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Abstract

Semi-implicit Treatment of the Hall Term

in Finite Volume, MHD Computations

by Julian Tercero Becerra Sagredo

Chairperson of Supervisory Committee

Ph.D. Uri Shumlak

Aeronautics and Astronautics

A finite volume algorithm is developed for solving the Hall term into the time-

dependent, non-ideal magnetohydrodynamic (MHD) equations. A semi-implicitmethod

is used to obtain an unconditionally stable algorithm. The semi-implicit operator and

the Hall term are adapted to handle complex geometries in finite volumes. A split

method is implemented and numerical test results are presented for small-amplitude

Hall-MHD waves.
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Chapter 1

INTRODUCTION

If the temperature of a gas is increased beyond a certain limit, it enters a regime

where the thermal energy of its constituent particles is enough to overcome the elec-

trostatic forces which bind electrons to atomic nuclei. In such a case, the gas becomes

a mixture of charged and neutral particles, in other words, partially ionized. The in-

teraction of the charged particles with the rest of the gas and with externally applied

electromagnetic fields leads to a great variety of new physical properties that separates

this gas from the other states of matter. The generic name for this hot, partially ion-

ized gas is plasma. The plasma state of matter is defined for a quasineutral mixture

of charged and neutral particles that exhibit both individual and collective behav-

ior. Perhaps, their most notable feature is a great electrical conductivity such that

externally applied electric fields are effectively canceled inside of them by internally

induced currents.

Plasmas are very common. The plasma state dominates the visible universe, as

all stars are made of it. The close proximity of the Sun to the Earth permits to

study its structure and dynamics in detail. For example, the solar corona expands

into space because the Sun’s atmosphere is not in static equilibrium. This plasma is

known as solar wind and reaches the most distant regions in space. The planets, their

moons, and the comets are immersed in the magnetized solar wind dispelling the old

view that space was a vaccum. Much of the known matter in the Universe exists as

plasmas, therefore, astronomical observations are of great value to understand how
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natural plasmas work.

On Earth plasmas occur naturally in lightning, lightning balls and the aurora.

The most familiar lightning strokes are produced when a charge separation large

enough to cause electrical breakdown of air is developed in between a cloud and the

ground. An invisible discharge is started near the base of the cloud releasing free

electrons towards the ground. When this current approaches the ground, another

current moves up from the ground to meet it. Once they have made contact, a visible

lightning stroke, called the return stroke, propagates upward from the ground. The

explosive heating and expansion of air along the path produces a shock wave that is

heard as thunder.

The lightning balls are a little-understood phenomenon. They are generally spher-

ical, from 1 to more than 100 cm in diameter. They usually last less than 5 seconds

and move at a few meters per second decaying silently or with a small explosion.

They are believed to be natural magnetic dynamos.

Auroral lights are produced when energetic particles are precipitated into the plan-

etary ionospheres, they represent one of the most dynamic products of the interactions

of the solar wind with the Earth’s magnetosphere.

Plamas have been created in laboratories, for example, in controlled fusion research

very hot plasmas of light elements are confined in very strong magnetic fields. Their

practical terrestrial applications are extensive, they range from the microfabrication

of electronic components to demonstrations of substantial thermonuclear fusion power

from magnetically confined plasmas.

In order to study plasmas, a statistical conservation equation, known as the Boltz-

mann equation, has to be solved for a mixture of neutral and charged particles in-

teracting with electromagnetic fields and Coulomb forces. Extracting appropriately

averaged quantities from this kinetic equations produces fluid-type equations that

represent the large scale equilibrium and stability of the plasma. This equations are

called the magnetohydrodynamic or MHD equations.
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The complete MHD equations approximate the behavior of a plasma as a single

fluid. The mass, momentum, magnetic induction field and total energy are balanced

at each infinitesimal fluid element. This equations add to a total of eight scalar, fully

coupled, nonlinear, partial differential equations with mixed terms of parabolic and

hyperbolic nature. Nevertheless, a plasma is a far more complex system than the

assumptions of magnetohydrodynamics might suggest. The theory has had limited

success in explaining phenomena observed in laboratory and space. Its successes

include small amplitude waves, MHD stability, and the transport of charge and energy

parallel to the magnetic field lines. Its principal failure is the cross-field transport.

Deeper kinetic theory, that entails scattering, has proven that second order terms

should be keeped to have an accurate description of the cross-field transport.

Our mathematical and physical understanding of the MHD equations is still nar-

row and to solve them in complex geometries is necessary to ask for the help of a

computer. Diverse numerical techniques have been proposed to solve fluid-like equa-

tions. The MHD equations are a superset of the Navier-Stokes equations and the same

numerical techiniques are, in principle, generalized to the MHD equations. Neverthe-

less, there are some terms that impose a very restrictive stability limit on the time

step and are expensive to compute. An example of this problem arises when the Hall

term is not neglected from Faraday’s law in the MHD equations. Implicit techniques

do not have that stability constraint but are generally associated with very compli-

cated iterative loops. Recently, a semi-implicit technique [HM89] has been developed

as an stable way to compute this term. Very accurate results can be obtained if

the right semi-implicit operator is chosen and the computational cost can be reduced

substantially for computations including this term.

In this thesis, the semi-implicit technique described by Harned and Mikic [HM89]

is applied to three-dimensional, finite volume MHD computations with the Hall term

included.

In chapter 2 the MHD equations are derived and the conditions over which the
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Hall term is not negligible are found. In chapter 3 the semi-implicit technique is

applied to a three-dimensional finite volume scheme to handle the physics of the Hall

term. In chapter 4 small amplitude MHD waves are studied when the Hall term is

not neglected and the dispersion relations are compared to numerical simulations.

Finally, chapter 5 contains the conclusions and future work.



Chapter 2

THE MAGNETOHYDRODYNAMIC EQUATIONS

In general, a plasma is a complex system of particles that respond to coupled

electromagnetic forces and thermal collisions in such a way that its motion exhibit

both individual and collective characteristics.

There are four levels of description for a system of particles in a plasma. The first

level is the study of the individual particle orbits. At this level, individual particles are

considered and their motion is followed under the influence of the total Lorentz force

F = q (E + v × B) , where E is the external electric field, v and q are the velocity

and the electric charge of the particle, and B is the external magnetic induction field.

Helical trajectories along the magnetic field lines and a wide variety of mechanisms

causing particles to drift across the magnetic field are discovered using this approach.

Nevertheless, this model assumes the presence of an electric field, that can be seen,

cannot simply be imposed externally because the electrostatic fields are shielded from

the plasma and their effect is confined to a short range characterized by the Debye

length. Also, a single particle approach uses the position and the velocity of each

particle as variables while this quantities are not measurable or even knowable in

reality and therefore their results cannot be compared to experimental data.

The second level of description is obtained by a conservative-statistical approach.

The kinetic theory of a plasma is the most fundamental description of the plasma

state. The particle species are defined through random distribution functions. All

the macroscopic variables as the density, velocity, temperature, etc., can be obtained

averaging over the distribution. The conservation of particles in phase space (three-

dimensional physical space plus three-dimensional velocity space) is expressed by the
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Boltzmann equation 2.7, and the conservative equations for the macroscopic variables

can be obtained taking its average values. It is important to follow how the fluid

equations are derived from this theory to understand their advantages and limitations.

Nevertheless, kinetic theory is much more than an elegant foundation of the fluid

approach. It is of great importance due to the low collisionality of many plasmas

where the collective behavior is due to electromagnetic coupling of the particles and

therefore is common to have distinctly non-Maxwellian distribution functions for each

particle specie in the plasma. It is necessary to use kinetic theory to solve this problem

because it is impossible to describe it using fluid theory.

The third level of description for a plasma is obtained through the statistical mo-

ments of the Boltzmann equation for each particle species in the plasma. Conservation

equations for mass, momentum, magnetic induction and energy are obtained for each

species. This is a multi-fluid model in which distinct species are treated as individual

but interacting continua. Finally, the multi-fluid model can be combined into a single

continuous model with averaged properties known as the MHD model. This can be

done defining a fluid velocity as that of the center of mass of the multi-fluid model,

and a current density as a local difference in the velocity of ions and electrons. This

model is useful when the plasma is dominated by collisions, the length scales are long

compared to the Debye length, and the frequency is low compared to the plasma os-

cillation frequency, therefore, contains the physics of the large scale equilibrium and

stability of a plasma.

In this chapter, the foundations of the MHD model are reviewed briefly. A general

and a simplified MHD model are presented and special attention is devoted to discuss

the importance of the Hall term in the generalized Ohm’s law.
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2.1 The distribution function

For a system ofN particles, each one with position and velocity xi and vi (i = 1, ..., N)

and N large enough, the distribution function f (x,v, t) can be defined such that

f (x,v, t) dxdydzdvxdvydvz is the number of particles in the volume element dxdydz

at position x and the element dvxdvydvz in the velocity space at velocity v and time

t. This function belongs to the (x,v) space that is a six-dimensional phase space.

By definition, the spatial density of particles is

n (x, t) =

∫ ∞

−∞
f (x,v, t) d3v, (2.1)

and the normalized velocity distribution funtion is

f ′ (x,v, t) =
f (x,v, t)

n (x, t)
. (2.2)

2.1.1 Maxwellian velocity distribution

If a system is collisional with collision frequency ν, then after a time longer than the

collision time 1
ν
, equipartition of energy by collisions will always cause the system to

move towards a Maxwellian velocity distribution

fmaxw =
( m

2πkT

)3
2
exp

−v2

(vT )2 , (2.3)

where vT =
√(

2kT
m

)
is the thermal velocity characterizing the distribution, k is the

Boltzmann constant, T is the temperature, m is the mass of each particle and v is

the velocity of each particle.

2.2 Macroscopic variables

Measurable macroscopic variables are obtained from the distribution function as ve-

locity ”moments”. For example, the velocity of the fluid is obtained as the average

value of the particle velocity

u =
1

n

∫ ∞

−∞
vf d3v, (2.4)
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where u is the fluid velocity and v is the particle velocity.

This is, the density of particles n is the zeroth order moment of f , the velocity

is the fist order velocity moment of f , the mean particle energy is obtained from the

second order moment of f , and so on.

2.3 The Boltzmann equation

Assuming conservation of particles in the phase space, the rate of change of the

number of particles in the volume is equal to the net flux of particles into the volume.

This can be expressed mathematically as

∂

∂t

∫
fd3x d3v = −

∫
∇x · (vf) d3x d3v −

∫
∇v · (v̇f) d3x d3v. (2.5)

The volume element can be arbitrarily small, then

∂

∂t
f + ∇x · (vf) + ∇v · (v̇f) = 0, or

df

dt
= 0. (2.6)

Here, x and v are independent variables, and if the force F = mv̇ does not depend

on the velocity, then, the conservation of particles reduces to the Boltzmann equation:

∂f

∂t
+ v · ∇xf + v̇ · ∇vf = 0. (2.7)

If the particles are accelerated by a Lorentz force, this one depends only on the

velocity of the normal plane of direction of the acceleration and it is still consistent

with the last assumption to get the equation 2.7. In this case the equation 2.7 takes

the particular name of Vlasov equation:

∂f

∂t
+ v · ∇xf +

q

m
(E + v × B) · ∇vf = 0. (2.8)

A collision source term has to be added to the right hand side of the Botzmann

equation 2.7. This term C̄ is due to rapid changes in velocity of particles, that either

adds particles to d3v or removes them. Such changes may be due to high magnetic
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or electric field fluctuations, or to particle interactions, i.e. collisions. This term is

represented as

C̄ ≡
(
∂f

∂t

)
c

. (2.9)

The collisions transfer momentum and energy between particles, but the cannot alter

the totality of these properties at any point in space. These constraints require the

collision to satisfy ∫ ∞

−∞
ϕC̄d3v = 0,

(
ϕ = 1, mv, mv2

)
. (2.10)

2.4 The fluid equations

The macroscopic physical quantities are obtained as moments of the distribution

function, therefore, the physical equations relating those variables are obtained as

moments of the Boltzmann equation 2.7.

2.4.1 Conservation of particles

Taking the zeroth order moment of the Vlasov equation 2.8 leads to∫
∂f

∂t
d3v +

∫
v · ∇xf d

3v +
q

m

∫
(E + v × B) · ∂f

∂v
d3v =

∫ (
∂f

∂t

)
c

d3v. (2.11)

The third term in the equation 2.11 can be reduced to a vanishing surface integral

using Gauss’s theorem in velocity space and taking the limit as the surface goes to

infinity. The surface area increases as v2, but practical distribution functions go to

zero much faster, for example the Maxwellian distribution 2.3. Also notice that v×B

is perpendicular to ∂
∂v

.

The collision term also vanishes if recombination is not considered because the

number of particles of the species considered must remain constant.

Then, the equation 2.11, for an arbitrary volume in velocity space, reduces to

∂n

∂t
+ ∇x · (nu) = 0, (2.12)

which expresses conservation of particles.
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2.4.2 Conservation of momentum

Taking the first order momentum of the Vlasov equation means that

m
∫

v ∂f
∂t
d3v +m

∫
v (v · ∇x) f d

3v + q
∫

v (E + v × B) · ∂f
∂v
d3v

=
∫
mv
(

∂f
∂t

)
c
d3v.

(2.13)

The second term can be rewritten as ∇x ·
∫
fvv d3v. The velocity is separated into

a mean fluid velocity u and a random thermal velocity w such that v = u + w and∫
wf d3v = 0, represented as w = 0 . Then

∇x · (nvv) = ∇x · (nuu) + ∇x · (nww) . (2.14)

The pressure tensor is defined as P = nmww. Where the diagonal elements

represent the normal hydrostatic pressure, and the off-diagonal elements describe the

transfer of momentum in directions perpendicular to the fluid motion, this is, the

effect of the viscosity in the plasma.

The collision term in the equation 2.13 represents the rate of change of momentum

density due to collisions between different species i and j, and it is represented by

Pij.

Finally, using the conservation of particles 2.12 , the equation 2.13 for an arbitrary

volume in velocity space can be reduced to

mn

[
∂u

∂t
+ (u · ∇)u

]
= qn (E + u× B) −∇ · P + Pij . (2.15)

2.4.3 Conservation of energy

The second order statistical moment of the Vlasov equation, multiplied by m
2
, ex-

presses the conservation of energy for an arbitrary volume in velocity space. This

yields to

∂ε

∂t
+ ∇x · [ε u + P · u + q] = QΩ − ψ. (2.16)
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Where the energy density ε is defined as the sum of the internal thermal energy,

characterized by the random velocity w, and the single-species fluid kinetic energy,

characterized by the mean velocity u. The heat flux is represented as q, the ohmic

heating is QΩ, and ψ is the radiation term.

2.4.4 The multi-fluid model

In the multi-fluid model, the equations for the conservation of particles, momentum

and energy are obtained for each specie in the plasma, as done in the previous sections.

A fluid of electrons and a fluid of ions is what it is usually used. This description

treats different species as individual but interacting continua.

2.4.5 The single-fluid model

The equations used in a multi-fluid model can be added or subtracted to obtain

single-fluid equations that contain averaged properties. The density is defined as

ρ = nimi + neme, where the subindex denotes ions ”i” or electrons ” e”, this is

approximately nmi for a quasi-neutral mixture of ions and electrons. The single-fluid

velocity v is defined as that of the center of mass, this is approximately ui, the ion

velocity.

The sum of the continuity equations 2.12 for each species yields to the conservation

of mass of a quasi-neutral plasma:

∂ρ

∂t
+ ∇x (ρv) = 0. (2.17)

Adding the force balance equations 2.15 for each species in the plasma yields to

the single-fluid conservation of momentum expressed as

ρ

[
∂v

∂t
+ (v · ∇x)v

]
= J × B −∇x · P, (2.18)

where the current density is introduced as the difference in charge density transport

J ≈ ne (ui − ue), the total pressure tensor is the sum of those for each species P =

Pi + Pe, and the sum of the momentum transfer in between species vanishes.
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Multiplying the ion equation 2.15 by me, the electron equation by mi and sub-

tracting both equations yields to

me

ne2

∂J

∂t
= E + v × B − 1

ne
J ×B +

1

ne
∇x · Pe − ηJ. (2.19)

In order to find this expression of the Ohm’s law, the variation of the current density

with time, me

ne2
∂J
∂t

, is neglected for frequencies lower than the plasma frequency wp =√
ne2

ε0me
, where ε0 is the electric permittivity of the free space. Also, the the momentum

transfer from electrons to ions is approximated by Pei = −neηJ, where η is the

plasma resistivity. This expression works for most plasmas, nevertheless, the accurate

treatment of this problem is still a difficult challenge in plasma physics.

2.5 The MHD equations

The MHD equations can be collected into four groups:

2.5.1 The Maxwell equations

Faraday’s law

∇× E = −∂B
∂t
. (2.20)

No sources of magnetic field lines

∇ · B = 0. (2.21)

The current density

μ0J = ∇× B. (2.22)

No sources of current density (quatineutrality)

∇ · J = 0. (2.23)
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2.5.2 The conservation equations

The conservation of mass

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.24)

The conservation of momentum

∂

∂t
(ρv) + ∇ · (ρvv + P) = J × B + ρF, (2.25)

where F is an external volumetric force (like gravity).

The conservation of energy

∂
∂t

(
ρ
(
u+ 1

2
v2
))

+ ∇ · (ρv (u+ 1
2
v2
)

+ P · v + q
)

= J · E + ρF · v − ψ.
(2.26)

where ψ is the radiation term and u is the internal energy density.

2.5.3 The thermodynamic relations

The ideal gas equations

P = RρT = (ni + ne) kT, (2.27)

u =
3

2

P

ρ
= cV T, (2.28)

γ =
cP
cV
, (2.29)

and

P = const ργ exp ( s/cV ), (2.30)

where γ is the ratio of specific heats cV and cP (at constant volume and pressure

respectively).

The first law of thermodynamics

T

(
∂

∂t
+ v · ∇

)
s =

(
∂

∂t
+ v · ∇

)
u+ P

(
∂

∂t
+ v · ∇

)
1

ρ
. (2.31)
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2.5.4 The constitutive equations

Ohm’s law

J = σ · E′ + β · ∇T, (2.32)

where β is a laterally isotropic thermoelectric tensor and σ is a second-order, also

laterally isotropic, electrical conductivity tensor.

The heat flow

q = −T
(
β +

5k

e
σ

)
· E′ − κ · ∇T, (2.33)

where k is the Boltzmann constant, e is the charge of the electron and κ is a laterally

isotropic thermal conductivity tensor.

The pressure tensor is

P = P I + τ = P I − 2μ :∇0v, (2.34)

where μ is a fourth-order, lareally isotropic, viscosity tensor [Woo87], τ is the stress

tensor, I is the identity tensor and the superindex zero means the deviator [Woo87]

of the tensor ∇v, this is, its symmetric part with zero trace.

And the generalized electric field

E′ = E + v × B− 1

ne
J × B +

1

ne
∇ · Pe. (2.35)

This equations can be combined to give a closed sistem of eight scalar, fully cou-

pled, non-linear, partial differential equations. This system is written in conservative,
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non-dimensional form as:

∂

∂t

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ

ρv

B

e

⎤
⎥⎥⎥⎥⎥⎥⎦

+ ∇ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

ρv

ρvv − BB +
(
P + B·B

2

)
I

vB− Bv(
e+ P + B·B

2

)
v − (B · v)B

⎤
⎥⎥⎥⎥⎥⎥⎦

=

∇ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

0

(Re Al)−1 τ

(Rm Al)−1 η · ∇B + βh [(∇× B)B − B (∇× B) − Pe] /ρ

(Re Al)−1 v · τ − (Rm Al)−1 η · [(∇× B) × B] + mi

2
(Pe Al)−1 κ · ∇T

⎤
⎥⎥⎥⎥⎥⎥⎦
.(2.36)

I is the identity matrix and η is the laterally isotropic, resistivity tensor.

The non-dimensional numbers are defined as follows:

Alfvén Number : Al ≡ vA/v, (2.37)

Reynolds Number : Re ≡ Lv/ν, (2.38)

Magnetic Reynolds Number : Rm ≡ μoLV/η, (2.39)

Péclet Number : Pe ≡ LV/κ̄, (2.40)

Hall parameter : βh ≡ 1

ωciτA
. (2.41)

The characteristic variables are the length L, the fluid speed v, the Alfvén speed

vA = B/
√
μ0ρ, the kinematic viscosity ν, the electrical resistivity η, and the thermal

difusivity κ̄ = κ/ρcP . The quantity ωci = eB
mi

is the ion cyclotron frequency and

τA = L/vA is the Alfvén transit time.
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2.6 The Hall effect in the MHD equations

The vector J×B
ne

in Ohm’s law 2.19 is known as the Hall or gyroscopic term. A

comparisson of σ|J×B
ne

| and ωceτe|J| shows that this term can be dropped if ωceτe � 1.

In general, this term can be dropped in either high density or low current regions,

but can be important in regions of sharp gradients and low density, like edges.

Im Ohm’s law 2.19 , the sum of v × B − J×B
ne

, given v ≈ vi + me

mi
ve and J =

ne (vi − ve), yields to

v × B − J × B

ne
=

(
me

mi

+ 1

)
ve × B ≈ ve × B. (2.42)

This shows that when there is Hall effect, i.e. low density and strong magnetic field,

the time in between collisions is large compared to the time necessary for a complete

rotation of the electron, the plasma electrons are free to gyrate magnetically and they

become the total carriers of the magnetic force. The Hall term is important as long as

|vi − ve| is large, and this is generally the case for most plasma physics applications.

The characteristic feature of a plasma described including the Hall term is its abil-

ity to exhibit magnetically induced plasma rotation [Wit87]. The angular momentum

has to be taken as the usual canonical one plus a field part which is carried by the

magnetic field.

A study of MHD waves in unbounded plasmas [Woo87] shows that the Alfvén

and magnetosonic branches of the plasma waves can be decoupled only if the Hall

term is negligible. Shock wave stability requires the shock to be evolutionary in or-

der to be stable. A shock is said to be evolutionary if the discontinuity responds

in a unique manner to small disturbances. The coupling of the Alfvénic and mag-

netosonic branches, possible only with the inclusion of the Hall effect, prevents one

from identifying the intermediate shock as being non-evolutionary.

In cylindrical geometries, the Hall effect gives rise to an azimuthally symmet-

ric, compressible Alfvén-type wave propagation with discrete and infinite spectrum

[Goo89]. This wave do not exist if the plasma is incompressible or if the perturbations
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travel perpendicular to the magnetic field, this is expressed as k · B = 0, where k is

the wave vector of the perturbation. The Hall effect also reduces the speed of the

slow magnetosonic wave and increases that of the fast wave.



Chapter 3

SEMI-IMPLICIT TREATMENT OF THE HALL EFFECT

IN FINITE VOLUME COMPUTATIONS

The solution to the MHD equations including the Hall effect is important in regions

of a plasma where the velocity of the ions is much different from the velocity of the

electrons. The Hall term and the velocity term in the generalized Ohm’s law 2.19 can

be merged into a single term that only depends on the velocity of the electrons. The

resolution of this terms includes, in principle, the resolution of the average electronic

motion, and therefore, small scales and a high computational cost. By the other

hand, neglecting the Hall term produces the wrong physics. Experimentally, many

plasma physics applications have shown that the modification of the MHD equations

to include the Hall effect can be important. In reversed-field pinch experiments (RFP),

the Hall term can become comparable to the velocity term in Ohm’s law. In field-

reversed configurations (FRC), some stability effects are explained by rotation induced

by the Hall term. In space propulsion, the electromagnetic Hall thruster takes direct

advantage of the Hall rotation and current to ionize and accelerate the plasma.

The resolution of the physics associated to the Hall term for time steps comparable

to those normally used in MHD computations is a problem related to multiple scale

resolution. Explicit schemes for three dimensional time-dependent computations in-

cluding the Hall effect are complicated by a very restrictive stability margin in the

time step. Implicit schemes do not have this restriction but are difficult to implement

because the induction equations are fully coupled and the iterative scheme to solve

them can be quite complicated.
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In 1987, Harned and Mikic [HM89] proposed a semi-implicit technique that allows

to compute accurately the physics of the Hall term for those time steps normally im-

plemented in MHD computations. The right expression for the semi-implicit operator

was necessary to assure high accuracy at any wave number. Unfortunatelly, they use

a spectral method not able to handle complex geometries.

In this chapter, this semi-implicit technique for the Hall term is applied to a

three-dimensional, finite volume scheme, able to handle complex geometries. The

semi-implicit operator can be expressed in terms of finite differences in between the

centered values of the magnetic induction field in each finite volume. The geometric

factors, due to the curvilinear transformation, are computed through the volumes and

area vectors of the finite volumes.

3.1 Semi-implicit method

A simple view of the semi-implicit method is derived for the coupled system of linear

wave equations. The idea is to obtain a second order expression for the time derivative

and use it as a dissipation term with a semi-implicit constant to be determined by

stability conditions in order to give an unconditionally stable algorithm.

The linear wave equations

∂u

∂t
= a

∂v

∂x
(3.1)

and

∂v

∂t
= a

∂u

∂x
(3.2)

can be combined to give

∂2u

∂t2
= a2∂

2u

∂x2
, (3.3)

this is the same as to write

∂2u

∂t2
− a2

0

∂2u

∂x2
= a2∂

2u

∂x2
− a2

0

∂2u

∂x2
, (3.4)
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so, the semi-implicit advance is defined as

un+1 − a2
0Δt

2

[
∂2u

∂x2

]n+1

= un + Δt

[
∂u

∂t

]n+ 1
2

− a2
0Δt

2

[
∂2u

∂x2

]n+ 1
2

. (3.5)

The original equation is used to compute the first derivative averaged over the time

step. This technique is found to be better when implemented as a predictor-corrector

[HS86] .

3.2 Semi-implicit operator for the Hall term

The semi-implicit operator for the Hall term is obtained differentiating, with respect

to time, the linearized Hall term equation

∂B1

∂t
= − 1

ωciτAρ
∇× ((∇× B1) ×B0) , (3.6)

and using ∇ · B = 0 to obtain the second order equation

∂2B1

∂t2
= − 1

(ωciτAρ)
2 [B0 · ∇]2 ∇2B0. (3.7)

This operator can be simplified to a laplacian but the accuracy of the method is

highly decreased for high wave numbers.

3.3 Split method

Harned and Mikic [HM89] studied different ways to implement the semi-implicit op-

erator for the Hall term and found that the approximate laplacian operator is too

dispersive for different wave numbers. The complete operator gives accurate results,

even at high wave numbers, when implemented as a predictor-corrector.

The split method consists of a predictor stage where an explicit MHD time step

with the Hall term is computed. This predicted solution is used to compute the

average value of all the variables and to compute a ”non Hall” advance of the equations

based on the predicted average values vn+ 1
2 and Bn+ 1

2 . Let B∗ be the magnetic field
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advanced by a ”non-Hall” computation. The average of the predicted magnetic field

is used to compute the Hall term over the time step. This term is added to the ideal

MHD magnetic field B∗ and the semi-implicit operator is added to each side of the

equation as in 3.5. The split method gives the following corrector stage:

Bn+1 + Δt2 (CH · ∇)
2 ∇2Bn+1

= B∗ + Δt2 (CH · ∇)2 ∇2B∗ − Δt
ωciτAρ

∇× (∇× B × B)n+ 1
2 .

(3.8)

The value of the vector constant CH is found to assure stability.

In order to obtain second order accuracy in time is necessary to update the rest

of the conservative variables based on the averaged value of the magnetic field.

3.4 Finite volume expression for the average Hall term

The Hall term can be rewritten as

∇× [(∇× B) ×B] = −∇ · [(∇× B)B −B (∇× B)] . (3.9)

The finite volume approximation of the volume integral of 3.9 is∫
Ω

∇× [(∇× B) × B] dV = −
∑
faces

Ai · [(∇× B)B − B (∇× B)]
n+ 1

2
i . (3.10)

Ω is the control volume, Ai is the area vector of the i− th face of the control volume.

The average Hall term is computed through the average induction field Bn+ 1
2 , and

the current density ∇×B is approximated by the finite volume expression

∇× B =
1

V olΩ

∑
faces

⎡
⎢⎢⎢⎣
AyBz − AzBy

AzBx − AxBz

AxBy − AyBx

⎤
⎥⎥⎥⎦

faces

. (3.11)

Where Ai is the i− th component of the area vector.

Simple average can be used to interpolate from the center of the elements to their

faces.
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3.5 A finite volume semi-implicit operator for the Hall term

The semi-implicit operator for the Hall term 3.7 has been implemented in cartesian

spectral coordinates by Harned and Mikic [HM89]. They found that the crossed

terms in the Hall constant vector product C i
HC

j
H (forj �= i) are unstable and should

be dropped, this changes the operator to

(CH · ∇)2 ∇2 ≈
∑

i=x,y,z

(
C i

H

)2( ∂4

∂x2∂i2
+

∂4

∂y2∂i2
+

∂4

∂z2∂i2

)
. (3.12)

For a regular mesh, this derivatives are computed as

∂4

∂x4
=

1

Δx4
[Ui−2 − 4Ui−1 + 6Ui − 4Ui+1 + Ui+2] +O(Δx2) (3.13)

and

∂4

∂x2∂y2
=

1

Δx2Δy2
[Uj−1,i−1 − 2Uj,i−1 + Uj+1,i−1 − 2Uj−1,i + 4Ui,j ]

+
1

Δx2Δy2
[−2Uj+1,i + Uj−1,i+1 − 2Uj,i+1 + Uj+1,i+1]

. (3.14)

The same formulas can be used in complex geometries if a coordinate transfor-

mation is used to express the operator in curvilinear coordinates. The semi-implicit

operator 3.12 transforms to

(CH · ∇)2 ∇2 ≈
∑

i

((
C i

H

)2 ∂2

∂x2
i

(∑
j

∂2

∂x2
j

))

=
1√
g

∂

∂ξj

(√
g
(
Cj

H

)2
gjk ∂

∂ξk

(
1√
g

∂

∂ξi

(√
ggil ∂

∂ξl

))) , (3.15)

using Einstein’s tensor notation. The geometric factors
√
g and gij are related to the

infinitesimal Jacobian matrix of the transformation and are approximated in finite

volumes in terms of the areas and volume of each element in the mesh as follows:

volΩ =
√
g and

√
ggij =

Ai·Aj

volΩ
.

If locally orthogonal coordinates are used, the operator simplifies to

1

volΩ

[
3∑

j=1

(
Cj

H

)2 ∂

∂ξj

[(
A2

j

volΩ

∂

∂ξj

(
1

volΩ

3∑
i=1

∂

∂ξi

(
A2

i

volΩ

∂

∂ξi

)))]]
. (3.16)
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This operator looks almost like the one used for cartesian coordinates and does not

contain odd crossed terms that cause instabilities.

The matrix generated by this operator has twenty five points in the numerical

”molecule” and a simple SOR iterative method [LeV98] is used to invert it and con-

verge to a solution for Bn+1. An SOR method is successfull because the matrix to

solve is diagonally dominant as the coefficients of Uij reveal in 3.13 and 3.14.

The SOR constant α is grid size dependent and has to be optimized for different

geometries. In general, the Hall vector constant CH can be computed locally under

the conditions found by Harned and Mikic [HM89] : CH ‖ B0 and CH > B0

2ωciτA
,

where B0 is the local magnetic field. This limit is necessary to assure stable modes

with large wave number for any value of the Hall parameter (ωciτA)−1 .

3.6 Energy update

The predicted magnetic field B∗ is computed from an MHD advance without the Hall

term contribution. After the Hall term is included in a new induction field Bn+1, the

total magnetic energy predicted needs to be updated adding

Δε =
(Bn+1)

2

2μ0

− (B∗)2

2μ0

. (3.17)



Chapter 4

SMALL AMPLITUDE HALL-MHD WAVES

The propagation of small amplitude waves through a plasma is fundamental for

several practical reasons. It offers a simple way to compare theoretical results with

experiments and numerical results with theory. Once the theory is confirmed, the

waves can be used for diagnostic, to understand MHD shock waves, to heat the

plasma or to relate unstable waves to the generation of turbulence inside the plasma.

A quite variety of propagation modes can be found in the literature, dispersion

relations of quite high order can be obtained, especially when dissipative effects are

included such as viscosity and resistivity.

It is possible to start the study of MHD waves with the Appleton-Hartree maneto-

ionic theory [Woo87], started over fifty years ago, but it is more natural to start from

the MHD equations 2.36.

In general, a hyperbolic, nonsingular, nonlinear system of partial differential equa-

tions, can be linearized around a uniform solution using a perturbation series to first

order and neglecting all the higher order terms in the equations. If the perturbation

is small and given a priori as a general travelling wave, the evolution of the first or-

der perturbation can be solved. An eigenvalue problem appears as the result of the

boundary conditions, a discrete frequency spectrum can be obtained and a dispersion

relation ω = ω (k) can be found for each eigenvalue.

In this chapter, Faraday’s equation 2.20 is linearized including the Hall term in

order to compare the numerical predictions using the semi-implicit operator 3.5 with

linearized analytical results for small amplitude MHD waves. The ideal MHD disper-

sion relations produce three basic modes, known as the fast and slow magnetosonic
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waves and the Alfvén wave. The Hall term modifies Ohm’s law 2.19 in ideal MHD

from that for a perfectly conducting plasma to one that is nondissipative, nondiffu-

sive, as in ideal MHD, but that now contains dispersive effects as a result of the Hall

effect.

4.1 Linearized induction equation

The ideal induction equation, including the Hall term, is written as

∂B

∂t
= ∇×

(
v × B − 1

ne
J × B

)
= ∇×

(
v ×B − 1

neμ0
∇× B × B

)
, (4.1)

and the ideal, electromagnetic, fluid equation is expressed as

ρ

(
∂

∂t
+ v · ∇

)
v = J ×B =

1

μ0
∇×B × B, (4.2)

This equations are linearized around a constant solution of order one adding a first

order perturbation of order ε � 1. The velocity and the magnetic field are expanded

as B = B0 + B1 and v = v0 + v1. The following first order correction equations are

obtained

∂v1

∂t
=

1

μ0ρ0
∇× B1 × B0, (4.3)

and

∂B1

∂t
= ∇×

[
v1 × B0 − 1

enμ0

∇× B1 × B0

]
. (4.4)

This two equations merge into a single second order equation describing the evolution

of the magnetic induction

∂2B1

∂t2
= ∇×

[
1

μ0ρ0

(
∇× B1 × B0 − 1

enμ0
∇× ∂B1

∂t
× B0

)]
. (4.5)

Now, suppose that the constant field is in the direction of a constant vector B0 = B0b

and that the first order correction has a wave structure B1 = B̄1 exp (i (k · x − ωt)),
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then the equation 4.5 reduces to three linear partial differential equations in space

variables, this vector equation is written in nondimensional form as

−ω̄2B1 = ∇×
[
∇× B1 × b +

iω̄

ωciτA
(∇× B1 × b)

]
, (4.6)

where ω̄ = ωτA is the nondimensional frequency for the magnetic induction field

perturbation or Hall-MHD waves. The Hall parameter βh = 1/ (ωciτA) is multiplying

directly the Hall term in the dispersion equation 4.6 .

If a general wave vector k is considered, the wave dispersion equation 4.6 can be

reduced to an equation for the coefficients of B1 , this can be written as

−ω̄2B̄1 =
(∇ + ik)× [((∇× B̄1 + ik× B̄1

)× b
)× b

]
+iβhω̄ (∇ + ik)× [((∇× B̄1 + ik× B̄1

)× b
)]
.

(4.7)

4.2 Small amplitude, planar Hall-MHD waves in a bounded plasma

4.2.1 Analytical results

The equation 4.7 is a fully coupled three-component dispersion relation and shows

the complicated oscillatory nature of the Hall term.

A manner to simplify this problem is to consider planar waves. A planar wave

has a zero wave number perpendicular to the direction of wave propagation, without

loosing generality consider kx = 0. The field is allowed to have variations across this

direction, thus giving B̄1 = B̄1 (x). Considering a initial zeroth order field of order

unity with b = ẑ, the equation 4.7 reduces to the following linear system of partial

differential equations for the components of the amplitude vector B̄1 :

(
k2

z − ω̄2
)
Bx = −ikz

((
∂

∂x
+ βhω̄ky

)
Bz − βhω̄kzBy

)
, (4.8)

(
k2

z − ω̄2
)
By = kz

((
βhω̄

∂

∂x
+ ky

)
Bz − iβhω̄kzBx

)
, (4.9)
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(
k2

y −
∂2

∂x2
− ω̄2

)
Bz = kz

(
i

(
βhω̄ky − ∂

∂x

)
Bx +

(
ky − βhω̄

∂

∂x

)
By

)
. (4.10)

The elimination of the Bx and By components can be simplified if the condition

∇ · B = 0 is imposed. This condition yields to the following equation:

∂Bx

∂x
+ ikyBy + ikzBz = 0. (4.11)

After the Bx and By components are eliminated, the following harmonic equation

is found for Bz,

∂2

∂x2
Bz =

[
k2

y +
(k2

z − ω̄2)
2 − (βhω̄k

2
z)

2(
k2

z

(
1 − (βhω̄)2

)− ω̄2
)
]
Bz. (4.12)

The other two components are obtained in terms of Bz as

By (x) =
kz

(
k2

zky

(
1 − (βhω̄)2)− ω̄2

(
βhω̄

∂
∂x

+ ky

))
(
(k2

z − ω̄2)2 − (βhω̄k2
z)

2) Bz (x) , (4.13)

and

Bx (x) =

−ikz

(k2
z−ω̄2)

[
∂
∂x

+ βhω̄ky

]
Bz (x)

+ ikz

(k2
z−ω̄2)

[
βhω̄k

2
z

(
k2

zky(1−(βhω̄)2)−ω̄2(βhω̄ ∂
∂x

+ky)
((k2

z−ω̄2)2−(βhω̄k2
z)2)

)]
Bz (x) .

(4.14)

The imaginary number i reflects a ninety degree phase difference. It is also convenient

to define the coefficient in the right hand side of the equation 4.12 as

ν2 = −(k2
z − ω̄2)

2 − (βhω̄k
2
z)

2

k2
z

(
1 − (βhω̄)

2)− ω̄2
, (4.15)

then, the solution of 4.12 is obtained as

Bz (x) = A1 cos
[
x
√
ν2 − k2

y

]
+ A2 sin

[
x
√
ν2 − k2

y

]
. (4.16)

Experimental tests of MHD theory are frequently undertaken using bounded plas-

mas where conductor plates are used as boundary conditions. The boundary condition

for a perfectly conducting wall requires that the magnetic field lines are continuous

at the wall. This condition eliminates the the magnetic field in the direction normal
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to the wall, therefore, n̂ · B = 0 . Also n̂ × E = 0 needs to be imposed at the wall.

This condition applied to Ohm’s law gives n̂ · v = 0 and n̂ · J = 0 at the conductor

walls.

In order to simulate a bounded plasma, conductor boundary conditions are used

asking for Bx = 0 and By = 0 at x = 0.5 and x = −0.5. In general, a single equation

for Bx must be found and the boundary conditions must be imposed over the solution.

The condition is satisfied in general for a function f (ky , kz, ω) = 0.

For simplicity, the case of decoupled modes is solved setting ky = 0. This condition

simplifies the system of equations 4.8, 4.9 and 4.10, to the following system:

(
k2

z − ω̄2
)
Bx = −ikz

[
∂Bz

∂x
− βhω̄kzBy

]
, (4.17)

(
k2

z − ω̄2
)
By = kzβhω̄

[
∂Bz

∂x
− ikzBx

]
, (4.18)

(
∂2

∂x2
+ ω̄2

)
Bz = kz

[
i
∂Bx

∂x
+ βhω̄

∂By

∂x

]
. (4.19)

And the equation 4.11 simplifies to ∂Bx

∂x
= −ikzBz.

The elimination of two of the components yields to the same harmonic equation

for Bx and Bz, this is

∂2Bx

∂x2
= −ν2Bx. (4.20)

The conductor boundary conditions can be imposed to get the solution

Bx (x) = ε cos (νx), (4.21)

with eigenvalues ν = π, 2π, · · · . The solution 4.21 is used to find the expressions for

Bz and By, these are

Bz (x) = − iεν
kz

sin (νx), (4.22)
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and

By (x) = − iεβhω̄ (ν2 + k2
z)

(k2
z − ω̄2)

cos (νx). (4.23)

Taking the real part of the solution yields to the following expression for decoupled,

small amplitude, MHD waves:

B (x, y, z, t) =

⎛
⎜⎜⎜⎝

0

0

B0

⎞
⎟⎟⎟⎠+ ε

⎛
⎜⎜⎜⎝

cos (νx) cos (kzz − ω̄t)
βhω̄(ν2+k2

z)
(k2

z−ω̄2)
cos (νx) sin (kzz − ω̄t)

ν
kz

sin (νx) sin (kzz − ωt)

⎞
⎟⎟⎟⎠ . (4.24)

This is a travelling wave in the ẑ direction.

The dispersion relation is found to have the following, commonly known expression

[βhω̄]2 =

(
1 − ω̄

k2
z

)(
1 − ω̄2

k2
z + ν2

)
. (4.25)

The equation 4.25 is a second order algebraic expression for ω̄2 that can be solved

as

ω̄2 = 1
2
[(ν2 + k2

z) (β2
hk

2
z + 1) + k2

z ]

±
[

1
4
((ν2 + k2

z) (β2
hk

2
z + 1) + k2

z)
2 − k2

z (ν2 + k2
z)
]1/2

.
(4.26)

The dispersion relation for the fast or slow magnetosonic waves is obtained choos-

ing the positive or the negative sign in the equation 4.26, respectively.

The dispersion relation for the fast and slow modes with the Hall term is plotted

in Figure 4.1 . The value of ωciτA = 3.5 is chosen because it corresponds to the size

of the Hall term in ZT-40M reversed-field pinch experiments.

4.2.2 Numerical results

The numerical solution of small amplitude Hall-MHD waves is compared to the ana-

lytical result obtained in the previous section. The semi-implicit technique developed

in Chapter 3 is used inside the finite volume warp3 code [OSJE97] to include the Hall
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Figure 4.1: Dispersion relation for the fast and slow modes with ωciτA = 3.5. The dashed lines
represent the ideal MHD modes.

terms into the MHD equations. The equations are advanced splitting the ideal MHD

part and the Hall term contribution.

A rectangular, planar mesh of 30 × 30 points in the x and z directions is used.

Conductor boundary conditions (B · n = 0,J · n = 0) are used in the x direction

and periodic boundary conditions are used in the z direction. The size of the domain

is adjusted in the z direction for each wave number. The value of ωciτA = 3.5 is

chosen and therefore the Hall semi-implicit vector constant is set to CH = 0.15, in

agreement with the stability condition CH > B0

2ωciτA
.

The explicit analytic expression for the Hall term, given the initial magnetic field

4.24 at t = 0, is computed as

∇× [(∇× B) × B] =

⎡
⎢⎢⎢⎣

εk2
zβhω̄(ν2+k2

z)
(k2

z−ω̄2)
cos (νx) sin (kzz)

−ε (k2
z + ν2) cos (νx) cos (kzz)

εkzνβhω̄(ν2+k2
z)

(k2
z−ω̄2)

sin (νx) cos (kzz)

⎤
⎥⎥⎥⎦ . (4.27)

As a first test, this expression is compared numerically to its finite volume approxi-

mation 3.10 at t = 0. Second order accuracy in space is obtained as expected.
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Figure 4.2: Contours of Bz with wave number kz = 5.0. a) Hall-MHD magnetic induced rotation.
b) Ideal MHD.

Qualitatively, it is observed that the Hall effect produces magnetic induced rota-

tion as shown in Figure 4.2. This behavior does not appear in ideal MHD.

Less than first order accuracy in time is obtained with a simple splitting technique

and the results are quite disappointing even for relatively high resolution runs.

For any value of ε� 1, a numerically predicted frequency of 6.95 is obtained given

kz = 5.0, against 11.1 predicted by the linear theory. Figure 4.3 presents the points

given by the numerical scheme. The measured frequency is off independent of grid

spacing and time step size.

It is important to know that an explicit run (without the semi-implicit operator)

gives the same results. This proves that the semi-implicit operator has little influence

over the numerical result once the Hall term is added. The error in the frequency has

the same effect of reducing the Hall parameter (ωciτA)
−1

by a half for any value of

the Hall parameter.
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Figure 4.3: Dispersion for the fast mode with ωciτA = 3.5. The points represent the numerical
results. The dashed line represents the dispersion without Hall effect.



Chapter 5

THESIS CONTRIBUTION AND FUTURE RESEARCH

5.1 Thesis contribution

In this thesis, the semi-implicit operator found by Harned and Mikic [HM89] was

adapted to finite volume, conservative schemes. The full operator is able to handle

complex geometries and its geometric properties are expressed in terms of the area

vectors and volume of the finite elements. It is found that the semi-implicit method

gives the same results as an explicit advance of the equations. An unconditionally

stable method is obtained able to handle any size of time steps.

5.2 Difficulties

The numerical results are quite disappointing even for high resolution runs. Exhaus-

tive work was done checking the accuracy of the finite volume approximation of the

Hall term. It is found that the semi-implicit method gives the same result as the

explicit method but without the stability conditions over the time step.

The Hall term is of hyperbolic, dispersive nature. In this thesis, this term was

handled as a source term. Normally, this approach works for parabolic terms but it

may be not accurate for hyperbolic ones. Harned and Mikic [HM89] treated it as a

source term in spectral representation and it is not clear if the same scheme should

work for finite volumes. Perhaps this is the reason for the error. If this is the case, in

order to avoid this problem and still being able to handle any time step, this method

can be combined with a Hall-MHD Riemann solver in the predictor step to get the

correct wave structure. Then the semi-implicit method can be used as described by
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Harned and Schnack [HS86]. The development of a Hall-MHD Riemann solver is still

matter of future research.

5.3 Future research

The applications of an MHD solver with the Hall terms are extensive. The method

presented in this thesis can be useful for steady state solutions where the transients are

not important. As an example, the Hartmann-Hall flow can be studied numerically,

theoretical results have been obtained by Waleffe [Wal84], and the velocity profiles

can be matched.

The development of accurate finite volume methods able to handle the Hall term

are very important to the study of ion acceleration with close electron drift [Kau84],

theoretical base for the Hall thruster. The Hall terms are also important for new

fusion research projects, where the Hall term are important around edges or where

the Hall rotation is a factor of stability. New concepts of non-thermal fusion have

been based on the dynamo action produced by the Hall effect [Wit88].
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Appendix A

SUBROUTINE INPUTS AND OUTPUTS

In this section, the new subroutines included in the warp3 code, as part of the

research to handle the physics of the Hall term, are explained.

One main subroutine hall−main is included in the code. This routine calls the

functions hall− average, hall− curlb, hall− source1, hall− source2, hall− source3

and the subroutines hall − bc and hall − geometry. A new module of parameters

is introduced with the name hall− inp referring to inputs. An specific initialization

routine init− hall was used for the dispersion relation matching.

A.1 Subroutine hall−main

Hall−main is the routine that adds the average Hall term to the induction equation

and applies the semi-implicit operator to obtain an unconditionally stable algorithm.

New parameters are defined in the module hall− param: the logical flag hall− flag

turns on the routine; the Hall parameter (ωciτA)−1 receives the name of hallp; the

semi-implicit vector constant has components challi, challj, and challk (oriented in

the generalized directions of the grid); the SOR constant is omega and the SOR

iterations are hiter ; and, specifically for the Hall-MHD waves, the parameters nu are

the eigenvalue, kz is the wave number and epsil is the amplitude of the perturbation.

Inside hall − main the computations start with the average of the magnetic field

components on every face of every direct neighboring cell. This values are computed

in the routine hall − average and stored in the dummy variables bij − ave, where

i denotes de face and j denotes the cartesian component. The average values are



38

used to compute the current density on every direct neighboring cell, their values are

computed by the function hall − curlb and stored in curlb(i, j) where i denotes the

face and j denotes the cartesian component. The average of the current density is

computed in each face of the working cell in order to be used by the function hall−
source1 to compute the integral of the Hall term over the finite volume, using Gauss’

theorem. The dummy variable bstari, where i denotes the cartesian component,

is used to store the input magnetic field. The routine hall − boundary is used to

extrapolate the values of this variables to the ghost cells along the boundaries.

The average Hall term is added to each component of the magnetic field. The

semi-implicit operator applied to the input magnetic field is also computed there

in the function hall − source2 and added to the magnetic field components to be

stored in the dummy variables shalli, where i denotes the cartesian component. The

geometric factors needed inside the semi-implicit operator are computed in the routine

hall − geometry and stored in the dummy variable geom(i, j), where i denotes the

neighbor, and j denotes the local face.

The SOR method is used to invert the semi-implicit operator applied to the new

magnetic field. Inside the function hall − source3 the off-diagonal elements of the

operator are used as a source term and are updated after each iteration of the diagonal

elements. The iteration index is m and the number of iterations is hiter.

It was found that the SOR method converges very rapidly for values of omega =

1.35. But this value is grid-dependent and needs to be optimized for different geome-

tries.

The converged values are dumped to the conserved variables q, the boundary

conditions are imposed and the magnetic energy is updated.

This routine is able to handle parallel runs.

In summary, the routine receives the values of the ideal MHD update of the mag-

netic field, computes the average Hall term with them, adds it to the equations and

applies the semi-implicit method to return a three new components of the magnetic
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field with updated boundary conditions and energy.


