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Abstract

A 13-Moment Two-Fluid Plasma Physics Model Based on a Pearson
Type-1V Distribution Function

Shaun Gilliam

Chair of the Supervisory Committee:
Professor Dr. Uri Shumlak
Aeronautics & Astronautics

The two-fluid plasma model describes ions and electrons as two inter-penetrating flu-
ids with Maxwell’s equations describing the electric and magnetic fields. Typically, the
two-fluid model is based on a 5-moment model. The 13-moment model allows for the
simulataneous calculation of fluid and heat transfer. A 13-moment model is derived
in three dimensions for a Pearson-IV distribution function and the eigensystem for
this three dimensional system is analyzed. Models based on a Pearson-IV distribution
function have a recursion relationship that relates higher moments to lower as well as
an extended region of hyperbolicity. A simple, one dimensional model is implemented
as a second order finite volume simulation to study the system of equations. The
differences of the 5 and 13-moment models are investigated for electrostatic two-fluid

plasma simulations.
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Chapter 1
INTRODUCTION

1.1 Overview

At its lowest energy state, matter exists as a solid. As energy is added to it, the
covalent, metallic, etc. bonds connecting the atoms slowly break apart until it be-
comes a liquid and then eventually a gas. If enough energy is added that the atoms
smashing into each other begin to break off individual electrons, it becomes a plasma-
the fourth state of matter. Two examples of plasmas found in nature are the solar
winds ejected from the sun and lightning strikes which heat the surrounding air so
much that it turns into plasma. Plasmas are also used in the development of nuclear
fusion confinement devices and in space propulsion. What makes this possible is that
plasmas can be and are affected by electric and magnetic fields, which can either be
externally applied or self generated.

Most gas dynamics problems deal with interactions of individual particles collid-
ing with each other, but the interaction of plasmas with electric and magnetic fields
means that they can be affected at much greater distances. This allows for very in-
teresting physics, such as how the hot plasmas of fusion could be contained without
making physical contact with a wall. This interesting physics creates unique chal-
lenges, however, since plasmas involve physical phenomena of such vastly different
time and spatial scales.

A number of analytical tools have been developed to study plasmas. The par-
ticle model describes the position and velocity of every particle in a plasma. The
Lorentz forces on a particle couple position and velocity with the electric and mag-

netic fields, which can be calculated by solving Maxwell’s equations. A so called PIC,



or particle-in-cell, code does exactly that by keeping track of every particle of interest
and calculating its interaction with every other particle. It is easy to see how, with
this method, a small increase in a problem’s complexity can correspond to a massive
increase in computational time required. While there are ways to mitigate this, such
as using “super-particles” which represent averages of large numbers of individual
particles- it is still a fundamentally expensive method of solving problems.

At the opposite end of the spectrum is a single-fluid description of a plasma,
known as the MagnetoHydroDynamic or MHD model. The MHD model essentially
assumes that plasmas behave as a single, conductive fluid. This is a simple and
computationally efficient way to model bulk plasma effects, but it fails to capture
phenomenon such as electron inertia, electron waves, and ion currents. Expansions
have been developed such as Hall-MHD, where Hall effects are included in the model,
but there are still fundamental assumptions made to MHD that will not capture
important physics effects.

A good compromise between the computationally expensive particle model and
the basic MHD model is the two-fluid plasma model. The two-fluid plasma model
assumes that the ions and electrons form two intermixing fluids that can interact with
each other. This allows for charge separation, which leads to physics like electrostatic
effects, while remaining a fluid code and thus fairly efficient to solve. The objective
of this work is to derive a particular two-fluid plasma model in 3D and showcase a

few of its features in 1D.
1.2 13-Moment Equations

The first step in any analytical fluid approach is to derive the governing system of
equations. While there are many ways to do this, the method chosen for this work
is Grad’s method of moments [1]. The method of moments takes moments of a
differential equation that describes the evolution of a distribution function in time

and space. Two common approaches in plasma sciences are to use either the Vlasov



equation or the Boltzmann equation as a base; with the results in this paper centered
around the Boltzmann equation.

Moments are a form of statistical averaging that estimate parameters of a function.
Moments of the distribution function, for example, can determine velocity, pressure,
etc. Whereas moments of the Boltzmann equation formally derive the governing
equations for continuity, momentum, etc. The derivation of these systems of equations
are covered in more detail in Chapter 3. In general terms, moments of the Boltzmann
equation contain at a minimum an evolution of time and an evolution in space called
the flux. Moment equations in this paper are referred to by the term being evolved

in time. In the classical continuity equation

dp L
E—l—v'(pv) =0, (1.1)

for example, the general principle behind the conservation of mass (or continuity) is
represented by the evolution of the density, or concentration of mass at a particular
time. It is also noted that the second term, the flux, contains information from the
next moment in the sequence, the momentum.

In theory, every moment equation requires some information from the next mo-
ment in the series so that any system of equations requires an infinite number of
moments to express. In practice however, we use closure schemes that approximate
the behavior of these higher moments. Where this cutoff point is made determines
just how robust the moment method is. Extensive references are made in this paper
to the 5 and 13-moment equations, where the five and thirteen refer to the number
of variables and equations necessary to describe the system. The 5-moment system is
the familiar Euler equations where the five variables are density, the three directions
of momentum, and the total energy. The 13-moment system has expressions for the
density (one variable), momenta (three variables), the pressure (six variables), and

the heat flux (three variables) for a total of thirteen.



The thirteen-moment model has a few differences from the five moment model.
Most notably, the thirteen moment model directly resolves the transfer of energy as
heat. Most codes based on the five moment model that attempt to solve for heat
transfer must do so separately from the fluid equations through an auxiliary relation.
Another property of moment equations is hyperbolicity. Formally, hyperbolicity is
defined mathematically as a region where the flux quantities of the system have only
real eigenvalues. More simply, hyperbolicity is a measure of the degree to which the
system of equations are valid for a certain set of parameters. The original 13-moments
of Grad had a limited region of hyperbolicity centered around an equilibrium state,
but Torrilhon [2] proposes using a new distribution function that allows for a much
greater region of hyperbolicity. For fluid equations, this means that the system of

equations can handle conditions that are significantly far away from equilibrium.
1.3 Two-Fluid Plasma Model

The two-fluid plasma model has been studied extensively by Shumlak, et al. [3, 16, 21].
The model works by assuming that the plasma is described by two inter-penetrating
fluids that are individually in thermal equilibrium. These fluids are modeled using the
5-moment Euler equations plus Lorentz force terms and Maxwell’s equations to resolve
the electromagnetic dynamics. The fluid equations are expressed as conservation of

mass, momentum, and energy:

dp .
hatl . — 1.2
6t+v pU 0, (1.2)
Opv I A R
E—FV'(}?-FMJU) = E(E%-UXB), (1.3)
e I .
E—l—v-(pv—i—ev) = E(v-E), (1.4)

where E and B are the electric and magnetic fields, p is the density, U is the velocity,

p is the scalar pressure, q is the charge, m is the mass, and ¢ is the total energy of the



fluid. The total energy here represents the simplifying assumption of the 5-moment

model and it is described by the equation

1 1
€= ﬁp—i-ipﬁ-ﬁ, (15)
where v = 5/3 for the remainder of this paper. To fully describe the physics of the
two-fluid plasma model, equations are needed to resolve the electromagnetic fields

that are developed by the moving charges in a plasma. These are fully described by

Maxwell’s equations:

, OB
E = - 1.6
. . 10E
v.E = ' (1.8)
€0
V-B = 0 (1.9)

Here pg is the permeability of free space, J is the current, ¢ is the speed of light,
pe is the charge separation, and ¢; is the permittivity of free space. While these
equations fully describe the electromagnetic equations, methods of solving them can
be a research topic in and of themselves. In this paper we limit ourselves to (Gauss’s
law (Eq.1.8) and study only electrostatic phenomenon. This simplification allows
us to study the source term contributions without the complexity of solving all of

Maxwell’s equations.

1.4 Objectives

The objective of this paper is to blend the advanced physics captured by the 13-
moment fluid model with the advanced physics made possible by the two-fluid plasma
scheme. Towards this end, a review is made of the distribution function properties to

understand how they are used in the derivation of the 13-moment model. Next, the full



13-moment model is derived by taking moments of the Boltzmann equation resulting
in a three-dimensional system of equations. This model is investigated to find the
eigensystem that will allow for the solution to the model in three dimensions. Further,
the model is reduced to a one-dimensional example to demonstrate the properties of

the 13-moment model as both a single and two-fluid simulation.



Chapter 2
PEARSON-IV DISTRIBUTION REVIEW

A new 13-moment model is suggested by Torrilhon [2| that is based on a Pearson-
IV distribution function. The Pearson Type-IV distribution function is described
in one dimension by Pearson in his original paper [6] and is similar to a Maxwellian
distribution function that allows for skewness. An interesting property of the Pearson-
IV distribution is that high order moments can be related to lower moments through
recursion relations. This section defines the Pearson-IV distribution function in one
(S and three dimensions (f®) based on a velocity space. A detailed derivation
of the moment calculations, based on the work in Torrilhon [2], can be found in

Appendix A. This section only presents the salient results that are needed to develop

closure schemes that are the mathematical foundation of the 13-Moment model.
2.1 Pearson Type-1V Distribution in One Dimension

The one dimensional case is studied first to illustrate the basic properties of the distri-
bution function and how it might be applied. The traditional Pearson-1V distribution

is one dimensional, with five real parameters

Parameter Definition

A Translation from the center of the distribution function
a: Scale of the distribution function (always > 0)

v Measure of the skewness

m: Shape factor (always > 0)

k: Normalization constant for the 1D function
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Figure 2.1: Pearson-IV distribution function demonstrating the effect of skewness.
Other parameters are A = 10, a = 2, m = 2.25, and k determined by the trapezoidal
integration method.

The normalized distribution function in one dimension is defined as

F(e) = (2.1)

Loemm e
ak [1+ (527"

Plots of the distribution function based on different parameters are seen in Fig. 2.1.

2.1.1 Moments of the Pearson-1V Distribution Function

In mathematics, moments of a distribution function are used to characterize its general
shape, such as the mean, skewness, kurtosis, etc. These are paralleled in the method
of moments in physics, which uses moments of a kinetic description of a distribution

function to formally develop average variables. The general equation for a moment



where n represents the n-th moment, = represents the domain and p,, the mean value

of the n-th moment is

o = / T o — )" f (@) de. (2.2)

[e.e]
There are two types of moments in mathematics, central and raw. Central moments
(as in Eq.2.2) are defined as the spread and shape of the difference from an average
value. Raw moments are defined about the axis and are used to determine this average

value pq, the average or bulk velocity v, where

1 7 e*l/tan_l(cg)‘) 4 (2 3)
v=p = — | c—dc. .
M7 ) (o)

Using Pearson’s suggested simplification » = 2(m — 1) and integrating gives the
average velocity
av
v=A+—. (2.4)
r

General moments that are taken beyond this are central moments about this average
velocity. Pearson [6] developed a recursion relation for n > 2 that allows for these

moments to be defined in terms of earlier moments in the sequence

1y = % { {1 n (;)Q] Uftn_g — 2;,%1} . (2.5)

This relationship holds for all moments with the initial starting conditions pg = 1
and gy = 0. The fact that gy = 0 for the central moments allows for higher moments
to be categorized by their variance from the average instead of their actual value.
Physically, this means that higher moment equations do not need information about

the average velocity and instead deal strictly with the independent velocities.
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2.1.2 Reduced Third and Fourth Moments

Physically, the second moment is the temperature. To reduce the third and fourth

moments to products of the second moment, non-dimensional ratios are introduced

H3 4
0 = po, Q:T/Qa D==. (2.6)
Ha M2

The moments found using the recursion Eq. 2.5 are given as

a? <1 + Z—j)
_ 2.7
H2 r—1 ) ( )
B d4adv (r? + %)
Ha = r3 (2 —3r+1r2)’
3at (=2 +r)rt + 2r2(2 + r)v? + (6 + r)v?)
Ha .

(=3+r)(=2+7)(—1+7r)r

By substitution, the non-dimensional ratios and temperature then become

a? <1+i—§>
b = ———= 2.8
147 ! ( )
3 dav
Q = 3/2

a2 (r2102)
Heo (=24 7r)ry/ (_(1+’:)T2)
e 3(=1+7r)((=2+ r)r? + (6 + r)v?)
w3 (=3+7r)(=2+7r)(r2+1?)
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Solving for the parameters of the distribution function by inverting the relations of

Eq.2.6 (Appendix A) yields, with the aid of Mathematica

6(~1+D—Q?
"= —(6 +2D— 3Q2)’ 2
L Q(=2+r)r

Q@2+ 161+ 7))
o = WoyT@rE P )

A= v+i@(—2+r)\/§.

2.1.8  Chritical Values of D and Q)

A realizable Pearson-IV distribution is defined as one for which the parameters are

limited to real v and a , and an m greater than zero. For real v and a,
—Q*(—2+7)* +16(-1+7) > 0. (2.10)

Substituting the expression for r into this equation and solving for D yields the critical

values
48 + 39Q2 + 64/ (4 + Q?)?

D > Dcritical = 39 _ Q2

and Q* < 32. (2.11)

The first four moments of the Pearson-1V require a closure scheme for the highest
moment. Two cases are suggested by Torrilhon [2]. The first is an arbitrary expression

that is close to the critical value, but always in the realizable region,

48 +39Q2 + 31/ (4 + Q2)*
Drealizable = 39 _ Q2

_ Q2 (22 + Q?)

(2.12)
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The second is the singular case which does not preserve realizability, but represents
similar physics to Grad and Maximum-Entropy closures. A singular distribution is
neither a discrete probability distribution nor a probability distribution function, but
a special case. It is calculated by solving for D in terms of ) and r and taking the
limit as r — oo,

3(—2—-2Q%*+2 2
Dsingular = lim ( Q i r+@ T)

lim 3 (2.13)

The singular closure is a fair approximation of the realizable scheme at points close

to equilibrium, and has more modest wave speeds.
2.2 Pearson Type-1V Distribution in Three Dimensions

The Pearson-1V distribution in three dimensions requires modifications and additions

to the parameters of the traditional Pearson-IV distribution.

Parameter Definition

c: The velocity is now a vector in three dimensional phase space.
X The translation of the distribution in phase space (vector).
? : Scale, a symmetric positive definite 3x3 matrix.

n: A direction of skewness (unit vector).

K : Normalization constant for the 3D function.

v Magnitude of skewness.

m: Shape factor.

The normalized distribution function in 3-dimensions|2] is

(P3) (2 —
P =

1
A

K s (e-5) (T9) " (- 0)|
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2.2.1 Moments of the 3D Pearson-1V Distribution Function

Expressions for the moments of three dimensional functions can be quite complex, so
for simplicity the remainder of the derivations will be carried out in indicial notation.
A continuum mechanics book (e.g.[10]) will have more details on indicial notation,

but in short it is a way to represent vector operations more succinctly. For example,

Ofa

F.-Z2 5 Fo, fa, 2.15

where the repeated ¢ index represents an implied sum
3
Fid,, = > _ Fid,,. (2.16)
i=1

Similarly to the 1D case, there is an expression for general moments,

M, .., = /// (i = Via) -+ (ci, — 13, ) fTVdE, (2.17)
R3

where n represents the order of the tensor, ¢;...,, the independent velocities in each
principal direction, and v;..,, the skewness in each principal direction. This integral
does not evaluate easily, however, and Torrilhon [2] recommends using an extension
of the one-dimensional moment equation to three dimensions instead. Here, the coor-
dinate system is rotated (with the local, rotated vector components represented with
tilde) such that the skewness unit vector is purely in the direction of n; and conse-
quently no and ng3 are zero. The random velocities are chosen such that ¢; is in the

direction of ny and that ¢, ¢, and ¢3 are orthogonal to each other. The simplification

v = —2n is also introduced. This forms the generalized moment equation in three

dimensions seen in [2],

i = %// / (@ — oy SR v adtan(@)) ;. (2.18)
RS

B A+E+E+E)
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where in this new, rotated frame n represents the order of the moments in the skew
direction and p and ¢ the order in the tangential directions. A recursion relation
similar to Eq.2.5 for the higher order moments is shown in detail in [2], with the

result for n > 1

i = 1= (=0 (14 (£)?) it - Cln = ) + o 0 %%,
(2.19)
where
i =0, (2.20)
- g
ity =(p—1"q—1”H 1_(22;’“_:’; . (2.21)

2.2.2  Reduced 3rd and 4th Moments

To relate higher moments to the second as before, it is necessary to define the tem-

perature as a tensor,
2
1+ (%
M = 0,5 = uy* A% = ﬁfﬁ, (2.22)
T

A
where A? represents the matrix product of A with itself. The third moment is defined

by using the recursion relation
Mijk = 3 AilAijkq innpnq + TL(l(S . (223)

For convenience, n(d,y) uses the same notation as the symmetrization of a tensor

[77 8]7

1
T(’L'liz...ir) - _' Z T(ilig...ir,ir...igil,etC...)7 (224)

Permutations
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where the i’s represent the indices of a tensor up to order r. This notation allows the
ordered permutations of terms to be grouped together, as can be seen in the expansion
of

3n0pq) = (Ni0pg + Nglip + 1pdgr) - (2.25)

Symmetrizations of the fourth moment can be found in Appendix A. The fourth

moment is similarly defined as

Miji = AuAjpArgAls [(Né’o - M?L’O) npngns — 2 (ng - NZVO) ”(lnp5q8) + Méjoé(lp‘sqS)] .
(2.26)

Non-dimensional quantities are introduced to reduce the third and fourth moments

B ,ug’o 4 r—1 5 o7
@ = (M070)3/2_r—2 r2 + 2’ (227)
2
0,0 2
-1
N (D N PO o (2.28)
(19°) (r—2)(r—3) r? + 12

An additional definition is used to simplify the expressions,
1/2
N; = 0}/%n;, (2.29)

where ©1/2 . ©'/2 = ©. Substituting into the third moment equation yields

1
Appendix A shows that ug’o is a multiple of ué’o,

s = A, (2.31)

Evaluating using the recursion expression,
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o _ 3((=241)2+0?) (P +17) (2.32)
o (=3+7r)(=2+7r)2(=1+r)r¥ '
3 2 2 ) 2 6 2
00 (r*+ ) (=2 +r)r* +( +r4)u)7 (2.33)
(=3+r)(=2+7r)(=1+7)r
and solving for A yields
A r? (4 —4r +1r? 4+ 1?) (2.34)
(=24 7) (=2r2 4 13 + 602 +112)’ '
Eliminating v and r using Gaussian elimination (Appendix A) gives
3 2
or
3 2
it = (1 - 1%) 00, (2.36)
Substituting into the equation for the fourth moment gives
3 3
Miju = (D = Q% ) ©6;0m + 7Q (=N;N;jNN, + 2NN;Op) - (2.37)

The realizable closure scheme (Eq.2.12) and the singular closure scheme (Eq.2.13)
from the one dimensional case are again used in the three-dimensional case. In this
section, moments of a Pearson-IV distribution function for both the one and three-
dimensional cases are derived. Closure schemes that relate high order moments to
lower order moments are calculated based on the unique properties of the Pearson-IV
distribution function. The information from these moments and their closures will

play a critical role in the derivation of the 13-moment system of equations.
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Chapter 3
13-MOMENT MODEL DERIVATION

This chapter presents the derivation of the 13-moment model using Grad’s method
of moments [1]. The fluid variables are derived by taking the moments of the distribu-
tion function, while the governing equations are derived by taking moments of a kinetic
model. In a two-fluid plasma model, expressions that govern the gas dynamics are
combined with Lorentz force terms that couple the fluid to the electromagnetic fields
for each species (a). Also included are collision terms that represent an exchange of
energy between each species. At each moment of the kinetic model, information from
higher moments is required. Closure schemes are presented that make assumptions
about these higher moments based on the properties of the Pearson-IV distribution

function.
3.1 DMoments of the Distribution Function

The fluid variables are formally defined by taking moments of the distribution func-
tion f (¢;) in velocity space, where ¢; is the particle velocity. The 13-moment model
requires the first four (zeroth - third) moments to define the fluid variables. The

zeroth moment of the distribution function

p=m [ [ 1 ) de (3.1)

gives the expression for density of each species as a volume integral in phase space.
To simplify the expressions in the remainder of this chapter, the triple integrals in

phase space will only be represented by a single integral sign. The distinction of the
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distribution function being three-dimensional is also implied throughout the rest of
this chapter and dropped from the notation. The first moment of the distribution

function,

pu; = m/cifd(_:', (3.2)

formally defines the momentum as well as the average velocity v;. Moments of higher
orders are defined by using central moments about the average velocity. This random
velocity is denoted by w; = ¢; — v; and can be seen in the second moment of the

distribution function

Py =m [ wwfde (3.
which describes the pressure tensor. The third moment defines the heat flux tensor
hiji, = m/wiijkfda (3.4)
The fourth moment of the distribution function,
Ajjkom = m/wiijkwmfdé’, (3.5)

is not a fluid variable of the final 13-moment equations, but a variable that will arise
in the derivation of the equations of motion. A closure scheme is used to relate this
term to the other, lower-order variables.

Other moments arise in the derivation that are either a reduced form of the fluid

variables or related to them in some way. The quasi-heat flux vector,
1 5 .
G=m [ Fw w; fdé, (3.6)

represents the heat transfer in each of the principal directions. Scalar pressure repre-
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sents the average of the diagonal pressure terms

3D = Prk- (3.7)

Implicit summation is indicated by the repeated indices as per Eq.2.16 and will be
used extensively throughout this chapter. Using the ideal gas law, the temperature

tensor is related to the pressure and density by
0, =i (3.8)
and the scalar temperature is the sum of the diagonal temperature terms

0 = 30k. (3.9)
3.2 DMoments of the Boltzmann Equation

As defined by Grad’s method of moments [1], the equations of motion are formally

derived by taking the raw moments of the Boltzmann equation

ma—f+m5-%+qa(ﬁ+5x é)-ﬁ— 9f

ot oz oc "ot ) (3.10)

Collisions

which describes the evolution of a distribution function in time and space where ¢, is
the charge of the species, E the electric field, and B the magnetic field. For the rest

of the derivation, the Boltzmann equation in indicial notation will be used;

m@tf + mcﬁ%f + qa(EZ- + EijijBk)aCif = matf . (311)

c
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The cross product is represented by the permutation symbol ¢, as defined [10] by

;

1 if numerical values of ijkappear as in the sequence 12312
€ijk = § —1 if numerical values of 7jkappear as in the sequence 32132 - (3.12)

0 if numerical values of ijkappear in any other sequence

\

3.2.1 Zeroth Moment

Taking the zeroth moment of the Boltzmann equation formally derives the equation

of continuity

/matfd5+/mCzamzfd5+/qa(El+€ijC]Bk)aledE = /matf dg(?)l?))
€)

Each integral (D, @), etc.) is examined individually. Integral (D is written as

© = om [ fud= 0y (3.14)

Eq. 3.14 shows the use of mass density defined by Eq. 3.1 to relate a function of the
distribution function to a classically understood variable. Applying the product rule
to the integrand of the second integral, 0,,(c;f) = ¢;0y, f + fOy,ci, gives
@ = m / 00, (cof) — f0nci]de (3.15)
= m [10u () - fosctte

The second term vanishes because, in phase space, particle velocity ¢; is independent

of x. Again, a fluid variable definition (Eq. 3.2) is used to simplify the integral of the
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distribution function,

@ = axim/cifdc*z O, PU;.- (3.16)

Integral () is expressed as
@ = /Qa(Ei + 5ijkchk)8cifd5. (317)
The product rule is used again to expand the Lorentz force term
O, [(Ei + €ijuc; Be) f]1 = (Ei + €iji¢; B)Oc, f + fOc,(Ei + €ijr¢; Br), (3.18)
which gives
S = /Qa{aci[(Ei + €ijkCi Br) ] — O, (Ei + €ijic; Bi) Yde (3.19)
0
= /Qa{aCi[(Ei + 5ijkchk)f] - facz- (E:("ngj?dg

Since E has no dependence on ¢; and the divergence of the cross product term is zero,

those terms vanish. The integral reduces to

@ = /Qaaci(Ei + €ij1xC;By) fdC. (3.20)

Applying the Divergence Theorem converts the volume integral to a surface integral,
fv O, Adv = fs Ads. The consequence of this is that by integrating over a surface with
infinite volume (all velocity space), the probability of a particle with infinite velocity

is zero (i.e.as ¢; — oo, f — 0). ..

0
S = %%(Ez’ + 5ijijBk>fnid3 =0, (3.21)
S
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where n; is the unit normal of the surface s in phase space.
The assumption is made that particles do not ionize, fuse, etc. As a consequence

the collisions of particles to not change the number of particles.

@ - [ma,

dé =0, (3.22)
Recombining these terms (D), @), etc.) yields the familiar expression for continuity,

Op + Oy, pv; = 0. (3.23)

This expression contains a time derivative term 0,p and a flux term 0., pv;. The zeroth
moment nomenclature refers to the order of the time derivative variable p while the
flux term requires the next highest moment momentum. The pattern of flux terms
requiring information from the next higher moment is a general property of moment

approximations.

3.2.2  First Moment

The first moment of the Boltzmann equation is used to describe the evolution of the

momentum which is expressed as

/cimatfd5+/cjmciaxjfd5+/cha(Ei+5ijkchk)8cjfd6’: /Cimﬁtf

dé. (3.24)

The product rule is used to expand the integrand of the first integral:

O = [mloder.) - Lo (3.25)
= [ mloe) - fonede
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In phase space, velocity is independent of ¢ so that term vanishes leaving

O = 5tm/0ifd02 O pv;. (3.26)

Integral @) is written as

@ = /mcicj&gjfdc: /mci[(?xj(cjf) — fOsC; c(l)5 (3.27)

= [ et efyie=m [ 10, (cief) - ool

where velocity is independent of x, causing those terms to vanish. To express integral
@) in terms of the fluid variables defined in Sec. 3.1, the substitution is made such

that W; = ¢ — UV = ¢ = W; + ;.
— ijm/(wiwj + 2v;w; + vv;) fdE

= ﬁxjm[/wiwjfad5+ QUZ-/wjde—l—/vivjfdc_j.

A quick proof shows that the central moment of the random velocity vanishes.

/wjde = /(ci—vi)de:/cifdg—vi/fdg (3.29)

= ’Ui—UZ‘:O.

Which further reduces the second integral to

0

= 0y, [Py + pvivy].
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As before, E has no dependence on ¢ and the divergence of the cross product term is

zero, reducing the third integral as

@ = /quQ<Ei + €ijijBk)acifd5 (331)
0
— [ el B+ ey BT — 0., (B BT
= /chaﬁcj [(Ez + SijijBk)f]dE

= (u /{acj [Cj (EZ + gijijBk)f] — (EZ + é‘ijijBk)fachj}da
Since 0.;c; = I, the integral reduces to

A = ¢a /{acj [Cj(Ez' + 5ijijBk)f] — (B + 5ijijBk)f}da (3.32)

Applying the divergence theorem causes the surface integral to vanish as before,

0
@ = ]{qaCj(E~ ijijBk)fdg—/qaCj(Ei—FEijijBk)de (333)

= —ani/fd5+ JaEikj Brv;

da
= _E(pEi + €ijiv; Br).-

The Boltzmann equation allows for the possibility of collisions to change momentum,
energy, etc. and drive the solution to an equilibrium state. The simulations eventually
assume these to be negligible, but they are included for future expansion of the model
with collision operators such as Braginskii [11]. Here, the collisions are split into

collisions between like species aa and between separate species [Sa.

@ = /Cimatf
= m/cicaad5+m/[c7;205a]da

B#a

e (3.34)
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In a fluid description of a plasma, collisions of like particles result in no net change

0
@ = W—F m /[Cz Z Cﬁa]da (335)
p#a

Assuming no sources or sinks indicates that the bulk velocity v; is not affected:

in species momentum.

@®=m)_ / (ws + 1750 dE. (3.36)

B

Here, we define the frictional collision operator Rqp = m f wjcqpde for the exchange

of momentum between species.

@ = Rag:. (3.37)
pa
Combining these terms yields the momentum equation,
Ospv; + 0, [Pij + puiv;] — q—a(pEi + &k Br) = Z Rogi. (3.38)
g J J J m IR~

p#a

3.2.8 Second Moment

The first moment of the Boltzmann equation is used to describe the evolution of the

momentum which is expressed as

/cz-cjm(?tfdé'—i— /cicjckmamifdé'—k /cicha(Ek + €kijCiB;) 0., fdC = /cicjmﬁtf

dc.
C

(3.39)
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As before, in phase space, velocity is independent of ¢. The first integral is written as

O = /ci[cjmatf]dé' (3.40)

0
= m [ alouesf) - farlde
= [10ciesf) — (el
= 3tm/cicjfd6',

and the integral [ w; fde vanishes giving

O = 3tm/(wiwj —1—2%&7;?9 vv;) fde (3.41)
= at(Pij + p'Ui’Uj).

And, ¢; has no dependence on x, which is used to reduce the second integral.
@ = /cicjckmﬁxkfdéz m/cl-cj[&pk(ckf) — [0k c(i)E (3.42)
= aka/cicjckfdé'
= @ckm/(vﬂ—wi)(vj+wj)(vk+wk)fd5

= Op,m [vivjvk/fdé’—l- SU(i/ijk)fd5+/wiijkfd5}
= 8% (pvivjvk + 3U(if)jk) + hijk)‘

The Lorentz force term,

S = /Cicha(Ek + i B;)0e, fdC, (3.43)
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is expanded using the product rule such that

Oy, [€iCi0a(Ex + €ijciB)) ] = ¢icjqa(Ek + €kijciBj) + fqa0e, [cicj(Ex + rijeiB;)] -
(3.44)

The third integral is expanded to
/{ack [Cicha(Ek + 5kijCiBj)f] — fqoﬁck [CiCj(Ek -+ 5kijCiBj)]} dc. (345)

Using the Divergence Theorem / O, Adv = j{ Ads, where the probability of a particle

with infinite velocity being zero reduces the third integral to

0

@ = %Ciqua E kijCiBj)fdg_ /fqoﬁck [CZ'Cj(Ek +5kijCiBj)] dc (346)
S

= —/anack [CiCjEk] dc — /f%ack [Cz‘cjgkijciBj] dc.
The product rule is used to expand the expressions:

O, [CiCiEx] = ¢i¢jOe, Ex + EyO,, cicy, (3.47)

Ocy [cicjerijeiBs] = cicjO, [erijciBj] + (erijciBy) Oey [cicy] -
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After substituting, again we see that E has no dependence on c .". ¢;c;0,, E — 0 and
€rijciB; is orthogonal to ¢y, therefore the divergence is zero (0, [erijciB;] — 0).
B = — / Qo ExO,, cicidc — /fqa (ekijciBj) O, [cicj] dE (3.48)
_ / Fdon BB ;07 — / F o Erc; 00 cidé
—/fqa (erijciBy) ciOc, [c5] dT— /fqa (erijeiBy) ¢jOc [ci] dC
= - / fqaExciO., 0jc;dc — /fankcjackékicidg
— /fqa (erijciBj) €iOe, [Oxjci] dE — /fqa (ekijciBj) ¢;0e, [Okici] A€
= — / fanjciE)CjcjdE’— /fanicjf)cicidé’

- / faa (gi5¢:Bj) ci0k, [¢;] dé — / fta (€iijciB;) ¢;0, [ci] dE.

With, eji; — 0, £45 — 0, and 0, [¢;] = O, [c;] = 1 the expression for the third integral

i

is simplified to

@ = —Ej/fqacidE— Ei/fqadeE (349)

o
- 2% pa.
map (iV5)

Collision between like particles result in no change is species energy, leaving the fourth

integral as

@ = [aemof

dc=m Z / CiCjCapdC (3.50)
¢ BAa

- mz /(wz + v;)(w; + vj)capdc

p#a

= mz /wichagdé'—i- 2U(i/wj)cagd5+/ ;

Bt
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After assuming no sources or sinks, we define the viscous heating operator Q.g;; =

sm [ w;w;capdc such that

@ = Z 120 Rj)ap + 2Qusi; ] - (3.51)
p#a

Combining terms yields the evolution of the energy tensor,

9 (Pyj + pvivj) + O (privjur + 3va Piry + hijr) — 2.2 pEvy)

(3.52)
=Y pa 1206 R)a + 2Qapi;]

Here we see the first major difference between the standard two-fluid plasma model
and the 13-moment two-fluid plasma model. The second moment of the Boltzmann
equation by itself describes the evolution of the energy tensor of a fluid. However, in
the Euler equations used in the standard two-fluid plasma model, the equations are
simplified by taking the trace and this equation to yield the total energy equation

instead.

3.2.4  Third Moment

The third moment of the Boltzmann equation describes the evolution of the energy
flux tensor. It is this equation which allows the 13-moment model to simultaneously

solve for the classical fluid equations and heat transfer.

[ cicijckm, fodC+ [ cicjcrCrnmy,, fadC+ [ cicickqa(Em + EmijciBj)0e,, fodé
D @) ©)

= [ cicierm;fa

@

dc
C

(3.53)
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The substitution ¢; = w; + v; is used such that the first integral is written as
DO = /cicjckmatfadé’: om / cicicr fodC (3.54)

= 8tm /(wl + vi)(wj + vj)(wk + Uk)fadg

= om {/ 00U fodC + 3v(i/ijk)fad5+ /wiijkfadé]
= O [pv,»vjvk + 3v Py + hijk} .

The flux term @) is similarly expanded as
@ = m/cicjckcmﬁxmfadé': Op,, M / CiCiCrCm fodC (3.55)
= 8xmm/(wi + v;)(w; + vj) (Wi + vg) (Wi + V) fadC.

With the simplification that the integral [ w; f,d¢is zero, the second integral reduces

to
@ = armm/(vivjvkvm—i-Gv(ivjwkwm)
+ 4V (W WEWy) + wiijkwm> fadc.

Substituting the definitions for the fluid variables in Sec. 3.1 further reduces integral

@ to
@ =0,, (pvivjvkvm + 6V(Vj Prm) + 40P jem) + Aijkm) ) (3.56)

The Lorentz force term integral @) is

@ = /CiCjCkQQ(Em + smijciBj)acmfadE'. (357)
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Integral () is expanded using the product rule to make the following substitution:

8cm [CiCjCICQa(Em + 5mijCiBj)fOc] = [CiCjCkQOc(Em + gmijciBj)acmfa] (358)
+ faOe,, [€iCickGa(Em + €mijciB;)] -

Using the Divergence Theorem / O, Adv = ]{ Ads, where the probability of a particle
v

S
with infinite velocity is zero further simplifies the equations by introducing a surface

integral which is evaluated as ¢ goes to infinity where f = 0.

@ = /{acm [CiCjCkQa(Em + EmijciBj)fa] (359)

_ faaCm [CiCjCkQa(Em + 5mijCiBj)] }dg
0
EmijCiBj) fadS — /faam [€i¢jCrla(Bm + emijeiB;)] dE

= _/faacmcicjckngmdg_/faacmcicjckQngmijciBjda

The product rule is used to further expand the integrand of each term in integral @),

0
aCmcicjck-Em = W—i_ EmaCmCicjcka (360)

0
acmCiCjCkEmijCiBj = CiCjCkam mijCiBj)+5mijciBjacmciCjCk-

Since E has no dependence on ¢, 0., E, — 0 and ¢,,;,¢;B; is orthogonal to ¢,
the divergence is zero (0., (emijciBj) — 0). Expanding the remaining terms with the
product rule,

Oc,, CiCjCl = CiCjOc,, Ck + CCiO;,, Cj + CiCkOc,, Cis (3.61)

m
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and substituting Eq. 3.60 and Eq. 3.61 yields the expression for integral @),

S = —/faQaEm (¢i€jOc,,Cr + CiCiOc,, Cj + CjCLO,,, ¢;) dC (3.62)
— /faqaemijciBj (€i€j0e,,Cl + C1Ci0Oe,, cj + cjcO,,,¢i) AC
= — / faGaEm (¢icjO0e,, OmiCr + C1CiOc,,0m;iCj + €jCr0c,, Omic;) AT
— /faqaz-:mijciBj (€i€j0c,, OmiCh + CkCiOe,, Om;jCj + €;Ck0e,, Omic;) dC

= —B/faan(kcicj)ackckdE

_/fOzQagkijCiBj (Cicjackck) dc — /faQa€(iij)CiBj (Cjckacici) dc.
With, ¢;;; — 0, €;; — 0, and 0., [¢;] = O, [ci] = O, [cx] = 1 integral ) becomes

@ = _3/faQaE(kCiCj)dg_/faQagkijCiBj (CiCj) dc (363)
= —3an(i/<wiwj —f—M‘Q vjvk> dg_/focQagkijCiBj (CiCj)dE

Ga Qo 4
— 3% g P 39 By — [ faqeericB; (cic) dE
M (i47jk) - (iVjVk) /f GatrijCiBj (cicy) de

Substitutions are made to integral @ for the friction and viscous heating operators

to yield the integral

@ = / cicjermoy fo

dc = mZ/cicjckcang (3.64)

B

= mz /(w, + v;)(w; + vj) (wg + Vg)Capde

p#a

= m Z / (Vv + 3v;vjwy + 3v;W Wy + W;w W) CapdC.
Ba
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As before, integral [ v;v;05cqpde vanishes, simplifying integral @

3 o
@ = Z {3v(iijk)a5 + Ev(iQﬂf)aﬁ + m/wiijkcaﬁdc} ) (3.65)
Ba

Combining terms yields the equation for the evolution of the energy flux tensor,

@ [IOUZ'U]"U]C + 3U(ijk) + h”k} + azm (pUin’kaUm + 6’U(Z'Ujpkm) + 4U(zhjkm) + Az]kzm)
Qo Ao o
—3% B Py — 3~ Bvjvgy — | fatacrigciB; (cicy) d
m k) m (iVjVk) /f GatrijciBj (cicj) de

« «

3 S
= Z [3v(iijk)aﬁ + év(ink)a,B + m/wiijkcaﬁdc]
B#a
(3.66)

3.3 Closure Scheme

At this point it should be apparent that to evolve any one moment equation in time
requires a flux term for the next higher moment. For example, the evolution of the
continuity equation requires the flux of the momentum equation. In reality this pro-
cess goes on forever, which makes it difficult to solve these equations in any practical
way. It is for this reason that closure schemes are needed which express the highest
term in the system using information from the other moments. Standard approxima-
tions from fluids manipulate the energy transfer by assuming the system is isentropic,
adiabatic, etc. The 13-moment equations, however, resolve these thermal effects di-
rectly.

To close the third moment equation, the trace is taken to reduce the rank three
tensors to something more manageable. Taking the time derivative term and setting

j = k yields the expression,

Tri_y, (pvivjvk + 3v6 Py + hijk) = pU; VRV, + V; Prp + 205 P + ke (3.67)
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Substituting for the scalar pressure and the quasi-heat flux vector

3p = Pkk: (368)
1 1
G = Zm /// ww; fI¥de = §hz‘kk (3.69)

yields,
Tri_y, (pvivjvk. + 3v Py + hijk) = pvivi + 3up + 20, P + 25 (3.70)
The trace of the divergence term becomes

Trj—y (pvivjvkvm + 6v;(j Prm) + 4v(ihjkm) + Aijkm) (3.71)

= PUiUR; + 3pUm0; + Vi Pim + 406 Pk vi + 40aak) + 206him + D

The trace of the Lorentz force term becomes

= (_3q_aE(iPkk) - Sq_aE(iUkUk) - /faqa€kikCin (CiCk)dC)
Me Ma

= (—3q—aE(iPkk) — 3q—aE(iUkvk))
Mg Ma

— I ppy -2 EP, - q—“Ewi — 222 By
m Mq m

« @ «

and the collision terms become

3 —
Trj:k (Z [3U(inRk)ag + §v(ink)a5 + m/wiijkca/gdc}> (3.73)
B#a

3 —
= Z |:3U(iUkRk:)aﬁ + §U(iQkk)aﬁ + m/wiwicaﬁdc] .
B
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Collecting terms,

o [pv,—v,% + 3v;p + 20, Py + 2q,} (3.74)
+a:,3j (pvﬂ)jvi + 3pvjvi + U,%Pij + 4v(in)kvk + 41)(in) + QUkhijk + Aijkk)

o o Ga 2 o
—m—aElf)ﬂ — Qm—anPij — m_aEin — Qm—an’Uin

3 >
= Z |:3U(iijj)o¢,8 + EU(iQ]‘j)aﬁ +m / wiw?ca/gdc}
Ba

This leaves two higher order moments which need to be resolved,

Aijkk = m / w,ij]%f(Ps)dE (376)
and a collisional heat flux operator is defined as
m/wiwzcaﬁ;dé’: H;. (3.77)

To resolve the third moment of the distribution function, the reduced heat flux is
used. It can be seen that the heat flux is related to the third moment by Eq. 3.69.

Using the definition presented in Eq.2.30, the heat flux is

1
o = 50 (5 (30 — N2) 6 + @ik) N (3.78)

1
= g@@;ﬁm (5 (39 — nl@lmnm) 5jk -+ ®jk) ng.

Torrilhon [2] proposes to use the information from the heat flux vector to solve for
1 and Q). Eq.3.78 is non-linear, and therefore an iterative solution is required. The
suggested algorithm for this iterative solution is outlined in (Algorithm 1). This

iterative solution is not yet implemented but is presented here for completeness.
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Once @ and n; are known, substituting into Eq. 2.30 gives the third moment

hisn = gQ (= NiN; Ny + 3N:O)) - (3.88)

The trace of the fourth moment is equal to

Dijre = pMijkk (3.89)
3 3
= p (D — A_LQ2> @(ij@kk) + pé_lQ2 (—NiNijNk + 2N(iNj@kk))
= D 302 0,0 2@2 @ 3(0 — N?) N;N; + N?O,; + 4N,,0,,; N
= p{D- € i T 39 +Pj((— ) NiNj + N*0y5 + ANiOiN;))

With D being defined by the singular and realizable closure schemes.
3.4 3-D Complete System of Equations

The complete set of equations describing the 13-moment model are compiled here for

clarity with the substitution from the ideal gas law that F;; = p©;;:

Op + Op,pv; = 0, (3.90)
5 o B
tPV; + 8%. [pe)ij + pvivj] — E(pEZ + Eijk’vak) = Z Riag, (391)
BF#o
Ot (pOij + pvivj) + Oy, (V30U + 3pV(O k) + hiji) (3.92)

—Q%PE(WJ) = [206R))ap + 2Qijas]
¢ Ba
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0
O, {pvivi + %vi + 2pvOp; + 2qi] (3.93)

0
+(9zj (pvivjvi -+ %Ujvi -+ ,OU]%@Z'J' + 2pv(i@j)kvk + 41)(,‘%) + 2Ukhijk + Aijkk)

L]

Ga Qo qo 2 Go
———pE,0. —20—F.0;; — —FEv; — 2—FE.v,;0;
map 3i Pma A v -~ ViV

3
- Z {3""(1'%‘3]')«1/3 + §U(z’ij)a6 + Hz} ,

B#a
with
hij = gQ (=NiN; Ny, + 3N:0,1)) , (3.94)
Aijer. = p (D — 2@2) (@ije + §@§j> (3.95)
+ p%Q (3(0 — N?) N;N; + N?0y; + 4NO,:N;))

and the non-dimensional quantity () determined iteratively by Alg.1. The non-

dimensional ratio D is based on the realizable or singular closure scheme,

Q2 22+Q2
5 3 <1 + 3(2ng)> (Drealizable)

3 (1 + %QQ) (Dsingular)

(3.96)

The collision operators are defined as the collision operator R,z = m f w;CapdC, the
viscous heating operator Qo5 = %m J wiwjcapdé, and the heat flux collision operator
H;, = mfwiw,%cagda It can easily be seen that setting the collision operators and

the electric and magnetic fields to zero recovers the single-fluid equations in [2].
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Algorithm 1
To solve Eq. 3.78 for the non-dimensional ratio () and the direction of skewness n;, a
substitution is made such that

¢ = gQBik () ng, (3.79)

where

30 —
By.(z) = 0,/ ( 5 i S @jk) : (3.80)
The initial guess is made by assuming
r = n?@lmngn = 3@11 = 9, (381)

where the superscripts represent the number of iterations each variable has undergone.
Substituting in and solving for the intermediate value r; = Q°n? gives

2
rp = =B () ¢ (3.82)
p

Q is the magnitude of the vector r},
Q" =l (3.83)

Calculating unit vector n; requires normalizing r; by its magnitude,

l
ny = Q_kl (3.84)
Successive approximations (s) are given by the recursion relation
(s) 2 1 (s-1) (s—1)
r = ;Bik (nl Ounnys )ql-, (3.85)
QW = |In?]. (3.86)
()
s r
n = Q’“(s). (3.87)

Torrilhon [2] makes the assertion that s = 1 gives a reasonable approximation with a
deviation of less than 2% from the exact solution.
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Chapter 4
SOLUTIONS TO HYPERBOLIC EQUATIONS IN 3D

Solving hyperbolic equations is necessary to analyze fluid systems. The Riemann

problem is modeled with a hyperbolic equation system given by the equation
U+ 0, F(U) =0, (4.1)

where U is a vector of the conserved variables and F' (U) are the flux quantities, with

the initial value problem a piecewise function

Ur, >0
U(z,t=0) = ) (4.2)

U,, <0

where Ugr and Uy, represent the right and left side of the domain. One way to solve
hyperbolic equations numerically involves the use of an approximate Riemann solver
based on the work of Roe [12]. In Roe’s approximate Riemann solution, the equation

is expressed as

oU + A.0,,U = 8, (4.3)

where A, is a locally constant linearization of the Jacobian A, = 2—5. Additional
details on the properties of Roe solvers and application to the 10-moment model can
be found in Brown [13]. In short, however, the Roe solver approximates the difference

in fluxes at the left and right interface as

Fr—FL = s, (4.4)

k=1
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where )\, are the eigenvalues, 7 are the corresponding right eigenvectors, and a; =
I:pAV the wave strengths of the approximate coefficient matrix Ac, with j}p the left
primitive eigenvectors. A 13-moment Roe solver in 3-dimensions is not implemented
here, but the calculation of the eigenvalues, eigenvectors, and Jacobians necessary are

included to start such an effort.
4.1 Conservative vs. Primitive Equations

The equations thus far derived for the 13-moment model and presented in Eqs. (3.90-
3.93) are classified as conservative equations. These represent the evolution in time
and space of conserved quantities U (momentum, energy, etc.) due to the correspond-
ing fluxes F' (U).
p
PUi
pOij + pviv;
pUUE + %evi + 2pvO; + 2¢;

and

PU;

POV + 30Ok + Pijk

PUUUE + %evjvi + pup©;j + 2pvO KUk + 4viqy) + 20khijr + Ajre
along with the source terms

0
L (pEi + €ijrviBr) + 3520 Riag
S = 22 pEvj) + 2 gsa [206Ri)ap + 2Qijag) : (4.7)
gz_o;pEl@J] + 2pg{; Ej@ij + g{i El'U]2 + 25{; EjUﬂ)j + -

> pta 13UV Riap + 306 Qj5)ap + Hi
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These equations can also be expressed in terms of the more traditional variables

(pressure, velocity, etc.) called primitive form as
oV + A,0,,V =295 (4.8)
where, for the 13-moment equations,
V = (9, U, Uys 0z, Oz, Oy Oy, Oz, 022, O2, € 6y, 62) - (4.9)

The advantage of converting to primitive equations is that for more complex, higher
moment systems it is difficult to compute the eigensystem of the conservative equa-
tions analytically, while it is relatively straightforward for primitive equations. In the
13-moment system, the equations are not truly hyperbolic since they include a source
term. Later, it is discussed how the equations are advanced by solving the system as

if it were hyperbolic and then adding the contributions of the source terms separately.
4.2 Converting to Primitive Equations

Converting to primitive equations is a relatively straightforward, but tedious process.
Mathematica’s computer algebra software is used to help keep track of this process
and more details of the code used can be found in Appendix B. The product rule is
used to expand the conservative equations and then substitutions are made to reduce
the amount of redundant information in the expressions. An example of redundant
information might be that the evolution of density is contained in each of the higher
moment equations, but since the zeroth moment contains this information there is no

added benefit to leaving it in the higher moments.
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4.2.1 Conservation of Mass Moment

The first equation in the 13-moment system in the conservative formulation is given
by Eq.3.90 as
Op + O, (v;p) = 0. (4.10)

It is easy to see that applying the product rule gives the primitive equation
Orp + pOz,; (v;) + v;0y,p = 0. (4.11)

4.2.2  Conservation of Momentum Moment

The second equation for the 13-moment system in conservative form is given by
Eq.3.91 as
O (pv;) + Ou, (pOij + pviv;) = A, (4.12)

where the source terms are collected into the term

Qo
)\z' = — El i B Ria . 413
m (PE; + £ijrv; Bi) + /3%&& 8 ( )

The product rule is used to derive the expression for the unreduced second primitive

equation
00+ POy (Vi) + ViV 0, p+ ©ij0r, p+ pvOs; (Vi) + pviOy; (V) + pOy; (Oif) = Aiv (4.14)
The first primitive equation is substituted to simplify the system to,

O;; Y
8t (1}1) -+ TJ@;J,O + vj&[;j (Uz) —+ 0%. (@”) = F (415)
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4.2.3  Conservation of Energy Moment

The third equation in a conservative formulation is given by Eq. 3.92 and modified to
0y (PO + pviv;) + Oy, (pvzvjvk + 3pv;0 ) Yij — Oy, hiji, (4.16)
with the source term 1);; defined as

i = 251—1 PEaon + > [206R))a8 + 2Qijas) - (4.17)
Bt

Note here that the divergence of the heat-flux tensor d,, h;jr has been moved to the
right hand side as if it were a source term. Solving for the eigenvectors with the
divergence term proved to be prohibitively difficult. This term and a few others are
therefore treated as source terms and are updated accordingly. The consequence of

this is that large shocks in these quantities are not captured by this model.
The product rule is used to expand the equations. The resulting equation is
simplified by substituting the expressions for the first and second primitive equations

to give the third primitive equation

Wi = ViAi = Vidj — Oy (hign)
P

01 (04) + Ok 0y, (Vi) + OirOy, (V) + VOn, (O45) =
(4.18)

4.2.4  Conservation of Energy Fluz Moment

The fourth conservative equation before the trace is taken is given by Eq. 3.93 as

0y (pvivjvk + 3pvOjk) + hijk) + 0, (pvivjvkvm + 6pv(;V;Opm) + 4v(ihjkm))(4.19)
_hkmzaxm (Ug) hnga ( ) = Yijk — axm (Azjkm) - hkmia’pm (Uj) hija ( ) ;
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with the source terms represented by ;i

Qo
Yije = 3——
m

«

E(zP]k) + 3737&E(ﬂ)jvk) + /faQaEkijciBj (CiCj) dc (420)

+ Z |:3U(inRk)aB + gv(ink)ag +m / wiijkcagdé’} )
B

These complicated expressions simplify considerably when the trace of the fourth
moment is taken, but are included here for completeness. It again should be noted
that terms are moved to the right hand side of the equation to be computed with the
source terms. Also, the terms h,i0y,, (v;) and hy,;;0,,, (vg) are subtracted from both
sides and vanish from the left hand side when the trace is taken. The temperature
tensor is introduced and the product rule is used as before. Similarly the first, second
and third primitive equations are substituted to remove redundant information which
gives the complete fourth primitive equation. The expression is reduced to its usable
form by taking its trace j — k and then changing the free indices m — j to give the

fourth primitive equation used in the rest of the derivation

1
O (Qz) - @ki@kjasz - §®ij@kkasz + Ujazj (%) + Qjamj (Uz> (4-21)
1 Yiek | 1
+qi0z; (v;) — §p6kkaxj (©45) — POkiOy; (O;) = 5 + Uk)\ + VU A
1 1

1
—AOpi — iAi@kk — VR — 5%‘@/}% - Ea:cj (Aijik) — POz, (Vi) -

4.3 Creation of Ay, B, and C, Matrices

The primitive hyperbolic equation is separated into its components in the x, y and 2

directions to give the equation

OV + AP0V + B0,V + CB0, V1 = §1, (4.22)
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where A, B, and C, represent the Jacobians for the z, y and z-directions respectively
and the superscript thirteen represents the length of each vector. The four primitive
equations from the previous section are now expanded from their compact indicial

form to give the complete primitive equations for the 13-moment model.

4.3.1 Primitive Form of the Density Equation

The first primitive equation in indicial notation is given by Eq. 4.11 as
Op + POy, (v;) + v;04,p = 0, (4.23)
which is expanded by summing over i to give
Oip + V050 + POy (V) + vy Oyp + POy (vy) + v:.0.p + p0, (v,) = 0. (4.24)

Expressions in the remaining sections are left in their expanded forms to make the

derivation of the matrix coeflicients more clear.

4.8.2  Primitive Form of the Momentum Equation

The second primitive equation in indicial notation is given by Eq.4.15 as

O (vi) + #axjp + 005, (Vi) + O, (©45) = s (4.25)

which is expanded by first summing over j to give

O (vi) + p P 0,0, (v7) + 0y (O1) + yTyp +v,0, (v;) + 0, (0y,)  (4.26)
+ 25 0.0, (0) + 0. (05) =~

p p
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Expressing Eq. 4.26 for each value of i gives the primitive equations for each velocity

component.
0 (v2) + = D 0,0, (0) + Oy (Ogg) + —E 4 4,8, (v2) + 0, (O4,)  (4.27)
0.0, Az
+ p+vzaz (Ux) + az (sz> = 77
O, 0y ©,.,0
O (Uy) + Zoyal + 020, (Uy) + 0, (@xy) + ol + v, 0, (Uy) + 0, (@yy) (4.28)
0,0, A
+- p+Uzaz (vy) + 0. (0,.) = £,
p p
szaa: @ Za
0 (0:) + =2 D 0,0y (02) + 3y (020) + L2 4,8, (v,) + 0, (0,.)  (4.29)
+ 5 p+vzaz (v,) 4+ 0,(0,,) = o

4.3.3  Primitive Form of The Energy Equations

The third primitive equation in indicial notation is given by Eq.4.18 as

wij — /Uj)\i — Ui>\j - axk (hijk>

9 (0i5) + Ojk0u, (Vi) + OirOuy, (v;) + Vr0n,, (O45) =
(4.30)
and is first expanded by summing over k. Summing over the remaining indices and

seeing that the temperature tensor ©;; is symmetric (0;; = ©,;) gives

0, (Onz) + 20,00, (V) + V20 (Os) + 20,9, (va) + 1,0, (On)  (4.31)
p p P p p

)

+20.,0, (v;) + 0,0, (O) = —
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Ot (Ogy) + OO0y (V2) + OO0y (Vy) + V204 (Ony) + Oyy0y (V) + Oy 0y (vy)  (4.32)

+Uy8y (ny) + Gyzaz (Uaz) + 0.,0; (Uy) + 0.0, (@xy)
Y N Yoy Op(haye) Oy (hayy)  0: (hays)

p p p p p p

)

01 (Oyy) + 20,40, (vy) + V202 (Oyy) + 20,,0, (vy) + v,0, (Oy,) (4.33)

+20,.0. (v,) + 1,0 (0,,) = _ 2uy)y i @ _ O (Pyya) _ Oy (hyyy) - 0. (hyyZ)’

p p p p p

0t (By2) + 0,0, (vy) + Oy 0y (v2) + 0,0, (0y2) + 0,0, (vy) + Oy, 0, (v,)  (4.34)

+0y0y (Oy2) + 0.0, (vy) + 0,.0; (v,) + 0.0, (O)
Uz Ay _ Uy, i % _ 0y (hyza) _ 9y (hyzy) _ 9; (hyz2)

Y

P p p p p P
01 (0:2) + 202005 (v:) + 0a0: (0:2) + 20,20, (v:) + 0,0, (0::)  (4.3D)
+2@zzaz (Uz) + Uzaz (@zZ) - _QL)\Z -+ % — ax (hzzx) _ ay <hzz?/) o az (hzzz)’

p p p p p

0, (0:2) + 02205 (U2) + OBy (V) + V205 (Or) + O,:0, (v2) + Oy, (v:)  (4.36)

Uz>\x . U:c)\z + % . aLL‘ (hzxx) . ay (hzxy) . az (hz:cz)
p p p p P P
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4.3.4  Primitive Form of the Energy Flux Equations

The fourth primitive equation in indicial notation is given by Eq.4.21 as

1
8t (ql) — @kz@kja:pjp — i@m@kkﬁmp -+ vj8 <q1> + C]Ja (UZ) + qzam ( ) (437)

%kk

1
_§p®kk8x] (@U) - pe)kla’@ (@kj) - 9

+ vk)\ + Vv AR — MOk — 5&9% — Uk

1 1
—5 Vit = 50k, (Aijir) = hijrOq; (vi)

and is expanded by first summing over k and then over j. The final three primitive

equations are computed by summing over i, with the first of the three being

1

3 1
0, (42) + (—-@gw —e2,~ 10,0, - 62 - 5emezz> b (438)

3 1
+ ( 2 B o ép@zZ) 0r (Ozz) — POy 0y (Ony) — 00220 (02
3 3
+ 2@m@ _@xy@yy ©y:0.2 — G)xy@zz Oyp + vy0y (qz) + ¢y 0y (vs)
3 1
+q.0y (vy) + ( 2 - - _P@zz) 9y (Ozy) = POy 0y (Oy,)

1
pgzwa + @x - @acm@zz - §@yy@zm - g@zm6z2> azp
+vx T (qx) + Uz z (qx) + q,zaz (vx) + qg:az (Uz) - pgmyaz (@yz)
@xx

3 1 1

2

1
- 5 |: vz T VYzyy + Vazz T 37}925)% + Uz/\a: - 2)‘k@kz + )‘m (Ug - ®mm - @yy - ®zz)}
1
+§ [_2vywxy - QUzwzz + (% (2vy>\y + sz)\z - 3?%3: - wyy - wzz> - ax (Amxkk)]
1
5 [=2h2200z (V) = 2h42y O (Vy) — 222205 (v2) — Oy (Auyrk) — 2haye0y (V2) — 2hay, 0, (vy)]

N | — \/

[ thyzay (Uz) - az (Aaczkk) - thzxaz (Ux> — 2hwzyaz (Uy) — 2hzzzaz (Uz>] .

The other equations are equally as complex, and it does little good to reproduce them

here. The final equations in matrix form are somewhat simpler and the final results
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can be seen there.

4.3.5  Flux Jacobian Matrices

The final A, matrix is presented here with a few substitutions.

A, =
vy p 0 0 0 0 0 0 0 0 0 0 0
% Uy 0 0 1 0 0 0 0 0 0 0 0
@;y 0 v, 0 0 1 0 0 0 0 0 0 0
% 0 0 Uy 0 0 0 0 0 1 0 0 0
0 20,, O 0 Uy 0 0 0 0 0 0 0 0
0 O, ©, 0 0 Uy 0 0 0 0 0 0 0
0 0 20, 0 0 0 v, 0 0 0 0 0 0
0 0 O.. O, 0 0 0 v, 0 0 0 0 0
0 0 0 20, 0 0 0 0 wv, 0 0 0 0
0 O, 0 6, 0 0 0 0 0 Uy 0 0 0
o 2q, 0 0 —3p(0+20,,) POqy 0 0 0 POz v, 0 0
s qy Gz 0 —pO,y —%p(9+2@yy) 0 0 O POy 0 v, O
3 q- 0 Gz _p®zx _p@yz 0 0 0 _%P (9 + 29,22) 0 0 Vg
(4.39)
where
1 2 2

mo= g (-2 (@xy +02,) — 04y (30,5 + Oyy + 0..)) (4.40)

1
P 3 (—20,.0.; — 04y (3(O4s + Oyy) +06..)), (4.41)

1
3 = 3 (—20,y0,, — 0., (30,, + ©,, + 30..)). (4.42)

The remaining matrices can be found in Appendix B.
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4.4 Eigensystem Analysis

The eigensystems are determined symbolically by use of Mathematica’s Eigenvector||

and Eigenvalue|| functions, the code for which can be found in Appendix B.

4.4.1  Eigenvalues

The eigenvalues for the A,, B, and C, matrices (A4, Ap and A¢ respectively) are

Uy
Vg
Vg
Vg
Vg
Vg
g = Uy
(P VAC
Uz — VO
Uz + VOuy
Vs + VOar
vy — V3VO .,

(e \/g\/ @acac

4.4.2 A, Eigenvectors

Ap

Uy =/ Oy
Uy + /Oy
Uy + /Oy

Y

and \¢c =

v,
(%
v,
v, — V0.,
v, — V0.,
v + V0.,
v. +v0O..

UV, — \/g\/ @zz
v, + \/g\/ ®zz

(4.43)

The right eigenvectors for the A, matrix are presented here, with the remaining found

in Appendix B. Many terms share certain similarities and are simplified by a matrix

coefficient function defined as

Qi (c1,¢2,¢3,¢1) = 2¢; + ¢1 % p\/ Ope (€205 + 30y, + 40..) .

(4.44)
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For example,

Q.[1,1,3,1] = 2¢2 + p\/ Oz (Ops + 30, + O..) . (4.45)

The right eigenvectors for the A, matrix are presented here with the following sim-
plifications
a=Q.[1,1,1,3], B =Q.[1,1,3,1],

_ ) (4.46)
X = Q.[-1,1,3,1], o=Q.[-1,1,1,3].

—p

rA1 = A2 = TA3 = y TA4 = 0 , Tas =

o O o o o o o o

— e} e} o =} e} e} =)} (@] () [a)
S P
<
—_

_ o O O O O o o o o o o o

o B O O O O O o o o o o o

o O
o
—~ o O O O



52

T4a6 =

_ o O O o o o o

o o o o o

, TA7T =

TA9 =

0 0
0 0
0 —201/0,,
0 40,0y,
0 0
0 200,
1 1, Tas= 400,
0 2 (—2pv0,,04,0,. + O.,)
0 —80V04:6,.0.,
0 —4p0%70,.
0 2 (py/©4204y — 20*0,,6,.0.,)
0 B2 — 40?0402, + 28pv/Os (—Oyy + O..)
0 0
(4.48)
0
0
20O,
4000,
0
200,
406, : (4.49)
2 (—2pV0:20:,0,: + aO.;)
—80v0::0,.0.,
—4p@%2@yz
2 (py/©4204y — 2070,,0,.0.,)
B2 = 4p*04,0;, + 209y Oy (—Oyy + 6..)

0




T410 =

rA11 =

0
0
4p0,,0,
2XVOar
0
4p@%2@yz
80V ©.20.,0,.
2O,y + 49V0,:6,.0.,
4XO .,
2XO4s
—4p?0:50.,0y. — 29XV 0402020
0

X2 - 4p2@1’x@§z + 2pX \% @$$ (@yy - 623)

0
0
200,
4p0:,0,.
0
200,

100,
4p\/@_m@$y@yz + 200,
SJRVASIMC N C I
490370,
—2p0/0,04, — 40%0,,0,.0.,

o? — 4,02@m@§z +2p0/O,; (w0, + O.,)

0

53

(4.50)

(4.51)



24

TA12 =

and

rA13 =

2AVETIC I
—60%2
—61/0:20.4,
—6/0,.0.,
4303,
41/304:04y
4302,
4v/30,4,0.,
4302,
44/30,,0.,
60V, (02, + 62,) +2v30,,Q, [Vg 3,1, 1]
2v/3¢, 04z + 6pv0,20,.0., + v30,,Q, [V3,3,3,1]
2v30:04s + 6pv/0420.,0,. + v30.,Q. [V3,3,1,3]

23004,
603/
610,204y
610202
430z,
4v/30,204y
1/362,
4v/30,,0.,
4302,
44/30,,0..
—6pv/O,, (02, +02,) +2/30,,Q, [—%3, 3,1, 1}
2V30y00z — 6pv/0420,.0.. + V364,Q, [—V3,3,3,1]
2V3¢.0.2 — 6pV0120,,0,. + v30.,Q, [-V3,3,1,3]

(4.52)

(4.53)
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4.5 Transformation Matrix

The transformation matrix is the Jacobian of the conserved variables with respect to
the primitive variables.
oU

M=— 4.54

where V' is defined as before, and U is expanded as

PUx

pUy

v
POz + pUz Uz
POy + ULV
U= POy + puyuy
POy: + puyv;
POz + pv:v.
POz + pU2U;

PUz (Ug + Us + Uz) + PUg (Gmx + @ Yy + @zz> + 2P (Ua:gacm + Uy@ xy + Uz Tz + 2qgc

)
PUy (U?c + U; + Ug) + vy (Oze + Oyy + O..) + 29 (V2,604 + 1,0y, +1.0,.) + 2¢,

pv; (V2 + 02+ 02) + pvs (Opy + Oyy + 022) + 20 (1,042 + 1,0y + v:.0..) + 2¢.

2)
(4.55)




o6

M is calculated with the following substitutions,

)

) 2 2
v o= vx—l—vy+vz,

= @zm + ®yy + @zz7

wl

G o= v+ % + 2 (V204 + 1,04 +1.0,,)
m o= vp+ % + 2007 + 2903,

Fi = 2puvy + 200y,

Fa = 2pv,v. + 2p0,.,

Fs = 2puyv, +2p0,,,

1 0 0 0 0 0 0 0 0
Uy p 0 0 0 0 0 0 0
Uy 0 p 0 0 0 0 0 0
v, 0 0 p 0 0 0 0 0
V2464 200, 0 0O p 0 0 0 0
VaUy + Opy  pvy  pv, 0 0 p 0 0 0
M = v; 4 Oyy 0 2pv, O 0 0 p 0 0
VU +0,, 0 pv. pv, O 0 0 p 0
V240, 0 0 2pv, 0 0 0 0 p
VU, + OLp  pU, 0 PU 0 0 0 0 0
Ca e F1  Fao 3puy 2pv, pu, 0  pu,
Cy Fi n, Fs pv, 2pv. 3pv, 2pv, py,
Cs Fa F3 N,  pU, 0 pv,  2pv, 3pu,

o O o o o o o o o

o O O 0D
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o
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Chapter 5
1-D SIMULATION

In order to study the behavior of the system of equations, it is useful to reduce
the system to the one-dimensional case. The formal derivation of the one dimensional
system of equations is presented. Then, a second order accurate finite volume method
is introduced. Details of the finite volume method such as the method for determining
flux quantities are discussed. The behavior of the system is first studied without
sources to compare to Torrilhon [2]. The equations are non-dimensionalized using the
procedure outlined in [3] and the contributions of the source terms are added. An
electrostatic solver is implemented to allow for a direct comparison to results from

the 5-moment model.
5.1 Reducing 13-Moment Equations to One Dimension

To reduce the moments to the one dimensional case, only quantities that vary in one
dimension (in this case z) are considered. This leaves five primitive variables: density,
velocity in the z-direction, scalar pressure, pressure in the z-direction, and heat flux

in the z-direction to capture full gas dynamics;

V= 1{p,ve, D, Pray G } - (5.1)

The variance in Py, and P,, are captured by the scalar pressure p = P, + Py, + P..,
where P, = P,.. The moment equations are formally reduced to one dimension by

only allowing the indices ¢, j, k, etc. to be x and setting all other quantities to zero.
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For example, for the continuity equation reduces as

Oup+ 0, (vip) = 0, (5.2)

Bp + 0y (vpp) = 0. (5.3)

Two further simplifications are made to the source terms by limiting the simulation
to electrostatics, where the magnetic fields are set to zero, and by assuming that they
are collisionless, where R, (), etc. are set to zero. As with the zeroth moment, the first

- third moments are reduced to

0 (pv2) + 0, (Paw + p02) = 22(B5,), (54
8t (Pxx + pvz) + 8:5 (Pvi + Ppyvg + ma:a:x) = 2q_apEa:Uwa (55)
1, 3
1 3 ) 1
3 qa e 3 a
2m 2m

This process gives only four equations for five unknowns, so another expression is

needed. This is done by taking the trace of the second moment equation (i — j)

Qo
Oi(pj; + pvjv;) + Ony (pvjvjUk + 30(GDjk) + hyjr) = 2~

«

pEjvj). (5.7)

Substitutions are then made for scalar pressure 3p = Py, and the heat vector hjp, =

2q;, giving the final 1D equation

3 1 1 3 o
at(§p + §pv§) + a:]c( <§pvi + 5]9) Vg + DaaVs + Ch) = gl_apEmUx' (58)
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5.2 Finite Volume Methods

The 1D system of equations is simulated using a finite volume method [14, 15|. Finite
volume (FV) methods are ways of solving differential equations on a discrete mesh,
with each “node” surrounded by a cell volume. While there are many ways to imple-
ment a F'V approach, the way pursued here was to use a predictor-corrector approach
based on Heun’s method to achieve second order accuracy [18]. The fluxes are cal-
culated using a First ORder CEntered (FORCE) flux method [14] with a Van Leer
limiter to duplicate the results of Torrilhon [2] and then for the two-fluid simulations.
The sources are updated using an unsplit method and are evolved in time with the

flux terms.

5.2.1 Heun’s Method

Heun’s method is one method in the family of Runge-Kutta predictor-corrector schemes.
It uses an Euler method to make an initial prediction about the solution to the PDE
and then uses a trapezoidal method to correct this intermediate value for second order
accuracy. The principles of this scheme are to take the piecewise constant (i.e.each
cell has uniform properties) data and reconstruct it using a higher order function.
That means that locally, the discrete values within a cell are represented by a linear
function provided by interpolating with neighboring cells. That information is used
to determine the values at the boundary of each cell which are used in the Riemann
solver [14, 15].

The basic Heun’s method solves hyperbolic conservation laws of the form

(9_U OF(U)
ot ox

=S (U), (5.9)

where U are the conserved variables, F'(U) are the fluxes, and S (U) are the source

terms. An individual time step for this scheme would involve the following steps:
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Step 1: Data Reconstruction. The conserved variables are converted algebraically
to primitive variables. The values from the primitive variables are then repre-

sented in each local cell by a piece-wise linear function

T — x;
Vi(z) =V + —2A;, z €0, Ax] (5.10)
Ax
where the subscript ¢ denotes the value at the center of the volume; equal to
the discrete cell value, the superscript n represents the current time and A, is
the difference between cell values

A=V =V (5.11)

(2

The values at x = 0 and x = Az are the boundary extrapolated values as

1 1
VE=VE = gAs V=V 4 DA (5.12)

)

The superscripts L and R denote the values at the left and right cell inter-
faces, respectively. This information is used to solve the Riemann problem and

calculate the flux at the cell interfaces

Fi=F (Vi) - F (V). (5.13)

)

Step 2: Predictor Step. Once the flux quantities are known, the solution is pre-

dicted using Euler’s method and including the source term contributions.

=

F
Ax

Ui=U + o — B } + A S (U) (5.14)

N
N

Step 3: Data Reconstruction. The data reconstruction process is repeated with

the predicted solution U;. The flux quantities are calculated by solving the



61

Riemann problem Eqs. 5.13 and 5.14 and denoted as FH%.

Step 4: Corrector Step. The corrector step uses the trapezoidal method to calcu-

late the second order accurate evolution of the conserved variables.

Ul =U; + %ﬁ [F.* — F? %} +At-5(U;), (5.15)

! Ax L i+2 v

* —
where Fi+% =Fi1

5.2.2 Riemann Solvers

Various Riemann solvers exist to solve these hyperbolic equations, but two are dis-

cussed here: The HLL solver and the FORCE flux solver.

The HLL Solver

The HLL Solver [14, 15] is an approximate Riemann solver created by Harten, Lax
and van Leer (HLL). The HLL method assumes a two-wave exact solution and ap-
proximates the intercell fluxes with calculated wave speeds. The intercell flux for the

HLL method using a Gudunov update is

Fr ,ifO <S5p
Fiyyh | et ieest) i, <0< Sp (5.16)
Fr ,ifO > SR

\

where F7, is the flux at the left interface of the right cell, Fg is the flux at the right
interface of the left cell, Sy is the left wave speed of the right cell, Sg is the right
wave speed of the left cell and Uj r are the conserved quantities at each time step.
To make use of this equation, a function that estimates the left and right wave speeds

is needed. The wave speeds used in Torrilhon [2| are based on a constant multiplied
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by the square root of the temperature

P
Spr =4k [ 2L (5.17)
PL,R

where k is a parameter that varies with each problem and is determined by exper-
imentation. The HLL method is fairly simple to implement but does suffer from a
few drawbacks. One, the wave speeds must be known ahead of time. For the Euler
equations, this is well explored, but not for the 13-moment equations. Two, the HLL
method assumes a two-wave solution, with three uniform, intermediate states. This
means that it will not capture contact discontinuities, shear waves, or any other type

of non-two-wave phenomena.

FORCE fluzx solver

The FORCE scheme is an approximate Riemann solver introduced by Toro [14]. This
First ORder CEntered scheme has a CFL restriction of unity in one spatial dimension,
where

At

FL="—" 1

is the Courant-Friedrichs-Lewy number. This is described as the ratio of the wave
speed of the system and the grid speed Az/At due to the domain discritization|14].
The FORCE flux is derived by using integral averages of Riemann problem solu-

tions which coincidentally reduce to the average of the Richtmyer and Lax-Friedrichs
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schemes

1 1 At
RI _
URL = LU+ U+ AR (W)~ F (W) (5.19)
RI _ RI
FL = P (), (5.20)
1 1Ax
Fﬁg = 3 (£ (Ur) + F (Ur)| + SAL (UL —Ur), (5.21)
1
FEgROE — = [Fﬁﬁ (Us, Ur) + Ff (Ur, Ur)| . (5.22)

In general, Toro [14] states that the FORCE flux is less accurate than the Gudunov
flux, but superior to Lax-Friedrichs while being fairly simple and efficient. In the
problems studied here, it was comparable to the HLL flux when using Heun’s method
to integrate in time and has the added benefit that estimates of the wave speeds are

not needed.

5.2.3 Slope Limiters

One issue with higher order (than first) schemes are that they have difficulty resolving
shocks. In regions with strong discontinuities, these solutions tend to oscillate in a
non-physical way. One method to reduce these spurious oscillations is to use a slope
limiter that limits the slope in a way that the values remain physical. For the Heun

scheme, the difference between cell values (A;) is modified so that

A = oA, (5.23)
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The slope limiter used here is known as the Van Leer limiter, where

m— (5.24)
r = , 5.24
Ai-i—%
0 r<0
G (1) = , (5.25)
12—1_; r>0

with Ai_% =V"-V" and AH% = Vi1, —V;". The limiter acts to drop the scheme’s
accuracy to first order in regions of discontinuities and approaches second order in

regions of smooth solutions.

5.2.4 Poisson Solver

The electric field appears in the source terms of Eqgs. (5.3-5.8) and must be solved
from a model that relates the field to the fluid variables. For an electrostatic problem,
Gauss’s Law must be satisfied

v.E=" (5.26)

€0

where ¢, is the permittivity of free space and p, is the charge density,
Py = Znaqa. (5.27)

In practice it is usually easier to solve for the electrostatic potential (¢), which is

related to the charge density by Poisson’s equation.

V2= (5.28)

€0

and the electric field is the gradient of the electric potential

E=-V¢. (5.29)
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In the one dimensional case, Poisson’s equation reduces to

%9 Do
Rl (5.30)

The electric potential is calculated by using a second order central differencing [17]

scheme, where
Pf [+ Ax)=2f (z)+ f(x — Az) (5.31)
oxr? Az? |

for any arbitrary function f (x). Boundary conditions must be specified for the elec-
trostatic potential. The boundary conditions that produced comparable results to

[3, 16] were found to be

¢ (z) = 0, (5.32)
¢(zr) = 0, (5.33)

where xy, is the left boundary and zg is the right boundary. The equation can be

represented as a matrix problem where Ax = b, with the matrices equal to

2 0 —2 0 0 |
1 2 -1 0 0
1 2 -1 0
0
A= : : (5.34)
0
1
0 0 -1 2 —1
K 0 1
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and _ . - -
¢ (2r) 0
¢ (1) —Az?p, (1)
x = : , b= : . (5.35)
¢ (rr-1) —Ax?p, (xp-1)
¢ (zr) | I 0 |

The electric field is then computed by taking the gradient of the electrostatic poten-
tials (¢’s) as

n

En — @ 5.36
s N (5.36)

for each time step, which can be used to compute the source terms.
5.3 Non-Dimensionalization of the Equations

It is often useful to non-dimensionalize the equations in terms of unitless ratios. This
enables different phenomenon to be captured without computationally expensive res-
olutions. For example, varying the characteristic scale of the domain allows one to
“zoom” in or out without having to change grid size. The similitude property allows
for simulations where proper scales are defined. The non-dimensionalization here is
designed to match that of |3, 16]. In the two-fluid model presented by Shumlak |[3],
the length is non-dimensionalized by the characteristic plasma length x,, the electron
and ion velocities by the characteristic ion thermal velocity vy, ;, etc. The table below

shows the complete non-dimensionalization.
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Variable Non-Dimensional Parameter | Characteristic | Symbol | Expression
Density Ton Mass Density nom; o = no’;n -
Velocity Ton Thermal Velocity Vth. i u* = U:}‘l _
Pressure Ion Dynamic Pressure nomivfm p* = nomfvfhi
Time Ion Transit Time To/Vih i t* = xo/im Z
Length Plasma Scale X x* =
Charge [on Charge i q* =
Magnetic Field Magnetic Field Strength By B* = B%
. . o E
Electric Field - Bovip i E~ = Boor
Mass TIon Mass m; m* =

To non-dimensionalize, the variables are simply substituted into the original ex-

pressions. For example, for the non-dimensionalized density the expression is p* =

p
nom;

or by re-arranging the original expression for density is p = p*ngm;. Using the
parameters above to non-dimensionalize the momentum equation,
_ Pala 7

Opatia 2
N R, (5.37)

gives the following substitutions in 1-dimension

AP ngm;,
ot* (xofven;)  Ox*axg

* *
* * 2 * 2 P nomiq q;
(/) nom; (u Uth,i) +p nOmivth,i) - T
m>m;

E*Uth,iBO-
(5.38)

Simplifying and dropping the x’s give the complete non-dimensionalized equation

dpu+ 0, (pu® +p) = £ (ﬂ) nk, (5.39)

Tgi

m; Vth,i

et In this electrostatic simulation, the change

where r,; is the ion Larmor radius
in Larmor radius corresponds to a change in characteristic Debye length. For the

13-moment equations, an additional non-dimensionalization is made for the heat-flux
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¢z, which is non-dimensionalized by the ion heat flow

N Gz
SR G 5.40
@ ol (5.40)

Following the same procedure as for the momentum equation, the complete set of

equations are very similar except for a scaling factor for the source terms

@U+@F@0:i<@)swy (5.41)

Tgi

The sources are positive for the ion fluid, and negative for the electron fluid. Poisson’s

V. E-= (%) (%)2 (ni — ne) (5.42)

with the Debye length defined as

equation becomes

comev2, N\
0
A = (—;h) , (5.43)
npde
where g. = e. Factors for 2> and i\id are included as coefficients in the numerical
gt

simulation.
5.4 Simulation Algorithm

A one-dimensional, second order finite volume code is written using the elements
presented here. The code is listed in Appendix C. The flow-charts presented here

demonstrate the basic code structure.



START

SET SIMULATION CONTROL VARIABLES :
CFL, etc.

|

SET INITIAL CONDITIONS :
Shocktube, etc.

'

SET BOUNDARY CONDITIONS :
Von Neumman, Dirchlet, etc.

y

4>| FOR EACH OUTPUT TIMESTEP : ‘
Time step

rejection loop

>
>

A

Old Data
TIME AN
INTEGRATION : )

&
CFL (now), New Data

HeunStep

YES dt = dt*CFL / CFL (now)

dt = dt*CFL / CFL (now)

New Data = Old Data

Ist—t(save)
< Small ?

OUTPUT
vee

G o

Figure 5.1: Flow chart showing the main program loop.
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! |
! |
! 1
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' Step i
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v
OUTPUT : ~
U, Crax - e

A 4
RETURN

Figure 5.2: Flow chart showing the time advance of the electrostatic two-fluid plasma
equations using a Heun method.
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Chapter 6
NUMERICAL SIMULATIONS

6.1 13-Moment Single Fluid Results

To ensure the correct computer implementation of the model, it is important to
benchmark the results to those of Torrilhon [2]. To simplify the two-fluid plasma
code presented in Appendix C to handle single-fluid gas dynamics phenomenon, it
is only necessary to set the source term coefficients (%0 and %) to a very small
number, such as 10716 (to avoid dividing by zero) and give each fluid the same initial
conditions for density, velocity, pressure, etc. The results from each fluid are identical.
To increase or decrease the time step, characteristic speeds can be modified in the flux
calculations as necessary. Appendix D contains the Mathematica code necessary to
determine the characteristic speeds. Initial conditions for the “Strong Shock” problem

[2] are given by

z<0|lz>0
p 20 1
U 0 0
P 50 1
P.. | 50 1
Gz 0 0

6.1.1 Strong Shock Tube Simulation with Singular Closure

The strong shock tube problem is run using the FORCE flux method described in
Chapter 5 with a grid resolution of Az = 7.5 x 107* and a CFL number of 0.9 until

t = 0.4. The time step is calculated using information from the estimated maximum
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Figure 6.1: Contour plot of the characteristic wave speeds for the singular closure
scheme showing ¢, for a given set of parameters.

wave speed, which was chosen as e, = 5v/0 to match the conditions in Torrilhon[2].
Figure 6.1 shows the characteristic wave speeds for the singular closure scheme used

to estimate ¢, ,qz.
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Figure 6.2: Pressure and density for the strong shock tube problem using the singular
closure scheme at ¢ = 0.4 for the 13-moment single-fluid gas dynamics model.
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Figure 6.3: Shear stress (o0 = P,, — p) and heat flux for the strong shock tube
problem using the singular closure scheme at ¢t = 0.4 for the 13-moment single-fluid
gas dynamics model.

The results seen in Figures 6.2 and 6.3 show good agreement with the results
Torrilhon presents. The switch to using a FORCE scheme here in comparison to an
HLL scheme does not seem to have made a large impact on the quality of the results.
The strong non-equilibrium effects in the shear and heat flux of Fig. 6.3 are due to
the lack of a collision operator to drive the model towards an equilibrium.

Fig. 6.2 shows significant differences between the 5 and 13-moment models. The
13-moment model has several waves not captured in the 5-moment case, seen as
having more plateaus (—0.5 < x < 1) than predicted by the Euler equations. The

13-moment model’s faster wave speeds can be seen at x ~ —1 and x ~ 1.5.
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q,/(p0™)

Figure 6.4: Contours of the characteristic wave speeds for the realizable closure scheme
showing ¢, for a given set of parameters. The green line represents a trend towards
infinite wave speeds not seen in the singular closure scheme.

6.1.2 Strong Shock Tube Simulation with Realizable Closure

As with the single-fluid results for the singular closure, the realizable results are run
using the FORCE flux method with a grid resolution of Az = 7.5 x 10~* and a CFL
number of 0.9 until ¢ = 0.4. The time step is calculated using information from the
estimated maximum wave speed, which is chosen as ¢4, = 30\/5, as per Torrilhon

[2]. Fig. 6.4 shows the wave speeds for the realizable closure scheme.
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Figure 6.5: Pressure and density for the strong shock tube problem using the realizable
closure scheme.
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Figure 6.6: Shear stress and heat flux for the strong shock tube problem using the
realizable closure scheme.

Again Figures 6.5 and 6.6 show the results seen in [2]. There seems to be little
difference attributed to our use of the FORCE scheme over the HLL scheme. The
shear and heat flux results seen in Fig. 6.6 show real differences between the singular
and realizable closure schemes. The realizable closure has wave speeds that increase
exponentially and that can be seen as the right shock waves (z ~ 1.5 — 2) have
progressed further than their singular closure counterparts over the same amount of
time. These faster waves require a significantly smaller time step to resolve, which

becomes computationally expensive.
6.2 13-Moment Two-Fluid Plasma Results

Two-fluid plasma results are presented for a comparison to the 5-moment electrostatic

simulations present in |3, 16]. These results are the two-fluid plasma equivalent to
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the Brio-Wu [22] MHD shock tube simulation, which has become a standard test case

in plasma physics codes. The initial conditions for the 13-moment two-fluid plasma

system are
r<0| >0
Pi 1.0 0.125
U; 0 0
Di 0.5 .05
Pax,i 0.5 .05
Qz,i 0 0
Pe 1.0% 0.125%
Ue 0 0
De 0.5 .05
Paze | 0.9 .05
Gz.e 0 0

6.2.1 13-Moment Singular Closure Shocktube with > = 0.1

The first 13-moment electrostatic test case is for the singular closure with %" =0.1
and i\id’ = 100. For the case of an electrostatic simulation, the Larmor radius rg; is
infinite and the ratio zo/r,; is instead analogous to the number of Debye lengths per
characteristic length xy. The nomenclature, however, is chosen to match published
results [3, 16]. The simulation is run at a resolution of Az = 2.5x107%, a CFL number
of 0.9, and using the singular closure scheme. To match the setup for the 5>-moment
electrostatic model[3, 16|, the simulation is advanced 10 light transit times. With a

normalized speed of light ¢ = 100vy,,, this is equivalent to ¢ = 0.1 for normalized

time.
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Figure 6.7: Number densities for the 13-moment electrostatic shock tube problem

using the singular closure and with ¢ = 0.1
gt
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Figure 6.8: Pressures for the 13-moment electrostatic shock tube problem using the
singular closure and with ** = 0.1
gt

Figures 6.7 and 6.8 show significant charge separation. Without electrostatic ef-
fects, the electron fluid would have reached equilibrium much faster due to the lower
mass and faster wave speeds of the electrons. Here we see the electron motion retarded

by the ion fluid.
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6.2.2 Direct Comparison of Singular and Realizable Closure Schemes (% =0.1)

Number Density

-0.5 0 0.5
Position (x)

Figure 6.9: Comparison of ion densities for the singular and realizable closures for
£ =0.1

Tgi

A direct comparison between the singular and realizable closures for > = 0.1 and
gt

% = 100 can be seen in Fig.6.9. Any differences between the two solutions is minor.
This is to be expected since the conditions are not far from equilibrium and therefore
this problem does not extend to the regions far from equilibrium where the vastly

different wave speeds cause the solutions to diverge.

6.2.3 13-Moment Singular Closure Shocktube with <> =

Tgi
To understand the effects of the source terms on the model, successive simulations

are run for increasing plasma scales (). These results represent a simulation of
gt
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the singular closure scheme with =¢ =1 and i\id = 100 run at a resolution of Ax =
gi

2.5 x 1074 In Fig.6.10 it can be seen that the electron fluid has almost entirely

approached the ion fluid.

09r
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0.7
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04 r

-0.5 0 0.5
Position (x)

Figure 6.10: Number densities for the 13-moment electrostatic shock tube problem

with the singular closure and = =
gt

6.2.4 13-Moment Singular Closure Shocktube with :7_01 =10

With another order of magnitude change to the plasma scale (7{‘370)7 Fig.6.11 shows
that there is no discernable separation between the electron and ion fluids. The ion
fluid shows what would be expected for a solution from gas dynamics, and the electron
fluid is so much lighter that the source terms force it to follow the ion motion in an

ambipolar sense.
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Figure 6.11: Number density for the electrostatic shock tube problem with the singular
closure and f—i = 10.

6.2.5 Direct Comparisons to 5-Moment Model

It is relevant at this point to discuss the differences seen between the 5 and 13-
moment models. Simulations are run for both models at %0 = 0.1 and % = 100 with
a resolution of Az = 2.5 x 107%. The ion number densities best showcase the waves
of both simulations and Fig. 6.12 shows that there are significant differences between
the two models. Several additional wave structures are seen in the 13-moment model
that are not present in the 5-moment model, which can also be seen in the purely
gas-dynamical solutions. Of additional interest are the differences in the maximum
wave speeds between the two models. It can be seen from the left side of the domain

(x ~ —0.2), for example, that the 13-moment model generates a faster wave speed

for the left rarefaction wave than the 5-moment model. Similarly, the fast shock on
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Figure 6.12: Direct comparison of the ion number densities for the 5 and 13-Moment

models. f—; =0.1

the right (z ~ 0.2) is not present in the 5-moment model results.
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Chapter 7
CONCLUSIONS AND FUTURE WORK

7.1 Concluding Remarks

In this paper, a 13-moment two-fluid plasma model based on a Pearson type-IV dis-
tribution function is developed. The basic qualities of the 13-moment fluid model and
the two-fluid plasma physics model are explored, as well as a review of the Pearson-
IV distribution function and the essential mathematics necessary for the 13-moment
derivation. The 13-moment model is formally derived from moments of the Boltzmann
equation to include Lorentz force and collisional source terms. Eigensystem analy-
sis derives the eigenvalues and eigenvectors of the full three-dimensional 13-moment
plasma model. Finally, a few examples are conducted in one dimension, including the
single-fluid gas dynamic and two-fluid plasma models.

The derivation of the 13-moment model includes several collisional operators that
would drive a system towards equilibrium. In the one dimensional model implemented
here, those terms are neglected for a collisionless plasma. While this assumption is
valid for a variety of plasmas, it does limit the simulation to a specific class of plasmas.
The exclusion of magnetic fields in the simulation also limits the model such that it
can only capture electrostatic physics phenomena. While both of these are fairly
stringent assumptions, the purpose of this model is to build a first foray into using
the thirteen moment model for two-fluid physics and as such it does create a baseline
that can be improved upon.

Further analysis of the simulation shows that there is good agreement between
the 13-moment model electrostatic simulations and those of the 5-moment model

seen in current literature [3, 16]. Differences can still be seen between the waves seen
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in the plasma and gas dynamics models and the 13-moment model clearly captures
more physics. The differences in the two closure schemes are demonstrated in the
single-fluid gas dynamic shock tube, but the electrostatic shock does not venture into
a region where the differences in wave speeds between these two closure schemes is
readily apparent. However, the goal is to understand the differences based on a very
specific set of conditions.

In the end, the 13-moment model successfully demonstrates a two-fluid plasma
solution to an electrostatic shock tube problem. Even without exercising the model
for these extended regions of hyperbolicity it shows fundamental physics not captured
by the 5-moment model. Though these tests are by no means an exhaustive study of
the 13-moment model, they demonstrate that the 13-moment equations can be useful

in solving a two-fluid plasma model.
7.2 Future Work

The potential of the 13-moment two-fluid plasma model is still largely unexplored
at this point. The simulations presented in this paper are of limited application
without further work, especially the limitation to only electrostatic problems. The
first extension of this model should probably include a complete solver for Maxwell’s
equations that will allow for comparisons to an electromagnetic shock tube found as
a classic test case for two-fluid plasma codes. The inclusion of source terms to drive
solutions towards an equilibrium, Maxwellian distribution would also greatly extend
the validity region to include collisional plasmas and is an important step towards
further validating the model.

Currently the simulations are limited to problems that can be solved by the 5-
moment models so that direct comparisons can be made. It would be interesting,
however, to see more simulations such as the strong shock tube that, because of their
limited regions of hyperbolicity, are outside of the capabilities of current models to

resolve. Also, a further exploration of the consequences of choosing a closure scheme
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need to be explored to fully understand each scheme’s limitations.

The eventual goal is to implement this model in three dimensions. For that, an
efficient solver capable of parallel processing will be needed. Towards that end, the
target code for this model is the WARPX (Washington Approximate Riemann Prob-
lem Solver Version X) simulation developed by the Computational Plasma Dynamics
Lab at the University of Washington, led by Dr. Shumlak. The eigenvalues and
eigenvectors calculated in this paper are the first steps required to implement a new
system of equations in this software, and it is expected that the next steps will soon
follow.

Finally, it is likely that the finite volume method presented in this paper will
eventually give way to a higher order scheme like discontinuous Galerkin. The different
wave speeds seen in plasma physics have shown themselves to be difficult to resolve
in a finite volume scheme. Promising research has shown that higher order methods

can resolve these phenomenon accurately and efficiently [19].
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Appendix A
DETAILS OF THE PEARSON-IV DERIVATIONS

A.1 In One Dimension

The non-normalized distribution function in one dimension can be defined as

(:7)\)

—vtan~ (&

e

(nn) _ ,
A T E=yE

A.1.1 Zeroth Moment

Taking the zeroth raw moment (1) with area under the non-normalized distribution

curve (), N
e—utan_l(cg)‘)
apy = | ————mdc A2
Ho / [1 + (C;)\)2] ( )
and letting
- A
=2 & c—aitA
a
1
dé¢ = —dc & de=ade (A.3)
a

and substituting into the zeroth moment yields

efutanfl(é)
afio = a / L] (A.4)
C
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Defining the one dimensional normalization constant (k) as,

I e—Vtanfl(é) s As
= T = om aC. .
| e ()
By definition, the area under the curve of the zeroth moment of a normalized distri-

bution function is 1 (i.e. o = 1). Dividing by the area of the non-normalized function

(a) gives a normalized distribution function as stated in [2, 6].

efl/tan_l(%)

1)
k[ (™

f(Pl) _

A.1.2 First Moment

The first moment is a raw moment of the distribution function and defines the average

or bulk velocity v

1 e—utan’l(L; ) y AT
v = &/CW C. ( . )

Substituting Eq. A.3 as before,

oo o0

1 - e~ Vtan~ (@) s 1 \ e—l/tanfl(c) s
- ) ) i | O

a ¥ e—utan_l(é) 1 3
— - ~—d~ A_

)]

a % efutan_l(é)
= A+ [ 60— _qc
- /ﬁruwwg

—00
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and letting

r=tan"' () & é=tanw (A.9)
1
dr = —dc
14 ¢2
and changing the limits of integration such that r = tan™!(c0) = 5 and r =
tan~!(—o0) = -3,
/2
a e 1
= A+ - t dz. A10
! % / an(z) [1 + tan?(z)]™ cos?(z) ’ (A.10)

—7/2

Using the trigonometry identity - = cos’z,

w/2
. 2(m—1)—1
vo= Ao / sin(x) cos ®) 4o (A.11)
k eve
—7/2
w/2
_ a4 / sin(a:)cosz(m_l)_l(x)dx’
k eve
—7/2

where cos2™~D=1(z) = [cos ()]*™ V7. Integrating by parts [udv = uv — [vdu

and letting

u=e" and dv =sin(z)cos®™ VY (z)dx (A.12)
2(m—1)
du — _Ve_yx — COS—(:E)
2(m—1)

gives the expression

(A.13)
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Transforming back into velocity space results in

oo

a v (1+tan?(¢))  ian-1(e 1 _
= A+ - N U pp——— N P
! % 2(m—1)/(1+tan2(5) ‘ T+t @) (A1)
a v i e—utanfl(é) a v
= A+ - dec =+ o ——K.
+/lc2(m—1) / 1+ (0)4™ ¢ +%2(m—1)%
Therefore, the average or bulk velocity is equal to
av
= S A.15
v=A+ 2 =1 (A.15)

A.1.3 General Moments

The remaining nth moments are central moments taken about the average velocity v

o0

. e—utan_l(cgk)
CY,an<C> = /(C—’U) mdc (A16)
Substituting for v and letting

é:C_)\ & c=ac+ A (A.17)

a

1

dc = adc & de = ade,
~ 3 ~ av . 6—ytan_1(5) ~

app(c) = /(ac—l—)(—)(+ = 1)) T (E)Q]madc (A.18)
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With v = —ﬁ, it is easy to see the beginnings of the recursion relationship
) ) o e_ytarrl(é) 5 Qfly_1 A19
/(C ) W c = a (A.19)
) ~ - e—ytanfl(é) 5 Qfln_o
/(c—v) —[1+ o ¢ = 5

it —Vtanfl(c)
~ n ~ ~\n € ~
ap,(6) = a"tt /(c—v) W&dc (A.20)
= a c—0v)(c—17 ——dcC
J [1+(¢)?]
- W]" e — oy ) g 7 I
- ETENCEE ‘ RO TN

—vtan1(é)
~r~  ~\n—1€ ~
= — ————dc. A21
Letting
f=tan' (¢) & ¢=tand (A.22)
do = dc & dc= ;de

1+ ¢2 cos? 6



and changing the limits of integration such that § = tan™'(co) = %
tan~!(—oco) = —Z, integral @ becomes
/2 )
e’ 1
= tan 0(tand — )" ! do
® / an f(tan ¢ —7) [1+ tan26]™ cos? 6
—7/2
/2
B / sin @ (sin @ — )" ! cos?(m~V 0d9
B cosf cos"1H ev?
—7/2
/2 )
inf — vcosh)"
= / sin&cosr_”9<sm UEOS ) do,
el/
—7/2

with 7 = 2(m — 1) and integrating by parts [udv = fuv — [vdu,

u = ¢

dv = sin(f)cos™ "(6)d6.
To find the differential element du it is necessary to use the product rule:

(f9) = Fg+df=du,
f = (sinf —dcosh)" !,
f = (n—1)(sinf — dcosh)" *(sin 6 + v cos ),
g = ¢,

J = —ve .

93

and 6

(A.23)

(A.24)

(A.25)
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Substituting gives the remaining terms for integration by parts

du = [(n — 1)(sin® — ¥ cos 0)" " *(sin 6 + v cos f)e ™’ (A.26)

—ve " (sinf — v cos 0)”_1] de,

v = /SiH(G)COSTn(Q)dQ.

Integrating v requires substitution, with

u=cos" " () & du=—sinddd (A.27)
giving
urfn+1
= — "y = ———— . A2
M /u " r—n+1 (A.28)
r—n-+1
Ly = O
n—r—1

Substituting and continuing from before,

r—n-+1
= / cos™ " (6) [(n—1)(sin@ — 9 cos )" (cos § + vsinf)e’] df(A.29)

n—r—1
r—n+1
@ = /COS—(? [ve™(sin — v cos0)"'] db, (A.30)
n—r—
sinf — 9 cos)" ! cos" " (H :
@ = Sl sk om0 g4, (A.31)
e n—r—1 X
/2 r—n+1
@=v cos™ "7 (6) o cos" ' f(tan — ©)"1d. (A.32)

—7/2 n—r—1
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Using the substitutions

0 =tan"'(¢) & ¢=tanf (A.33)

w/2 r—n+1
© = / COS—(?(n — 1)(sin® — ¥ cos §)"*(cos 0 + ¥sin f)e "’ dH(A.35)
w/2 n—r-—

= ©+@®,
/2 Gogm (9
® = / COS—()(n —1)(sin @ — v cos 6)"71 cos e 0 dp (A.36)
—xp 1T —1
w/2 -1
= / M cos” () (tan @ — )" 2e " dp,
—appn—r—1
w/2 r—n+1 0
® = / M(n — 1)(sin® — ¥ cos §)" o sin fe 0 df (A.37)
a2 M= —1
T2 Sl 1
= / M tan @ cos” () (tan @ — )" 2e~"0dp.
—xppn—r—1
Using,
0 =tan ' (¢) & ¢=tand (A.38)
1 ~ . 1
v = 1+ 62dc © de= COS29d9
1
cos" () =
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(n—1) /OO €O (1) s
© = — )" dé = A.
n—r—1 700(0 %) (1+e)™ T —1 a1 (A.39)
ﬁ(n _ 1) o s e—utan’l(é) R
_ vnzl) e Ad
O = T /_OOC(C RARNTEET (4.40)

—00

n—r—1

{(5 —0)(é—0)"?
oln — 0 e—ytan_l(é)
= u/ () [ —

oo (1+e&)"

efz/tan’l(é)
(1+e&)™
7} (n —1)
n—r—1

~\N—

s 2efz/tan’1(6) R
dc + 'U(C — U) mdc

[
cC—0 ————, acC
- ivar

@ - ¥ (n_l) Qfhn—1

,{}2 (n — 1) Ofln—2

n—r—1 a®

Recombining,

- (@+®)+@ - B

apl, =

n—r—1 aqv!

(A.41)

Ly, =

an—f—l . (n - 1) ﬁv/,un—Q +
n—r—1 a1

n—r—1 a® n—r—1 a1

+ — :| - a'lj/a/ﬂ'n—l

Simplifying yields the final recursion relationship for the general one dimensional

moments

Hn =

2 e (4o}

(A.44)

This relationship holds for the all moments with the initial starting conditions po = 1

and pp = 0.
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A.1.4 Using Mathematica to Generate Reduced Third and Fourth Moments

The computer algebra system Mathematica was used to carry out the Gaussian elim-

inations for these derivations. Sample code is included here for completeness.

e Solving for r, v, A, and a using the recursion relationship for the generalized

moment equations: u, = r‘i(?nili) ((1+(4)?) aptn—2 — 2%pn—1)

Remove ["Global ‘"]

po =1

pr =0

fto = FullSimplify [% ((1 + (5)2) T — 2%%—1) / An — 2}}
ft3 = FullSimplify “_(?T‘_ll)) < 1+ (g)2 Afly—3 — 2gun,1> /. A{n — 3}

jla = FullSimplify | 2t ( 1+ (9)*) aptn s — 2%;%,1) /. A{n — 4}

que = FullSimplify [’;—}21
Ho

dee = FullSimplify [/’%}
2
e Use Gaussian elimination to solve for r

ans = Eliminate [} == p&&q == que&&d == dee, {a,v, 0}];

Solve[ans, r|
e Use Gaussian elimination to solve for v

ans = Eliminate [0 == p2&&q == que&&d == dee, {a,d,0}];
ans = FullSimplify[Solve[ans, v|[;

ans = Part|ans, 1](* Only concerned with real values of v*)
e Use Gaussian elimination to solve for a

ans = Eliminate [} == p2&&q == que&&d == dee, {v,d}];
ans = FullSimplify[Solve[ans, all;

ans = Part|ans, 2] (* only positive values of a *)
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A.2 In Three Dimensions

The non-normalized three dimensional distribution function then becomes,

fnn_gD _ e—ytan’l(nTAfl(c—)\D

. (A.45)

14+ (c—=MN"A2(c— N

A.2.1 Zeroth Moment

Taking the zeroth, raw moment

71/tan TA 1 (c— /\))
- [ e
R3 1 + ( TA2(c—\)

and letting

F=AT'G-X) & F=Ai+ A\ (A.47)
dé = d(Ac)
= det(A)d

and substituting yields

—zltan
det(A d~. A4
Ao = <o ///Rs 1+ cTc ¢ (A.48)

Using the definition that 1o = 1, the normalization constant in three dimensions (K)

—Vtan n c
K = /// T de (A.49)
—l/tan TA*I(C—)\))
- / /] de.
det ® (14 (e = N A2 (c = N)

is defined as
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The normalized distribution function is

1 e—utan’1<nTA’1(c—>\))

fE3 = - (A.50)

det(A) K 1 4 (¢ = \)T A2 (c — \)

A.2.2  Factorization of normalization constant K

The normalization constant can be factored into multiples of the one dimensional
normalization constant by choosing a ¢, = n’c | é3 orthogonal to n, and ¢’'é¢ =

¢l + 3 + 2. Applying the substitutions

C3 Co L

ég C —\ C1 = Cq, (A51)

1+aa * Jixa

—Vtan n 01)
K = / / / dé (A52)
1+ + 3+
— —Vtanfl(an) ]' ]‘ d~ d~ d~
///e C+3+D" (14 )" e

1+c2+
—Vtan’1<nT61) 1 1
= /eA—m_ldél/—ldé?/WdéB
R (1+¢}) R(1+&)m 2 Je(1+6)
K = Ki(m,v)Ky(m)Ks(m) (A.53)
1

= k(m—1,v)k(m — Y 0)k(m,0),

where lower case k represents normalization constant in one dimension. This step is
important conceptually, as [2| explains that it allows the three-dimensional moment

equations to be represented as extensions of the one-dimensional equations.
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A.2.8 Velocity, First Raw Moment

v o= ///3 cfP¥dc (A.54)
: oV tan~ L(nTA(c=N))
~ det(A K///R 1+ A—Q(C—A)]mdc

and letting

=AY c—)\) & c=Ac+ ) (A.55)
de = d(A?)
= det(A)de

and substituting gives

y = W///R (AG+ ) %Mda (A.56)

—I/tan n 5 —Vtan n c)
= —, ———d¢.
K///R C*K///Ra g

From [2], a coordinate frame is chosen such that ¢; = n”c.

M, = / / /R snl(él—ﬁl) fEae (A.57)
= nl///Rs (& — ) fF3de

o = ///RS ) a9
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S0,

71/tan nTc)
_ 5 A.
a e /// 1T CT —————d¢ (A.59)

71/ tan™ n cl

/ deé L 7 4 ?41 dc
C C ~om aC
Kl}(}« G+t g eyt )"

1 0o e—l/tan 1(nT61)
= — Gi——————dc¢
K, /oo Saveyt

and letting

r=tan'(¢) & ¢é=tanzx (A.60)
1
dr = —dc
14 ¢

and changing the limits of integration such that r = tan™!(c0) = 5 and z =
tan~!(—o00) = —% gives

1 w/2 —vtan~la d

a = —/ tana— — ;U (A.61)
K1) 72 (1+ tan?x)™  cos®z
1 /”/2 sin z cos?m~1 3 g
= — dx.
Kl —n/2 eve

Integrating by parts [udv = § uv — [ vdu, letting

u=e" and dv =sin(z)cos’™ I (z)dx (A.62)
cos?(m=2)(g;)
2(m —2) ’

vx

du = —ve~ V=
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and substituting gives

0 - (A.63)
v 1 /oo e—utan’l(an) " v
= B ——— —_—  —adC| = —
2m—-2) K, J oo 1+ 2(m—2)
Substituting gives
A—)
v=A— (A.64)
2(m — 2)
With the simplification that » = 2(m — 2), the expression becomes
V —
v=\— —An. (A.65)
r

A.2./ Second to Fourth Moments
Second Moment

Beginning with the second moment of the Pearson-IV in 3D,

Mi; = A Aj ///R3(Ek — o) (& — ) f PP e, (A.66)

assume the equation is normalized and rotate the coordinate frame such that ¢; = n’é

iy = / / / (@ — ) (6 - ) f e (A.67)

= /// nknlékélf(m’)dé — 2nknﬂ7k le Pg)dé—l— /// nknlﬁkﬁlf(m)dé
R3 R3 R3

= angng + Bop.
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Multiply both sides by ngn,,

/// nknl(ék — ﬁk)(él — Ijl)f(Ps)dé = ANENENY —|— Bnknlékl. (A68)
R3

Making the summation explicit, on the left side we have

/ / /R 23: 23: nen (& — ) (@ — 1) f PV dé = (4.60)

k=1 l=1

ni(cy —v1)? + 2niny (e1 — v1) (cg — v2) + 13 (ca — v9) 2 + 2nyn3 (¢ — v1) (c3 — v3) . ..

+2n2n3 (02 — UQ) (Cg — Ug) + ng (Cg — ’U3) 2.

Here, the coordinate system is rotated such that the skewness unit vector is purely in
the direction of n; and consequently n, and ng are zero. The random velocities are
chosen such that ¢; is in the direction of n; and that ¢q, ¢ and c3 are orthogonal to

each other. Thus, the average velocity components 15 and v are zero.

/ / /R 3 n3(é, — in)2fF3de. (A.70)

From Eq.2.18 we have the generalization of moments to three dimensions:

o=+ [[[ @ - nyagerraem@l, (A7)
R3

(1+&+E+3)

From here it is easy to see the expression is identical to ug’o. On the right hand side

of the equation, with explicit summation, the resulting expression is

3 3

3 3
aZannlnknl+ﬁZannl5kl =a(n]+nj+n3)>+BnI+n+n3) =a+p
k=1 1=1 k=1 I=1 (A72)
A.72
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With n being a unit vector, combining the right and left hand sides yields
e’ =a+ . (A.73)

Multiplying the normalized second moment by d;,; yields
3 3 3 3 3
[ 3o S0 = 033 955 e (A4
R =1 k=1 I=1 k=1 1=1

with explicit summation. Evaluating yields

///R (61— T1) % + (G2 — B2) * + (€5 — T3) *] fPPdE = a(ni+n3+n3)+B(3). (A.T5)

It is easy to see that this can be expressed in terms of the generalized moments in
three dimensions

Mg’o + Mg’o + MB’Z = o+ 30. (A'76)

Further, MQ’O = ,ug’o, so that
3uy” = a + 36. (A.77)

Solving for a and ( yields @« =0 and 8 = ug’o. Substituting into the second moment

gives
L (%)

M;; = 65 = py° A* = 1

A2, (A.78)

Third Moment

Beginning with the third moment of the Pearson-IV in 3D,

Mijr. = AuAjpArg ///3(51 — ))(6, — ) (¢ — D) f TV de, (A.79)
R«,
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assume the equation is normalized and rotate the coordinate frame such that ¢; = n’¢,

Sy = [[[ e~ w06, - (e, - )5 (A.80)

= /// Ny [€1CpCq — U1TpTq] FEde — /// ”(lnpnqﬁlépéq)fu)g)dé
R3 R3

= amnyng + Bngopg)-

For convenience, nd,, uses the same notation as the symmetrization of a tensor

7, 8],

1
T(ilig‘..ir) = F Z T(ilig...ir,ir‘..igil,etC.‘.)7 (A81)

Permutations

where the i’s represent the indices of a tensor up to order r. This notation allows the
ordered permutations of terms to be grouped together, as can be seen in the expansion
of

3N(10pg) = (M10pq + 101y + Npdgr) - (A.82)

After making the summation explicit, multiplying both sides by n;n,n, yields a left
hand side equal to

///RS zi:i: 23: mngpng (G — 1) (6, — 1) (6q — vg) fFVde. (A.83)

1 p=1 ¢g=1

Here, the coordinate system is rotated such that the skewness unit vector is purely
in the direction of n; and consequently ns and ng are zero. The random velocities
are chosen such that c¢; is in the direction of ny; and that ¢{, ¢ and c3 are orthogonal
to each other. Thus, the average velocity components v and v3 are zero. From the

generalized moment equation in three dimensions,

~ _exp(—varctan(éy))
P — ”cp X d A.84
Hn K///Ra PA+E+E+E “ ( )
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it is obvious that, with n, = 1,

/// ni (6 — )’ P de = g
R3

The right hand side of the equation with explicit summation is equal to

3 3 3 3
a E E E mnpngnpng + g E E NN NN (10pg)
=1 p=1 g=1 =1 p=1 g=1

=a(n]+n3+n3)*+8(nf+n3+n3)>

The combined equation becomes
0,0
ps =a+p.

Multiplying the normalized third moment by 7,0, yields a left hand side
3 3
///Rs DD b — )G — ) (E — ) f I de.

I=1 p=1 g¢=1

As before, setting v, v3, no and ng to zero,

///Rg[cgnl (c1 —v1) + c3ny (ep —v1) +ny (e1 — vy) 3]f(P3)dé_

it is easy to see from the general moment equation that this is equivalent to

00 , 20 | 02
S Y S Al LN

The right hand side with explicit summation is equal to

3 3 3 3

Q Z Z Z MOpgunpng + Z Z Z T0pgN(10pq)

=1 p=1 ¢=1 =1 p=1 g=1

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)
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2 2 N2, Opao 2 2
=« (”1 +ny+ ”3) + 55(”1 +nj + ng).
Combining these equations yields
0,0 2,0 0,2 o
pg T = ot 56 (A.92)

To solve for the constants « and [, it is necessary to relate the moments ug’o and /ﬁ’o

using the recursion relationship

1 v v
. (1 (D)) 1)+ s ).
(A.93)
where
irf =0, (A.94)
p+q 2
Ho (p '(q H = 2k + . ( )
After evaluating, the moments are found to be
20 (r? + v?)
2,0
== A.96
S (5 s G e (4.96)
and
9y 4v(14-§>
M3 = — (A.97)

(=2+7r)(=1+7r)r
It is easy to see from these expressions that /ﬁ’o = u(l)’Q = %,ug’o. Using these relation-

ships, the system of equations for the third moment becomes

s’ =a+ b, (A.98)

5
2@”=a+§ﬁ (A.99)
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Solving these equations for o and [ gives a = —%,ug’o and (= %ug’o. Substituting

back in, the third moment is

1 3
M;j, = MngAilAijkq (—inmpnq + §n(l(5pq)> ) (A.100)
Fourth Moment

Beginning with the fourth moment of the Pearson-IV in 3D,

Mijr = AuAjpArgAus / / / (& — )6 — 6,) (¢, — T,) (¢, — 0,) fF3de,  (A.101)
RB

assume the equation is normalized and rotate the coordinate frame such that ¢; = n’¢,

Mijkl = /// (& — ) (6 — Up) (g — Uy) (G5 — 17s)f(P3)dE (A.102)
R3
- // / ninypngns (6 — 0)(G, — 0,) (6 — 6,) (6 — 0,) f 7P de
R3
= // / MNpNgNs [C1CpCeCs + VU0, Ts] FP3) gz
R3

! / / / nanynnsGity b e / / / nnygnsCicy 00y f 7P de
R3 R3

= annyngng + Bngnpdgs) + v duplgs)-

Again for convenience, ngn,dqs and d(,dq) use the same notation as the symmetriza-

tion of a tensor

1
Tivig.ip) = ] Z Tlivin.i i...iziy sete...) (A.103)

Permutations

After multiplying both sides of the moment equation by n;n,n,ns and making the

summation explicit, the left hand side is equal to

3 3 3

Z Z Z Z ninyngns (¢ — v) (¢, — v,) (cg — vy) (cs — vs) fFEVdE. (A.104)

=1 p=1 g=1 s=1
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Here, the coordinate system is rotated such that the skewness unit vector is purely

in the direction of n; and consequently ny and ng are zero. The random velocities

are chosen such that c; is in the direction of n; and that ¢y, ¢y and c3 are orthogonal

to each other. Thus, the average velocity components v and v3 are zero. From the

generalized moment equation in three dimensions,

1
pa _ G )R
My K///RS(Cl ) 2C3
///3 ni(é — ) fPde = iy
R

The right hand side of the equation with explicit summation is equal to

it can be seen that

exp(—varctan(éy)) .

3 3 3 3
E E E E MMM Y T T M

=1 p=1 g=1 s=1
3 3 3 3
E E E E NN Ns ST (11 0gs)
=1 p=1 g=1 s=1
3 3 3 3

+ Z Z Z Z MUNpTGNs YO (1p0gs)

=1 p=1 g=1 s=1
a+ B +7.

+

The combined equation becomes

Multiplying the normalized fourth moment by n;n,d,s yields a left hand side

3 3 3

Z Z Z Z unydys (e — ) (¢p = vp) (cq = vg) (e5 — ) fFPde

=1 p=1 ¢=1 s=

pa' = at Bt

(1+¢é+6+a)

(A.105)

(A.106)

(A.107)

(A.108)

(A.109)

(A.110)
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As before, setting 1o, v3, Ny and ng to zero yields
///IRB (3 (ci —v1) 2+ 3 (cr —v1) % + (e —v1) ] fPPde. (A.111)
From the generalized moment equation, this is equivalent to
o+ py? 4 g (A.112)

The right hand side with explicit summation is equal to

3 3 3 3
= > Z DD mydgsanimyngn, (A.113)
+Z Zzznlnl’ qsﬂn(lnp qs) (A114)

Combining these equations leads to

4 5
M3,0+M(2),2+M2 _a—i—?ﬁ—i-% (A.115)

Multiplying the equation by d(;,04s) yields a left hand side equal to

3 3 3

Z Z Z Z S(apdqs) (c1 — 1) (cp — vp) (cq — vg) (€5 — ) f(P?’)dé- (A.116)

=1 p=1 g=1 s=1
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As before, setting 14, 3, no and n3 to zero

3 3 3

3
Z Z Z Z 5 +2c5¢3 + ¢ + 265 (c1 — v1) 2 + 263 (c1 — 1) 2 + (1 — ) *] fP)de,

=1 p=1 g=1 s=1

(A.117)
Simplifying from the expression for general moments gives
1o + 2007 + po™ + 2057 + 25% + 11y (A.118)
The right hand side with explicit summation is equal to
3 3 3 3 3 3 3 3
= Z Z Z Z S1p0gsQMNNMs + Z Z Z Z Oip0qs BN nplgsy (A.119)
=1 p=1 g=1 s=1 =1 p=1 g=1 s=1
3 3 3 3
+2.2. 22 0wbuOundas
=1 p=1 g=1 s=1
5
= o+ 56 + 5.
3
Combining these equations gives
5
15 + 287 + gt + 2030 + 205”7 + = a + ?ﬁ + 5. (A.120)

To solve for the unknowns it is first necessary to relate as many moments as possible

using the recursion relationship

1 v v
(1 (2 05
fin = Ty (=D (14 (5) ) it — @ = )+ 9T
(A.121)
where
it =0, (A.122)

pt+q V2
1+ e

it =(p-1g-!]] T2kt (A.123)
k=1
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Evaluation shows the moments to be

00 _ 3(r?+v?)(=2+7)r? + (6 +1r)v?)

i (34 r) (24 r) (Lt (A.124)

02 20 _ (=247t +2r224r)v® + (6 +r)v!
Hao =2 = (=3+7r)(=2+7r)(—=1+7r)r ’ (A.125)
22— ((=2+7)* +0*) (r* +07) (A.126)

(=34 7r)(=2+r)2(=1+r)r?’
s0  3((=247r)40?) (r+0?)
N [ EEoE S Ewarey (A-127)

The relationship between moments is therefore shown to be

prt = 3uy® =345, (A.128)

pe® = pgt =357 (A.129)

Using these expressions, the full system of equations for the fourth moment is shown

to be
0,0
py = a+ B+, (A.130)
1 1 48 by
g#g’o + 5#2’0 +p = a+ 5 T3 (A.131)
4,0 L 4o | 04 L 00 L oo, 00 _ 56
Mo+ 2§M4 + o+ 2§,U4 + 25#4 thpy = at 3 +57. (A132)

Solving these equations for the constants «, 5, and v yields

a = g =y, (A.133)
B o= =2 (u” — s, (A.134)

vo= g’ (A.135)
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Substituting back into the original moment equation yields

Miji = AuAjpArgAls [(Mé’o - N?!O) npngns — 2 (Né’o - M%O) n(l”p5q8) + Mg705(lp5q8)] .
(A.136)

A.2.5 Using Mathematica to Solve the jth Moment of the 3-D Pearson-IV function

Mathematica is used to carry through the indicial notation for this derivation. An
example for the source code used in the derivation of the fourth moment is presented

here for completeness.
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" 4th Moment of the Pearson-IV 3D Equation";
"Starting with the equation:";
"Mipgs=Q NiNpNgNg + B nNpdgs) + ¥ 6(1p8qs) "

dkkkhkkhkkhkhhhkhhhhhhhhkhkhkhkhkhkhkhkhkhhhhrxr ")

" Build Symmetric Part of 4th Rank Tensor ";
"All Possible Combinations:";
P = Permutations[{l, p, q, s}];
Symml = 0; (% n@ngdgs) *)
For[index = 1, index < 25,
{
i = P[[index, 1]1];
j = P[[index, 2]];
k = P[[index, 3]];
h = P[[index, 4]];
dummy = n; n, KroneckerDeltal[]j, k];
Symml = Symml + dummy;
} index++];
Symml = Symml/ (4!); (* nunpdgs) *)

Symm2 = 0; (% 8(1p8qs) *)
For[index = 1, index < 25,
{
i = P[[index, 1]];
j = P[[index, 2]];
k = P[[index, 3]];
h = P[[index, 4]];
dummy = KroneckerDelta[i, h] KroneckerDeltal[j, k];
Symm2 = Symm2 + dummy;
} index++];
Symm2 = Symm2 / (4!); (% 6(1p6qs) *)
"okkkkkkkkkkkkhkhkhkhkkhkhkhkhkkkhkkhkkkhkkkkhkkx
"Multiply both sides by ninpngng";
" NOTE: This is inside the integrand ";
"Explicit Summation";

3 3 3 3
A = ZZZannpnqns (e1-vy1) (cp—vp) (cq—vq) (cs - vs)

1=1p=1gq=1s=1

4 4 3 3 2 2 2 2 3 3 4 4

ny (c1-vy) +4ning (c1-vy)” (Cz-vz) +6nin; (c1-vi)” (c2-vz)“+4nin; (c1-vy) (cz-vz)” +ny (Cp-v2)" +
3 3 2 2 2 2

4nin; (c1-vi1)® (c3-v3) +12ninyn3 (1 -vi)? (c2-vz) (c3-v3) +12nin3ns (c1-vi) (c2-v2)® (c3-vs) +

4n3ns (co-vz)? (c3-vs) +6nind (c1-vi)? (c3-v3)®+12n1npnf (c1-vi) (ca-va) (C3-v3)?+

6“%“% (c2-v2)? (c3-v3)®+dm ni (c1-v1) (C3*V3)3+4n2n§ (c2 - v2) (C3*V3)3+n§ (c3-vs)*
"Simplification Step 1: v, and v3 are both zero.";
B=A/.{v2-50, v3>50}

cinf+d4cicaniny+6cicinini+dc,cdnani+cini+vacinind (cr-vi)+
2 2 2 2 3 3 2 2. 2 2
12cjcsninsng (cp-vy) +12cyc3ninyng (cp-vy) +4c3ning (cp-vy) +6csnin;g (cp-vy)“+
12crcan?nyng (c1-vi)2+6cin?nd (cp-vi)2+4coning (ci-vi) +4csning (c1-vi)d+nf (c1-vi)?
"Simplification Step 2: n, and n3 are both zero.";
F=B/. {n,->0, n3 >0}

nf (c1-vi)*
"From this it is clear that the left side of the eq. is u2'°";

"ninpngnsa ninpngns Explicit Summation:";

3

3 3 3
A = ZZZannpnqnsanlnpnqns

1=1p=1qg=1s=1

8 6 .2 4 4 2 .6 8 6 .2 4 2 2
anj+4anin;+6anin;+4anin,+an;+4an;n3+12anin;ns+

A 5
12an?ninf+4anjni+6aninj+12anfnfni+6aninf+4an?nf+4anini+and



B = Factor[A]
a( 2 2 2y 4
nl+n2+n3)
B/. {n?+n}+n}>1} (+ n is a unit vector )

[

"ninpngngB n(1ny8gs) Explicit Summation:";
3 3 3 3
A = ZZZannpnqn533ynml
1 ,
Bn?+26nfn%+2/jnfné+/§ng+—anng(4nf+4n§)+2/3n‘l’n§+6/3nfn§n§+
4
. 1 1
2/3n2'n§+2/3nfng+2/3n%n§+[3n§+—ann%(4n§+4n§)+—/3n§n§ (4n§+4n§
4 4

B = Factor[A]
B (n%+n%+n%)3
B/. {n§+n§+n§—>1} (* n is a unit vector =)
B
"minpngngy 8(1p6qs) Explicit Summation:";
3 3 3 3
A = ZZZannpnqnaySymmZ
1=1p=1g=1s=1
ynf+27{n§n%+‘(ng+21nfn§+27{n%n§+7{n%
B = Factor[A]
Y (nf+n§+n§)2
B/. {n?+n+n}-1}

Y

"Combining these equations yields:";

"0 ok B oa g

B e T T A

"Multiply the Equation by ninpégs";

" NOTE: This is inside the integrand ";

"Explicit Summation";
3 3 3 3

A = n; np KroneckerDelta[q, s] (c1 -vi1) (cp—vp) (cq—vq) (cs - vs)
1=1p=1q=1s=1

nf (c1-vi)*+2mny (e1-v1)® (e2-ve) +nf (cr-v1)? (cz-v2)®+nd (c1-v1)? (c2-v2)?
nf (c2-v2)*+2n1ns (c1-vi)® (c3-vs) +2nzn3 (c1-vi)? (c2-v2) (C3-v3) +2n1n; (C1-vi) (c2-va2)? (c3-v3) +
2nyn3 (C2-v2)® (c3-vs) +nf (c1-vi)? (c3-v3)?+nf (c1-v1)® (c3-vs)®+2n1n; (C1-vi) (¢-va) (c3-v3)?+

nf (cz-vz)? (e3-v3)?+n3 (ca-vz)? (c3-vs)?+2n1n3 (1 -vy) (c3-vs)®+2nyn;3 (Cz-vz) (c3-vs)®+nj

"Simplification Step 1l: v, and v3; are both zero.";

+2npn; (c1-vy)
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B=A/.{vy>0, v 0}

2 3
cgn§+c§c§n§+2cgC3n2n3+2czc§n2n3+c§c§n§+cgn§+2c§nln2 (cl—v1)+2czc§n;n2 (c1-vy) +

2ciesming (cr-vi) +2c3ning (c1-vi) +cinf (cr-vi)?+cind (cr-vi)?+cind (cr-vi)®+

2czc3nyn; (CL*V1)2+C§D§ (c1-vi)®+2cynin, (c1-vy)®+2c3nn; (CL*V1)3+U12 (c1-v1)*
"Simplification Step 2: n; and n3 are both zero."

F=B/. {n,->0, n3 >0}

"Simplification Step 3: n is a unit vector"
cZn? (e1-vi)?+cdn? (er-vi)2+n? (c1-vi)* /. {n?> 1}

2 2 2 2 4
c; (e1-vi)®+c3 (e1-v1)®+ (c1-v1)
0,2 0,0 4.
;

" This is clearly equal to: u§'° + U'T 4 Uy
"ninydgsa ninpngns Explicit Summation:";

1=1p=1q-1s=

3 3
n; n, KroneckerDelta[q, s] an; npngng
1
anf+3anin?+3aninf+anf+3anini+6anininf+3anin?+3an?n}+3anind+and
B = Factor[A]
213
o <n§ +nZ+ nﬁ)
B/. {n}+n}+n}>1}
o
"ninpdgsB n(1npdgs) Explicit Summation:"
3

= i i i Z n; n, KroneckerDelta[q, s] B Symml

1=1p=1g=1s=1
7 1 B N 1 . N N 7 7
Bni+ —pBn?nZ+Bni+ —pBn? (4nf+4n§)+—/jn; (4n{+4n§>+—/3nin§+—5n;n§+
3 24 24 3 3
1 1 1 1
Bni+ —Bn? (4nf+4n§) + —fn? (4nf+4n§) + —fin? (4n§+4n§) + —fn? (4n§+4n§)
24 24 24 24

B = Factor[A]
4

2 o2
—B(n§+n§+n§>
3

B/. {nf+n§+n§—»1}
4B
3
"ningSqsY 8(1p0qs) Explicit Summation:";
3 3 3 3
Z Z Z Z n; n, KroneckerDelta[q, s] y Symm2
1=1p=1g=1s=1

57(1’1% 57n§ 57{n§
+ +

3 3 3
B = Factor[A]

2y (n+ng s n3)
3 1 2 3



"Combining these equations yields:";
4B 5y

§'° + ug'z + ug'oz a + — + —";
3 3

BT e T T A

"y

"Multiply the Equation by 61p64s";

" NOTE: This is inside the integrand ";
"Explicit Summation";

3 3 3 3

A = Z Z ZKroneckerDelta[l, p] KroneckerDelta[q, s] (c; - V1) (cp - vp) (cq - vq) (cs - Vs)

1-1p=1g=1s=1

(cr-vi)*+2 (c1-vi)? (ca-va)?+ (ca-v2)*+2 (c1-v1)? (c3-v3)?+2 (ca-v2)? (c3-v3)?+ (c3-v3)*

"Simplification Step 1l: v, and v3; are both zero.";
B=A/.{vy->0, v3 >0}
cg+2c§c§+c§+2c§ (cl—vl)z+2c§ (c1-vi)%+ (c1-vy)?

2,2 0,
0

+ gt v 2ud® o+ 2p)?

" This is clearly equal to: ug'o + 2u +

"61p6qs® NiNpngng Explicit Summation:";

3

0,0 4,
Hy "

3 3 3
A = Z Z Z ZKroneckerDelta [1, p] KroneckerDelta[q, s] anj; ny ngng

1-1p-1g-1s-1
anf+2aninf+anf+2aninf+2anin?+ani
B = Factor[A]
a (nf+n§+n§)2
B/. {n§+n§+n§—»1}
a

"61p6gsB N(1NpSgs) Explicit Summation:";
A = Symml x KroneckerDelta[l, p] * KroneckerDelta[q, s];

W

= Expand[A]

1
— KroneckerDelta[l, p] KroneckerDeltal[q, s] Zn, np +
6

1
— KroneckerDelta[l, p] KroneckerDelta[p, s] KroneckerDelta|q,
6

1
— KroneckerDelta[l, p] KroneckerDelta[l, s] KroneckerDelta(q,
6
1
— KroneckerDelta[l, p] KroneckerDelta[p, q] KroneckerDelta(q,
6

1
— KroneckerDelta[l, p] KroneckerDelta[l, gq] KroneckerDelta(q,
6

1
— KroneckerDelta[l, p] ? KroneckerDelta [a, s] ngns
B 1

s] nyng+

s] np ng +

s] nyng+

s] np ng +

117
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e 3535

1=1p=1g=1s=1

Bn?+BnZ+2R —ni+—n§ +BnZ+2p —ni+—n§ +2 3 —n§+—n§\
1 2 3
6 6 6 6 6 6 )

B = Factor[A]
5

gﬁ(n§+n§+n§>

B/. {n"{+n§+n§—»1}

5B
3



"61p6qs¥ O (1p0qs) Explicit Summation:";

3 3
A = ZZ KroneckerDelta[l, p] KroneckerDelta[q, s] ¥y Symm2

"Combining these equations yields:";

0,0 58

‘+2u§’°+2/,1g’2+,_1‘l =a+ — + 5 y";
3

4,0 2,2 o,
"ot 4+ 2Hg"T + Ko

BT T A

"The combined system of equations is:"

80 aw B ey
4B 5y
w20, ug,z . ug,u= a + . ",
3 3
4,0 2,2 0,4 2,0 0,2 0,0 5B
"Uo'T 4+ 2up"T 4 po'T o+ 2u37 o+ 2u"° o+ py = a o+ ? + 5 y";

B R T L T T A

"Using the Recursion Relation, Find an Expression for uﬂ"‘"

M1 =0;
P+q v2
Tle——os
(2-2 k+x)
Lo =FullSimplify[(p-1) 1 (g-1) 1t ni /. {p=0, q-»O}];
i l-2k+r
1 v v
b= (-2 (1+(2)*2) ba- @ m-1) vpr@) Zitma) /
l-n-p-g+r r r
1 v v
up = ((n—l) (1+[—]"2)un-2-(2 (n—1)+p+q)—u.,.1)/
l-n-p-g+r r r
1 v v
us = ((n—l) (1+[—]"2)un-2-(2 (n—1)+p+q)—u.,.1)/
l-n-p-g+r r r
1 v v
e = (-1 (14 (2)*2) ba- @ (m-1) vpe@) — i) /
l-n-p-g+r r r
FullSimplify[u,]

3 (r2+v?) ((-2+71) £+ (6+ 1) v?)

i

(-3+r) (-2+1r) (-1+1x) *

., uo,o B 3(r2+v2) ((—2+r) r? 4+ (6+1) vz) ..
4 = ;

(-3+1r) (-2+r) (-1+1x) r*

"Using the Recursion Relation, Find an Expression for ug'2 "
ug=0;
2

- E
2 (2-2k+r)2
Mo = Fullsimplify[(p-1) 1! (g-1) 11 [ | ————— /. {p»0, q=2}];
k1 1-2k+r
1 v v
e — ((n—l) [1+ [—]Az] taz - (2 (n-1) +p+q) —H:n) /.
l-n-p-g+r r r
1 v v
up s ——— [(n—l) [1+ [—]Az] tnz - (2 (n-1) +p+q) —um) /.
l-n-p-g+r r r

.{gq>0,p>0,n->1};

.{gq»0, p>0, n-> 2};

.{gq»0, p>0, n- 3};

.{gq>0, p>0, n>4};

{gd-2,p->0,n-1};

{gd-2,p->0, n->2};
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FullSimplify[uz]

(-2+r)rf+2r? (2+r)vi+ (6+r) vt

(-3+r) (-2+r) (-1+r) r*

(-2+x)r?+2r2 (2+1r) v?+ (6+1) v?

(-3+1r) (-2+1r) (-1+1r) r?

"Using the Recursion Relation, Find an Expression for ug'z ",

po1=0;
P+q v?
2 (2-2k+r)?
do = FullSimplify[(p—l) ENCEEETRN| /. (P2, q—>2)];
1-2k+r

k=1
FullSimplify[uo]

<(*2+r)z+v2) <r2+v2)

(=3+1) (-2+1r)? (-1+r) r?

(—2+1:)2+v2 r? +v?
2,2 "

"R o
(-3+r) (-2+xr)2 (-1+1x) 2

"Using the Recursion Relation, Find an Expression for ug'o"

Mg =0;
P+q v?
2 (2-2 k+1)2
o =Fullsimplify[(p—1) @y [[——— /. (p4, q—»O)];
1-2k+r

k=1
FullSimplify[uo]

3 <(72+r)2+v2) (r2+v2)

(-3+1) (-2+1r)? (-1+1r) r?

40 3((—2+r)2+v2) (r2+v2) .

"o o=
(-3+xr) (-2+1r)2 (-1+1) 2

B L T T T

"List of All Moments:"

3 ((—2+r)2+v2) (r2+v2)

(-3+1) (-2+1)? (-1+1) 2?

((—2+r)2+v2) (r2+v2)

o2 "
(-3+1) (-2+1r)% (-1+1) r?
Vo2 2,0 (-2+xr) r*+2r2 (2+r) v¥+ (6+ 1) v*
Mp'" = My =

(-3+1r) (-2+r) (-1+1x) r*

3 (r2+v2) ((-2*:) r?+ (6+1r) vz)

(-3+1r) (-2+1r) (-1+r) !



3 (r2+v2) ((—2+r) r?2+ (6+1r) v2)
FullSimplify [

(-2+r)r*+21r? (2+1x) v?+ (6+1) v?

R e T T

"Relations Between Moments:"

W00 = 307 o 320
4,0 0,4 2,2
" Mg = Hy = 3up’ " "

R L T L

"The combined system of equations is:"

0O s B

1 1 45 sy

n—p® e o % a s — v —;

3 3 3 3
1 1 5B

"ug® v 2-uy v ougt e 2—ug % 2—uf % 4 U0 = a e — 4 5 ¥
3 3 3

Mkkkkhhhkhhhhhhhhhhhhhhkhhhkhkhkhkhhhkhkhhhkhhhhrdrsx";

" Solving this system of equations : ";
ko= g’y o= ot

4 5
(1/3)x+ (1/3)x+x ==a +—B +—y &&
3 3

5
y+2(1/3)y+y+2(1/3)x+2(1/3)x+x==a+ —B+5y
3

e, B, W

FullSimplify[ans]
({a»-x+y, B>2(x-y), ¥y >VY}}
"

This gives: ";

ma = pd 00
"B = -2(ug®- ug)";

4,0 4.
o ;

"y =u

(-3+r) (-2+1r) (-1+1x) r* ]/ ( (-3+r) (-2+1) (-1+1r) r*
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Appendix B

DETAILS OF THE SOLUTION TO HYPERBOLIC
EQUATIONS IN 3D

B.1 Converting to Primitive Equations (Mathematica)

Mathematica is used to convert from conservative to primitive equations in indicial

notation. The source code used is presented here.
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Derivation of Primitive Equations :

1 st Equation :
As a conservative equation :

0:p+ 0y (vip) =0

(1)

CEql = 8.p[t, x] + 0y (p[t, x] vi[t, x]) = 0;

PEql = cEql /. {
vi[t, x] » vi,
PN, x] 5 OV,
plt, x] > p,
(vs) @M, x] 5 (vi) O,
PO [E, x] » p™O

}

(0,1)
v p!

o (vy) O 40

Giving the primitive equation :

Orp+pP Oy (Vi) +VviOx p=0

2 nd Equation :
As a conservative equation :
Oc (ovy) + 0y, (Ps, 3 +pov; vs) = A

Substitute p©i4 = Pjj
CEQ2L = 8 (p[t, x] vilt, x]) + 0 (o[t
CEq2R = A;;
pEg2Stepl = cEq2L /. {
vilt, x] » v,
P L, x] 5 P,
plt, x]1 » p,
(vi) OV e, x] 5 (vi) O,
PO t, x] 5 p*?,
8;,5[t, x] » €5,
(vi) B9 [e, x] 5 (vi) @9,
(0,1) (0,1)
(vj) [t, x] » (vj)
vilt, x] » vy,
(0,1) (0,1)
(es,3) [t, x] > (0,3)

}

’

(3)

, x1 0,50t x1+plt, x] vilt, x] vs[t, x]);

PEq2Step2 = Collect [pEq2Stepl, vi] /. {v;0 " +p (vy) OB, p0 0};

pPE32Step3 = pEg2Step2 == cEq2R

PEQ2 = Expand[pEqg2Step2 /p] = cEq2R/p

0,1 (0,1) (0,1) (0,1) (L0
vivyp Ot vey, 0 v ovy (vi) Y v oy (vy) +p (©1,5) +vi O s p (vy) 0

), 1) (0,1)
0:,50 % o vy (vi) @M p (6,5)

0:,5 0000

+vj (Vi) 0. 1) 4 (@)”]) o,

o

Giving the primitive equation (dividing by p) :
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2| PrimitveDerg/atfon.nb
i5 As
Oy, P+ V5 Oy, (Vi) + O, (01,5) +0c (vi) = o

3 rd Equation :
As a conservative equation :

Oc (Pi] + PV v]) + Oy, (Dvl ViV +3 Vs P]k)) =Yi5s- V- by
Substitute p @i = Py

CEq3L = 0O (p[t, x] €;,5[t, x] +p[t, x] vi[t, x] vi[t, x]) + Oy (p [t, x] vilt, x] v5[t, x] vi[t, x] +
vi[t, x] p[t, x] ©5,x[t, x] +v3[t, x] p[t, x] ©; x[t, x] + v [t, x] p[t, x] ©; 5[t, x])i
cEqQ3R =
i, 5 -
(mese) 5

pEg3Stepl = cEq3L /. {
vi[t, x] > v;,
PO [t, x] » pP),
plt, x]1 - p,
(v) OD I, x] > (vi) OF,
P&t x] 5 o0,
;, 5[t, x] » €; 5,
(vi) @O, x] > (vs) &0,
(v3) O e %1 () O,
vy [t, x] » vy,
(01,5) M rt, x1 - (es,5) ",
vi[t, x] » vx,
(vi) @D [E, x] > (v) @Y,
0; x[t, x] » ©; x,
(01,5) @ 1t, x1 » (es,5) ",
(Vj) (1,0) [t, x] -> (Vj) (1,0)
(01,%) OV [t, x] > (05,) Y,
05,k [t, x] » 05k,
(020 ™
}i
pPEg3Step2 = Collect [qu3Step1, ei,j] /. {vk PO o (wy) OV 4 o0 0};
PEg3Step3 = Collect [qu3Step2, Vi vj] /. {Vk 00D 4o (vi) O 4 0 0};
pPEg3Step4 = Collect [qu3Step3 , vj] /. {ei,k PO 4 pvy (vi) OV 4 p (84,x) O +p (vyi) O o Ai};

[t, x] » (Gj,k) ©n

pPEq3Step5 = Collect [pEq3Step4, vi ] /. {ej,k oY 4 oy (vj) .1 +p (ej,k) b, P (vj) o, )Lj};
PEQ3Step6 = pEQ3Step5 - (V5 As + Vi A3) = CEQ3R - (V3 As + Vi A3)

005,% (vi) @D v poy (vi) " v ok (01,5) O w0 (05,5) T = cvy A - vi Ay v us g - (hag) Y

PEqQ3 = Expand[ (qu3step5 - (vj Ay + V5 Aj)) /p] = (cEq3R - (v:-I A + V5 Aj)) /p

(0,1)
—Vi AL -V A+, g - (hljk)

05,k (vi) O v oy (v3) O v (05,5) O+ (0s,5) T =

o

Giving the primitive equation (dividing by p) :

Ui,3- V5 AL - Vi Ay - O, (hljk>

@5k Ox, (Vi) +Oix Ox, (V) + Vi O, (15) + O O, (015) = s

4 th Equation :

As a conservative equation (with the source term containing V - (Aijkm) s I V -(vj) and hy;; V -(vk)) :
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Oc (,ovl V5 Vi + 3V Py +hi]k> + Ox, (p Vi V4 Vg Vn+ 6 V(3 Vi Py +4 v hjkm) -hyy V- (v]> -h
Yijx =V - (Aijkm) -Nygni V - (VJ> “huiy Voo (Vi)

nig Voo (V) =

CEQ4L = O (o[t, x] vilt, x] v5[t, x] vi[t, x] +
(oI, %1 vilt, x] @5,x[t, x] + p[t, x] vi[t, x] @;,5[t, x] +pl[t, x] vi[t, X] O,:[t, x]) + hiz[t, x]) +
Ox (p[t, x] vi[t, x] v [t, x] vx[t, x] vu[t, x] + (p[t, x] vi[t, x] v [t, x] &,nlt, x] +
plt, x] vi[t, x] v [t, x] ej,m[t, x] +p[t, x] v [t, x] vj [t, x] ©; n[t, x] +p[t, x] vi[t, x] vg[t, x] ej,k[t, x] +
plt, x] vn[t, x] v5[t, x] €, i[t, x] +p[t, x] vi[t, x] vn[t, x] ©; 5[t, x]) +
(vilt, x] hsxm[t, X] +Valt, x] hig[t, x] + vi[t, x] hnis[t, x] +v3[t, X] hms [£, x])) -
Bins [£, %] 0 (v5[t, x1) -hnis[t, x] Ox (Vi [t, x1);
CEQ4R = ¥isk - himi[t, X] Oy (v5[t, X]) - hnis[t, x] Ox (vk[t, x]) - Ox (Bssmlt, x1) /. {Bms[t, X] > hniy,
Bt [, %] = him,  (vi) @D [E, x] » (vi) OV, (vj)(n,l) [t, x] -» (vj)(ﬂ,l), (Aijkm) (0,1) [t, x] -» (Aijk.m) (0,1)};
pEg4Stepl = cEqg4L /. {
Zt"[tl’ [)::] x]v:pw'“,
plt, x] » p,
(vi) OB e, x] > (vi) P,
PO, x] 5 o0,
0;,5[t, x] » @, 5,
(vi) T e, x] > (vi) VO,
(vj)(u'l) [t, x] » (vj) (0'1),
vj[t, x] - Vi,
(ei,j) © [t, x] » (ei,j) (0'1),
vk [t, x] » vy,
(vi) @D e, x] > (vi) O,
0;,x[t, x] » €k,
(e4,3) GO, x] - (e1,3) @
(vj) @0 [t, x] -> (vj) (I'D),
(01,%) OV [t, x] > (85,x) 0P,
eg,k[tzoi]) - 03,k
(85,) £, x1 > (@5,x)

hjkn[t, x] > hjkm,

(0,1)
’

Valt, x] > Vn,

i m[t, X] 5 i m,
Gj,m[t, x] > ©5,m,
Ok, m[t, X] » O m,
O,i[t, x] » O,

(vi) T e, x] > (v) V0,
(va) OV [t, x] > (va) @D,
(81,m) V[, x] > (&,a) O,
hise[t, x] » his,

(hijk) © [t, x] » (hijk)
(8x,5) OV [t, x] > (8,5) Y,
(8x,:) MO [t, x] > (8,:) M,
(85,x) V" 1t, x1 > (e5,6) ™,
(hask) G0 7e, x] - (hase) @0,
(Bens) © D[t %] > (hyns) OV,
(81,m) @V [, x] > (85,n) O,

(0,1)
’
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a4

PrimitveDer(mg.giyr.(ﬁbl) [t, x] > (hmij) e
0,1 0,1
(05,m) TV It, x1 > (65,4) @Y,
0,1 0,1
(hsin) © 7 18, %] 5 (hgem) @7
PEg4Step2 = Collect[qu4Stepl, Vi vy vk] /. {vmp(o'l) +p (V) 0D 4 0 0};
PEg4Step3 = Collect [qu4Step2, Vi Gi,j] /. {v,.\p(o'l) +p (Vn) 01 4 o0 O};
pEg4Step4 = Collect [qu4Step3, vi ej,k] /. {v,,,p(‘"” +p (V) O 4 0 0};
PEQ4Step5 = Collect [qu4Step4, vy ek,i] /. {vmp‘o'l) +0 (V) OV 4 o0 0};
PEq4Step6 = Collect [pEq4Step5, vivi] /. {8:,mp® Y +pva (vi) @D +p (81,0) @Y +p (vi) VP 5 N}
pEg4Step7 = Collect [pEq4Step6, v; vi] /. {Gj,mpm'“ + P Vn (vj) D s (ej,m) D L s (vj) o, )Lj};
pEg4Step8 = Collect [qu4Step7, Vi vj] /. {Gk,mpm'“ + oV (Vi) OV 4 p (8k,m) OV +p (vi) B0 5 )Lk};
PEg4Step9 = Collect [pEqg4Step8, v¢] /.
0,1
{(hmij) .1 +PO5,m (Vi) .1 +P0 05 (vj)
PEg4Stepl0 = Collect [pEg4Step9, vi] /.
0,1 0,1 0,1 1,0
{(hjkm) o +P Ok,m (Vj)( ! +005,m (Vi) OV 4 pvy (ej,k)( ) +p (ej,k) a0, -V Ak - Vi Aj + ‘l’k,j}?
pPEqg4Stepll = Collect [qu4Step10, vy ] /.

(0,1) (1,0)

+P Vpy (ei,j)“"” +p (ei,j) S -V A - Vi A +llfi,j};

{(hkmi) 1) 4 P Ox,m (Vi) 1 P Oi,m (Vk) ©D 4 pvy (O, 1) OB 4 p (0k,1) T o> —ve Ay -V A+ ll’i,k}?
PEq4Stepl2 = Collect [pEq4Stepll, €5,] /. {pva (vi) @D 4o (vi) ¥ 5 X -0:,np ™Y - p (85,2) OV}
PEg4Stepl3 = Collect [pEgq4Stepl2, ©y,:] /. {p Vi (vj) @, P (vj) @, A5 -084,m pM _p (ej,m) (0'1)};
PEg4Stepl4 = Collect [qu4Step13, Gi,j] /. {D Vo (vi) @Y 40 (vi) PO 5 X -0k, n 0O - p (8k,m) (°'1)};
pEgStepl5 = Expand[qu4Step14 - (—vj VA = Vi Vi Ay = Vi Vi A+ Ak O3, 5 + A3 O3, + A3 O 5 + Vie P, 5 + V3 ¥y e + Vs zl’k,j) ==

cEq4R - (-vj VA Vi Ve A3 = Vi Vi A + Ak @3, 5+ A3 O3, + A5 0,5 + Vi ¥, j + V5 ¥ x + Vi ll’k,j)]

o1 : (0,1)
-0i,m 05,k ploh - 04,m 0k, 1 pOy - 05,5 ek,mpw'l) + Vn (hljk)\ +

(0,1) -

By (Vi) O 4 hige (v) @ - 0056 (05,0) (O -0 0y, 5 (0,n) - 0045 (O,n) @+ (hys

(0,1)
Yisk + V5 Vi As + Vi Vie A3+ Vi V5 A - Ak @x,5 = As @5, = A3 O, — Vi U, 5 = V5 Ui,k - Vi Y, 5 — hins (V5) = hmis (Vi) O = (Bi5km)

)u,o'

Which gives a primitive equation of :

=0, 03,x 0y, 0~ 03,1 O, 1 Oy 0~ 01,5 O, O, P+ Vi O, (Nigic) + Dijym O, (Vi) + D O, (Vi) —
005, Ox, (01,n) -0 O, ; Ox, (®],m) -0 0;,40x, (Ox,n) + 0t (hljk> = Yijk V4 Vi Af + Vi Ve Ay + Vi Vg Ay -
A 1,5 = A1 O3, = A3 O, 1 = Vi ¥y, 4 - Vi Ui,k = Vi ¥k, 5 = Dini Ox (Vj) = hnij Ox, (Vk) - Ox (Aijkm)

Now, the trace of the 4 th equation must be taken :

j > kand m- j

pEg4Stepl6 = Expand[qu4Step14 - (—Vj Vi Ai Vi Vi A3 = Vi Vi A+ A O3, 5+ A3 O3,k + A3 O 5 + Vi ¥ 5 + V3 s x + Vs ’l’k,j) ] /.
{j -k, hisc > hixe, Bjgm = hkkm} /. {m—» 3, Bgkm 2 29q5, hiw > 2 q;}?
PEg4Stepl7 = Expand[cEq4R - (-vj VAL = ViV Aj = Vi Vi A + Ak O5, 5 + A1 Oj, 5+ A3 Ok 5 + Vie ¥ 5 + Vi ¥i x + Vi t[/k'j) ] /.
{j -k, hijx = hixk, Bjkm 2 hgm, Dnig 2 Dkmis Aijm 2 Dikkms Yijx = ‘Iikk} /. {m-> 3/ hgmi » hije, Askkm > Rij },'
PEg4 = Expand[pEq4Stepl6 / 2 == pEq4Stepl7 /2] /. {©;,x » Oy, i}

1

(0,1) * (0,1) * (0,1) (0,1 (0,1) (0,1) (0,1)
-0k, 1 Ok, 300 *E@A,J@k,kﬂ" +;VJ (2ai) 7wy (vi) T+ (VJ‘) ’ED(”)k,k (@l,J) ) +

-0 0, (®k,J

Yikk 1
N

2 2

(2q) M =

N e

VE X+ Vs Ve A= A O s = — A5 Oy = Vi Uik - — Vs U - - hige (vie) P
2 2

Giving the final primitive equation :

1
=Oxi Oy Ox, 0 - Eeij Okk Ox;, P+ V5 Ox, (Qi) + 95 Ox

1
; S (Vi) + i Ox; (v5) - p 0 Ok Ox, (015) = P Ors O, (Bky) +
Yikk 1 5 1 1 1
Ot (i) = 7 + 2 Vi Ai + Vi Vi A = Ag s - 2 As Oxk = Vi Yk - ;Vi Uik = 2 Ox, (Rij) = hijx Ox, (Vi)
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B.2 Derivation of Eigensystem and Jacobian Matrices (Mathematica)

Derivation of Ap Matrix :

Remove["Global  %"];
LHS = List[];
RHS = List[];

Remove:rmnsm : There are no symbols matching "Global*s". >

Primitive Equation 1 :
Vi Ocp+ 00k (Vi) +0x, p=0

EqILl = v; pOO% 4 p (vi) @M 4 p 0
EqlR = 0;

Sumoni:

EqlL = Expand[quLl /. {
vi o@D 5 (v O sy, o0 sy, p@ ),
() O 5 () O 4 (wy) P s (vy) D)

Hi

Eql = EqlL = EqlR

(0,y) (0,2

(02) 4y, p ¥ 4 p (vy) av,p

v 0 40 (vx) Vap (vy) O 4 p 0 =0

LHS = Append[LHS, EqlL];
RHS = Append[RHS, EqlR];

Primitive Equations 2- 4 :

Oi5 Ai
Ou, 0+ V3 Oy, (Vi) + O, (05,5) +0: (vs) = —
o ’ o
. . p(0,3)
8i3p7 (0,3) (0,3) (1,0)
EQ2L1 = ——— +v5 (vy) 7+ (ei,j) + (vy) Y
p
Ai
Eq2R2 = —;
P

First, sumonj :

Eq2L2 = Expand[EqZLl /. {
01,500 5 (85,00 +05,, 0O +6;,p0 ),
vy (vi) O o (v (v) OF by (vi) O vy (vy) ©P),
(ei,j) (0,3) N ((ei’x) 0,%) (ei’y) 0,y) +(84,2) (D,z))

H

@;,x Dm,x} ®¢,y p(b‘,yl ®1,z D{O,z)

+ vy (Vy) (0,%) 4 (©1,x) (0,%) +vy (Vi) (0,y) 4 <@;'y) (0,y) N
P o &

Now, sum on i (for 3 separate equations) :

+ v, (vi) (97 4 (6,

) (02)

+ (Vi

) (1,0)
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= Primitive Equation 2 with (i=x):

XEq2L = Eq2L2 /. {i > x} /. {ey,x -
xEq2R = Eq2R2 /. {i - x}

Ox,y: Bx,z = Oz, Oy > Oy}

o, D(o,w ‘ Oy, y D'O,y‘» ) ) e,, p(C,z)
S b (V) O 4 (0,) O $uy () O (00,,) O e Ty () O (0,0) O () O
o o o
Ax
o
LHS = Append[LHS, xEq2L];
RHS = Append[RHS, xEq2R];
= Primitive Equation 3 with (i=y):
YEQ3L = EQ2L2 /. {i > y} /. {8y,x > Oxy, Oxz > Oz,x, O,y > Oy}
YEgQ3R = Eq2R2 /. {i » y}
0y,y 0% 8y, 00 8,,, 002 .
’ 0, 0, T (0, (0,y) ’ (0,2) 0, (1,0)
—_— + Vg (vy)L ) + (@X,y>( oy +Vy (vy) v) + (®y.y) LEa +V, (v ) ‘ <®y,2)( 2y ( )
o o o
)\Y
o
LHS = Append[LHS, yEq3L];
RHS = Append[RHS, yEqQ3R];
= Primitive Equation 4 with (i=2):
ZEQAL = EQ2L2 /. {i - z} /. {8y« > Oxy, Oxz > Oz x, 02y > Oy}
zZEq4R = EQ2R2 /. {i -» z}
0,x 0% 0y, p 0¥ 0,y 0,9y Oz p(0® ) )
Vi (V) O 4 (0,,5) O vy (va) OV s+ (0y,.) T vy (vo) )+ (0,,0) O (vy) (2O
o o o
Az
o

LHS = Append[LHS, zEq4L];
RHS = Append[RHS, zEQ4R];

Primitive Equations 5- 10 :

@5 O, (Vi) +Osy Oy, (V5) + 7y Oy, (015) + 0.0y, (015) =

(0, k)
EQ3L1 = 05,x (vi) % + 05,5 (v5)

—V5 A - vi Ay + ¥ 5 - (hisk)

l//i.j -

Vi Ay = Vi A4 = Oy, (hi]k)

+vi (04,5) oy (es,5) o,

(0, k)

Eq3R1 =
I

First sumon k :

]



Eq3L2 = Expand[EqBLl /. {
85,1 (vi) O 5 (05, (vi) ©F w05,y (vi) @Y 405, (vi) @),
0: x (vj) (0,%) N (91,:( (vj) (0,x) +05y (vj) 0,y) +0;, (vj) (0.1)) ,
Vi (81,3) O 5 (v (81,5) O 4 vy (05,5) 7 v, (04,5) )
}] /. {e,,x = Ox,ys Ox,z > Oz,%, O,y > ey,z}
Eq3R2 = Expand[Eq3R1 /. {
(mese) % > ((Base) @+ (m0sr) O (nc5e) )
} 7 {8vx > ©xys O,z Ozx, 02y 6y}

05,0 (vi) O+ 0r, (v) T w vy (01,5) O w0y, (vi) 7 4
01,y (VJ> ) *Vy (91,1) o +05,2 (vi) O vey,, (VJ) O, (91,]') sy (@1,:> oo
v A - )] w": (hljx) (0,x%) (hi_y) (0,y) <h7“) (0,2)
- - +

P P p P

P P

Now, sum on i and j (for 6 equations) :

= Primitive Equation 5 with (i=x,j=x):

xxXEq5L = EqQ3L2 /. {i-> x, jJ->x} /. {ey,x = Ox,y, Ox,z > Oz,x, 07,y > ey,,}
XXEQ5R = EQ3R2 /. {i > %X, 3> X, hijx > hwa, hijy > ey, hisz > hye }
2 0y, x

(Vi) O vy (By,) O 420,y (Vi) OV w vy (04,0) (U 420, (Vi) U 4 vy (04,0) (07 4 (Oy,0) MO

(0,y)
2V A Uex o (oo % (hay)
+

P p p

(hyxz) (0,2)

P P
LHS = Append[LHS, xxEq5L];
RHS = Append[RHS, xxEq5R];

= Primitive Equation 6 with (i=x,j=y):

xyEg6L =
XyEq6R =

Oy (Vi) ) 4 @y (v)) (0,%) vy (ex,y) (0,%)

EQ3L2 /. {i— %, 3y} /. {8y,x > Oxys Oxz > Oz x, O,y > Oy,2}
EQ3R2 /. {i > %X, 3> ¥, hijx > huyx, hijy > huyy, hijz > hyye }

+0y,y (vy) (0¥ 4

Os,y ( y) 0,vy) + vy (exr” (0,v) + 8y, (vy) (0,2) + O, ( y) (0,2) v, <®x,y) (0,2) " (®le> (1,0)

Ve e vy Uy (Bage) U () O () 07
.

P P p P P P

LHS = Append[LHS, xyEq6L];
RHS = Append[RHS, xyEQ6R];

= Primitive Equation 7 with (i=y,j=vy):

YYEQ7L =
YYEqQTR =

204,y (vy) (0r%) + Vy (G)y, )(O,x,\

EQ3L2 /. {i-y, 3o¥} /. {8y,x> Oxy, O,z > Oz, 62,y > Oy .}
Eq3R2 /. {i ¥, 3= ¥, hije > hyp, hisy > hyyy, hiye > hYY’}

+280y,y (vy) 00y +Vy (G)m) ), 20y,, (vy) 0z | Vg (@Y,X) ), (ey,y) .0

+ -

2vy Ay Uy,y (hy)x) (0,%) (hyyy) (0,y) (hyy7) (0,2)

P p P P P

LHS = Append[LHS, yyEq7L];
RHS = Append[RHS, yyEq7R];

129
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= Primitive Equation 8 with (i=y,j=2):

yzEQ8L = EqQ3L2 /. {i-y, 32} /. {8y,x > Oxy, Oxz> Ozx, 8,y > 0Oy,:}
yzEq8R = Eq3R2 /. {i =2y, 3= 2, hijx = hyzx, hijy > hyyy, hij, - hyﬂ}

(0,v)

‘>(O,x‘/ +0y,, (vy) +

0 x (v} )(U,x)

+Oy,y (V2) (005 4y, (G)y,z

0,y)

O,y (va) 7 vy (0y,) T wen,. (vy) T v ey,n (va) O s v, (0y,.) T 4 (oy,.) 7

Vi dy  Vy Az Uy,z <hyzx) (002 <hyzy) (O (hyzz) (0,2)
+

P p P P P p

LHS = Append[LHS, yzEq8L];
RHS = Append[RHS, yzEg8R];
= Primitive Equation 9 with (i=2,j=2):

zzEqQ9L = EqQ3L2 /. {i-z, j-z} /. {Gy,x = Ox,y, Ox,z > Oz,x, O,y > 8%!}
zzEQIR = EQ3R2 /. {i >z, 3= 2, Bijx > hzzx, hijy > Buzy, hije > huze }

20, (Vo) 9% 4 vy (0,,5) % 420y, (vo) OV 4y, (0,,0) OV +20,,, (v.) @ 4, (0,,.) 07 4 (0,,,) Y

0,x) (0,y)
2V A Wan (Mag) 0% (hagy) (hzzz) O

P P P P P

LHS = Append[LHS, zzEqQ9L];
RHS = Append[RHS, zzEQ9R];

= Primitive Equation 10 with (i=2,j=x):

ZXEQIL = EQ3L2 /. {i >z, J>x} /. {8y,x> Ouy, Ox:z > 0:x, 6,y 8y}
ZXEQOR = EQ3R2 /. {i >z, 3= X, hijx > Due, Bijy > Bay, hijz > huye }

Ox (Vi) O 40, (v) O e vy (04,0) O v ey, (vi) OV 4

Ox,y (v2) O 4wy (0,0) OV 40,5 (Vi) U 40,5 (v2) ) 4 vy (8g,0) (OF) 4 (0g,5) 10
(0,%) h (o) (0,2)
Vil Vads Uae (o) 0% (hay) (Nzz) 77
R - L - -
o P P P P P

LHS = Append[LHS, zxEq9L];
RHS = Append[RHS, zxEq9R];

Primitive Equations 11 -13:

1 1
~ O Oy Ox, P - 5 015 Oxx Ox; 0+ V5 Ox; ( Qi) +dj Ox, (Vi) + s Oy (Vj) - Epgkk Ox, (®ij) — P O O, (@kj) + Oc (qi) =
Yikk 1, 1 1
2 + Evkki+vivkzk’)tk Oks - 5)\1 Okk = Vk ¥ix - EVi Uk - E@x] (le) - higx Ox, (Vi)

Eq4Ll =
(0,3) 1 (0,3 (0,3 (0,3) ©3 L (0,3) (0,3) (1,0
-O,i Ok, 307 - ;ei,jek,kp rvy (qi) Y vgy (ve) UV v aqs (Vj) - Epek,k (ei,j) - PO, (ek,j) + (aqi)

Yie 1 2 1 1 1 (0,3) (0,9
Eq4R1 = - + Y Vic Ai + Vi Vie A = Ak O, i - Py As Ok, x = Vi ¥i,x - ;vi Ui, - Py (Rs5) -hig (vi) ©7;

First, sumon k :
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Eq4L2 = Expand[Eq4L1 /. {
O,i Ok, 5 > (9x,i Oy, 5 +0y,i Oy, 5+0z; ez,j) ’
O,k > (Ox,x + Oy,y +0z,2),
Oy, i (ek'j) ©.3 (ex'i (ex’j) (0,3) +0y1 (ey'j) ©.3) 0,1 (ez'j) (Orj))
Hi
Eg4R2 = Expand[Eq4R1 /. {
Yikk = (Yixx + Yiyy + Yizz) ’
vi o (vi+v§+vi),
O,k > (Ox,x +Oy,y +0z,2),
ll’k,k d (ll’x,x + ll’y,y + ll’z,z) ’
Vi Vi Ak o (v1 Vi Ax + Vi Vy Ay + V3 Vy Az) B
Vi Wi,k nd (Vx i, x +Vy ll’i,y +Vy Wi,z) ’
hige (vi) 9 > (hijx (v) 3+ hyyy (Vy) @3 +hisz (V2) (“'j))

}

Vi Yivyy  Yizz 1 T, 1, 1 1 1
E—— P VI — VO At — VR VS Vi A F Vi Vg Ay F V5 Ve A = A O s = — Ag Oy — — A3 Oy y - — A3 O,
2 2 2 2 2 2 2 2 2

vy

1 1 1

1 .

(0,3)

Vi Wi,x = Vy i,y = Ve Wi,z = — Vi l,x - — Villy,y - — Vi s, - — (Rig) 0
2 2 2 2

(0,3)

~higx (vi) @9 ~hygy (VY) - hig, (vy) 9

Now, sumon j :

Eq4L3 = Eq4L2 /. {
8,509 5 (84,60 40,y 0OV +0,,,00),
05,5 0x,x 0T 5 (01,505,500 405,y 04,5V 405,z 05x007),
8y,3 009 (ey,xp“”x) + 0y yp OV 4 ey,,p“’f’)) ,
0i,30y,yp Y o (ei,x 8y,y P + 05,y 0y,y 0%V 105, 0y, p(O,z)) '
0:,500 7 5 (0,0 40,007 +0,,07),
0:,350z,2 0% 5 (6:,x0;,:0"™ +0;,,0,,00Y +0;,0,,0"7),
vy (@) O o (ve (@) OF w vy (@) O 4wy (@) 7)),
ay (vi) O o (q (v2) OF v gy (vi) O 4 qp (vi) ©P),

Vj) (0,3) N ((Vx) 0,%) (v )(U/y) + (Ve )(O,z)) ,

(0,3) 0. y)

+(8,,) (O

i,y v

0,y)
+ (8y,) )

)
)
@y ( )(0 z))
)

’

Yy ’

+(8g,7) %

(61v)
(0x.v)
(ev.v)
(62y) ™
EQ4R3 = Eq4R2 /. {
(R1 )(0.:1) N ((R'x) 0,%) (Riy) 0,y) + (Riz) (0,:)) ,
hige (Vi) @9 5 (B (Vi) O # b (vi) @0+ higy (vi) ),
hx. (Vy) (0,3) 5 (hixy (vy) (0,x) +hiyy (vy) (0,y) +hny (Vy) (OVZ))’
hije (v2) @9 5 (hixe (v2) @ +hiye (v2) Y +higp (v2) )
}i

Now, sum on i (for 3 Equations) :
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= Primitive Equation 11 with (i=x):

XEQ11Ll = Expand[EQ4L3 /. {i > x} /. {8y,x > Oxy, Oxz > Oz x, 82y > 6y.}];
XEQl1R1 = EQ4R3 /. {i > X, Rix > Rux, Riy & Ruy, Riz > Ryz, Bixx > Do,

hixy d hxxyr hixz » hyxz, hiyx d hxyxr hiyy d hxyy! hiyz d hxyzl hizx & hyax, hizy d hxzy! hj;; - hxu}i

XEqllL = Collect[xEqllLl, {
PO, () O, (vy) O, (v2) O, (8,x) O, (Ox,y
(ey'y) (O,X), (ey’z)(O,x)’ (9;,1)(°'x), (02,x) (o,x), (ax) (O,x), (qy)
D(O,y)' (vx)(o,y), (vy)w'Y), (Vz)(o'Y), (ex'x)(o.y)' (ex'y) (D,y), (ey'y) (0,y)'
(04,2) " (82,2) O, (0., OV, (@) OV, (q) ", (@) OV,
PO, (v OB, () U (v) 0D, (00,0) O, (84,y) O (04
(04,2) ) (82,2) P, (82,0 P, (@) P, (ay) P, (@) P}

XEqllR = FullSimplify[xEqllR1] /. {‘“xx+yiyy+yiz, - yxxx+yxw+yxz,}

)(Drx)'

(0,x)
(@) O,

) (0,z) ,

(3 1 1 1
M—@i,xf@i,y— — O, Oy,y = 0%~ = Oxx Ozz | 00+ vx (@) O+ 2 (Vi) O 4 |- = pOxx - — P Oy,y -
2 2 2 2
(0, %) (0,x) 3 3 L (0,v)
0 O,y (G)x,x) =P O,k (Oz,4) T 4 |- E Ox,x Ox,y - E Ox,y Oy,y ~ By,z Oz,x - E Ox,y Oz, | P +
\ 3 1 1
0 ) (0, (0,v) (0,v)
vy (@) O ray (vi) O g (vy) U 5P Ok~ POy — 00 (0s,9) 7 =004y (0y,4) "
(0,v) 3 : 3 (0,2) (0,2) (0,2z)
PO, (0y,2) T 4 =0y Oy - = Bk O = = By Oy - = 8,0, | PP v, (@) P (vi) (P
2 2 2

(0,2) _ (0,2) _ i _ i _ i )
Ax (V2) 0 8x,y (0y,2) 173 0 Ox,x . 00y, ; 06,

(02,2) % =00z, (02,2) O+ (q) 0

(Vaox + Yoy + Yozz + 3 Va Ax + V5 A = 2 A O + Ax (V2= Oox = By,y = By,0) = 2Vy Uy = 2V, Uy, +

N e

(0, %) (
Vi (2Vy Ay 4 2V2 Ao = 30w - Wy,y ~ Wz,z) = (Rusd) O = 2 hie (Vi) O = 2 hiy (vy) U = 2 By (v2) (O

2 By (v) OY = 2hygy (vy) O - 2y (v) O

LHS = Append[LHS, xEqllL];
RHS = Append[RHS, xEqllR];

— 00,2

(On,) %)~

_ (ny) (0,v) _

= (Ruz) % = 2 hy () ) - 2y (vy) T - 20y (v2) O9)
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= Primitive Equation 12 with (i=y):

yEqQl2Ll = Expand[Eq4L3 /. {i->y} /. {e,,x > Oy,y, Ox,z > Oz, 0z,y > Gy,z}];
YEQI2R1 = Eq4R3 /. {i > ¥, Rix > Ryxs, Riy > Ryy, Riz > Ryz, hige > hyuy,
hixy - hyxy! hix: - hyle hi.yx - hyyxl hi.yy d hyyyl hi.yz d hyyzr hj.y - hyzxr hi.zy - hyzyl hi;, - hyzz}?
yEqQl2L = Collect [yEql2Ll, {
PO (v) O (vy) O (va) O, (0,x) O, (04,y)
(09,y) © ™, (8y,2) O, (82,2) O, (82,2 P, (0x,y) U, (@) ©F, () (@) O™,
0OV | () O (vy) e (v2) O, (8y,,) OV, (ex'y) v (ey,y) ©y (Gy,z) ©
(02,2) @Y, (82,00 OV, (8ny) Y, (@) @Y, (ap) Y, (@) OP,
002 | (vy) 0D (Vy) (0,z) L, (vg) 02, (8x,x) (2 (ex'y) (0,z) , (ey'y) (0,2) , (ey'z) (0,2) ,
(02,2) ), (85,5) O, (Gx,y) ©=) (ax) O, (qy) ©= (a) (0,2)}]
YEqQl2R = FullSimplify[yEql2R1] /. {yixx + Yiyy + Yizz = Yyxx + Yyyy + yyzz}

(0,x)

[ 3 3 1
0 (0, %) ( (0, )
[75 Ox,x Ox,y ~ ;G)Xry Oy,y = Oy, z Oz,x - 2 Ox,y @Zrzw P vy (ay) Uy (vi) ) v ax (vy) Y -0 0,y (Os,x) O 4
1 3 1 o N i 1 3ez, 1 1 W
[—wa,x— S POy 500 (Ox,y) T =0 0y,z (02,%) ) 4 |67 , - PR e 2= = Oy,y O, | 00V
1 3 1
(0,y) (0, (o, 0,y)
vy (q}) ! +2ay (Vy) v -0 Oy,y (®>ﬁy) s [’*DG)XVX’ —PBy,y- =P8, (®y,y>l Y-
2 2 2

(0,y) * 3 3 (0,z) (0,2) (0,2)
00y,. (Oy,) + —5®x,x@y,z— 5@y,y®y,z—@x,y@z,x— E®y,z@m 00 +v, (ay) +a (vy) +

o 1 3 1
ay (Vo) P 4 |- =0 Oxx - =P Oy,y - — 0O,
2 2 2

(0,2)

), z) (1,0)
=P O,y (0z,) U = p Oy, (0,,2) 0 + (qy)

(ey,2)

(Yysx * Yygy * Yyzz + V2 Ay + 3VE Ay = 2 A Oy + Ay (V2 = Oy = O,y = Oz,2) + 29 (Vy A = Uy, n) = 2V Uy, 2 +

Vg (2Va X = Ux = 3Uy,y — ¥z,2) - (Ryx) (

(©,v) 0 (0.2) 0,2)
2 hyye (Vi) 9 = 2hyyy (vy) T = 2hyys (va) O = (Rye) U = 2y (vi) (7 - 2 hyay (vy)

N e

O 2 hye () 0 = 2hy

(0,%) x (0,v)
) U = 2 hy (vy) O - (Ryy) Y -
O 2 hy, (vl) (OF)
LHS = Append[LHS, yEql2L];

RHS = Append[RHS, yEql2R];
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= Primitive Equation 13 with (i=2):

zEql3L1l = Expand[Eq4L3 /. {i-»2} /. {e,,x = Oy, Ox,z > Oz,x, 07y > ey,,}];
ZEQ13R1 = Eq4R3 /. {i > 2, Rix > Rex, Riy > Rey, Riz > Rez, hige > Bow,
hixy d hzxyr hixz » hzxz, hiyx d hzyxr hiyy d hzyy! hiyz d hzyzl hizx & hgax, hizy d hzzy! hj;; - hzzz};

zEq13L = Collect[zEql3Ll, {
PR, (vx) O (vy) O (vy) O (y,5) P, (04,
(04,5) 0 (B4,2) ™) (82,2) O, (0, O, (04,5) P, (@) O, (ay)
PO, (v O, (vy) TP, (v O, (0) OV, (8y) TP, (B1,4) T (0y,2) Y,

), (@) O, (ay) Y, (@) O,
O, (0y,4) T (6y,2) 7,

)(D,x)
,
(0,x)
(@) O,

(82,2) OV, (8,,2) OV, (4,
0,
p©2) (v, (@2, (vy)( =>, (vg) 2, (ex,x)“"”, (ex'y)
z z (0,2) z (0,2) z
(82,2) P, (02,2) P, (04,y) P, (@) P, (ay) P, (@) ©P}]
FullSimplify[zEql3R1l] /. {‘“xx+yiyy+yiz, - yzxx+yzyy+yzz,}

zZEql3R =
( 3 : 3 (0,x) 0,x) 0
{—@x,y@y,z— Ok Ounm — Byy Ou - — 0,40, | 0O v, (qa) ) gy (vi) OF) 4
2 2 2 )
(0,x) (0,x%) (0, %) (1 1 3 (0, %)
A (v2) U0 =00,y (By,x) O —p By, (0y,y) R R N H ICOR R
1 3 3
0 ) (0,v) 0 (0,v)
[—EGJX,X@WL— 2 Oy Oy = Oy O - f®y,z®z,4] 0O sy (a) O s (vy) T vy (ve) OV - p 0Ly (0h,y) Y -
1 1 3 ( 1 1 302
(0,v) (0, 2 Z,2
08y, (8y,y) " 4 |- =00k — 0Oy, - =00, (8y,.) T+ ’f@i,zf@;xf — O xOuz— — Oy,y Oy~ —— | P07 4
2 2 2 2 2 2
1 3 )
(91,2) (0,2) + <qz> (1,0)

1
( 0,2z) (
v (@) O v 2q, (v.) 0P 00y, (0y,.) T 00,k (0,,,) ") [,ED@H, S POy S PO

1
5 (Ve * Yayy + Yooz + VE e +VE Ay + 3 VE Ay = 2 A Oz = Az Oy s — Ag Oy, y = Az O,z = Vo Uy — Vo Uy, y + 2 Vi (Vo Ag = Uzyn) +
2vy (Vo Ay = Uary) =3 Ve U = (Rax) O = 21 (vi) O = 20y (vy) U < 2 hase (vi) ) - (Ryy) Y -
(0, ( ), 2) (0,2) [
2 hoye (V) 9 = 2hayy (vy) U = 2haps (va) Y = (Reo) (P - 2hoe (vi) O - 2hany (vy) U - 2 hes (v2) 7))

LHS = Append[LHS, zEql3L];
RHS = Append[RHS, zEql3R];
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Sorting of Equations into Matricies :
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EquationList = LHS;
VariableList = List[p© ™, (v,) @, (v,) ™, (vo) @, (0,2 @™, (64y) "™,
(0, %) (0, x) (0,x) (0, %)
(8y,y) 70 (By,2) T (02,2) O, (82,2) O, (0,y) UL (@) O, (ay) O (@) O,
o, o, o, 0,
PO (x) @) (vy)( Y)' (vg) 9, (ex’x)(o,y)' (ex'y)( y), (ey,y)( y)’ (ey’z)( y)'
0,y) 0,y)
(02,2) Y, (82,%) Y, (64,9) Y, (@) OV, (ay) OV, (@) OV,
(0,2) (0,2) (0,2) (0,2)
P, (vi) OB, (vy) T, (v) 0P, (00,x) O, (0x,y) UL (8y,y) T (04,2) T
(0,2z) (0,2z)
(02,2) P, (82, ©P, (04,5) P, (@) @2, (ag) ., (@) ©?];
xDerivativeVariableList = List[
(0, x)
PO, (v) O, (vy) U, () O, (04,0) O, (€n,y
(0,%) O] (0,%)
(8y,) " (Oy,2) T (02,2) O, (02, O, (@) OF, (ay) T, (@) O]
yDerivativeVariableList = List[
0,y (©,y)
PO (vy) OF, (wy) T (va) OF, (0,x) OF, (B,y) T
(0,y) (0,y) (0,y)
(8g,v) 77 (8y,2) ) (82,2) O, (82,0 OF), (@) Y, (ay) Y, (@) V]
zDerivativeVariableList = List[
(0,2)
PO, (vi) @2, (vy) VT, (v) 0P, (04,0) O, (€4

(0,2) (0,2)
(8,v) 77 (89,2) T (82,2) P, (82,%) P, (@) O, (ay) (a) ©2];
DerivativeVariableList = List[xDerivativeVariableList, yDerivativeVariableList, zDerivativeVariableList] ;

)(Dyx),

)(Dyz),

(0,2z)

vl = DerivativeVariablelist;
vl // MatrixForm;

el = EquationList;

len = Length[el];

Ap = ConstantArray[0, {len, 13}];
Bp = Ap;
Cp = Ap;
rawAp = Ap;
rawBp = Ap;
rawCp = Ap;
(* hkkkkkhhhkhhhhhhhhhhhhhhhhdhhhdhhhhhhhdhhhhhhhhhhhhkhhkhhhhhkhkhkkhhhdhk *)
(* REMOVES DERIVATIVES FROM MATRICIES #)
Der = List[];
For[kVAR = 1, kVAR < 3, {
For[jVAR = 1, jVAR < 13, {
Der = Append[Der, Part[vl, kVAR, jVAR] - 1];
}; JVAR++];
}; kVAR++];
(% Fkkkdhkkhkkhkhkkkhkkkkkhkhkhkhkhkhkhkhhkkkhkkkkkhkkkkkkkkkkkkk*k**k**x *) (* MATRICIES =*)
For[kVAR = 1, kVAR < 3, {
mOUT = ConstantArray[0, {len, 13}];
For[iVAR = 1, iVAR < len, {
tempEq = Part[el, iVAR];
EqLen = Length[tempEq];
For[jVAR = 1, jVAR < Eqlen, {
term = Part [tempEq, jVAR];
For[hVAR = 1, hVAR < 13, {
If[Length[Position[term, Part[vl, kVAR, hVAR]]] >0, {
col = hVAR;
mOUT[ [iVAR, col]] = term}];
}; hVAR++];
}; JVAR++];
}; iVAR++];
If[kVAR == 1, {rawAp = mOUT}];
If[kVAR = 2, {rawBp = mOUT}];
If[kVAR = 3, {rawCp = mOUT}];
}; kVAR++];

Ap = FullSimplify[rawAp] /. Der;
Bp = FullSimplify[rawBp] /. Der;
Cp = FullSimplify[rawCp] /. Der;

(AR T e T T T T T )



137

Ap/.{

1 2 2

3 (-2 (02,4 +©2 ) - Ox,x (30x,x+0y,y+0:2)) > u1,

1

3 (-20y,202,x - 8x,y (3 (Ox,x +Oy,y) +02,2)) > 2,

1

3 (-26x,y0y,2-0:,x (30x,x+80y,y+36;:)) > us,

1 ( ) 0 (265 +0)

-— P (36x,x+0y,y+0; ;) > —,

3 %+ Oy,y + 0z 2 =

1 ( ) o (26y,y+0)

- — P (Ox,x+36y,,+6; ;) > —

2 <, v,y *+ Oz,z >

1 ( ) P (20,,; +6)

== P (Ox,x +Oy,y+36;, - —

2 <, x * Oy, y 2z =

}// MatrixForm

ve o 0 0 0 0 0 0 0 0 00 0
OD Vi 0 0 1 0 0 0 o0 0 000 0
O“p" 0 Vs 0 0 1 0 0 0 0 00 0
OT 0 0 Ve 0 0 0 0 0 1 00 0
0 20, 0 0 Vi 0 0 0 0 0 0 0 0
0 ©4y O, O 0 Vi 0 0 0 0 0 0 0
0 0 264, O 0 0 ve 00 0 0 0 0
0 0 8.,y Oy 0 0 0 vy 0 0 0 0 0
0 0 0 20,y 0 0 0 0 vy 0 0 0 0
0 @,x 0 Oy 0 0 0 0 0 Vi 0 0 0
wo 2aq0 0 0 —5P(8+264) —p Oy,y 0 0 0 -p O v, 0 0
Lo ay dx 0 - O,y ’;0(6*2®v,y) 0 0 o0 -p 8y, 0 vy O
s 0 I -0« -p Oy, 0 0 0 -20(0+20,2) 0 0 vy
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Bp /. {
1 2 2
3 (-20%,-202 ,-0y,y (6x,x+36y,y+0z2)) > Ha,
1
5 (-28y,20z,% - Ox,y (3 (Ox,x+Oy,y) +©z,2)) > 2,
1
3 (-2 6,y ©z,% -8y, (Ox,x+3 (8y,y +0:,2))) > us,
1 ( ) P (26y,x+8)
-— P (36x,x+0y,y+0; ;) > —
2 x,x + Oy,y +0z,2 -
1 ( ) ) (2 ey,y+6)
-—pP (Ox,x+30y,y+06; ;) » —
p x,x v,y * ©z,2 -
1 ( ) P (20;,,+6)
- =P (Bx,x+Oy,y+36z;) » —
2 x,x + Oy,y 2,2 -
} // MatrixForm
( o 0 0 0 0 0 0
0 0 0 1 0 0 0
vy 0 0 0 1 0 0
0 vy 0 0 0 1 0
0 0 vy 0 0 0 0
O,y 0 0 vy 0 0 0
20y, 0 0 0 vy 0 0
Oy, ©y,y O 0 0 vy 0
0 2@y, O 0 0 0 vy
0 O,y O 0 0 0 0
1
Mz Qy I 0 0 -5 P (6+20yx) —POy,y —P Oz, x 0
ug 0O 2q, 0 0 —0 04,y -So(e+20y,) ~00y,. 0
s 0 qz ay O P Oz, x POy, 7%13(6+2®z,z) 0

o o o o o o

<

>
© © o © © © © ©o




Cp /.{
1 2 2
3 (-202,-202 ,-©.,; (6x,x+Oy,y+36::)) > ue,
1
— (-204,y0y,2 -85 (304,x+0y,y+36,2)) > us,
2
1
3 (-2 0,y 0z,x - 8y,z (0x,x+3 (8y,y +0:,2))) > us,
1 ( ) P (264, +6)
-— P (36x,x+0y,y+0; ;) > —
p x,x + Oy,y + Oz 2 >
1 ( ) o (26y,y+0)
- — P (Ox,x+36y,,+6; ;) > —
p ., x v,y + 02,2 >
1 ( ) P (20,,; +6)
== P (Ox,x +Oy,y+36;, - —
2 x,x + Oy,y 2.2 -
} // MatrixForm
V. 0 0 o 0 0 0 0
Ty, 0 0 0 0 0 0
>
O/T'z 0 v, 0 0 0 0 1
OT 0 0 v, 0 0 0 0
0 20, 0 0 v, 0 0 0
0 Oy, O, 0 0 v, O 0
0 0o 20,. 0 0 0 v, 0
0 0 ©,, ©,, 0 0 0 v,
0 0 0 26,, 0 0 0 0
0 6, 0 @, 0 0 0 0
M3 9z 0 Ax 0 0 0 -0 O,y
s 0 C# @ 0 0 0 -p(e+20,,)
Ue 0 0 2q, 0 0 0 -00y,.

00, x
-0P 0By,

-2p(6+28;,,)

© o o o o o

Vz

P B,y

-0 Oy

o o o o o o o

1
S1p (0420, V.

0

0
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Eigensystem Analysis :

= Eigenvalues :

ApEigVals
ApEigVals

= FullSimplify[Eigenvalues[Ap]];
// MatrixForm
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BpEigVals = FullSimplify[Eigenvalues[Bp]];
BpEigVals // MatrixForm

[ vy
Vy
Vy
Vy
Vy
Vy
Vy
Vy Oy,y
Vy = 4/Oyy
Vy + 4/ Oy,
vy e [0y,
Vy = V3 4/0y,y
vy + V3 4/0y,y

CpEigVals = FullSimplify[Eigenva