
Study on the Flow-Through Z-Pinch Fusion Concept

Robert Clifton Lilly

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

University of Washington

2006

Program Authorized to Offer Degree: Aeronautics & Astronautics



In presenting this thesis in partial fulfillment of the requirements for a master’s degree at
the University of Washington, I agree that the Library shall make its copies freely available
for inspection. I further agree that extensive copying of this thesis is allowable only for
scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any
other reproduction for any purpose or by any means shall not be allowed without my written
permission.

Signature

Date



University of Washington
Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Robert Clifton Lilly

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Uri Shumlak

Reading Committee:

Brian Nelson

Date:



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: Derivations and Numerics . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Baseline Physics - Single Fluid MHD . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Alpha Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Nondimensionalizing Constants . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Alfven Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 The Lundquist Number . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 The Peclet number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 The MacCormack Finite Difference Schemes . . . . . . . . . . . . . . . 16
2.4.2 Time Scale Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Approach to Boundary Conditions in Polar Coordinates . . . . . . . . 17

Chapter 3: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Equilibrium Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Discretization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Hyperbolic vs Parabolic Behavior . . . . . . . . . . . . . . . . . . . . . 28

3.3 Non-Ideal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Variation in K and η . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 General Insights Resulting from Full Model Simulations . . . . . . . . 29

i



3.4 Fusion Burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Device Performance - An Estimate . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Comments on Fusion Burn . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Radiation Losses and Radiative Collapse . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Bremsstrahlung Only Case . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Synchrotron Only Case . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Comments on Radiative Collapse . . . . . . . . . . . . . . . . . . . . . 56

3.6 ZaP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Comments on ZaP results . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 4: Conclusions and Suggestions for Further Work . . . . . . . . . . . . . 60

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ii



LIST OF FIGURES

Figure Number Page

1.1 Z-Pinch Thruster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Thermal Reactivity versus Temperature. . . . . . . . . . . . . . . . . . . . . . 7

3.1 Initial Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Hyperbolic Convergence History -L1 Norm. . . . . . . . . . . . . . . . . . . . 20
3.3 Discretization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Error Wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Node Based Finite Differencing Scheme Step Response. . . . . . . . . . . . . 23
3.6 Cell Based Finite Differencing Scheme Step Response. . . . . . . . . . . . . . 25
3.7 Cell Based Finite Differencing Scheme Convergence Step Response - L1 Norm. 26
3.8 Heat Conduction Comparison - K Nominal. . . . . . . . . . . . . . . . . . . . 29
3.9 Heat Conduction Comparison - K Reduced. . . . . . . . . . . . . . . . . . . . 30
3.10 Heat Conduction Comparison - K Enhanced. . . . . . . . . . . . . . . . . . . 31
3.11 Density during Fusion Burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 Temperature during Fusion Burn . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.13 Pressure during Fusion Burn . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14 Induction during Fusion Burn . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.15 Radial Momentum during Fusion Burn . . . . . . . . . . . . . . . . . . . . . . 37
3.16 Reactivity during Fusion Burn . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.17 Particle Loss Rate during Fusion Burn . . . . . . . . . . . . . . . . . . . . . . 39
3.18 Fusion Burn Conserved Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.19 Radiative Collapse - Pbremsstrahlung and Psynchrotron . . . . . . . . . . . . . . 43
3.20 Density during Radiative Collapse - Bremsstrahlung Radiation Only . . . . . 44
3.21 Temperature during Radiation Collapse - Bremsstrahlung Radiation Only . . 45
3.22 Pressure during Radiation Collapse - Bremsstrahlung Radiation Only . . . . 46
3.23 Induction during Radiation Collapse - Bremsstrahlung Radiation Only . . . . 47
3.24 Radial Momentum during Radiative Collapse - Bremsstrahlung Radiation Only 48
3.25 Particle Density during Radiative Collapse - Synchrotron Radiation Only . . 50
3.26 Temperature during Radiation Collapse - Synchrotron Radiation Only . . . . 51

iii



3.27 Pressure during Radiation Collapse - Synchrotron Radiation Only . . . . . . 52
3.28 Induction during Radiation Collapse - Synchrotron Radiation Only . . . . . . 53
3.29 Current Density during Radiative Collapse - Synchrotron Radiation Only . . 54
3.30 Density, Temperature, Pressure, and Radial Momentum during Radiative

Collapse - Synchrotron Radiation Only . . . . . . . . . . . . . . . . . . . . . . 55
3.31 ZaP Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



1

Chapter 1

INTRODUCTION

Magnetic confinement fusion has been a major goal of the scientific community for the

past half century. The promise of energy production, free of resource restrictions, has often

been touted as the principal advantage. In fusion, atomic nuclei are brought together under

high temperature so they will “fuse” together, subsequently releasing energy. The easiest

reaction to attempt involves two isotopes of hydrogen, deuterium and tritium. The targeted

reaction is

D + T → He4 (3.5 MeV ) + n (14.1 MeV ) (1.1)

where the Helium nucleus and neutron carry the fusion energy released as kinetic energy.

The research configuration that has received the most attention is the tokamak, a toroidal

confinement approach. In the tokamak the principal confining magnetic field is poloidal

where the supporting current is carried by the plasma. A large, externally generated,

toroidal field provides the necessary stability for extended confinement. Over the past

twenty five years, much progress has been made. Advocates of tokamak based fusion claim

that only one last generation of research devices is required to complete the knowledge base

necessary to support construction of fusion power plants [3].

The objective of the device is to confine both the plasma and the plasma energy. To

accomplish this goal, magnetic fields are applied. If external magnets must be added to

the system, costs will increase. In tokamaks, magnetic fields of 1 to 10 Tesla are required.

Some examples in the large research tokamaks (toroidal field on axis, in Tesla): JET - 4.0,

TFTR - 5.9, JT-60U - 4.2 [3]. In some concepts, such as the proposed ITER, supercon-

ducting magnets are employed to generate these magnetic fields. As they must be cooled to
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superconducting temperatures, these same magnets have enormous cooling requirements,

increasing costs still further.

One useful figure of merit related to cost is called β. β is the ratio of the confined plasma

energy to the total magnetic field energy. As such, β may be viewed as an efficiency. This

ratio of the plasma and magnetic energies, β, is therefore a measure of the effectiveness of

the confinement configuration. Remember that in the tokamak, the poloidal field performs

the confinement. Unfortunately, in the tokamak, the poloidal field is balancing the sum

of the plasma energy (pressure) and the stabilizing toroidal field energy. This reduces the

plasma pressure that can be confined by the poloidal magnetic field. As a result, tokamaks

possess very low β, on the order of 1− 5%, because of the need for the stabilizing magnetic

field. This makes for a costly system. In the order to achieve economies of scale, power

plant sizes on the order of 10’s of gigawatts have been proposed. This contrasts unfavorably

with trends in the utility industry toward smaller generating units. Further, it is estimated

that, even with optimistic assumptions, electricity based on tokamak fusion, will cost more

than light water fission [15].

There are alternative confinement concepts that may offer more economical approaches.

Not surprisingly, these approaches typically offer either much reduced stabilizing fields, or

do not require such fields at all. One of the simplest approaches is the gas puff static Z-

pinch. The cylindrical plasma supports a current along the Z axis. The governing relation

is the force balance equation

j ×B = ∇p (1.2)

The axial current density jz vector multiplied with the self generated Bθ will produce a

radially confining force that will balance the pressure gradient.

Although the plasma geometry is open, the field lines of a Z-pinch are closed. Like

toroidal confinement schemes, only perpendicular heat conduction is in effect. Finally, the

lack of the toroidal field results in β approaching 1. The high β implies a lower cost than that

possible for tokamak, principally due to the lack of external magnets. Additional savings

would be achieved by the deletion of magnet support systems (such as cooling).
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Static Z-pinches, however, have strong magnetohydrodynamic (MHD) instabilities that

prevent application of the concept to fusion. These are the sausage and kink modes. These

instabilities can be intuitively understood by considering the force balance equation given

in Eq. 1.2.

Should any small disturbance occur in either the plasma, current, or magnetic field, the

impact will be seen via the force balance equation. Suppose a sub length of the plasma should

radially enlarge by a small amount. This will mean a slight increase in pinch radius, and a

decrease in the pressure gradient. As the plasma is now larger, obviously the current density

will fall. Also, the magnetic filed lines are separated by the larger diameter subsection. As

a result, the plasma is not as strongly confined as it was before, and the plasma will expand

still further. A positive feedback loop has been established. The reverse contraction process

will also occur elsewhere along the plasma column. Through the two processes of expansion

and contraction, the plasma will evolve into a sausage like configuration. Confinement is

lost when the plasma contracts to a diameter where the current flow is cut off.

In the kink mode, motion is again initiated through some small initial disturbance. The

plasma column begins bending. As a result, there will be more magnetic field on one side

of the plasma than the other. Furthermore, the plasma current is now no longer purely

axial. This implies that the resulting j ×B force is no longer axisymmetric and will push

the plasma further off axis. As the kinking continues, confinement is lost when the plasma

makes contact with the wall, or shears apart, cutting off the current flow.

One early answer to these instabilities was the addition of an axial magnetic field, re-

sulting a device called a “screw pinch”. Like the toroidal field in a tokamak, the axial field

serves to stabilize the pinch against some of the worst instabilities. Opening the magnetic

field lines significantly increase the heat conduction, however, reducing energy confinement.

Adding an axial field also increases the cost, as in the tokamak.

The flow-through Z-Pinch,a variation of the classic Z-pinch, achieves this stability with-

out the toroidal field. Fueling plasma is made to flow, in a shearing fashion, along the axis.

The flow-through Z-pinch offers many advantages for fusion confinement. The closed mag-

netic topology still offers unity β, and therefore the promise of lower costs. The cylindrical

geometry and axial flow allow for logical refueling and ash removal. Finally, the geometry
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Figure 1.1: Z-Pinch Thruster. This schematic illustrates the axially confined plasma. The
thruster is supplied with plasma as fuel and to provide a shearing, stabilizing flow. The
current path terminates on the nozzle cathode on the right and a virtual anode on the left.
Also at the anode is a direct energy converter to capture the energy of the alpha particles.

lends itself naturally to propulsion, in the form of a thruster. See Fig. 1.1. Propulsion

motivates this work.

Fusion propulsion systems have been proposed in the literature, Kammash’s work [13]

being but one example. The dominant mass component for these systems is the radiator

system associated with the superconducting magnets. The flow-through Z-Pinch is unique

because it does not require external magnets. In addition, the associated cooling systems

are deleted entirely. The weight savings should be substantial. The structure, furthermore,

need only be strong enough to support the return current path and react the thrust loads.

This structure could be an open frame, as described by Shumlak[11]. The majority of the

heat load would be radiated directly into space. This heat load consists of bremsstrahlung,

and synchrotron radiation, neutrons, and non-captured alphas. One purpose of this work

has been to determine this heat load from the plasma column, i.e. the total radiated power.

The report is organized as follows: In Chapter 2, the MHD equations are derived,

fusion and radiation physics added, and subsequently prepared for computation by non-

dimensionalization. The numerics are also covered in Chapter 3. Chapter 3 covers the

results, and the principal observations are reviewed. The code’s qualitative performance is

then discussed, along with its limitations. The final chapter, Chapter 4, briefly summarizes

the work and suggests an outline for future efforts.
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Chapter 2

DERIVATIONS AND NUMERICS

2.1 Baseline Physics - Single Fluid MHD

This effort has developed a solver for the single fluid MHD equations. These equations are

the continuity, momentum, induction, and energy equations given in order below:

∂ρ

∂t
+∇ · ρv = 0 (2.1)

∂ρv
∂t

+∇ ·
(

ρvv−BB + I
(

p +
B2

2µo

))
= 0 (2.2)

∂B
∂t

+∇ · (vB−Bv) +
1
µo
∇× (←→η · (∇×B)) = 0 (2.3)

∂e

∂t
+∇ ·

((
e + p +

B2

2

)
v− (B · v)B

)

+
1
µ2

o

∇ ·
(
(←→η · (∇×B))×B

)
−∇ · (←→K ·∇T ) = 0 (2.4)

where e = p
γ−1 + 1

2ρv · v + B·B
2µo

, and the respective terms are the thermal, kinetic, and

magnetic energies. Losses are specified in the induction and energy equations (Eq. 2.3 and

2.4 respectively). The resistivity η specifies the conversion of magnetic energy to thermal

energy, while the heat conduction, K, specifies how that thermal energy diffuses through

the plasma. An operational fusion reactor must also account for fusion and radiation effects.

The addition of fusion and radiation terms to the single fluid MHD equations is the topic

of the next section.
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2.2 Fusion

2.2.1 Conservation of Mass

This section follows Dolan [5]. First particle loss terms are applied to the right hand side

of the continuity equation (Eq. 2.1). The continuity equation is now:

∂n

∂t
+∇ · (nv) = −1

2
n2 < σv > (2.5)

This calculation requires determination of the reactivity < σv > as a function of tempera-

ture. Bosch [2] offers a useful formulation:

< σv >= A1θ

√
ξ

moc2T 3
e−3ξ (2.6)

where

θ =
T

1− T (A2+T (A4+T (A4+TA6)))
1+T (A3+T (A5+TA7))

(2.7)

ξ = 3

√
BG2

4θ
(2.8)

moc
2 = 1124656 (2.9)

and T is in KeV. Table 1 lists the applicable fit coefficients for the D-T fusion reaction given

in equation 1.1.

Table 1

coefficient Value

BG 34.3827

A1 1.17302 10−9

A2 1.51361 10−2

A3 7.51886 10−3

A4 4.60643 10−3

A5 1.35 10−2

A6 -1.06750 10−4

A7 1.366 10−5

A plot of the thermal reactivity < σv > versus temperature is provided in fig.2.1. The
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Figure 2.1: Thermal Reactivity (< σv >)versus Temperature for the D-T fusion. The model
is valid for the range of 0.2 to 100 KeV. Stated accuracy of this model is 0.25%.

model is valid for the range of 0.2 to 100 KeV. Stated accuracy of this model is 0.25% over

the given temperature range.

2.2.2 Energy Equation

This loss of particles demands that their associated energy is lost also. Dolan [5] used the

general form

∂t(Energyions) = ion heatinginput + ion heatingalphas + ion heatingelectrons − powerlossconfinement

(2.10)

where the “energy loss rate [powerlossconfinement] includes losses by heat conduction, con-

vection (including charge exchange losses), and destruction of ions by fusion reactions.” Our

energy conservation equation covers each of these terms explicitly, in the form of heat con-

duction, ohmic heating, convection of the fluid energy, radiation, and fuel ion destruction,
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with the exception of the alpha heating. The alpha heating is neglected on the assumption

that the alpha particles will escape the pinch before thermalizing. The energy equation con-

serves the total energy content of the fluid, not just the ions’ internal energy. To account

for fusion, only the thermal and kinetic energy of the fuel ions must be subtracted, leaving

the magnetic energy unchanged. Our energy conservation equation is now

∂e

∂t
+∇ ·

((
e + p +

B2

2

)
v− (B · v)B

)

+
1
µ2

o

∇ ·
((←→η · (∇×B)

)
×B

)
−∇ · (

←→
K ·∇T ) = −(

1
2
n2 < σv > Ei) (2.11)

where Ei is the thermal and kinetic energy per fuel ion.

2.2.3 Alpha Heating

There is some question as whether the alphas would be thermalized in the dense plasma

of the Flow Through Z-Pinch, or whether the alpha’s would escape. Work by Robson [19]

suggested that they would be thermalized. One check on the non-thermalization assumption

would be a check on the minimum Larmor radius ρα. All the alpha particles should see the

Bmax = 245 T, if the Larmor radius is large enough. At 245 T, and an Tα = 3.5 MeV,

the Larmor radius will be 0.78 mm. The fusion Z-pinch under consideration will have a

radius of 0.6 mm. What can be said from this basic calculation is that some alphas will be

confined and some will escape. The associated alpha heating is not included in this model.

2.2.4 Radiation

A rigorous determination of radiation loss would involve determining the opacity of the

plasma, to allow an accurate splitting between the blackbody, bremsstrahlung, and syn-

chrotron radiation. Typically in estimates of power balance, the radiation losses are treated

strictly as lumped element terms. For bremsstrahlung radiation, from Rider [18],

Pb = 1.69 · 10−32n2T
1
2

(
Zeff

(
1 + 0.7936

T

mec2
+ 1.879

(
T

mec2

)2
)

+
3√
2

T

mec2

)[
W

cm3

]

(2.12)
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where n is cm−3 and T is in eV. For synchrotron radiation, from McNally [14], we have

Ps = 6.2 · 10−20nTB2

(
1 +

5
2

T

mec2

)[
kW

m3

]
(2.13)

where n is m−3 and T is in KeV, and reabsorption has been neglected.

Most Z pinch balance equations have assumed that radiation is dominated by bremsstrahlung.

If the synchrotron radiation is reflected back onto the plasma and then reabsorbed, then

this assumption is correct. With the open reactor framework proposed in chapter 1, the

synchrotron radiation is obviously not reflected. Furthermore, reabsorption of synchrotron

radiation is a subject itself in current research. See refs. [8] and [9]. For simplicity, an

optically thin pinch has been assumed. Both forms of radiation are therefore significant.

Summing the radiation terms as Prad, one can update the energy equation as

∂e

∂t
+∇ ·

((
e + p +

B2

2

)
v − (B · v)B

)

+
1
µ2

o

∇ ·
((←→η · (∇×B)

)
×B

)
− ∇ · (←→K ·∇T ) = −(

1
2
n2 < σv > Ei + Prad) (2.14)

The full set of equations may now be restated

∂n

∂t
+∇ · (nv) = −1

2
n2 < σv > (2.15)

∂nv
∂t

+∇ ·
(

nvv−BB + I
(

p +
B2

2µo

))
= 0 (2.16)

∂B
∂t

+∇ · (vB−Bv) +
1
µo
∇× (←→η · (∇×B)) = 0 (2.17)

∂e

∂t
+∇ ·

((
e + p +

B2

2

)
v − (B · v)B

)

+
1
µ2

o

∇ ·
((←→η · (∇×B)

)
×B

)
− ∇ · (←→K ·∇T ) = −(

1
2
n2 < σv > Ei + Prad) (2.18)

These equation must now be nondimensionalized. Before doing so, the nondimensionalized

constants must be introduced.

2.3 Nondimensionalizing Constants

As the objective is a set of nondimensionalized equations, each equation above is divided

by a normalizing reference value for the quantity of interest. This is usually the peak initial
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value for that equation. The continuity equation (Eq. 2.15) is divided by ρref

ta
, where

ta is the Alfven transit time of the system. Similarly, momentum (Eq. 2.16)is divided

through by ρrefvref

ta
, induction (Eq. 2.17)by Bref

ta
and energy (Eq. 2.18) by

B2
ref

µota
. For the

continuity and momentum equations, the normalization does not produce constants. The

non ideal terms in the induction and energy equations do have constants. These terms are

the nondimensionalizing constants, sometimes referred to as the similarity parameters.

The three nondimensionalizing constants are the Peclet, Lundquist, and Alfven numbers.

Each of these numbers provides a sense for the behavior of the plasma. The Alfven number

(Al) provides a sense of speed of the convection compared to the Alfven plasma wave.

Magnetic diffusion in the face of convection is characterized by the Lundquist number (Lu).

The Peclet number (Pe) indicates the dominance of either convection or diffusion for energy

transport. Since the Alfven number is simply a ratio of two velocities, subsequent discussions

of the Peclet and Lundquist will include the Alfven number.

2.3.1 Alfven Number

The Alfven number is a measure of the magnetic versus inertial forces, and is defined as VA
V ,

where VA is the Alfven velocity, and V is assumed in this case to be the axial velocity.

2.3.2 The Lundquist Number

The product of the Lundquist number times the Alfven number is defined[12] as

LuAl =
µoaVa

η
(2.19)

where from [4]

η⊥ =
√

me
π e2n lnΛ

(4πε)2(kBT )
3
2

. (2.20)

Examining the ohmic heating term in the energy equation 3.17, after normalizing the
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result is:

µota
B2

ref

∇ · (η · 1
µ2

o

(∇×B)×B) =
µota
B2

ref

(
ηref

µ2
o

B2
ref

a2
∇ · (η · (∇× B)× B)) (2.21)

=
µoa

VaB
2
ref

(
ηref

µ2
o

B2
ref

a2
∇ · (η · (∇× B)× B)) (2.22)

=
ηref

µoaVa
∇ · (η · (∇×B)×B) (2.23)

=
1

LuAl
∇ · (η · (∇×B)×B) (2.24)

where the underlined terms represent normalized values. Eq. 2.24 has been implemented

in the code.

2.3.3 The Peclet number

The Peclet number is aVa
κ as per [12], where κ is the molecular diffusivity of plasma. From

Chen [4], neoclassical diffusion coefficients of D⊥ = η⊥nΣkB T
B2 . Hallmann [7] offered a more

intuitive formulation, κ⊥ = νiir
2
c . It can be shown that they are of the same form. From

Chen,

νii =
√

me

mi
5 · 10−6n lnΛ

T
3
2

(2.25)

and

rc =
mivi⊥
eB

(2.26)

which results in

κ⊥ =
√

me

mi
5 · 10−6 n lnΛ

T
3
2

r2
c . (2.27)

Comparing this to the diffusivity provided by Chen, starting from

D⊥ = η⊥
nΣ kBT

BT 2
(2.28)

where η⊥

η⊥ =
√

me
π e2n lnΛ

(4πε)2(kBT )
3
2

. (2.29)
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Relabeling D⊥ as κ⊥, this results in

κ⊥ =
√

me
π e2n lnΛ

(4πε)2(kBT )
3
2

2kBT

B2
. (2.30)

Recalling that 2kBT
mi

= v2
⊥ the Larmor maybe rewritten as e2mir

2
c = 2kBT

B2 , then we can

write

κ⊥ =
√

me

mi

π e4n lnΛ m
3
2
i

(4πε)2(kBT )
3
2

r2
c (2.31)

where one can at last see that the two equations (Eqs. 2.27 and 2.31) are of the same form.

Before applying Eq. 2.31 to the energy equation, consider the heat conduction term
µta

B2
ref

(∇ ·K⊥ · ∇T ), where the leading term is the normalizing reference power. Expanding

this as

µta
B2

ref

TrefKref

a2
(∇ ·K⊥ · ∇T ). (2.32)

where the underlined terms signify normalization. The constants of this term can be ex-

panded to yield

µta
B2

ref

TrefKref

a2
(∇ ·K⊥ · ∇T ) =

µta
B2

ref

nrefTrefKref

nrefa2
(∇ ·K⊥ · ∇T )) (2.33)

=
Kref ta
nrefa2

(∇ ·K⊥ · ∇T )) (2.34)

=
Krefa

Vanrefa2
(∇ ·K⊥ · ∇T )) (2.35)

=
Kref

aVanref
(∇ ·K⊥ · ∇T ) (2.36)

where the equality of nrefTref =
B2

ref

µo
has been employed. The NRL handbook [12] specifies

1
PeAl = κ⊥

aVa
. Since κref is absent, the ratio κref

κref
is introduced and:

Kref

nref

κref

κref

1
aVa

(∇ ·K⊥ · ∇T ) =
Kref

nref

1
κref

κref

aVa
(∇ ·K⊥ · ∇T ) (2.37)

=
Kref

nref

1
κref

1
PeAl

(∇ ·K⊥ · ∇T ) (2.38)

=
1

nref

1
PeAl

(∇ · K⊥
κref

· ∇T ) (2.39)
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This last form of the heat loss term has been implemented in the energy equation. It should

be noted that the form for K⊥ specified by Udrea [21] did not require nref . This derivation

was thoroughly explored because of the extreme smallness of the heat conduction effect.

This will be discussed in the results section.

Collecting the four equations and completing the normalization for the fusion and radi-

ation terms, one obtains:

∂n

∂t
+∇ · nv = −1

2
n2nref < σv > ta (2.40)

∂nv
∂t

+∇ ·
(

nvv−BB + I
(

p +
B2

2

))
= 0 (2.41)

∂B
∂t

+∇ · (vB−Bv)

+
1

LuAl
∇× (←→η · (∇×B)) = 0 (2.42)

∂e

∂t
+∇ ·

((
e + p +

B2

2

)
v− (B · v)B

)

+
1

LuAl
∇ ·
((←→η · (∇×B)

)
×B

)

− 1
nref

1
PeAl

∇ · (←→K ·∇T ) = − taµo

B2
ref

(
1
2
n2 < σv > Ei + Prad

)
(2.43)

where the underlining notation of the normalized quantities has been dropped. Assuming

azimuthal symmetry and no rotating flows, expanding these vector equations into their

proper components produces:
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∂tn +
1
r
∂r(rvrn) + ∂z(vzn) = −1

2
n2nref < σv > ta (2.44)

∂tmr +
1
r
∂r

(
r

(
vrmr + p +

B2

2

))
+ ∂z(vzmr) =

1
r
(p− B2

2
) (2.45)

∂tmz +
1
r
∂r (r(vrmz)) + ∂z

(
vzmr + p +

B2

2

)
= 0 (2.46)

∂tBθ +
1
r
∂r(r(vrBθ)) + ∂z(vzBθ)

− 1
LuAl

(
1
r
∂r(η⊥jz)

)
=

vrBθ

r
(2.47)

∂te + ∂r

(
r

(
vr

(
e + p +

B2

2

)))

+∂z

(
vz

(
e + p +

B2

2

))

− 1
LuAl

(
1
r
∂r(r(η⊥jzBθ))

)

− 1
PeAl

(
1
r
∂r(r(K⊥∂rT )) + ∂z(K⊥∂zT )

)
= − taµo

B2
ref

(
1
2
n2 < σv > Ei + Prad

)

(2.48)

where mr and mz are the conserved momentum variables corresponding to nvr and nvz

respectively. Note that there are geometric source terms on the rhs, beyond the fusion and

radiation terms. These geometric terms result from taking the divergence of a tensor in

cylindrical coordinates. The divergence in the r direction, 1
r∂r(r variable), also contains a

source term, which will be discussed in the numerics section.

Equations 2.44 - 2.48 are of the form

∂tQ +∇r · F +∇z ·G +∇r · FD +∇z ·GD = S (2.49)

where Q is the vector of conserved variables, followed by F ,G, and FD ,GD which are the

vectors of hyperbolic (in r, and z) and parabolic (dissipative) (in r, and z) fluxes, respectively.

S contains the source terms, which includes geometric terms as well as the fusion and

radiation sources and sinks. The project code solves this full 2-D set of equations. This

work will examine only the 1D radial case. This is addressed in the code by making the
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z direction boundary conditions periodic, and then limiting the z direction resolution to

three grid points. This will mask all variation in the z direction, and therefore the spatial

divergences in the z direction vanish. The effective equation set investigated is therefore

∂tQ +∇r ·F +∇r · FD = S (2.50)

The appropriate radial quantities can be given as

Q =




n

mr

mz

Bθ

e




, F =




vr n

vr mr + p + B2

2

vr mz

vrBθ

vr (e + p + B2

2 )




, FD =




0

0

0

− 1
LuAlηjz

− 1
LuAlηjzBθ − 1

PeAlK⊥∂rT




(2.51)

For the geometric source terms associated with taking the divergence of a tensor, and the

fusion radiation terms, we have

S =




−1
2(n2)nref < σv > ta

1
r (p− B2

2 )

0
1
r (Bθvr)

− taµo

B2
ref

(
1
2(nnref )2 < σv > Ei + Prad

)




(2.52)

where there are in all five equations, with the system having azimuthal symmetry in mo-

mentum, and only an azimuthal magnetic field.
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2.4 Numerics

2.4.1 The MacCormack Finite Difference Schemes

For simplicity, a central differencing approach was selected. Anderson [1] provides an ex-

cellent guide to the MacCormack algorithm. This is a two step process, defined as follows.

Predictor : Q̄j = Qn
j −

∆t

∆x
(Fn

j − Fn
j−1) (2.53)

Corrector : Qn+1
j =

Q̄j + Qn
j

2
− ∆t

2∆x
(F̄j+1 − F̄j) (2.54)

Where F is the flux quantity based on the set of conserved variables Q. The over barred

quantities are the result of the predictor step. The corrector step can be rewritten in the

same form of ref. [1].

Qn+1
j =

Qn
j

2
+

1
2
(Qn

j −
∆t

∆x
(Fn

j − Fn
j−1))−

∆t

2∆x
(F̄j+1 − F̄j) (2.55)

=
Qn

j

2
+

Qn
j

2
+

∆t

2∆x
(−(Fn

j − Fn
j−1)− (F̄j+1 − F̄j)) (2.56)

= Qn
j +

∆t

2∆x
(−(Fn

j − Fn
j−1)− (F̄j+1 − F̄j)) (2.57)

= Qn
j + ∆t∂xFave (2.58)

where the ∂xFave =
−((F n

j −F n
j−1)+(F̄j+1−F̄j))

2∆x . This form as implemented does not cover source

terms. The source terms may be added to equation 2.58 as follows:

Qn+1
j = Qn

j +
∆t

2

(
−

(Fn
j − Fn

j−1) + (F̄j+1 − F̄j)
∆x

+ (Sn
j + S̄j)

)
(2.59)

= Qn
j +

∆t

2

((
−

(Fn
j − Fn

j−1)
∆x

+ Sn
j

)
+
(

(F̄j+1 − F̄j)
∆x

+ S̄j

))
(2.60)

= Qn
j +

∆t

2
(Updatepredictor + Updatecorrector) (2.61)

This last form is the update equation employed by the code. Calculation of the parabolic

flux divergence is by the same method. The parabolic flux (FD) calculation is accomplished

by reversing the direction of the update for the derivatives. For example, for the calculation

of ∇T on the predictor step is a forward difference, instead of a backward difference. This

alternating scheme avoids directional biasing of the solution.
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2.4.2 Time Scale Considerations

The courant number condition is set in the hyperbolic case by the fast magnetosonic wave

speed. The wave speed is given by VFMS = 1
2(V 2

a + V 2
s ) +

√
(V 2

a + V 2
s )2 − 4V 2

s V 2
a , where

Va is the Alfven velocity and Vs is the ion sound speed. So the code must have a time step

smaller than the transit time of this wave across the smallest cell in the domain.

In considering the parabolic terms, it must be recognized that there may be waves or

relaxation phenomena with faster speeds than the FMS wave. Initially considering the

induction equation, after performing a von Neumann stability analysis, the result is

G = 1 +
∆tη

2LuAl

1
∆r2

[4[cosk∆r − 1] +
1
j

+
1

2− j
− 1

j − 1
i sink∆r] (2.62)

where the j is the radial index and k the wavenumber. The result suggests that as long as

the time step is below ∆t < LuAl∆r2

2η the system should be stable. In the energy equation,

the equivalent term is 1
PeAl nref

∇·←→K ·∇T for the energy flux loss term. Since this term has

a similar form as for the resistive loss, they should have similar stability criterion. In this

case, ∆t <
PeAl nref ∆r2

2
←→
K

.

2.4.3 Approach to Boundary Conditions in Polar Coordinates

The equation set type is mixed, with hyperbolic and parabolic terms. The parabolic terms

are second order. To solve for a domain then, two ghost cells are required at each boundary.

Furthermore, to avoid the singularity at r = 0, a cell based rather than node based scheme

has been chosen. For the ghost cells at the axis, this work follows the recommendations of

[16]. Scalar quantities are copied across the axis to ensure a von Neumann condition at r =

0. The radial position r, as well as all vector quantities that must go to zero at the origin,

are negated as they are copied across the axis from the domain. Finally, vector quantities

that do not necessarily go to zero at the radial origin are treated as scalars.

At the wall, the vector quantities mr, and mz are negated across the wall to ensure zero

at the boundary, while density and temperature are von Neumann. Finally the magnetic

induction employs a 1/r projection into the ghost cells.
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Chapter 3

RESULTS

3.1 Initial Conditions

The necessary initial conditions will be an equilibrium. In this chapter, the ability of the

system to hold equilibrium will be explored. Next the response of the system to a step

input will be presented. The non ideal loss terms η⊥ and K⊥ will be varied and the plasma

response examined. Finally, the radiation and power output of the Z-Pinch at fusion burn

and ZaP conditions will be examined.

For the purpose of evaluating the code, a Gaussian pressure distribution was chosen

P = e
−r2

a + Pbackground (3.1)

The momentum equation can be reduced to the well known pressure balance

∇ p = j×B (3.2)

which for the classic z pinch is

∂r p +
1

muo

(
B2

r
+ B∂r B

)
= 0 (3.3)

Taking the radial derivative of p and employ mathematica’s “DSolve” command, one

gets upon setting the constant of integration equal to 2a

Bθ =

√
2((a− e

−r2

a (r2 + a)))
r2

(3.4)

As an operating point, n = 1019 [cm−3] and T = 15 [KeV ] are the peak values. The

corresponding peak magnetic field is 245 Tesla. The peak Alfven velocity is 2 · 106
[

m
sec

]
.
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Figure 3.1: Cell Based Initial Conditions. Quantities are normalized, unless otherwise
specified. The normalized density is identical to and overlays temperature. Temperature is
therefore not shown. Axial momentum is set to zero.

The profiles are normalized against this operating point. The initial condition is shown in

Fig. 3.1. Temperature is equal to density. Background density and temperatures are one

tenth of peak.

3.2 Equilibrium Performance

To evaluate equilibrium performance, the simulation was initiated for the ideal case. All

loss terms, including radiation and fusion, have been suppressed. Fig. 3.2 illustrates the

convergence history for four of the five conserved quantities. In this particular simulation,
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Figure 3.2: This plot illustrates the change per iteration, calculated as a relative L1 norm,
i.e. max[(new - old)/old] for each variable over the entire domain. The “noise” visible
during convergence is the result of an error wave that is reflecting back and forth through
the domain. This error wave is discussed in Sec. 3.2.1

the axial velocity has been set to zero, making for a static Z-pinch. As can be seen, the

density, induction, and fluid energy variables experience a relatively smooth convergence

history. The radial momentum is considerably noisier. On the density, induction, and fluid

energy this noise is visible as bumps during the descent, and turns out to be the result of

an error wave that is reflecting back and forth through the domain. The relative L1 norm

converges to approximately 10−6 for density, induction, and fluid energy after approximately

104 iterations. The radial momentum does not descend below 10−5 due to the discretization

error, which is discussed in the next section.

3.2.1 Discretization Error

Both cell and node based schemes suffer from a discretization error due to the 1/r terms. Fig.

3.3 illustrates the convergence for the discretization error for an initial pressure balance for
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Figure 3.3: Grid convergence for the node based scheme (hyperbolic terms only). The initial
error is the residual pressure balance signal from the radial momentum equation on the first
iteration. The final value is the same signal after a set number of time steps, appropriately
extended for grid resolution.

both initial and later in time for the node based scheme. The radial momentum is effectively

the error signal of the numeric system. What is particularly interesting is how this error

actually increases over the initial. The finite differencing subsequently generates an “error

wave” that is shed from the initial error. This wave then repeatedly traverses the domain,

without decaying unless some form of damping is present.

See Fig. 3.4 for an illustration of the wave traversing the domain. A fourth order artificial

viscosity function, suggested by [1], provides sufficient damping to guarantee stability. As

mentioned earlier, the convergence history of Fig. 3.2 records the reflection events associated

with the error wave.
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Figure 3.4: Error Wave. initial discretization error will shed a wave, as indicated by the “v”
shaped trajectory in the above plot of radial momentum. It will continue to traverse the
domain until being damped out by either the artificial viscosity for the hyperbolic case, or
the loss terms in the non-ideal case. The reflections can be seen in the convergence histories
in Fig. 3.2

3.2.2 Step Response

As the code was developed, it was natural to solve the ideal MHD equations first. This

equation set lends itself to a node based approach. The solver only need compute the internal

points, with the boundary values being directly assigned. This works for the ideal case

because all the hyperbolic advection terms are first order derivatives. This code exhibited

excellent stability. As a test, the pressure was doubled after the program had initiated.

Fig.3.5 illustrates the clean response of the system. Half the step amplitude was lost,

probably due to boundary conditions.

Unfortunately, at the time it appeared that a node based scheme could not be made

to work in cylindrical coordinates for an equation set with second order derivatives. This

was thought to be because of the perceived difficulties for evaluating the parabolic fluxes

at the origin. Specifically, the radial divergence term, namely 1
r ∂r rF , appeared to present

the problem of how to evaluate the fluxes where a singularity exists at the origin at the
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Figure 3.5: Node Based Finite Differencing Scheme Step Response. The system energy
components versus time in response to a doubling of the pressure of the system are plotted.
Time is in arbitrary units. Note that although half the step amplitude is lost, the system
is stable. The system remains static in the radial direction after the event.

origin. Two choices seemed apparent when faced with this problem. The first was to employ

function expansions for the fluxes at the axis, and the second was implementation of a cell

based grid.

In hindsight, the concern about the flux singularity appears to have been ill-founded.

An analysis shows that the fluxes are, in fact, finite. Consider the parabolic flux vector FD:

FD =




0

0

0

− 1
LuAlη⊥jz

− 1
LuAlη⊥jzBθ − 1

PeAlK⊥∂rT




(3.5)

In the induction equation, the term η⊥ jz will not go to zero on axis, but its radial derivative

will. In the energy equation, radial derivatives of temperature will likewise be equal to zero
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on axis. The question remains regarding the geometric source term. Consider the ohmic

heating term in the energy equation. It will not have a zero divergence on axis. Taking the

radial divergence on ηjzB results in

∂r(rηjz B)
r

= ηj2
z +

jzB∂r(r η)
r

+
η B∂r(r jz)

r
(3.6)

The heating term ηj2
z will be a finite value as it does not suffer from a singularity. Although

last two terms, like the heat flux, will have zero derivatives on the variables at the origin,

it is still not obvious whether the divergence will be zero. Considering just the third term

from above

∂r(r jz)
r

=
(r∂rjz + jz∂rr)

r
(3.7)

= ∂rjz + jz
∂rr

r
(3.8)

= ∂rjz +
jz

r
(3.9)

=
jz

r
(3.10)

Applying l’Hopital’s rule, in the limit as r → 0, the result is

lim
r→0

jz

r
= lim

r→0

∂rjz

∂rr
(3.11)

= lim
r→0

0
1

(3.12)

= 0 (3.13)

By the above result, it can be said that the divergence of all the parabolic fluxes will be finite

at the origin. Therefore, a node based scheme could have been employed. Unfortunately,

at the time, the above analysis was not performed, and the cell based approach was chosen.

Implementing a cell based scheme proved somewhat problematic. To ensure stability, it

was determined that the geometric source term associated with the radial divergence had

to be separated out from under the divergence and placed in the “S” vector. This source
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Figure 3.6: Cell Based Finite Differencing Scheme Step Response. The system tracks the
initial step input, but is unable to hold the energy. The impact on convergence is even more
severe, see Fig. 3.7.

splitting may the origin of a form of numeric instability. Fig. 3.6 repeats the step response

test. Note that while the output follows the step input, a severe ringing is encountered

that does not die off, even in the presence of damping. Further, the energy content of the

step function is completely lost. Fig. 3.7 illustrates even more dramatically the impact

on convergence. After the step input at ten thousand iterations, the system is unable to

convergence on a solution. Despite these problems, the system is able to smoothly process

other plasma dynamics, such as radiative cooling and fusion burn. These results will be

presented later in this chapter.
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Figure 3.7: Cell Based Finite Differencing Scheme Convergence Step Response - relative L1
Norm. See Fig. 3.2 for definition. The response is poor. The system does not converge
after a step input.
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3.2.3 Timescales

One of the apparent simulation difficulties is that of the hyperbolically driven time step.

As the time step is set by the square of the spatial increment, at fusion dimensions, the

necessary time step is on the order of 10−10 to 10−14. At this time scale, fusion and radiation

effects are too small to impact the behavior of the plasma over a reasonable simulation run.

To overcome this problem, one may enlarge the physical dimensions. A factor of 104 increase

in the pinch radius a results in an improvement of the time step by 108. Reviewing the

impact of this change on the normalized MHD equations, they are repeated once more:

∂n

∂t
+∇ · nv = −1

2
n2nref < σv > ta (3.14)

∂nv
∂t

+∇ ·
(

nvv−BB + I
(

p +
B2

2

))
= 0 (3.15)

∂B
∂t

+∇ · (vB−Bv)

+
1

LuAl
∇× (←→η · (∇×B)) = 0 (3.16)

∂e
∂t

+∇ ·
((

e + p +
B2

2

)
v − (B · v)B

)

+
1

LuAl
∇ ·
((←→η · (∇×B)

)
×B

)

− 1
nref

1
PeAl

∇ · (←→K ·∇T ) = − taµo

B2
ref

(
1
2
n2 < σv > Ei + Prad

)
(3.17)

Changing the size of the pinch is equivalent to changing the Alfven time ta = a
Va

. Increasing

ta therefore strengthens the effect of the fusion and radiation terms. Increasing a also

modifies the values of the non ideal dimensionless parameters, i.e. the Lundquist and Peclet

numbers. Considering the Lundquist and Peclet number in the MHD equations, we have:

1
LuAl

=
ηref

µoaVa
(3.18)

1
PeAl

=
κ⊥
aVa

(3.19)

As can be seen, the effect of increasing a is to make the Lundquist and Peclet numbers

larger. The effect on the MHD equations is to make the contributions from the non-ideal
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terms smaller. For the purpose of calculation, the increase in the Alfven time is to make

the plasma more “ideal”.

3.2.4 Hyperbolic vs Parabolic Behavior

The stability of the solution is extremely sensitive to the choice of boundary conditions.

Were it not for the initial discretization error, a cubic spline would provide the best boundary

match at the wall. Unfortunately, the equation system demands either von Neumann or

Dirichlet for the ideal and non-ideal cases without nuclear or radiation losses. With the cubic

spline, the mr error wave bounces back and forth across the domain, gradually powering an

oscillating wall boundary condition, despite that conserved quantity boundary being held at

zero. When the magnitude of this radial momentum error at the wall grows large enough,

runaway is reached and the solution is corrupted. While stable, both the von Neumann and

Dirichlet boundary conditions for the density and the energy result in a noisy momentum

condition at the wall. This error is small, on the order of 10−2 smaller than the bulk

discretization error discussed in Sec. 3.2.1.

For the parabolic case, system behavior depends on the time scale investigated. For a Z

pinch at fusion dimensions, the system does not go unstable. As discussed in the section on

timescales, the only physics at play are the ohmic heating and heat conduction. When the

pinch radius is enlarged to dimensions that allow a sufficiently long time step to actually

observe fusion and radiation effects, then the stability issues return. The system crashes in

the traditional way when the temperature eventually goes negative in response to radiative

cooling.

3.3 Non-Ideal Effects

3.3.1 Variation in K and η

One result from the extended runs at fusion dimension was the very low contribution from

the heat conductivity. Three runs are presented below in Figs. 3.8 thru 3.10, one each for

nominal K , reduced, and elevated K values. The ∆K is 20 orders of magnitude for each.

Heat conduction is not an effective redistributor of heat at fusion temperatures. Accordingly,
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Figure 3.8: Heat Conduction Comparison - K Nominal. Baseline result. Some heating is
evident.

this means that a reduced model can be used with equivalent accuracy and improved run

time. Ohmic heating is able to increase the temperature of the plasma. Variation in η

is difficult. Very small increases in η cause the program to crash. This suggests that the

calculated parabolic time constraint associated with η is incorrect. Of course, decreasing η

makes the system more ideal. At fusion conditions, the PeAl and LuAl values are 9.38 · 105

and 56.5 · 106, respectively. At ZaP conditions they are 124 and 7500. These different

regimes will be discussed more fully later in the chapter.

3.3.2 General Insights Resulting from Full Model Simulations

A full sweep of the parametric space was made at fusion conditions to determine the sensi-

tivity of the model to individual aspects of the physics. Previous analysis had shown that

the Peclet number should dominate the time step, but subsequent simulation runs at larger

time steps showed that it did not. Resistivity is an important source of heating, but does
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Figure 3.9: Heat Conduction Comparison - K Reduced. Heat conductivity reduced by
twenty orders of magnitude. This implies that from a heat transport perspective the plasma
is effectively “ideal” in a fusion Z-Pinch.
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not set the necessary time step for stable computation. Instead it is the hyperbolic criteria

that sets the necessary time step, at least at fusion dimensions. This is significant, because

it is the spatial grid size that therefore sets the maximum allowable time step. At fusion

radial dimension, i.e. a = 0.6 [mm], the maximum hyperbolic time step is many orders of

magnitude away from that necessary to see fusion and radiation effects. This is overcome

by scaling the radius, effectively changing the Alfven time. It also serves to reduce the

non-ideal term contributions as previously discussed.

3.4 Fusion Burn

3.4.1 Qualitative Results

As discussed in the previous section, scaling the radial dimensions allows observation of

phenomena such as burn up and radiative collapse. As can be seen in Fig. 3.11 the

pinch experiences substantial burn up. Note in Fig. 3.12 the large increase in temperature

associated with the loss of particles. Upon first consideration, this seems counterintuitive.

The code removes the consumed fuel ions’ energy as well as their density. The temperature

rise, however,h is actually due to the radial force balance requirement. With the loss in

plasma density, the temperature must rise to balance the magnetic field. Fig. 3.13 shows a

relatively modest rise in pressure as the magnetic field in Fig. 3.14 compresses the plasma.

The radial momentum is also suggestive of strong inward flows at the beginning of the run,

when the particle loss rate is highest. See fig. Fig. 3.15.

The increase in temperature is significant, over an order of magnitude. This is illustrated

in Fig. 3.16. The temperature rise pushes the reactivity beyond the peak point. At the

final simulation temperature, σv is still higher throughout the pinch than for the initial

burn σv. It would at first appear that the temperature drives the fusion burn off axis. This

is incorrect. Rather it is merely the density decrease, i.e. the fuel ion burn up. The burn

moves off axis because that’s where the plasma still contains fuel. The particle loss rate

(unnormalized), corresponding to burn up is shown in Fig. 3.17.



33

−5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Radius

n 
−

 L
in

ea
r 

S
ca

le

Fusion Burn
Particle Density

t = 0
t = 27
t = 137
t = 276
t = 407
t = 547

Figure 3.11: Z-Pinch particle density during fusion burn. The black, red, blue, green, and
magenta plots represent total time = 0, 1/4, 1/2, 3/4, and final simulation results. Note
the initial drop in density along axis, followed by a much slower burn. Density profile is
now hollow. There is no density contraction.
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Figure 3.12: Z-Pinch temperature during fusion burn. With fuel ion burn up, the temper-
ature increases on axis. The temperature rise is over an order of magnitude. This increase
is of the same order as the density decrease in Fig. 3.11. The temperature increase is also
more rapid in the beginning compared to later in the simulation. This rise is necessary to
maintain the pressure balance. See Fig. 3.13.
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Figure 3.13: Z-Pinch pressure during fusion burn. During the burn, the peak pressure is
increasing. The change is not as dramatic as for either density or temperature, and is of
the order of 20%.
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Figure 3.14: Induction during fusion burn. The contraction of the magnetic field is evident.
The compression is what is heating the plasma. This is due to pressure balance. While the
density is falling, the pressure must balance the magnetic field energy. The magnetic field
compresses the plasma column, heating it until pressure balance is restored.
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Figure 3.15: Z-Pinch radial momentum during fusion burn. The pinch experiences an inward
radial flow, corresponding to the higher fusion burn rate early in the simulation. Later as
the plasma heats, the radial momentum decreases as the pressure balance is restored. The
radial flow becomes both positive and negative in the domain, suggestive that compression
has stopped.
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Figure 3.16: Z-Pinch reactivity during fusion burn. The effect of the temperature rise in
Fig. 3.12 will be to drive the reactivity through the curve shown in Fig. 2.1. This means
that for the initial operating point of 15 keV, the reactivity will rise and then fall when
the peak reactivity point is exceeded. Recall that the reactivity model is strictly a function
of temperature. The effect of the drop in density has not been explicitly included in the
reactivity model employed. It is apparent that as the temperature increases, the peak
reactivity moves off axis. It should be noted that the final reactivity profile is still higher
than reactivity early in the simulation, when the temperature was lower.
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Figure 3.17: Z-Pinch particle loss rate during fusion burn. As the fuel is consumed through
the course of the fusion burn, the peak particle loss rate moves off axis. Fig 3.16 illustrates
that peak reactivity increases to a larger value, peaking off axis. It is apparent in this figure
that peak particle loss rate is following the remaining density distribution of Fig. 3.11.
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3.4.2 Device Performance - An Estimate

Of course, it is still of paramount interest to determine the fusion power output of the

device. With the pinch radius is set at 0.6 mm, the output fusion power is calculated by

integrating the particle loss rate over the pinch cross section and multiplying by the fusion

reaction energy. In the case of the D-T reaction, the total reaction energy is 17.6 MeV .

For a z-pinch of 0.6 mm radius, the initial fusion power output is 2.7 GW
m .

3.4.3 Comments on Fusion Burn

The rise in the temperature of the plasma after accounting for fuel ion energy losses was a

surprise. A review of the energy conservation of the system indicated no net energy loss or

gain. See Fig. 3.18. Adiabatic compression is the answer. There is an inward radial fuel

flow to drive the observed heating of the Z-pinch. See Figs. 3.11 to 3.15. A contraction

on the magnetic field is evident. Energy is being lost from the system in the form of the

fuel ion burn up. To keep the net system energy constant, energy must be added to the

system. Since the current (and thus the magnetic energy) is being held constant, the only

other way to add energy is to increase the applied voltage. It is not possible to see the

increase in voltage directly in this calculation, as only three axial grid points are employed

in conjunction with axial periodic boundary conditions. The way to think of it in this

examination is to recognize that the energy input must come frome an increased voltage

drop in the axial direction.

Also of interest is the reactivity move off axis. This suggests that fuel burn up might

be very complete. The density drop drives the reaction further away from the spent core

on axis. The temperature rise also suggests an avenue for accessing higher temperatures

regimes for more advanced fuels. As a more immediate application with D-T, if a way could

be found to induce particle loss at lower temperatures, this phenomenon would provide a

path to ignition.

The assumption of no alpha heating in the system is a crucial one. As discussed in Sec.

2.2.3, some alphas may be thermalized. The effects of the alpha heating have not been

included in the model studied here. If the alphas were to begin thermalizing, a significant
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Figure 3.18: Fusion Burn Conserved Energy. The total energy of the system is remaining
approximately constant. Given the work performed by the adiabatic compression, balancing
the energy loss associated with the fuel ion burn up, the system must have some form of
energy input.

increase of the plasma radius would be expected. There are two competing effects. The

increase in plasma radius would make it more difficult for the alpha’s to escape without

thermalizing. At the same time, the expansion of the radius would result in decreases of

both the current density and magnetic field. The reduction in the magnetic field would

increase the Larmor radius, resulting in a reduced likelihood of thermalization. A more

detailed examination of the alpha ion collision frequency and the impact on the plasma

would be required to fully model the impact of alpha heating.
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3.5 Radiation Losses and Radiative Collapse

One interesting phenomena possible in a Z-Pinch is “radiative collapse.” When the temper-

ature and density of the plasma are high enough, losses from radiation will exceed ohmic

heating. The pinch will collapse, in theory to white dwarf densities. The current at which

this occurs is referred to as the Pease-Braginskii current, or simply as the Pease current. A

convenient shorthand formulation for the Pease current is below:

Ipb = 0.433 ln Λ. (3.20)

At the plasma parameter corresponding to the standard initial conditions of n = 1019

cm−3 with T = 15 keV, the Pease current is estimated to be 6 MA. With the operating

current at 500 kA, radiative collapse is not possible. The pinch radius can be scaled, like

the fusion case was, such that it is possible to see the collapse. In fact, radiative collapse

for a z pinch with a scale factor of 104 is on the order of ten times faster than fusion. See

Fig. 3.19. Although the program crashes when the temperature goes negative, certain key

features are evident.

One interesting feature of Fig. 3.19 is the peaked density distribution off the main axis.

One would expect that during collapse the density to peak on axis, while Fig. 3.19 has

features reminiscent of an off axis shock. One may ask what drives this phenomenon. The

next two subsections will investigate and present results of two simulations, one each for

the synchrotron and bremsstrahlung radiation cases.

The second key feature is the highly peaked magnetic field, suggesting a significant

movement of the current toward the center. The estimated radiation loss, computed in the

same way and under the same conditions as for the fusion power calculation, is estimated

to be 138 MW
m .

3.5.1 Bremsstrahlung Only Case

In the bremsstrahlung only case, the collapse is apparently on-axis. See Fig. 3.20. This

is not surprising. Bremsstrahlung radiation goes as n2T
1
2 , so it is to be expected that
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Figure 3.19: Radiative Collapse - Pbremsstrahlung and Psynchrotron . This advanced stage
collapse exhibits a strongly peaked density distribution off axis. One would normally expect
peak density on axis. The magnetic field is peaked near the large density gradient. The
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not shown.
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Figure 3.20: Density during Radiative Collapse - Bremsstrahlung Radiation Only. The
soaring plasma density indicates collapse. While the density does become peaked on axis,
the transition is smooth, without gradients. As the ghost cells have been plotted, the sharp
peak across the axis is visible.
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Figure 3.21: Temperature during Radiation Collapse - Bremsstrahlung Radiation Only.
Note the temperature falling on axis. This decrease is without limit. When the temperature
goes negative, the code halts. In the last frame of plotted data, the on axis spike is trending
toward zero, as expected. The spike is visible because of plotting the ghost cells.



46

−5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Radius

p 
−

 L
in

ea
r 

S
ca

le

Radiative Collapse − bremsstrahlung only
Pressure

t = 0
t = 16
t = 31
t = 46
t = 62

Figure 3.22: Pressure during Radiation Collapse - Bremsstrahlung Radiation Only. Note
that the profile is only modestly peaked, while the rise is smooth throughout the simulation.
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Figure 3.23: Induction during Radiation Collapse - Bremsstrahlung Radiation Only. The
magnetic field indicates smooth entry entry into collapse, with no sharp gradients. Note
the wall boundary condition, on the right. Looking at the wall, the Bθ is not constant, and
is in fact declining. This is most likely due to the discretization error associated with the
steep induction gradient near the axis, formed as the plasma contracts. Again, the negative
induction values are artifacts from plotting the ghost cell values.
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Figure 3.24: Radial Momentum during Radiative Collapse - Bremsstrahlung Radiation Only.
These results show a rapidly increasing radial momentum. In the final frame (not shown)
the radial momentum grows to near unity just short of the axis at t = 60. This indicates
large radial mass flows are present to compensate for the falling temperature. The positive
radial momentum values near the axis are artifacts from plotting the ghost cell values.
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the radiative cooling should be cooling on axis, as evidenced by Fig. 3.21, where density

and temperature are highest. Furthermore, these figures, plus Fig. 3.22, show a rather

smooth entry into radiative collapse, without any sharp gradients observed in Fig. 3.19.

Fig. 3.23 indicates a pronounced decrease in Bθ at the wall boundary. This suggests axial

current is not held constant over the course of the simulation. An area integral of jz (not

shown) confirms this result. The radial momentum plot of Fig. 3.24 shows the strong radial

momentum developing just short of the axis, with no discontinuities. This suggests that the

large gradients noted in Fig. 3.19 may be due to synchrotron radiation, an idea that the

next section will explore.

3.5.2 Synchrotron Only Case

The synchrotron only case offers some interesting dynamics. Plotting time slices of the data,

Figs. 3.25 and 3.26 illustrate the evolution of the density and temperature respectively. The

corresponding pressure evolution, Fig. 3.27, shows how the pressure remains flat and/or

nearly peaked during collapse. Most interesting, the magnetic field Fig. 3.28 experiences a

very sharp rise in the vicinity of the gradient in the other quantities. The magnetic field has

a 1
r behavior beyond this point. This indicates that current profile is evolving to produce a

sheet current on the edge of the collapsing pinch as confirmed by Fig. 3.29.

Consider the radial momentum plot of Fig. 3.30. As expected, large radial flows have

developed to support the pressure balance. The pinch is collapsing, with the magnetic field

following the shrinking pinch radius. If the plasma can be said to be optically thin, the

large gradients developed suggest that shocks will develop as part of a radiative collapse.

These shocks are the result of the large radial mass flows that develop in response to the

extreme radiative cooling, as the system maintains pressure balance. Finally, it should be

noted that, similar to the bremsstrahlung only case, Fig. 3.28 infers that axial current is

not constant.
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Figure 3.25: Z-Pinch particle density under radiative collapse only due to synchrotron
radiation. Note the sharp peaking off axis. Mass conservation is maintained to within 2%.
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Figure 3.26: Z-Pinch temperature under radiative collapse only due to synchrotron radi-
ation. Note the temperature peaking on axis, following by the very strong temperature
gradient.
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Figure 3.27: Z-Pinch pressure under radiative collapse only due to synchrotron radiation.
Note the slightly peaked to flat profile, again following by the very strong temperature
gradient. This plot suggests that the density in fig: 3.25 is peaking to maintain the pressure
balance. The negative pressure point causes the code to terminate.
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Figure 3.28: Induction during Radiation Collapse - Synchrotron Radiation Only. Note the
slightly peaked to flat profile, again following by the very strong temperature gradient. This
plot suggests that the density in fig: 3.25 is peaking to maintain the pressure balance. Note
the wall boundary condition, on the right. Current is constant, as in fig: 3.23.
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Figure 3.29: Current Density during Radiative Collapse - Synchrotron Radiation Only. Z-
Pinch current density evolving a sheet current at the pinch edge. Total current conservation
is not constant. By the end of the simulation the area integral of jz has dropped by 20%.
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Figure 3.30: This final frame of the collapse shows a strongly peaked magnetic field following
the now very sharp pinch edge as indicated by the density, temperature, and pressure. The
radial momentum is peaked at the pinch edge, indicative of strong radial flows to satisfy the
pressure balance. The large gradients at the pinch edge, particularly that of the temperature
and pressure, are suggestive of shock development.
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3.5.3 Comments on Radiative Collapse

The preceding simulations suggest that radiative collapse will actually be driven by the

synchrotron radiation. Furthermore, this collapse will produce sharp gradients that resemble

shocks. Finally, the strong pressure gradient and nearly uniform pressure profile on axis is

consistent with the idea that the plasma is confined by a sheet current at the pinch edge.

One possible shortcoming of the chosen equation set is the assumption that the current

density is purely axial. Figs. 3.23 and 3.28 clearly show a decline in the calculated Bθ.

Consider Ampere’s law in normalized form:

j = ∇×B (3.21)

=
(

1
r
∂θBz − ∂z Bθ , ∂zBr − ∂r Bz ,

1
r
∂r(r Bθ)−

1
r
∂z Bθ

)
(3.22)

If azimuthal symmetry is maintained, then

j =
(
−∂z Bθ , ∂zBr − ∂r Bz ,

1
r
∂r(r Bθ)

)
(3.23)

If jθ = 0, then the current density is
(
−∂z Bθ , 0, 1

r ∂r(r Bθ)
)
. Recall the full 2-D induction

equation

∂t Bθ + ∂r (r vrBθ) + ∂z(vz Bθ)−
1

LuAl

1
r
∂r(η⊥jz) =

vr Bθ

r
(3.24)

If the ohmic loss term is dropped then the equation can be rearranged to yield

∂ Bθ

∂t
+

1
r
(vr Bθ + r ∂r (vrBθ)) + ∂z(vz Bθ) =

vr Bθ

r
(3.25)

∂ Bθ

∂t
+

vr Bθ

r
+ ∂r (vrBθ) + ∂z(vz Bθ) =

vr Bθ

r
(3.26)

∂ Bθ

∂t
+

vr Bθ

r
+ vr∂rBθ + Bθ∂rvr + vz∂zBθ + Bθ∂zvz =

vr Bθ

r
(3.27)

∂ Bθ

∂t
+ vr (

Bθ

r
+ ∂rBθ) + Bθ∂rvr + vz∂zBθ + Bθ∂zvz =

vr Bθ

r
(3.28)

∂ Bθ

∂t
+ Bθ∂rvr + Bθ∂zvz + vr jz − vz jr =

vr Bθ

r
(3.29)

where the last term on the left hand side indicates that jr is only required if the there is

an axial flow included. For the model presented here, no axial flow cases are presented. It
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is probable that the source of the drop in Bθ at the wall is solely due to the discretization

error associated with the gradients caused by the plasma contraction.

3.6 ZaP Results

For comparison, and for potential benchmarking, the Z-Pinch simulations were repeated for

the conditions in the ZaP experiment [6]. Two full sets of simulations were run. In the

first, the simulation has been scaled to the same radial dimensions as for the qualitative

fusion burn studies of the previous section. This scale factor was discussed previously under

subsection 3.2.3. For ZaP, with a pinch radius of 1 cm, this has meant a scaling factor

of 600, as compared to the fusion burn scale factor of 104. This case is used to assess

the qualitative behavior of the plasma, namely the relative strength of nuclear fusion and

radiation. The purpose of using the scale factor here is only to see if there are any changes

in the bulk plasma due to fusion or radiation. In the second case the pinch has been kept

to experimental dimensions, i.e. unscaled.

3.6.1 Results

Scaled Condition

Because this regime has different Peclet and Lundquist numbers, it proved necessary to

slowly add physics to the equations, in order to understand the appropriate boundary

conditions. For ideal and non-ideal cases, it proved necessary to apply Dirichlet boundary

conditions at the wall for the fluid energy, as opposed to the fusion burn and radiation cases

where it was best to use a cubic spline. This was due to the direction of the information

flow. For the fusion and radiation cases, flow was primarily inward radial. For the ideal

and non ideal cases, without fusion and radiation, the information can be of either inward

or outward radial direction. When cubic spline copy out conditions were employed for the

fusion and radiation simulations, a smooth solution at the boundary was achieved. If these

same boundary conditions were employed for the other situations, the wall boundary would

oscillate, and eventually went unstable. The Dirichlet boundary condition proved more

stable when faced with outward traveling waves found in the ideal and non-ideal cases.
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In the comparison, for equivalence, as each piece of physics was turned on for ZaP, when

comparing against fusion conditions. For the radiation only case, there was none of the

steep gradients previously assigned to the synchrotron radiation losses. Instead the ZaP

profiles followed those of the fusion burn section’s bremsstrahlung only case. In the fusion

only case, there was negligible mass loss in either the scaled or the unscaled cases. Both

loss quantities are much less than one. It should be noted that the temperature of 150 eV

of ZaP is below the lower end of the validity range (200 eV) for the reactivity relation by

Bosch. It is asserted that the result, namely that of effectively no fusion products, is still

valid.

Experiment Condition

Considering only the non-ideal case, i.e. without fusion and radiation, posed difficulties.

With PeAl = 124 and LuAl = 7500 there was definite ohmic heating and heat transport.

The derived criteria for the time step, considering non-ideal terms, appears to be inadequate.

See Fig. 3.31. As can be seen, a numeric instability develops as the radial momentum

indicates an accelerating growth of the pinch radius. Given that the initial radial momentum

growth was confined within the pinch radius, the author speculates that the ohmic heating

constraint was not strict enough. Reducing the value for η by a factor of 10 suppressed the

instability. Accordingly, the magnetic relaxation time, namely, τ = µo ∆x2

η was implemented

as the newest time constraint. Yet this did not resolve the problem.

3.6.2 Comments on ZaP results

The simulation confirms resistive decay of the magnetic field, as well as what appears to be

a growth of the pinch as it heats up. Accurate simulation beyond this initial phase was not

accomplished. On the other hand, at lack of radiation and fusion mass loss was confirmed

for a Z-Pinch at ZaP conditions.
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Figure 3.31: ZaP Result. Radial momentum plotted on a linear scale. Note the rise in pos-
itive radial momentum. As the zero crossing begins to move outward, a numeric instability
develops at the peak of the radial momentum. This instability rapidly destroys the solution.
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Chapter 4

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Synchrotron radiation may dominate radiative collapse dynamics through the develop-

ment of large gradients, if the plasma is optically thin. Ohmic heating does have considerable

effect, and is particularly important at temperatures found at the University of Washington’s

ZaP experiment. The ZaP experiment does not exhibit significant synchrotron radiation.

Bremsstrahlung does appear to be important. The equation set should be revised to allow

for z variation in Bθ .

Although not examined, the z dimension of the problem was fully implemented using

periodic boundary conditions. There is considerable opportunity for study with regard to

determining the optimum sheared flow characteristic, with respect to MHD stability.

During the course of this work, it was obvious that more numeric stability analyses would

be useful, particularly in the area of geometric source term effects. A revisiting of the node

based versus cell based approach would be an integral part of that work. The author

speculates that going to a node based scheme may solve many of the stability problems

observed. The simulations always suffered from noise at the wall boundary. Although

this noise was small, often below 10−4, the sensitivity of the code to their disturbance

was surprising and deserves further study. From a physics perspective, a detailed study of

whether in fact the pinch is optically thin would be of great value.

Perhaps the most important development would be to rewrite this code in a directly

executable language like C or Fortran. While Matlab allowed for relatively rapid algorithm

development, runtimes for the 1-D radial case seemed excessive ( 2 hours) for 200 gridpoints.

An adaptive grid, or at least a clustered grid would also make for a more effective code.
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