the ion fluid. The electron fluid maintains a smooth profile. The electrons do not
follow the ion spikes so if the spikes are physical the electron momentum flux across the
shock must be balancing with the force from the electric field to keep the electrons from
moving into the spikes. It should also be noted that the electron plasma waves have already
propagated out of the domain leaving only the lower frequency waves.
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Figure 4.42: Electrostatic shock with Ay = 0.0001. One spike on the ion fluid is smoothed
out and the shock speed of the bulk fluid has increased. The electrons are essentially stuck
to the ions and the pressures of the two fluids are coupled through the electric field. The
acoustic speed of the ion-electron fluid can be calculated by adding the electron and ion
pressures. This acoustic speed is greater than the ion acoustic speed so the speed of the
ion-electron shock is faster than the speed of the ion shock alone. In this plot the ion shock
has finally reached and equilibrium with the electron shock. The spike on the leading edge
shock is gone, this may simply be because the grid resolution is not fine enough to resolve
the spike at this scale.
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Chapter 5

CONCLUSION AND FUTURE WORK

A numerical algorithm for solving the two-fluid plasma system of equations has been
developed. The homogeneous parts are solved using a Roe approximate Riemann solver
and the source terms are updated either implicitly or explicitly. A modified potential
formulation has been explored to satisfy Poisson’s equation, although its use is limited to
problems where the system is not stiff and is therefore of little interest to us. It has been
found that the relevant time scales of each simulation are the electron plasma frequency
or that determined by the CFL condition applied to the speed of light. In the presense of
shocks the relevant spatial scales appear to be on the order of the Debye length (although
this remains to be verified). In smooth regions the solution is accurately resolved with some
large multiple of the Debye length. The algorithm is shown to work well in regimes with
both strong and weak coupling and approaches the limits leading to the MHD solution and
the non-neutral gas dynamic solution with free electromagnetic fields. This suggests that
the solutions bounded by these two limits have also been solved correctly. The electrostatic
shock was solved for several Debye lengths. Finally it has been shown that the algorithm
captures a variety of waves predicted by the dispersion relations obtained from linearizing
the two-fluid equations.

Solving this system of equations is computationally intensive and future work, and in par-
ticular, extension to three dimensions, will have to keep this in mind. Stiff, high-resolution
problems in one dimension typically take several days to run on a single 433MHz DEC
Alpha. In three dimensions, stiff, high resolution runs will require an efficiently written al-
gorithm and parallel computation. Stiffness due to the plasma frequency could be alleviated
with a more efficient algorithm. Some work needs to be done to determine how much of the
oscillations produced by spikes are real and how much is numerical. The two-fluid system

presents new problems because it is necessary to resolve these spikes. Typical fusion plas-
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mas are characterized by Debye lengths % to 1(1)—0 those obtained in the stiffest simulations
described in this thesis. With the help of parallel computers simulations of this type are
obtainable using the technique described. Satisfying the magnetic flux condition (2.8) and
Poisson’s equation (2.7) will be more important in three-dimensions so that errors in the

electric and magnetic fields do not grow out of hand.
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