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Abstract

Algorithms for the solution of the five-moment ideal Two-Fluid equations are presented. The ideal Two-Fluid model is
more general than the often used magnetohydrodynamic (MHD) model. The model takes into account electron inertia
effects, charge separation and the full electromagnetic field equations and allows for separate electron and ion motion.
The algorithm presented is the high resolution wave propagation method. The wave propagation method is based on solu-
tions to the Riemann problem at cell interfaces. Operator splitting is used to incorporate the Lorentz and electromagnetic
source terms. To preserve the divergence constraints on the electric and magnetic fields two different approaches are used.
In the first approach Maxwell equations are rewritten in their mixed-potential form. In the second approach the so-called
perfectly hyperbolic form of Maxwell equations are used which explicitly incorporate the divergence equations into the
time stepping scheme. The algorithm is applied to a one-dimensional Riemann problem, ion-acoustic soliton propagation
and magnetic reconnection. In each case Two-Fluid physics described by the ideal Two-Fluid model is highlighted.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A plasma is a gas that is significantly ionized, through heating or photo-ionization, and thus is composed of
electrons, ions and neutrals. Plasmas are usually permeated by electromagnetic (EM) fields. In addition to
long range smoothed or averaged EM fields there are localized short range micro-fields on individual particles.
The long range fields act like body forces while the short range fields like collisions. The micro-fields are
responsible for the transmission of pressure and viscous forces, for the conduction of particle energy, and
for diffusion between components of the plasma [1]. The dynamical behavior of plasmas is also strongly depen-
dent on frequency. At the lowest frequency the motion of the electrons and ions are locked together by elec-
trostatic forces and the plasma behaves like an electrically conducting fluid. This is the regime of
magnetohydrodynamics (MHD). At somewhat higher frequencies the electrons and ions can move relative
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to each other, behaving like two separate, inter-penetrating fluids. At still higher frequencies the distribution
function of the plasma species is driven by anisotropies in the velocity space. This regime is best described by
the collisionless Boltzmann equation or Vlasov equation of kinetic theory.

In this paper numerical schemes are developed to simulate Two-Fluid plasma dynamics, i.e physics in the
intermediate frequency regime between MHD and full kinetic theory. Due to the disparate scales on which
plasma dynamics occurs a complete spectrum of mathematical models of plasmas can be derived. Among
the most commonly used fluid models are the MHD model [2] and the Hall MHD model. In MHD the plasma
is treated as a single electrically conducting fluid. Although in the Hall-MHD model a distinction is made
between the bulk plasma velocity and electron velocity, electron inertia and displacement currents are ignored
and electron and ion number-densities are assumed to be the same (quasi-neutrality). A more general approach,
used in this paper, is to treat to the plasma as a mixture of multiple fluid species. In this five-moment ideal Two-

Fluid model each plasma species is described by a set of fluid equations with electromagnetic body forces. The
electromagnetic fields are modeled using Maxwell equations of electromagnetism. The Two-Fluid model retains
both electron inertia effects and the displacement currents and also allows for ion and electron demagnetization.

In this paper, and in [3], an attempt is made to develop general purpose algorithms for the solution of the
ideal full Two-Fluid equations. Applications presented here also show that Two-Fluid effects are important in
many plasma regimes and hence must be taken into account to get a proper description of the physics.

The rest of this paper is organized as follows. First, some aspects of ideal Two-Fluid physics are described.
Length scales at which Two-Fluid effects become important are then derived. Often the divergence constraints
in Maxwell equations are not considered in numerical algorithms. To obtain correct solutions for initial-
boundary value problems numerical schemes must incorporate the divergence constraints explicitly. Here
two different approaches are adopted: a mixed potential formulation of Maxwell equations and the so-called
perfectly hyperbolic Maxwell equations [4]. Next a high-resolution wave propagation scheme [5] for the
solution of these equations is presented. This scheme, originally developed by Randall LeVeque, has been
extensively used to study fluid dynamics, elasticity, MHD [6], etc. Although a similar scheme was used for
the one-dimensional Two-Fluid Riemann problem [7], the application of this scheme to multi-dimensional
ideal Two-Fluid system is first in the literature. A number of applications of the algorithm are then presented.
In one dimension a Riemann problem and strongly nonlinear soliton propagation are studied. In two dimen-
sions magnetic reconnection is studied. It is shown that the reconnection flux from the Two-Fluid model
agrees well with that computed from full particle and hybrid simulations.
2. Two-Fluid physics

In collisionless plasmas collective interactions dominate the plasma dynamics. In this case a general descrip-
tion of the plasma is given by the Vlasov–Maxwell equations [8]. These describe the temporal evolution of a
particle distribution function in a six-dimensional spatial and velocity space. The distribution function evolves
under the influence of electromagnetic forces which are in turn determined by moments of the distribution
function taken over velocity space. As the distribution function evolves in a seven-dimensional space numer-
ical solutions of the Vlasov–Maxwell equations for realistic length and time scales are not computationally
feasible. To reduce the number of independent variables fluid approximations are derived by taking moments
of the Vlasov equation over velocity space. Assuming no heat flow and a scalar fluid pressure the following
five-moment ideal Two-Fluid equations listed below are obtained for each species in the plasma
on
ot
þ o

oxj
ðnujÞ ¼ 0; ð1Þ

m
o

ot
ðnukÞ þ

o

oxj
ðpdkj þ mnukujÞ ¼ nqðEk þ �kijuiBjÞ; ð2Þ

oE

ot
þ o

oxj
ðujp þ ujEÞ ¼ qnujEj: ð3Þ
Here n is the number density, u is the mean fluid velocity, p is the fluid scalar pressure and E is the fluid total
energy given by
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E ¼ p
c� 1

þ 1

2
mnuiui; ð4Þ
where c = 5/3 is the adiabatic index. Further E is the electric field, B is the magnetic flux density, q and m

are the charge and mass of the plasma species and �kmj is the completely anti-symmetric Cevi–Levita pseudo-
tensor which is defined to be ±1 for even/odd permutations of (1,2,3) and zero otherwise. Summation over
repeated indices is assumed. The electromagnetic fields appearing in the source terms of the fluid equations
are determined using Maxwell equations [9]
r� E ¼ � oB

ot
; ð5Þ

r � B ¼ l0Jþ 1

c2

oE

ot
; ð6Þ

r � E ¼ .c

e0

; ð7Þ

r � B ¼ 0: ð8Þ
Here l0 and e0 are the permeability and permittivity of free space, c = (l0e0)�1/2 is the speed of light and,
.c and J are the charge density and the current density defined by
.c �
X

qn; ð9Þ
J �

X
qnu: ð10Þ
The summations in Eqs. (9) and (10) are over all species present in the plasma. For a plasma with s species
there are 5s + 8 equations in the system.

The ideal Two-Fluid model is more general that the MHD or the Hall-MHD models. To derive conditions
under which Two-Fluid effects, not included in the MHD or Hall MHD model, are important, scalar and vec-
tor potentials, /, A are introduced. In terms of these the electric and magnetic fields are expressed as
E ¼ �r/þ oA=ot; ð11Þ
B ¼ r� A: ð12Þ
Next, defining a generalized momentum, P ” mu + qA and a generalized vorticity, X � r� P ¼ mxþ qB,
where x ¼ r� u is the fluid vorticity, the non-conservative form the momentum equation is written as
oP

ot
� u�X ¼ �rp

n
þrðmu2=2þ /Þ; ð13Þ
which is a balance law for the generalized momentum [10]. Taking the curl of Eq. (13) gives
oX
ot
�r� ðu�XÞ ¼ �r� ðrp=nÞ: ð14Þ
This equation applies to each species in the plasma and, for example, for a hydrogen plasma there are two such
equations. Eq. (14) can be compared to the ideal MHD result
oB

ot
�r� ðv� BÞ ¼ 0; ð15Þ
where v is the ‘‘bulk’’ or MHD single-fluid velocity, the Hall-MHD result [11]
oB

ot
�r� ðue � BÞ ¼ �r � ðrpe=enÞ; ð16Þ
where e is electron charge, and the Euler (neutral) fluid result
ox

ot
�r� ðv� xÞ ¼ �r� ðrp=qÞ; ð17Þ
where q is the mass density. From these equations it is clear that the Two-Fluid equations span the complete
range from neutral fluids, to Hall-MHD to MHD: B! 0 corresponds to neutral fluid limit, me/mi! 0



Table 1
Typical density, temperature and magnetic field strength of plasmas in various environments

Plasma ne (m�3) T (K) B (T) kD (m) xp (s�1) xc (s�1) rL (m) l (m)

Tokamak 1020 108 10 10�4 1012 1012 10�5 10�4

Ionosphere 1012 103 10�5 10�3 108 106 10�1 1
Magnetosphere 107 107 10�8 102 105 103 104 103

Solar core 1032 107 – 10�11 1018 – – 10�10

Solar wind 106 105 10�9 10 105 102 104 103

The various plasma parameters and their meanings are defined in the text.

A. Hakim et al. / Journal of Computational Physics 219 (2006) 418–442 421
corresponds to Hall-MHD while x/(qB/m)! 0, which, as shown below, is the same as vanishing electron and
ion-skin depths or Larmor radii correspond to ideal MHD limit.

Examining the generalized vorticity X = m(x + qB/m) it is clear that for Two-Fluid effects to be important
1 Th
x=xc P Oð1Þ; ð18Þ

where xc ” qB/m is the cyclotron frequency. Using the fluid thermal velocity uT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=ðmnÞ

p
as a reference

speed and some reference length L, x � uT/L and hence the condition
uT=ðLxcÞ ¼ rL=L P Oð1Þ; ð19Þ

where rL ” uT/xc is defined as the Larmor radius, is obtained. Instead of the fluid thermal velocity if the typical
speed is assumed to be the Alfven speed,1 uA � B=

ffiffiffiffiffiffiffiffiffiffiffi
l0mn
p

, then the condition
uA=ðLxcÞ ¼ ðc=xpÞ=L P Oð1Þ; ð20Þ

where xp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq2=�0m

p
is the plasma frequency, is obtained. It should be emphasized that the plasma fre-

quency, Larmor radii and cyclotron frequency are each defined separately for each plasma species.
In summary, Two-Fluid effects are important when, for both ions and electrons, rL/L P O(1) and/or when

l/L P O(1), where l ” c/xp is the skin depth. Conversely, in the limit in which the length scales are much larger
than the electron-skin depth, but smaller than the ion-skin depth, Hall-MHD is an adequate model, while in
the limit in which the scale lengths are larger than ion-skin depths the MHD description is adequate.

Table 1 lists order of magnitude values of density, temperature and magnetic field strength for various
plasma environments. Using these the values of the Deby length (which determines the length scale over which
non-neutral effects are important), the ion plasma and cyclotron frequency, and the ion Larmor radius and
skin depths are listed. From the table it is clear that for space plasma applications the Larmor radii and skin
depths are large and hence Two-Fluid effects are important for these applications. Further, not shown in this
table, compact fusion devices like field-reversed configurations [12] have plasma skin-depths comparable to the
device dimensions. Hence, Two-Fluid effects are important to understand the complete physics, specially
anomalous resistivity arising from Two-Fluid micro-instabilities [13,14].

3. Nature of Two-Fluid source terms

Many partial differential equations are classified as either elliptic, parabolic or hyperbolic. The five-moment
ideal Two-Fluid equations have hyperbolic homogeneous parts. This means, crudely, that disturbances at
some spatially location cause changes in the dynamics at some other location after some finite time interval.
The disturbances travel as waves and hence wave propagation plays an essential role in the solution of hyper-
bolic equations. However, the presence of source terms in the Two-Fluid models significantly affects the
dynamics. In this section the source terms of the ideal Two-Fluid equations are examined for a plasma with
one electron and one ion species. It is shown that the source terms are non-dissipative and have undamped
oscillating solutions. The nature of the source terms puts restrictions on the numerical methods that can be
used and these are discussed later in this section.
is can happen when there is an equipartition between the kinetic, mnu2/2, and electromagnetic energy B2/(2l0) + e0E2/2 � B2/(2l0).
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Not all equations in the Two-Fluid system have sources. Collecting the terms that have sources and assum-
ing that the advection terms vanish (i.e. all spatial derivatives vanish) the following ordinary differential
equation
dq

dt
¼ s ð21Þ
is obtained, where q = [ue,ve,we,ui,vi,wi,Ex,Ey,Ez] and
s ¼

reðEx þ veBz � weByÞ
reðEy þ weBx � ueBzÞ
reðEz þ ueBy � veBxÞ
riðEx þ viBz � wiByÞ
riðEy þ wiBx � uiBzÞ
riðEz þ uiBy � viBxÞ
�ðreqeue þ riqiuiÞ=�0

�ðreqeve þ riqiviÞ=�0

�ðreqewe þ riqiwiÞ=�0

2
66666666666666664

3
77777777777777775

: ð22Þ
Here the subscripts a = {e, i} stand for electron and ion variables, ra ” qa/ma and ua,va,wa represent the com-
ponents of the velocity vector. The energy equations are not included in the analysis as energy does not appear
in the source terms explicitly.

From Eq. (21) it is clear that s is linear in q and hence the solutions of Eq. (21) are classified by examining
the eigenvalues of the Jacobian J ” os/oq. It can be proved that the non-zero eigenvalues of J are all purely
imaginary. Defining the plasma frequency, xpa, and cyclotron frequency, xca, by
xpa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
naq2

a=�0ma

q
; ð23Þ

xca ¼ qaB=ma; ð24Þ
the first three eigenvalues of J are 0,±ixp, where x2
p ¼ x2

pe þ x2
pi and i ¼

ffiffiffiffiffiffiffi
�1
p

. The other six eigenvalues are
the roots of a sixth order polynomial with imaginary roots.

The above analysis shows that the source terms of the Two-Fluid model are not dissipative but describe
undamped oscillations. In contrast, in most commonly studied hyperbolic balance laws, specially relaxation
systems, the eigenvalues of the source Jacobian are real and negative. Thus such relaxation systems can
describe decaying solutions in certain physical situations. In the ideal Two-Fluid model, however, the source
terms do not add any dissipation to the system. This has some important implications for the numerical meth-
ods that can be used for the solution of the full (with advection term) system. First, low order explicit time
stepping schemes cannot be used as these are unstable to the oscillation equations. Second, if the physics is
to be resolved then several time steps must be taken per oscillation. Thus implicit methods do not have
any advantage over explicit methods as small time steps must be taken to resolve complete physics in any case.
Further, although an implicit scheme is stable with larger time steps it is dissipative for the oscillation equa-
tion. Hence flow features get smeared out, specially at or near equilibrium. Finally, in the f-wave approach of
LeVeque described further on the source terms cannot be directly incorporated in the Riemann solver (see Eq.
(61)) as the resulting scheme is unstable.

4. Divergence constraints in Maxwell equations

At first sight Maxwell equations, Eqs. (5)–(8), seem to be overdetermined: there are eight equations for the
six field components E and B. It is commonly believed that the divergence equations, Eqs. (7) and (8), are sim-
ply constraints and if initially satisfied only the curl equations are sufficient to evolve the EM fields correctly.
Thus, often the divergence equations are simply ignored in numerical electromagnetics. However, this is
strictly true only for initial value problems, i.e. for problems on an infinite domain. As Jiang et al. [15] have



A. Hakim et al. / Journal of Computational Physics 219 (2006) 418–442 423
shown for initial-boundary value problems Maxwell equation are in fact not overdetermined and the diver-
gence equations need to be explicitly included in the solution. Even for numerical solution to initial value
problems, the evolving numerical fields may not satisfy the divergence equations and hence spurious solutions
may be obtained. In this paper two different approaches, described below, are used to take the divergence
equations into account.

The first approach is to introduce a scalar potential, /, and a vector potential, A, in terms of which the EM
fields are calculated as
E ¼ �r/þ oA=ot; ð25Þ
B ¼ r� A: ð26Þ
Introducing these expressions in Maxwell equations it can be shown that the potentials satisfy inhomogeneous
wave equations
r2/� 1

c2

o
2/
ot2
¼ .c

�0

; ð27Þ

r2A� 1

c2

o2A

ot2
¼ �l0J: ð28Þ
In deriving these equation the Lorentz gauge condition
r � A ¼ � 1

c2

o/
ot

ð29Þ
is used. Another gauge that can be used is the Coulomb gauge, $ Æ A = 0. With this the equation for the scalar
potential reduces to a Poisson equation. The main disadvantage of the Coulomb gauge over the Lorentz gauge
is that now an elliptic equation needs to be solved in addition to the hyperbolic fluid equations which is not
convenient for numerical solution. The mixed potential equations are now used instead of Maxwell equations
to advance the EM fields. The inhomogeneous wave equations can be rewritten as a system of first order equa-
tions. In this way a solver for second order equations is avoided. However, the disadvantage of this approach
is that in three dimensions the two second order equations give 16 first order equations, thus increasing com-
putation time. Further, the Lorentz gauge condition needs to be enforced. However, a peculiar feature of the
gauge condition is that the derivatives appearing in it do not appear in the computation of the EM fields. Thus
it might be simpler to apply a ‘‘gauge cleaning’’ procedure at each step. The simulations performed with this
model show that the gauge condition usually is satisfied to within numerical precision and no such cleaning is
needed.

The second approach is to modify Maxwell equations by adding two more field variables to take into
account the two divergence equations. In fact, by introducing two extra variables, Jiang et al. [15] were able
to prove that Maxwell equations are not overdetermined. However, these authors then went on to derive sec-
ond order, so-called ‘‘curl–curl’’, equations in which these extra variables do not appear. An attractive feature
of adding more variables is that modified equations of hyperbolic type can be obtained, in contrast to the
mixed hyperbolic/elliptic type of the original equations. These perfectly hyperbolic Maxwell equations

(PHM) read [4,16,17]
oB

ot
þr� Eþ crw ¼ 0; ð30Þ

�0l0

oE

ot
�r� Bþ vr/ ¼ �l0J; ð31Þ

1

v
o/
ot
þr � E ¼ .c

�0

; ð32Þ

�0l0

c
ow
ot
þr � B ¼ 0: ð33Þ
Here w and / are ‘‘correction potentials’’ and c and v are error propagation speeds. As c,v!1 the diver-
gence constraints are satisfied exactly. Thus more accurate solutions can be obtained with large values of these
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speeds, however at the expense of larger computational time. Usually c, v = c or 2c gives a good compromise
between accuracy and speed. Thus, unlike the mixed-potential formulation the PHM formulation preserve the
divergence constraints only approximately.

A number of simulations were performed to compare the mixed potential and PHM equations approaches.
It was observed that both mixed-potential and PHM approaches could satisfy the divergence equations to sec-
ond-order accuracy as needed by the wave propagation scheme described below. In the results presented the
PHM model is used for all simulations.

5. High resolution wave propagation scheme

Inhomogeneous partial differential equations with hyperbolic homogeneous parts are called balance laws

and arise in a large number of physical applications. Balance laws are put in the generic divergence form
oq

ot
þr � f ¼ s; ð34Þ
where q represents the conserved variables, f the fluxes and s the source terms. For m balance laws in d spatial
dimensions q; s 2 Rm and f 2 Rm�d . A conservation law is said to have a hyperbolic homogeneous part if for all
unit vectors x 2 Rd the flux Jacobian, A 2 Rm�m, defined by
A � oðf � xÞ
oq

ð35Þ
has real eigenvalues and a complete set of right eigenvectors [5,18]. If, further, the eigenvalues are all distinct
the homogeneous part is called strictly hyperbolic. It can be shown that the five-moment ideal Two-Fluid equa-
tions have hyperbolic homogeneous parts. It can also be shown that higher-moment approximations to the
Vlasov equations are also hyperbolic. Hence the high resolution wave propagation method, briefly described
below, can be directly applied to such equations. For a complete description of this method, see [5,19,20].

5.1. First order scheme

In two dimensions a homogeneous hyperbolic equation is written as
oq

ot
þ of1

ox
þ of2

oy
¼ 0; ð36Þ
where f1 and f2 are the fluxes in the X and Y direction, respectively. This equation is discretized on a rectan-
gular domain X 2 [xa,xb] · [ya,yb] by introducing cells Iij = [xi�1/2,xi+1/2] · [yj�1/2,yj+1/2], where xi�1/2 and
yj�1/2 are coordinates along cell edges and (xi,yi), where xi ” (xi�1/2 + xi+1/2)/2 and yj ” (yj�1/2 + yj+1/2)/2,
are the coordinates of the cell center. Integrating the conservation law equation (36) over cell Iij and from time
tn to tn+1 the update formula
Qnþ1
ij ¼ Qn

ij �
Dt
Dx
½F1�nþ1=2

iþ1=2;j � ½F1�nþ1=2
i�1=2;j

� �
� Dt

Dy
½F2�nþ1=2

i;jþ1=2 � ½F2�nþ1=2
i;j�1=2

� �
ð37Þ
is obtained. In this expression Qn
ij represents the cell average
Qn
ij �

1

DxDy

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

qðx; y; tÞ dx dy; ð38Þ
Dx ” xi+1/2 � xi�1/2, Dy ” yj+1/2 � yj�1/2, Dt ” tn+1 � tn and ½F1;2� are numerical fluxes at the cell interfaces
defined as
½F1�nþ1=2
i�1=2;j �

1

Dt

Z tnþ1

tn

f1 qðxi�1=2; yj; tÞ; xi�1=2; yj

� �
dt; ð39Þ

½F2�nþ1=2
i;j�1=2 �

1

Dt

Z tnþ1

tn

f2 qðxi; yj�1=2; tÞ; xi; yj�1=2

� �
dt: ð40Þ
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Eq. (37) is a general update formula for finite volume schemes and several different methods can be con-
structed by selecting various approximations for the numerical fluxes. In this paper a specific finite volume
method, the high-resolution wave propagation method, introduced by LeVeque is used. To introduce this meth-
od it should be first noted that at a given cell interface the value of the cell averages in the cells sharing that
edge will be, in general, discontinuous. This suggest that the numerical flux at the cell edge be determined by
solving a Riemann problem at that edge.

The Riemann problem is an initial value problem
oq

ot
þ of1

ox
¼ 0; x 2 R ð41Þ
with initial conditions q(x < 0,0) = ql and q(x > 0,0) = qr, where ql,r are constant vectors. For linear hyperbolic
systems the Riemann problem has exact solutions. For nonlinear problems a linearization is introduced to ob-
tain solutions valid around x = 0 for short times interval. Assuming that Eq. (41) is a linear hyperbolic equa-
tion it is written as
oq

ot
þ A1

oq

ox
¼ 0; ð42Þ
where A1 is the flux Jacobian and is constant for the assumed linear system. Let lp, rp and sp be the left eigen-
vectors, right eigenvectors and eigenvalues of A1. As the system is hyperbolic the eigenvalues must be all real
and the eigenvectors are assumed to be orthonormal. Multiplying by the left eigenvector lp a system of uncou-
pled wave equations
owp

ot
þ sp owp

ox
¼ 0 ð43Þ
is obtained, where wp ” lp Æ q. This has solutions wpðx; tÞ ¼ wp
0ðx� sptÞ, where w0(x) = lp Æ q(x, 0). Once wp(x,t) is

determined qðx; tÞ ¼
P

pwprp and hence the Riemann problem for linear systems (or linearized systems) is
solved exactly.

In the wave propagation method the solution to the Riemann problem at each cell interface is used to derive
the following approximation to the numerical fluxes
½F1�i�1=2;j ¼
1

2
½f1�i;j þ ½f1�i�1;j

� �
� 1

2
Aþ

1 DQi�1=2;j �A�
1 DQi�1=2;j

� �
: ð44Þ
Introducing this expression in the update formula along with an analogous expression for the Y direction
numerical flux gives
Qnþ1
ij ¼ Qn

ij �
Dt
Dx

Aþ
1 DQi�1=2;j þA�

1 DQiþ1=2;j

h i
� Dt

Dy
Aþ

2 DQi;j�1=2 þA�
2 DQi;jþ1=2

h i
: ð45Þ
In these expressions the fluctuations A�
1 DQi�1=2 (dropping the j subscript) stand for
A�
1 DQi�1=2 ¼

X
p:sp

i�1=2
<0

Zp
i�1=2 þ

1

2
Zi�1=2; ð46Þ

Aþ
1 DQi�1=2 ¼

X
p:sp

i�1=2
>0

Zp
i�1=2 þ

1

2
Zi�1=2; ð47Þ
where
Zp
i�1=2 ¼ lp

i�1=2 � ½f1�i � ½f1�i�1

� �
rp

i�1=2 ð48Þ
and
Zi�1=2 ¼
X

p:sp
i�1=2

¼0

Zp
i�1=2: ð49Þ
In deriving Eq. (45) the identity
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A�
1 DQi�1=2 þAþ

1 DQi�1=2 ¼
X

p

Zp
i�1=2 ¼ ½f1�i � ½f1�i�1 ð50Þ
which follows from the definition of Zp
i�1=2 (see Eq. (48)) is used. The eigenvectors rp

i�1=2, lp
i�1=2 and the eigen-

values sp
i�1=2 needed in these expressions are computed using the flux Jacobian at the cell interfaces. For linear

system this eigensystem is constant and does not depend on the solution. For nonlinear systems an appropri-
ate averaging must be used before determining the eigensystem. In the simulations presented here Roe averages

[21] are used for the Euler equations. Unlike conventional Godunov schemes the wave propagation method
presented above can also be applied directly to situations in which the fluxes explicitly depend on spatial coor-
dinates. Further, it is not necessary that Roe averages be used (or even exist) for the hyperbolic system being
solved: simple arithmetic averages are usually sufficient. It can be shown that even when Roe averages are not
available the scheme continues to be conservative [19]. Further, if Roe averages are used (or the system is lin-
ear) it can be shown that the zero wave, Zi�1=2, vanishes.

5.2. High resolution corrections

The scheme equation (45) is only first order accurate. To achieve second order accuracy high resolution
corrections are added. These corrections are derived by taking into account second order terms in a Taylor
series expansion of the conserved variables. The scheme equation (45) is modified to read
Qnþ1
ij ¼ Qn

ij �
Dt
Dx

Aþ
1 DQi�1=2;j þA�

1 DQiþ1=2;j

h i
� Dt

Dy
Aþ

2 DQi;j�1=2 þA�
2 DQi;jþ1=2

h i

� Dt
Dx
½ ~F1�iþ1=2;j � ½ ~F1�i�1=2;j

� �
� Dt

Dy
½ ~F2�i;jþ1=2 � ½ ~F2�i;j�1=2

� �
; ð51Þ
where ½ ~F1�i�1=2 (dropping the j subscript) is a correction flux given by
½ ~F1�i�1=2 ¼
1

2

X
p

signðsp
i�1=2Þ 1� Dt

Dx
jsp

i�1=2j
� �

Zp
i�1=2: ð52Þ
With this correction the high resolution wave propagation method is equivalent to the standard Lax–Wendroff
method. Although the scheme equation (51) is second order accurate spurious oscillations can occur at or near
discontinuities. The scheme can be limited to reduce the formal accuracy to first order at discontinuities by
replacing Zp

i�1=2 Eq. (52) by a limited wave ~Zp
i�1=2 ¼ Zp

i�1=2/ðh
p
i�1=2Þ, where /(h) is a suitable limiter function

and
hp
i�1=2 �

Zp
I�1=2 �Z

p
i�1=2

Zp
i�1=2 �Z

p
i�1=2

ð53Þ
with I = i � 1 if sp
i�1=2 > 0 and I = i + 1 if sp

i�1=2 < 0. For the results presented here the monotonized centered
limiter, defined by,
/ðhÞ ¼ maxð0;minðð1þ hÞ=2; 2; 2hÞÞ ð54Þ

is used. With the limiters the scheme is second order accurate in smooth regions when the flow is nearly aligned
along one coordinate direction. At or near discontinuities the limiters reduce the scheme to first order accu-
racy. To make the scheme formally second order even when the flow is not aligned along a coordinate direc-
tion transverse corrections, discussed below, must be added.

5.3. Transverse corrections

In the first order and high resolution correction schemes waves are assumed to propagate normal to the cell
interface. However, in multiple dimensions, due to the additional degrees of freedom, waves may also prop-
agate in transverse directions. To take this into account transverse corrections are added to the update for-
mula. The solution of the Riemann problem at cell edge (i � 1/2, j) produces fluctuations traveling into
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cells (i, j) and (i � 1, j). For two-dimensional problems, however, these fluctuations should also affect the cells
(i � 1, j � 1), (i � 1, j + 1), (i, j + 1) and (i, j � 1). To compute how these cells are affected first define left and
right going fluctuations to which high resolution corrections have been added as
A�
1 DQ	i�1=2 �A�

1 DQi�1=2 

X

p

signðsp
i�1=2Þ 1� Dt

Dx
jsp

i�1=2j
� �

~Zp
i�1=2: ð55Þ
Next, to determine how much of each fluctuation travels in the transverse direction the fluctuations are
decomposed using the flux Jacobian in the other coordinate direction. For example, the left and right going
(±X-direction) fluctuations are decomposed using the Y direction flux Jacobian and vice versa, i.e.
A�
1 DQ	i�1=2;j ¼Aþ

2 A
�
1 DQ	i�1=2;j þA�

2 A
�
1 DQ	i�1=2;j: ð56Þ
Thus, for example, Aþ
2 A

þ
1 DQ	i�1=2;j indicates how much of the right going fluctuation is up going, while

A�
2 A

þ
1 DQ	i�1=2;j indicates how much of it is down going. Note that Eq. (56) is analogous to Eq. (50) which

describes the splitting of the flux jump across an interface into fluctuations. As decomposition equation
(56) again requires the eigenvalues, eigenvectors and, fluctuations it can be called a transverse Riemann solu-
tion. For three-dimensional problems further Riemann problems need to be solved to determine how much of
the transverse waves travel in the third direction [20].

Once the transverse Riemann problem is solved the high resolution correction flux in Eq. (51) is replaced
by
½ ~F2�i;jþ1=2 ¼ ½ ~F2�i;jþ1=2 �
Dt

2Dx
Aþ

2 A
þ
1 DQ	i�1=2;j; ð57Þ

½ ~F2�i;j�1=2 ¼ ½ ~F2�i;j�1=2 �
Dt

2Dx
A�

2 A
þ
1 DQ	i�1=2;j; ð58Þ

½ ~F2�i�1;jþ1=2 ¼ ½ ~F2�i�1;jþ1=2 �
Dt

2Dx
Aþ

2 A
�
1 DQ	i�1=2;j; ð59Þ

½ ~F2�i�1;j�1=2 ¼ ½ ~F2�i�1;j�1=2 �
Dt

2Dx
A�

2 A
�
1 DQ	i�1=2;j: ð60Þ
A similar method can be used to decompose the up and down going fluctuations into the right and left direc-
tions. The correction flux ½ ~F1�i�1=2;j, for example, can then be modified in an analogous fashion as ½ ~F2�i;jþ1

shown above.
With the transverse terms included into the update formula the high resolution wave propagation method is

formally second order in space and time for general smooth two-dimensional flow problems. It should be men-
tioned that even if the transverse terms are not used the scheme still gives second order accuracy. However,
with the transverse terms the scheme is stable with Courant numbers upto one. Further the solution with
and without the transverse terms can be significantly different in some situations. For example, in the recon-
nection simulation discussed in Section 7.3 if the transverse terms are not included ‘‘magnetic islands’’, a
numerical artifact, are observed. With the transverse terms such spurious solutions do not occur.
6. Handling source terms

In the high resolution wave propagation method the source terms are handled in two different ways. The
first is to modify Eq. (48) to [19]
Zi�1=2 ¼ lp
i�1=2 � ½f1�i � ½f1�i�1 � Dx½s�i�1=2

� �
rp

i�1=2; ð61Þ
where [s]i�1/2 is some average value of the source term calculated at the cell interface. Usually simple arithme-
tic averaging is sufficient. In this approach the source is directly taken into account while solving the Riemann
problem. For solutions near or at equilibrium this is specially advantageous. However, this method suffers
from two disadvantages. The first is that for two-dimensional balance laws the source must be split into
two parts s = s1 + s2 such that at equilibrium they satisfy
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of1

ox
� s1; ð62Þ

of2

oy
� s2: ð63Þ
This may not be possible for all balance laws. However, for the Two-Fluid system with Maxwell equations
replaced by mixed potentials such a splitting can be achieved although no such splitting exists with the
PHM equations. The second disadvantage is specific to the source terms in the Two-Fluid equations. As
the Two-Fluid source terms represent undamped oscillations explicit time stepping schemes are unstable.
As the wave propagation method is an explicit single step method the scheme resulting from using Eq. (61)
is observed to be unstable.

The other approach is to use operator splitting and solve the homogeneous system separately and incorpo-
rate the source term by solving the ordinary differential equation (ODE)
oq

ot
¼ s: ð64Þ
To achieve second order accuracy, and advance the complete solution by Dt, the ODE is first solved with time
step Dt/2. Then the homogeneous equation is solved with time step Dt. Finally, the ODE is again solved with
time step Dt/2. Obviously, at each stage the results from the previous stage are used as initial conditions. This
particular operator splitting scheme is known as Strang splitting. To solve the ODE equation (64) any stan-
dard ODE solution scheme (second order or higher) can be used. In this paper a fourth order Runge–Kutta
scheme is used. Another approach is to use the trapezoidal method
qðt þ DtÞ ¼ qðtÞ þ 1

2
ðsðqðtÞÞ þ sðqðt þ DtÞÞÞ: ð65Þ
Using a Taylor series expansion for s(q(t + Dt)), after some rearrangements, a semi-implicit update formula
for q is written as
qðt þ DtÞ ¼ qðtÞ þ Dt I� Dt
2

os

oq

� ��1

sðqðtÞÞ: ð66Þ
Here os/oq is the source Jacobian and I is the unit matrix. Both these ODE solution methods give equally good
results and all the simulations presented below use the fourth order Runge–Kutta method. This method makes
it simple to add additional source terms without having to compute the source Jacobian.

7. Applications

In the following subsections several example applications of the Two-Fluid algorithms developed in this
paper are presented. The applications studied are a one-dimensional Riemann problem, propagation and inter-
action of solitons in a homogeneous plasma and, collisionless reconnection. Results for these problems obtained
with reduced fluid models exist in the literature and hence are used to benchmark the Two-Fluid results. In all
cases it is found, as described in detail in the following subsections, the results with the full Two-Fluid model
agree (in the appropriate regimes) with those presented in the literature for the simpler models.

As mentioned in Section 1 the high-resolution wave propagation method has been previously applied to
other equation systems [5,6,19,20]. In these applications it was shown that with the transverse terms added
the scheme is fully second order accurate and allows for Courant numbers upto unity, even for three-dimen-
sional problems. For the Two-Fluid system convergence studies were carried out [7] on electron oscillation
problems which confirmed the results of the cited publications.

For all simulations presented below the speed of light is set to c = 1, �0 = 1 and c = 5/3.

7.1. Two-Fluid Riemann problem

In many ways the one-dimensional Riemann problem defined by
oq

ot
þ of

ox
¼ s; x 2 R; ð67Þ
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with initial conditions q(x < 0,0) = ql and q(x > 0,0) = qr, where ql,r are constant vectors, is fundamental to the
solution of hyperbolic balance laws. Solutions to the Riemann problem for the Two-Fluid equations are pre-
sented in this section. The Riemann problem selected is a generalization of the Brio–Wu shock-tube problem
[22] commonly used to benchmark MHD codes. The initial conditions are
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where me/mi = 1/1832.6. The only remaining unspecified quantity is the ion charge to mass ratio, ri ” qi/mi. In
terms of this ratio the ion Larmor radius is rLi � 1/ri and the ion-skin depth is li � 1/ri. Thus it is clear from the
discussion of Two-Fluid effects (Eqs. (19) and (20)) that as ri increases the Larmor radius and skin depth be-
come smaller and the solutions obtained with the Two-Fluid model should approach the solutions obtained
with MHD model. Simulations with qi/mi = 1,10,100,1000 were carried out. These charge to mass ratios cor-
respond to ion-skin depth of 1,1/10, 1/100, 1/1000, calculated with a reference magnetic field of 1. Thus, for
example, for the qi/mi = 1 simulation the domain length is the same as the ion-skin depth and for the
qi/mi = 1000 the domain length is 1000 times the ion-skin depth. With decreasing ion-skin depth the plasma
regime tends toward the ideal MHD limit, as our simulations below confirm. The results are presented for a
grid of 50,000 cells. Although the number of grid cells may seem excessive the complex flow physics shown
below cannot be resolved on coarser grids, specially with the correct value of the electron–ion mass ratio used.

Fig. 1 shows the mass density computed at t = 10 with the ideal MHD model. The solution was computed
using an existing shock-capturing non-ideal MHD code [23] by turning off all non-ideal effects. The initial con-
ditions used for the ideal MHD simulation are the same as the standard Brio–Wu shock problem described
above. The MHD fluid density was initialized using the ion density and fluid-pressure using total electron
and ion pressure. The MHD result serves to compare the solutions obtained with the Two-Fluid model.
Comparing the computational time for the ideal-MHD and the full Two-Fluid simulations we found that
the Two-Fluid simulations took about 100 times longer. This is not surprising as in the full Two-Fluid system
the fastest wave speed is the speed of light which is much larger than the fastest wave speed of the ideal-MHD
system (the fast magnetosonic speed).

In Fig. 2 the number densities of electrons and ions are plotted for qi/mi = 1. This figure shows that for low
q/m ratio as the Lorentz force is smaller the fluids can have significant charge separation. In MHD and Hall
MHD it is assumed that the electron and ion fluids have the same number densities, i.e. ne = ni.

Fig. 3 shows the mass density of the ion fluid for qi/mi = 10. For comparison ideal MHD results are super-
imposed. Even though the Two-Fluid solution is significantly different from the MHD results the contact dis-
continuity is in the correct location and the compound wave has started to form. A close-up view of the
number densities of the electrons and ions around the compound wave is shown in Fig. 4. It is seen that there
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Fig. 1. Fluid mass density at t = 10 from a ideal MHD simulation. The various parts of the shock are labeled as follows: contact
discontinuity – CD, compound wave – CW, fast rarefaction wave – FR, slow shock – SS.
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Fig. 2. Electron (light line) and ion (heavy line) number density at t = 10 with qi/mi = 1.
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is significant charge separation around the forming compound wave. In general charge separation leads to dis-
persive waves as is clearly visible in this plot. Dispersive effects due to charge separation play an important role
in the formation of ion-acoustic solitons as discussed in a later section.
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Fig. 3. Ion mass density (red line) at t = 10 with qi/mi = 10. Also plotted is the ideal MHD mass density (blue line). The Two-Fluid
solution shows the compound wave and slow shock developing while the contact discontinuity is at the correct location. (For
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Fig. 4. Ion (heavy line) and electron (light line) number densities at t = 10 with qi/mi = 10 around the compound wave. The dispersive
waves are formed due to charge separation effects.
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Fig. 5 shows the mass density of the ion fluid for qi/mi = 1000. The Two-Fluid solutions are now clearly
MHD like: the compound wave has now formed and fast rarefaction waves (upstream and downstream)
and contact discontinuity are all in the correct locations. The slow shock, however, seems to be moving slower
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Fig. 5. Ion mass density (red line) at t = 10 with qi/mi = 1000. Also plotted is the ideal MHD mass density (blue line). The compound wave
has now formed in the Two-Fluid solution. The fast rarefaction waves (upstream and downstream) and contact discontinuity are all in the
correct locations. The slow shock, however, seems to be moving slower than in the MHD solution. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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than the MHD result. A close-up of the solutions is shown in Fig. 6. Dispersive waves are clearly seen and
these are conjectured to be dispersive magnetosonic waves, as evidenced from dispersion relations computed
and presented as Fig. 11 in [7].

In conclusion, the Two-Fluid Riemann problem serves not only as an important benchmark for the algo-
rithms, but also highlights the complex Two-Fluid physics not captured in the simpler MHD model.

7.2. Soliton propagation

Soliton propagation in fluids and plasmas is an active area of research [24–26]. Much previous work has
been done in plasma physics on soliton propagation in the weakly nonlinear limit. In this limit, using expan-
sion techniques, the Korteweg–de Vries (KdV) equation can be derived and either solved numerically or a par-
ticular class of solutions studied analytically. An example of this approach is the study of ion-acoustic solitons
[8] in which the electrons are assumed to be a massless isothermal fluid and the ions are assumed cold (i.e. the
ion pressure vanishes). With these assumptions a KdV equation can be derived which describes the propaga-
tion of soliton structures in the ion fluid. An important outcome of this analysis is that the dispersive effects
needed to support soliton formation arise from non-neutral (charge-separation) effects. Thus ion-acoustic sol-
itons cannot be simulated using fluid models which assume quasi-neutrality, like the MHD and Hall MHD
models.

In this section simulations are carried out to show that ion-acoustic solitons can form from an initial den-
sity hump or ‘‘slug’’. These solutions are in the strongly nonlinear regime and hence cannot be described with a
standard KdV equation. Similar structures have been observed experimentally [27]. Numerical simulations of
density slug induced solitons were carried out by Baboolal [24] who assumed an isothermal electron fluid and
an adiabatic ion fluid with adiabatic index c = 3. With these assumptions there is no need to solve an energy
equation as the equation of state pq�c = constant is used to calculate the pressure. In the simulation per-
formed here these assumptions are not made. It is shown that a stable stationary structure, not observed in
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the simulations of Baboolal, arises in addition to the traveling solitons. Such stationary density structures can-
not be supported in adiabatic fluids as a density gradient implies a pressure gradient which in turn implies
flow.

The plasma is assumed to be stationary, i.e. ue(x, t = 0) = ui(x, t = 0) = 0. The electron and ion number den-
sities are initialized as ne = ni = n(x) where
nðxÞ ¼ 1þ exp � 1

2
jx� xcj

� �
; ð69Þ
where x 2 [0,Lx] and xc = Lx/4. The ion–electron temperature ratio (where temperature, T, is computed from
the relation p = nT) is set to 1/100. The initial pressure profile is set using pa(x, t = 0) = naTa for a 2 {e, i}. The
domain size is Lx = 12c/xpi calculate using ni = 1 and qi/mi = 1, and is discretized using 1500 cells. The elec-
tron–ion mass ratio is me/mi = 1/25. The boundary conditions are periodic. The value xc and boundary con-
ditions were selected to ensure that solitons leaving the domain from one side would reappear from the
opposite side and soliton interaction would occur inside the domain and not on the boundaries.

Figs. 7 and 8 show the time evolution of the ion density. It is seen that two solitons emerge from the initial
slug and travel in opposite directions. The soliton speed is calculated and is approximately 1.01csi, where csi is
the ion fluid sound speed. This value agrees well with a linear analysis of ion-acoustic solitons. A trail of
decaying plasma waves is also seen in the soliton wake. This feature is common to solitons generated in dis-
persive systems. As the boundary conditions are periodic the solitons reenter the domain and collide at x = 10.
After collision the solitons reemerge with their shapes unchanged. Later in time the solitons merge with the
stationary structure at x = 4 approximately recreating the initial conditions. The stationary structure is seen
to be stable to interactions. For the grid (1500 cells) used the solitons cross the domain about 40 times before
becoming significantly damped out. For a coarser grid the solitons damp out faster due to the grid diffusion.

The results obtained here compare well with those obtained by Baboolal. However in Baboobal’s [24] sim-
ulations the central stationary structure does not form due to the selected equation of state. In the simulations
performed here the pressure is constant across the stationary structure and hence the density there remains
constant in time.
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7.3. Collisionless reconnection

Magnetic reconnection [28] is the process by which the topology of the magnetic field lines changes. In ideal
MHD or ideal Hall MHD the field line topology cannot change and this is described by saying that field lines
are ‘‘frozen’’ into the fluid (frozen into the electron fluid in case of ideal Hall-MHD). The situation is analo-
gous to neutral ideal fluid flow in which vortex tube topology remains constant. However even small resistivity
(viscosity in neutral fluids) can make the topology change and the field lines reconnect and this process is ade-
quately described in the framework of resistive MHD or Hall-MHD.
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However, in a collisionless plasma magnetic reconnection is also observed to occur and at a much faster
rate than in collisional plasmas. This fast collisionless reconnection is important in understanding many space
plasma phenomena, for example, solar flares and the dynamics of the Earth’s magnetotail during a geomag-
netic substorm. To understand the mechanism of collisionless reconnection a number of plasma models were
used to study collisionless reconnection of oppositely directed magnetic fields separated by a thin current
sheet. This effort went under the rubric of geospace environmental modeling (GEM) reconnection challenge
[29]. The various models used were electron MHD [30], Hall MHD with anisotropic pressure [31], MHD and
Hall MHD [32–34], full particle [35] and hybrid [36] models. It was found that the although reconnection
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initiates at length scales on the order of the electron skin depth the reconnection rate is governed by ion
dynamics. The Two-Fluid model can describe the physics at electron-skin depth scales and hence can describe
collisionless reconnection correctly. On the electron-skin depth scales the field lines are no longer frozen to the
electron fluid and this allows the reconnection to initiate without the need for resistivity. On the other hand in
the Hall MHD model [34] the reconnection needs to be initiated by using a small resistivity.

In this section simulations are performed with the same initial conditions and parameters as used in the
GEM challenge problem. The ideal Two-Fluid model used here was not among one of those used in the ori-
ginal studies and hence serves as an important benchmark. The results obtained here also provide additional
insight into the structure of the flow, specially after the reconnection has occurred. As is described below, com-
plex flows, not observed in the results reported in the original studies, are obtained.

The simulation is initialized with oppositely directed magnetic fields separated by a thin current sheet. The
magnetic field is given by
BðyÞ ¼ B0 tanhðy=kÞex: ð70Þ

The initial current is carried only by the electrons:
Je ¼ �
B0

k
sech2ðy=kÞ: ð71Þ
The number densities of the ions and electrons are initialized as ne(y) = ni(y) = n(y), where
nðyÞ ¼ n0 1=5þ sech2ðy=kÞ
� �

: ð72Þ
Finally, the electron pressure is set to pe(y) = p(y) and ion pressure to pi(y) = 5p(y) where
pðyÞ ¼ B0

12
nðyÞ: ð73Þ
These initial conditions describe an equilibrium solution of the Two-Fluid equations. To initiate reconnection
in a controlled manner the magnetic field is perturbed with dB = ez · $w, where
wðx; yÞ ¼ w0 cosð2px=LxÞ cosðpy=LyÞ; ð74Þ
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and [�Lx/2,Lx/2] · [�Ly/2,Ly/2] is the simulation domain. This form of the perturbation assures that
$ Æ B = 0 at t = 0. Periodic boundaries are applied at x = ±Lx/2 and conducting wall boundaries at
y = ±Ly/2. Simulations presented below are for a 512 · 256 grid, although coarser grids were also used.
The other parameters used are me/mi = 1/25, Lx = 8p, Ly = 4p, B0 = 0.1, w0 = B0/10 and k = 0.5. The unit
length scale is the ion-skin depth and the unit time scale is in inverse ion cyclotron frequency. For the selected
electron–ion mass ratio the electron-skin depth is 1/5 and is resolved by the grid. These parameters are iden-
tical with the GEM challenge problem.

To compare results with the models used in the GEM challenge problem the reconnected flux, /, was com-
puted using
Fig. 10
compa

Fig. 11
being t
/ðtÞ ¼ 1

2Lx

Z Lx=2

�Lx=2

jByðx; y ¼ 0; tÞj dx: ð75Þ
As the reconnection proceeds the reconnected flux, which is a measure of the net Y direction magnetic field,
increases and indicates the reconnection rate. Fig. 9 shows the reconnected flux history. It is observed that
the reconnection occurs at about t = 10 and the reconnected flux increases rapidly after that. The computed
. Two-Fluid reconnected flux compared to GEM results. Solid dots are results obtained using Two-Fluid model. Two-Fluid results
re well with those obtained by particle and hybrid models.
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ransferred to fluid thermal and kinetic energies.
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flux history is in excellent agreement with flux histories from full particle and hybrid models used in the original
GEM challenge problem (see Fig. 10). From the GEM results it is also clear that the resistive Hall-MHD model
also predicts the correct reconnected flux. However, in contrast to resistive Hall-MHD the Two-Fluid model
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Fig. 12. Electron thermal energy (top left), ion thermal energy (top right), electron kinetic energy (bottom left) and ion kinetic energy
(bottom right). The electromagnetic energy released is transformed into kinetic and thermal energy of the fluids. After about t = 25 fluid
kinetic energies decay as fluids become turbulent.

0 5 10 15 20 25 30 35 40
2.2

2.205

2.21

2.215

2.22

2.225

T

T
ot

al
 E

ne
rg

y

Fig. 13. Total energy for the GEM magnetic reconnection challenge problem. The total energy should remain conserved, however, is seen
to decay slightly due to numerical diffusion. The total loss in energy is 0.7% for the time period considered.
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presented here does not have any resistivity. The reconnection initiates due to the demagnetization of the elec-
trons at electron-skin depth scales, and thus resistivity is not required to break the field lines as in Hall-MHD.
Thus, in the Two-Fluid model the magnetic field-line topology is not tied to the electron fluid as it is the in ideal
Hall-MHD.

As the domain is periodic in the Y direction and there are conducting walls on the x = ±Ly/2 the total
energy of the system remains constant in time. Figs. 11 and 12 show the history of the electromagnetic and
fluid energies of the system. The initial configuration of the system is an unstable equilibrium and via the pro-
cess of reconnection the magnetic field ‘‘relaxes’’, i.e. the electromagnetic energy stored in the magnetic field is
transferred to the fluid energy. The electromagnetic energy decays rapidly after about t = 10 and is transferred
to the fluid energy. After t = 25 the fluid kinetic energy decreases and is transferred to the fluid thermal energy.
Even though the fluids are inviscid this conversion occurs due to adiabatic compression of the fluid. Further,
the fluid undergoes shock-heating as the shock waves, visible in Figs. 14 and 15, pass through the fluid.

Fig. 13 shows the total energy of the system. The total energy should be conserved as the Two-Fluid system
does not have any dissipation and conducting wall boundary conditions are used. However, due to numerical
diffusion the total energy reduces slightly. From the figure it is clear that the loss in energy is only about 0.7%,
showing that the scheme used here is conservative even in the presence of complex flow features.

Electron and ion momentum at t = 25 and t = 40 are shown in the gray-scale plots, Figs. 14 and 15. At
t = 25 shocks waves traveling inwards (towards the Y axis) are observed. These shocks are formed due to
Fig. 14. Electron momentum (top) and ion momentum (bottom) at t = 25. Inward traveling shock waves are visible in both the fluids.
Thin jets flowing along the X axis are also visible.



Fig. 15. Electron momentum (top) and ion momentum (bottom) at t = 40. Complex flow features are visible, specially in the ion fluid.
Flow structure is thought to develop due to instabilities.
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the interaction of the outward flowing jets (along the X axis). At t = 40 complex flow structures are seen in the
ion fluid. The shocks at x � ±5.5 are now moving outwards (away from the Y axis). The ion flow is not sym-
metric and this may be due to grid driven instabilities. The nature of the flow at late times seems to be gov-
erned by instabilities driven from the counter streaming fluid jets.

8. Conclusion

A high resolution wave propagation scheme for ideal Two-Fluid Plasma equations is developed. The algo-
rithm presented here can be successfully used to in multiple dimensions. The algorithm can also be extended to
general quadrilateral geometries easily. An important aspect of this work was to highlight Two-Fluid physics
which is not included in the commonly used MHD and Hall MHD models. The three applications presented
here each show the importance of Two-Fluid physics. In the one-dimensional Riemann problem it was shown
that a smooth transition from neutral ideal fluid shocks to MHD shocks can be obtained. The ion-acoustic
soliton propagation showed the importance of charge separation. In fact, the dispersive effects due to charge
separation balance the tendency of the fluid to shock and hence lead to soliton propagation. In both MHD as
well as Hall MHD ion-acoustic solitons cannot be supported as quasi-neutrality (ne = ni) is assumed. The
GEM reconnection challenge problem showed that the Two-Fluid model can correctly explain fast reconnec-
tion observed in collisionless plasmas. In other fluid models of reconnection some mechanism (like resistivity
in Hall MHD) needs to be incorporated to initiate the reconnection. Complex flows, possibly turbulent, can be
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seen late after the reconnection has occurred. The algorithm presented here can also be applied directly to
higher-moment fluid approximation to collisionless plasmas. For example, the next two set of collisionless
fluid equations contain, for s species plasma, 10s and 20s fluid equations. These higher-moment equations
incorporate anisotropic pressure and heat tensor effects and hence extend the usefulness of fluid plasma
models.

Non-ideal effects like resistivity and radiation can also be added to the basic algorithm presented here. In
this case the equation system is no longer hyperbolic but has parabolic parts from the non-ideal terms.
Although the high-resolution wave propagation scheme is designed for hyperbolic equations these non-ideal
terms can be incorporated as source terms, which now contain second or higher-order derivatives. Such an
approach has been discussed by LeVeque [5] for the diffusive Burgers equation. Including non-ideal terms will
also effect the results presented here. For example, it is known that gyroviscous stress-tensor can anisotropi-
cally heat the ions near the reconnection point during magnetic reconnection. However, this should not
change the reconnected flux significantly. The focus of this paper being the ideal full Two-Fluid model we have
ignored all non-ideal effects for the results presented.
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