Numerical Technique

Flow Reversal

Conclusions 00

Flow Reversal in Spinning Detonation

F. Virot¹, M. Kurosaka², B. Khasainov¹, D. Desbordes¹, H.-N. Presles¹

¹ Ecole Nationale Supérieure de Mécanique et d'Aérotechniques
 Laboratoire de Combustion et de Détonique - UPR 9028 CNRS - France
 ² University of Washington, Seattle, WA, 98195-2400, USA

International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions

St Petersbourg, July 11, 2008

In troduction	Numerical Technique	Flow Reversal	Conclusions
●○	000000	00000000000	00
Outline			

2 Numerical Technique

- Main Assumptions
- Grid and Resolution
- Flow and Simulation Properties
- Getting the Spinning Regime
- Grid Sensitivity

3 Flow Reversal

- Local Spin
- Source of Vorticity
- Global Spin

The spinning sense of the detonation is not known a priori. In these simulations, the triple point spins in clockwise direction.

Introduction	Numerical Technique	Flow Reversal	Conclusions
00	000000	00000000000	00
Outline			

2 Numerical Technique

- Main Assumptions
- Grid and Resolution
- Flow and Simulation Properties
- Getting the Spinning Regime
- Grid Sensitivity

3 Flow Reversal

- Local Spin
- Source of Vorticity
- Global Spin

Introduction	Numerical Technique	Flow Reversal	Conclusions
	00000		
Main Assum	ptions		

Euler Equations + Global Chemical Kinetic Law $A \longrightarrow B$

$$\begin{cases} \frac{\partial \rho}{\partial t} + div(\rho \overrightarrow{V}) = 0\\ \frac{\partial \overrightarrow{V}}{\partial t} + \overrightarrow{V}.\overrightarrow{grad} \overrightarrow{V} = -\frac{1}{\rho}\overrightarrow{grad}\rho\\ \frac{\partial E}{\partial t} + div\left(\overrightarrow{E}\overrightarrow{V} + \overrightarrow{\rho}\overrightarrow{V}\right) = \rho Q \frac{\partial[A]}{\partial t}, \text{ with } E = \rho(e + V^2/2)\\ \frac{\partial[A]}{\partial t} + \overrightarrow{V} \cdot \overrightarrow{\nabla}A = Z\rho^n(1 - [A])^n \exp\left(-\frac{Ea}{RT}\right) \end{cases}$$

In-house code EFAE 3D, Cartesian, FCT technique [Boris,Oran]

Numerical Technique ○●○○○○

Flow Reversal

Conclusions 00

Grid and Resolution

	N_x	$N_y = N_z$	$\Delta x = \Delta y = \Delta z$
LR	1000	20	10^{-4} m
HR	2000	40	5.10^{-5} m

Numerical Technique ○●○○○○

Flow Reversal

Conclusions 00

Grid and Resolution

	N_x	$N_y = N_z$	$\Delta x = \Delta y = \Delta z$
LR	1000	20	10^{-4} m
HR	2000	40	5.10^{-5} m

Introduction	Numerical Technique	Flow Reversal	Conclusions
00	००●०००	00000000000	00
Flow and Si	mulation Properties		

Gas Properties $p_0=20$ mbar, $T_0=293$ K, $W_M=30.3$ g.mol⁻¹, $\gamma=1.333$

Kinetic Parameters		
$E_a=25$ kcal.mol ⁻¹ ,	n = 1.1,	$Z = 300 \mathrm{s}^{-1}.\mathrm{Pa}^{-n}$

Shock and Detonati	on Properties	
<i>u_{ZND}</i> =2075.4m/s,	<i>p_{ZND}</i> =1.19bar,	<i>T_{ZND}</i> =1373K
<i>D_{CJ}</i> =2253.8m/s,	<i>р_{СЈ}=</i> 0.6bar,	<i>Т_{СЈ}=</i> 4756К

Introduction 00	Numerical Techniqu ○○○●○○	e Flow	Reversal	Conclusions 00
Getting the Spi	nning Regir	ne		
	1D si Point Explosion (at x=0)	mulation Propagation of the Detonation (up to x=0.1m)		

Introduction	Numerical Technique	Flow Reversal	Conclusions
00	००००●०		00
Adaptative	Mesh		

Unsupported detonation propagation : Adaptative mesh along x

Angle=46–48° , Pitch=8.75–7.8mm (LR–HR)

Outline

Introduction

2 Numerical Technique

- Main Assumptions
- Grid and Resolution
- Flow and Simulation Properties
- Getting the Spinning Regime
- Grid Sensitivity

3 Flow Reversal

- Local Spin
- Source of Vorticity
- Global Spin

Introduction	Numerical Technique	Flow Reversal	Conclusions
00	000000	•00000000000	00
Local Spin			

Vorticity $(\vec{\omega} = \overrightarrow{rot} \vec{V})$ is a mathematical concept used in fluid dynamics to characterize the amount of local rotation.

We will focus on longitudinal (x) component :

$$\omega_x = \overrightarrow{\omega} \cdot \overrightarrow{x} = \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}$$

In a X-cross section ω_x describes local spin

Numerical Technique

Flow Reversal

Conclusions

Local Spin - Details at x=212.876mm (b)

Numerical Technique

Flow Reversal 00000●000000 Conclusions

Local Spin - Details at x=213.126mm (d)

Introduction Numerical Technique Conclusions Flow Reversal Source of Vorticity In inviscid flow, the only source of vorticity is Baroclinic Torque $\vec{B} = -\frac{1}{a^2} grad p \wedge grad \rho$ gradp $-\overrightarrow{\operatorname{grad}}p\wedge\overrightarrow{\operatorname{grad}}p$ grad p. $\overrightarrow{\text{grad}}\rho$ $\overrightarrow{\text{grad}} p$

- When the lines of iso-p and iso- ρ cross each other, baroclinic torque $B_x \neq 0$
- For isentropic flow, when the lines of iso-p and iso- ρ do not cross each other, baroclinic torque $B_x=0$

Numerical Technique

Flow Reversal

Conclusions 00

Global Spin on the surface S (X-Cross Section)

Circulation
$$\Gamma = \oint_{S} \overrightarrow{rot} \overrightarrow{u} \cdot \overrightarrow{dS} = \oint_{S} \omega_{x} dS = \oint_{C} \overrightarrow{V} \cdot \overrightarrow{dl}$$

represents the overall spin in X-cross section.

(Bjerkness theorem)

 $\frac{D\Gamma}{Dt} = -\oint_{S} \frac{1}{\rho^{2}} \overrightarrow{grad} p \wedge \overrightarrow{grad} \rho \overrightarrow{dS} = -\oint_{C} \frac{1}{\rho} \overrightarrow{grad} p \cdot \overrightarrow{dl}$ The rate of change of circulation is equal to the sum of all sources within the surface.

IntroductionNumerical Technique
000000Flow Reversal
00000000000000Conclusions
00Global Spin on the surface S (X-Cross Section)

Introduction 00	Numerical Technique 000000	Flow Reversal 00000000000	Conclusions
Outline			
1 Introduction			

2 Numerical Technique

- Main Assumptions
- Grid and Resolution
- Flow and Simulation Properties
- Getting the Spinning Regime
- Grid Sensitivity

3 Flow Reversal

- Local Spin
- Source of Vorticity
- Global Spin

4 Conclusions

Introduction Nu 00 OC	merical Technique 10000	Flow Reversal	0	Conclusions O
Conclusion 7 th ISHPMIE – Flow Revers	sa∣ in Spinning Detor	nation		
				_
zero torque due to isentropic flow	[B]=1 positive torque due to expansion	negative torque due to compression of the transverse shock	[B]=0 zero torque	-
(IV)	(III)	(II) quasi-planar (I) shock		_
no swirl	positive swirl	negative swirl	no swirl	-

Signs are given for detonations spinning in clockwise direction. If the detonation is spinning in counterclockwise direction, we have to take the opposite signs.

Introduction	Numerical Technique	Flow Reversal	Conclusions
00	000000	00000000000	⊙●
Conclusion 7 th ISHPMIE – Flow	Reversal in Spinning Detonat	ion	

Thank you for your attention.

Introduction	Numerical Technique	Flow Reversal	Conclusions
00	000000	000000000000	⊙●
Conclusion 7 th ISHPMIE – Flow	∕ Reversa∣ in Spinning Detonat	ion	

Thank you for your attention.

Questions?

