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Robust Nonlinear Adaptive Flight Control for
Consistent Handling Qualities

Rolf Rysdyk and Anthony J. Calise, Senior Member, IEEE

Abstract—A flight control design is presented that combines
model inversion control with an online adaptive neural network
(NN). The NN cancels the error due to approximate inversion.
Both linear and nonlinear NNs are described. Lyapunov sta-
bility analysis leads to the online NN update laws that guarantee
boundedness. The controller takes advantage of any available
knowledge for system inversion, and compensates for the effects
of the remaining approximations. The result is a consistency
in response which is particularly relevant in human operation
of some unconventional modern aircraft. A tiltrotor aircraft is
capable of converting from stable and responsive fixed wing flight
to sluggish and unstable hover in helicopter configuration. The
control design is demonstrated to provide a tilt-rotor pilot with
consistent handling qualities during conversion from fixed wing
flight to hover.

Index Terms—Adaptive control, flight control, neural network
(NN), nonlinear control.

SUMMARY

HE use of modern technology in flight control systems

allows for the design of consistent handling qualities
even during radical aircraft configuration changes. The same
technology can also provide a fault tolerant control system
that is capable of providing consistent handling while the
vehicle is damaged. Although a number of ad hoc designs have
been successfully demonstrated, their implementation by more
conventional means lacks robustness and is prohibitively labor
intensive.

Nonlinear Adaptive Control provides consistent perfor-
mance that is superior to more conventional controller designs.
It combines model inversion control with adaptive neural
network (NN) compensation that cancels the inversion error.
Both linear and nonlinear NNs are applied. Lyapunov stability
analysis resembling conventional adaptive control determines
the update laws. The nonlinear NN provides a more powerful
application based on its universal approximation property. If
an approximate model of the system is available, the con-
troller architecture can take advantage of that information and
compensates for the effects of approximation. When used in
a model-following set-up, this results in consistent responses.
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This aspect is desirable to reduce the workload of a human
operator of complex systems like tiltrotor aircraft.

The tiltrotor aircraft is capable of converting from stable and
responsive fixed wing flight to sluggish and unstable hover in
helicopter configuration. It is desirable to provide the pilot with
consistent handling qualities during a conversion from fixed
wing flight to hover, which would typically occur during the
high-workload landing phase of flight. A linear model inver-
sion architecture is adopted by frequency separation. The ar-
chitecture provides for a model following setup with guaran-
teed performance. A rigorous proof shows how boundedness is
guaranteed.

1. INTRODUCTION

Next generation aircraft may differ radically from their prede-
cessors, presenting control designers with interesting challenges
and opportunities. Examples include: low-observable and super-
maneuverable tailless fighter aircraft like the X-36 in Fig. 1 and
[1], aircraft capable of flight in multiple configurations like the
tilt-rotor described in Section II-B, and remotely piloted and au-
tonomous vehicles unconstrained by human occupants.

The desire for enhanced agility and functionality demands
performance over an increased range of conditions character-
ized by large variations in dynamic pressure and aerodynamic
phenomena. Furthermore, the use of nonlinear actuation sys-
tems increases the complexity of the control design. Alterna-
tively, variation in response may occur due to damage or com-
ponent failure, requiring rapid reconfiguration of the control
system to maintain stable flight and reasonable levels of han-
dling qualities. Therefore, there is interest in real-time direct
adaptive control methods with guaranteed performance.

The most widely studied approach to nonlinear control
involves the use of transformation techniques and differential
geometry. The approach transforms the state and/or control
of the nonlinear system into a linear representation. Linear
tools can then be applied in terms of a pseudocontrol signal,
which is subsequently mapped into the original coordinates via
inverse transformation. This broad class of techniques is most
commonly known as feedback linearization (FBL) [2]. FBL
theory has many applications in flight control research. Meyer
and Cicolani included the concept of a nonlinear transformation
in their formal structure for advanced flight control [3]. Menon
et al. used a two-time-scale approach to simplify the linearizing
transformations [4]. A fixed Jacobian can provide a dynamic
inverse for nonlinear plants, leading to asymptotic tracking of
desired trajectories, with bounded error [5]. Dynamic inversion
techniques have been investigated at great length for application
to super-maneuverable aircraft [6]-[8]. A drawback of dynamic
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inversion is its vulnerability to modeling errors [9]. Therefore,
several techniques have been proposed to provide robustness
to sources of uncertainty, which include unmodeled dynamics,
parametric uncertainty, and uncertain nonlinearities [9]-[11].

Many of the results in adaptive control are derived from
Lyapunov stability theory [12]. Although adaptive control has
a long history, it did not gain favor until 1980, when important
results guaranteeing closed-loop stability were obtained [13].
Several efforts concentrate specifically on direct adaptive
control of feedback-linearizable systems [14], [15].

The sensitivity of some adaptive schemes to disturbances and
unmodeled dynamics prompted investigation of robust adap-
tive control for linear systems. Possible tools include the use
of a dead-zone to maintain bounded errors in the presence of
noise [16], parameter projection techniques to provide robust-
ness to unmodeled dynamics [17], and methods for improving
robustness of adaptive nonlinear controllers using backstepping
[18]. While treatment of disturbances and uncertain nonlinear
functions is now common, fewer efforts address robustness to
unmodeled dynamics. Some exceptions include application to
high-performance aircraft [19], and use of the backstepping par-
adigm [20]-[22].

Artificial NNs have the ability to approximate continuous
nonlinear functions [23], [24]. One advantage of the NN over
simple table lookup approaches is the reduced amount of
memory and computation time required. In addition, the NN
can provide interpolation between training points with no addi-
tional computational effort. NNs function as nonlinear adaptive
control elements and offer advantages over conventional linear
parameter adaptive controllers. Survey papers commenting on
the role of NN technology in flight control design have been
contributed by Werbos [25] and Steinberg [26], [27]. We focus
on the use of a direct adaptive NN-based control architecture
that compensates for unknown nonlinearities in a feedback
linearizing control framework. Previous works include appli-
cations to helicopters and tiltrotors [28]-[31]. fighter aircraft
[32], [33], agile missiles, and guided munitions [34]-[36]. In a
second part of this paper, we address the issue of robustness to
unmodeled actuator dynamics, which is treated by modifying
the adaptation law with dynamic nonlinear damping [21], [35],
which to our knowledge is the first time this has been developed
for fully nonlinear adaptive systems.

II. CONTROLLER ARCHITECTURE

A. Approximate Inversion

The objective of this paper includes demonstration of the
NN capability of adapting to errors caused by using an approx-
imate inverse model. Unmodeled dynamics originate from the
linearization used for the nominal inverting controller. This
includes linearization of dynamics that are nonlinear with re-
spect to the control variables. Additionally, any cross-coupling
between fast rotational states and slow translational states is
neglected in the inversion. In this paper, we consider the case
where the number of outputs equal the number of available
control inputs. By approximating the system dynamics to be
linear in states and control variables, the approximate feedback
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Fig. 2. Adaptive NN augmented model inversion architecture.

linearizing control design process reduces to construction of
a model inverting control law. This control law represents a
linear, state-dependent, transformation from pseudocontrol
space to control space.

The conditions necessary for exact FBL of nonlinear systems
are well researched [2]. Formal definitions for how “close” an
approximate inverse model output is to the exactly linearized
output are also known, including for model following control
design [37]-[39]. A regulator can be added to the pseudocon-
trol to drive the error between actual output and model output
to zero. Disturbances and variations in plant dynamics may be
handled this way. Such methods have been successfully applied
in flight control [40].

A rigorous justification for neglecting the moment-to-force
coupling in aircraft dynamics in controller design is provided in
an approximate input—output linearization theory in [41]. This
paper is extended to tracking control for nonaffine systems in
[42]. In our application, exact FBL will lead to linear behavior
from pseudocontrol to vehicle-state. The use of an approximate
model in the control law induces an inversion error. We consider
here a definition of the inversion error as in [32].

Fig. 2 contains a diagram of the controller architecture. Con-
sider the aircraft dynamics represented as

X = f(x,%,u). )

Let u* represent an exact FBL control law. That is, the transfor-
mation {x,v} — {x,u*}, given by

ut = (%%, ). @)
The transformation from pseudocontrol to state then becomes
X =wv. 3)

Instead of control law (2), we apply an approximate transforma-
tion

u=f""(%%v) )
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where notation X(t) is used to distinguish these plant trajectories
resulting from using u(¢) from those resulting from applying
u*(¢t). If f and f are close, e.g., in the sense of [37] and [38],
then x(#) and %(¢) will be close, and a regulator can be added
to v to bring X(t) — x.(t). Using the approximate inversion
control law (4), in light of these results, allows us to express the
aircraft dynamics as follows:

).A;:: f()/\('?);(?u) = fA()A());\(au)_'_A:nv

=v+A, O
where Al is the inversion error defined as

A;nv £ f(}AQ i? 11) - f()A(,}A(, 11) (6)

and v = v, — v,q, With v,4 representing the action of an adap-
tive NN designed to cancel A/ . The closeness of the approxi-
mation is captured by the inversion error, which we may express
in terms of the pseudocontrol signal as

Aj :Amv(fiviﬂ/):f(fg)i)f_l(i?f(ﬂ/))_” (N

mv

The inversion error A;,, depends on v,4, whereas v,q will be
designed to cancel Aj,,. This poses a fixed-point problem with
existence and uniqueness of its solution v,4 guaranteed with the
following assumption:

Assumption 1: The mapping v,q — A, iS a contraction
over the entire input domain. This implies

Oiny | _|0(f = f)om ov | _JO(f = f)ou| |
OW,g | ou  wiv.y| ou 9 f
which can be stated as
af/ou 3 @)
df/ou

Expression (8) implies the following two conditions:

1) sgn(df/0u) = sgn(df/ou);
2) 0f Ju| > [0f oul/2 > 0.

B. Tiltrotor Application

Tiltrotor aircraft combine the hover performance and con-
trol of a helicopter with the cruise speed and efficiency of a
turboprop airplane. Tiltrotor aircraft feature wing-tip mounted
prop-rotors that can be rotated from a vertical orientation for
takeoff and landing to a horizontal position for efficient fixed-
wing-borne flight for high-speed cruise, Fig. 3. There is an in-
terest in large tiltrotor transports, which promise to relieve air-
port congestion by replacing commuter aircraft and freeing up
runway slots.

The flight mechanics of a tiltrotor present both opportunities
and challenges to the control designer. Prop-rotor movement
from the vertical position in helicopter mode, toward the hor-
izontal airplane mode position, rapidly accelerates the aircraft
while orienting prop-rotor thrust to its optimum position. Con-
versely, up, and aft movement of the prop-rotors, required to
prepare for a vertical landing, provides the drag needed to de-
celerate but at the same time produces undesirable additional
lift, which the pilot must counteract with appropriate flight-path
control.

Two common types of stability and control augmentation sys-
tems (SCAS) for aircraft are referred to as rate command atti-
tude hold (RCAH) and attitude command attitude hold (ACAH)

Fig. 3. XV-15 tilt-rotor in helicopter configuration.
[43]. As outside visual cues degrade and flight-path precision
requirements increase, as for example with civilian instrument
meteorological conditions (IMC), the need arises for attitude
stabilization and even attitude control for precise hovering and
low-speed flight. As speed increases, the need for more roll ma-
neuverability emerges, leading to a relaxation of roll control to
a rate response type. Similarly, the desired control in yaw axis
changes from heading command to yaw rate control with turn
coordination (TC). The considerations involved in a tiltrotor
IMC approach procedure, include [44]: a conversion schedule
of nacelle angle with speed, from cruise to helicopter configu-
ration in the approach, and vice versa for the missed approach
procedure; deployment or retraction of flaps depending on na-
celle angle, speed, and glide-slope; switching between control
augmentation types, and; desired altitude and speed trajectories.
Consider the aircraft rotational dynamics represented by [45]
and [46]

w = f(x,X,6f) C))

where x = [u v.w ¢ 6 )T which are, respectively, the
Cartesian components of velocity along the body-fixed axes and
the Euler angles, w = [p ¢ 7] contains the angular rates about
the body-fixed axes, and 8¢ = [01at Sion Odir Scol] T is the con-
trol input, respectively, referred to as the lateral cyclic, longitu-
dinal cyclic, rudder, and collective. The approximate model is
based on dynamics linearized about a nominal operating point,
with the rotor dynamics residualized

w = A1X1 +A2w+B6 (10)

where A1, As, and B, respectively, represent the aerodynamic
stability and control derivatives in the usual Jacobian sense. The
collective/throttle control position is treated as one of the rela-
tively slow translational states, X; = [u v w 8co1]?. The in-
puts of interest are the controls of moments about the body axes,
6= [61at 6lon 6dir]T-

The inverting control law is constructed from (10) by re-
placing the angular accelerations with their desired valueswp =
[pp ¢p 7 D]T and solving for the control perturbations. This re-
sults in the following control law:

6 =B Hwp — A1x; — A} (11)

where the hats indicate that we may allow some further uncer-
tainty in approximations of Aq, A2, and B. The inversion error
is

Ainv=w — (A1x1 + Agw + B8). (12)
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The effect of A;,, can be represented about the body-fixed axes
as

w=wp + Ajyy. (13)
The components of wp are related to those of the pseudocontrol
as explained next. The pseudocontrol for the three rotational
degrees of freedom is designed in terms of body angular rates
as

vV = [Vp Vg V’I‘T]T =V, — Vad (14)

where v,q4 is the output of a NN, and v, is the output of a
linear controller operating on a tracking error signal. A variety
of linear control designs can be used to produce v,. We use
a combination of command filter and classic proportional—in-
tegral derivative (PID) control to provide the model following
setup indicated in Fig. 2. If the poles of the command filter
are co-located with those of the PID control, then in case of
ideal inversion the architecture reduces to conventional explicit
model following. With the approximate inversion, the PID con-
trol design affects the NN performance and, thus, determines
the tracking error transient. The pseudocontrol signal v, is de-
signed as follows:

Kpip+ Knm Pe
Vo= | Kps+ Kpobf | + 0. (15)
Kpsr+ Kr3p Te
with
T=p, p=7 (16)

where the signals {p., 0., 7.} and their derivatives are the out-
puts from command filters, and for each component the tilde
represents a command tracking error

7)

T =T.—T.

The command filters are used to specify the rotorcraft handling
qualities [43]. In this paper, the signals p. and 7. will be de-
signed to provide RCAH in roll and yaw, and 6. will provide
ACAH in pitch. The integral action is added in the roll and yaw
channels to provide the attitude hold in those channels. Inte-
gration and adaptation wind-up can be prevented with pseudo-
control hedging (PCH) [47]. Handling qualities specifications
and actuator performance allow the tracking error transient to
be fast relative to the dynamics of the command filter, while
maintaining bandwidth separation from actuator dynamics. The
following assumption can therefore be satisfied by design.

Assumption 2: Let the external commanded input and its first
and second derivatives be bounded, for example such that

6. 6. 6.7 < ©.

Similar assumptions are made for the roll and yaw channels. In
what follows, a full three-axes control augmentation will be pre-
sented and demonstrated, while the pitch channel will be used as
a detailed example for design and analysis. For the tiltrotor ap-
plication, our focus is on the approach to landing phase of flight.
The high workload associated with conversion from fixed-wing
to helicopter flight combined with approach procedures calls for
attitude-hold in all channels. The need for precision during the

(18)
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approach-to-landing stages of flight benefits from attitude-com-
mand in the longitudinal channel. The roll and yaw channels are
commonly designed for rate-command. The components of the
desired acceleration wp for this combination of augmentation
are related to the components of the pseudocontrol v as follows:

19)
(20)

pDEI/p

D = Vpp.
By using the derivative with respect to time of the pitch kine-
matic expressions, the desired angular acceleration about the
body y axis can be solved for

o6 :
Q= ity qd{ts +r} where (21)
”

b =p+te{qss +res} (22)

where sy is shorthand for sin(¢), etc. Thus, the desired pitch
rate, given the commanded attitude and yaw rate signals, is now
seen to be

ip = Z—Z + Uprty + qd{ty + 7} (23)
To see the effect of this construction on the inversion error, no-
tice that by combination of (11), (12), and (23), A;ny can be
represented as a function of the states and the pseudocontrol. In
pitch channel, the error is a function of vy and v,.,.. We may rep-
resent the effect of A;,,, in the Euler pitch-attitude dynamics as

b= vo+ Ainv(2)cy — Aine(3)s4 (24)

where Aj,y (i) represents the ith component of vector Ajpy.
Combining (14), (15), and (24), we obtain

6+ Kpf + Kpb = v,0(2) — Ag (25)

where Ag = {Ain(2)cy — Ainv(3)s4} is the pitch component
of the inversion error when represented in the Euler frame. The
left-hand side of (25) represents the tracking-error dynamics.
The right-hand side is the network compensation error, which
acts as a forcing function on the tracking error dynamics. With
perfect NN performance, the NN output v/,4(2) completely can-
cels Ag.

III. NEURAL NETWORK STRUCTURE
A. Linear NN Structure

An online NN is defined by its structure and its update laws.
A linear NN structure consists of any linearly parameterized
feedforward network that is capable of approximately recon-
structing the inversion error. Reference [48] uses radial basis
functions (RBFs) because these functions are universal approx-
imators even when the network is linearly parameterized. How-
ever, it is well known that RBFs are poor at interpolation be-
tween their design centers, and a large number of such basis
functions are needed for networks with multidimensional input
vectors. In [32], RBFs were used to capture variations in Mach
number, because in the trans-sonic region, these variations are
difficult to represent by polynomial functions. In the current im-
plementation, a single-layer sigma-pi network is used. The in-
puts to the network consist of the state variables, the pseudo-
control and a bias term. Fig. 4 shows a general depiction of a
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Fig. 4. Linear in the parameters Sigma-Pi NN structure designed for ACAH
in the pitch channel.

sigma-pi network. The values v; ; represent the weights associ-
ated with a nested kronecker product of input signal categories,
and therefore they are (binary) constants. The values w; are the
variable network weights.
The input—output map of the linear NN is represented as
vap = W1 B(z,). (26)
Here v p is the NN output, x and v are NN input, and the bar
indicates possible normalization. The vector z consists of se-
lected normalized elements of the plant state and a bias term.
The vector of basis functions 3 is akin to the regressor-vector in
adaptive control texts. The basis functions are made up from a
sufficiently rich set of functions so that the inversion error can be
accurately reconstructed at the network output. The basis func-
tions were constructed by grouping the normalized inputs into
three categories. The first category is used to model inversion
error due to changes in airspeed V' = Vu? + v2 + w?, since
the (dimensional) stability and control derivatives are strongly
dependent on dynamic pressure [45]. In allowing the plant to be
nonlinear and uncertain in the control as well as in the states,
the inversion error is a function of both state and control sig-
nals, and these are therefore contained in the second category.
Furthermore, for error compensation in the pitch channel, both
vy and v, should be input. The third category is used to ap-
proximate higher order effects due to changes in pitch attitude.
These are mainly due to the transformation between the body
frame and the inertial frame

Cy: {0.1,V,V?}
C12 : {0'17677177{?7(571797’77“7‘}
Cs: {0.1,6,0}.
Finally, the vector of basis functions is composed of combi-

nations of the elements of C, (5, and C'5 by means of the
Kronecker product

B = kron(kron(C1, Cy), Cs)

DAY

S EZAARNY
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Structure of a SHL perceptron network.

Fig. 5.

where

kron(z,y) = [z1y1 192 T Yn]”

The Kronecker product results in a combination of polynomial
signals that will include 62, $2, and cross terms. The bias value
in each class is normalized at 0.1, allowing for a pure bias com-
ponent in vxp of 10~2 multiplied by ;.

B. Nonlinear NN Structure

Consider again the architecture in Fig. 2. We now replace the
linear-in-the-parameters NN with a single-hidden layer (SHL)
“perceptron” NN. NNs with a SHL structure are more pow-
erful than the linear NNs because they are universal approxi-
mators [23], [24]. Although the controller architecture does not
reflect many changes from the linear NN application, there are
differences in the stability analysis. Most of the added com-
plexity can be traced back to the backpropagation update laws
of the SHL-NN, and its associated Taylor-series approximation
[49]. Fig. 5 shows the structure of a SHL perceptron NN. The
input—output map of a SHL network can be represented as

n2

(27
7j=1
where k = 1,...,n3 and
:Bj =0 <bv61}j =+ Zvijxi> . (28)
i=1

Here n1,n3, and ny are, respectively, the number of input and
outputs, and number of hidden layer neurons. The scalar func-
tion o(z) is a sigmoidal activation function that represents the
“firing’-characteristics of the neuron.

o(z) !

C l4emaz’
The factor a is known as the activation potential. For conve-
nience define the two weight matrices

(29)

v Ov 2

‘/'171 Vvl,nZ
V= .

an,l an,n?



RYSDYK AND CALISE: ROBUST NONLINEAR ADAPTIVE FLIGHT CONTROL

and
Ow1 Own3
Wi 1 Wi n3
W = .
Wn2, 1 Wn2,n3

It is also convenient to define a vector 3(z) as

o(znz)]T (30)

B(z)=[bw o(z1) o(z2)
where by > 0 allows for the thresholds 6y to be included in

the weight matrix W. Define
x =y x|* (31)

by > 0 is an input bias that allows for the thresholds 6y to be
included in the weight matrix V. With the previous definitions,
the input—output map of a SHL Perceptron can be written in
matrix form as

y=WT'BVTx). (32)
The representation of the NN output given in (32), may be used
to represent a linear-in-the-parameters NN by specifying V =
1, and constructing B(z) by using well distributed radial basis-

functions [48], or by providing polynomial combinations of the
elements of z [28].

IV. INVERSION ERROR COMPENSATION

Consider a NN approximation of an inversion error

W*B(V*R) = Ajny (X) — €(X) (33)
where 0 < ||e|]| < &, where & an upperbound defined in what
follows. The vector € is referred to as the NN reconstruction
error, or residual error. The vector B provides the set of basis
functions that serves to approximate the function A;,,;. We may
include adaptive parameters in this set, as is the case with per-
ceptron NN, resulting in nonlinearly parameterized NN output.
The NN input X is made up of selected elements of the state
vector and pseudocontrol. The selection of the elements of X
is done through careful assessment of the inversion error [28].
W*, and V* are matrices of constant, not necessarily unique, pa-
rameter values that minimize ||||. These parameters are ideal,
for example in the sense that, in a domain D, of X, they bring
the term W*T B(V*Tx) to within a e-neighborhood of the error
Ajny, wWhere € is bounded by

sup

€=
x €D,

W TB(VTR) — Aje (X)) (34)
Thus, W* and V* may be defined to be values of W and V' that
minimize € over D,. The online NN output may be represented
as

Vaa = WTB(VTx) (35)

901

where W and V are the estimates of the ideal parameters.
We need to make the following assumption. Define

V o
2=[o W)
and let || - || imply the Frobenius norm.

Assumption 3: The norm of the ideal NN weights is bounded
by a known positive value

(36)

127l < Z. (37)
Let W gnd V be the e§timates of, respectively, W* and V™.
Define W = W —-W* V =V —V* and define the hidden-layer
output approximation error as

B=pB-B=pVTx) - B(V* x).

To backpropagate the estimation error through the NN hidden-
layer, we use a Taylor series expansion about the current esti-
mate of the hidden layer output, 3(2) = B(VTx), where we are
specifically interested in z = z* = V*Tx

(38)

B =B-B.(VIx)VTx + O(VTx)? (39)
where
ooe) . ool
o(z1 gl(z1
A dﬂ(Z) 0z e O0Zno
= = 40
S N I “
9o (zn2) . 9o (zn2) X
Dz Ozno Z=7
and z = [21 22 . ']T.

Remark 1: As an example, consider the second-order error
dynamics in the pitch channel (25), which may be represented
as

é= Ae+ b(l/ad(Q) — Ag) 41
where
0 1
1= ke ko)
and b = [0 1]7, and with
9
e=| . (42)
0

Remark 2: Due to nonaffinity of the plant with respect to
control, the inversion error, Ay, is in general a function of the
pseudocontrol, which includes the output of the NN. Since the
output of the NN is providing compensation for the inversion
error, a fixed point problem occurs. To insure that Assumption 1
holds, v is input to the NN through a squashing function.

A. Using the Nonlinear NN for Inversion Error Compensation

If the nonlinear NN is used, the signal v,4 is designed as

Voa = WIB(VTR) + v, (43)
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where v, is a term that robustifies against the effects of higher
order terms in the Taylor series approximation in (39)

v, = —K.(IZ]| + Z,)¢ (44)

where K, > c3, c3 a known positive constant defined later, and

Z, such that ||Z* — Z,|| < Z,. The update law of the NN
weights is designed as

—B.VIR)C+ A(|(W = W,)}Ty, (45)

W= = —{(B
V= —{x(WTB, + A[C|(V = V)T, (46)

V=
where I',, ')y, > 0, and A > c¢2,c2 a known positive con-
stant defined later. The damping term A|¢|(Z — Z,) is known
as e-modification. In our design, I'y, = vy Iy, 'y = v, I, with
Yu, Yw > 0. The elements of 3, represent the sensitivity of the

hidden layer to its input, for the nonlinear NN 3, = 8_(V7'x).
The scalar ( is the filtered error term
¢(=eTPb 47)

with for the second-order example in the pitch channel

1
p—|&e + 55, 3Kp } o [Pu P12}
= 1 14Ky | = .
2K p 3KpKp Pz Py

B. Using the Linear NN for Inversion Error Compensation

If a linear-in-the-parameters NN is used with V' = 1, i.e.,
linear in the adaptive parameters W, then no update of V is
desired, B, = 0, and 8* = B therefore v,, = 0, and

Vaa = WTB(x). (48)
The adaptation law is given, with v > 0, by
W =W = —{¢B+ AW — W,)}. (49)

Remark 3: The example provides for ACAH in the longi-
tudinal channel, i.e., a design with second-order tracking error
dynamics. This design may be generalized with

e=[zm™ b ... T (50)
andb = [0 --- 0 1]7 asize-n vector, and P an n X n-matrix
that solves AT P + PA,, —21I,, = 0, with A,, in canonical form

similar to (42), expanded to order n.

Remark 4: Equations (45), (46), (44), and (49) are stated
for a single channel setup, i.e., with one NN output. The state-
ments may be generalized for MIMO implementation. In fact,
the strength of the architecture lies in the cancellation of a non-
linear and possibly multidimensional inversion error which may
include coupling of multiple states and control effects. A MIMO
application that takes advantage of this capability is detailed in
[50].

C. Filtered Error Bound

Let || - || imply the two-norm in case of vectors and the
Frobenius norm in case of matrices. The construction of ¢ in
(47) can be seen as an error filter, see the Appendix. From the

Cauchy—Schwarz inequality and the compatibility of the Frobe-
nius norm with the vector 2-norm, it is clear that ¢ is bounded
if e is

<1 < lle[[[P]]- (51
A bounded ( also implies a bound on the 2-norm of e, allowing
concentration on the boundedness of the scalar ¢ [2].

Lemma 1: Let ¢ be constructed as (47), and suppose ¢ < (
then

60)] < 50 (52)
and

* 2 _

10(t)] < P—nC(t)' (53)

A proof is given in the Appendix. From Lemma 1, we can
obtain

21412 1 |42 < 2
el =162 + 167 < (g + 7 ) & 59

D. Guaranteed Boundedness

The NN input design is discussed in the Appendix. The NN
input can be upper bounded in terms of the tracking performance
by

2]l < ¢, + A 1¢] + S 2]
where ¢} > 0 are known. From (39)
OVTx)*=-B+B.V'x

where B, = B_(VTx). With these results the higher order terms
associated with the back propagation are bounded from above
by

IO(VTx)?|l < ¢ + 4l ZIl]Ix] (55)

where ¢ > 0, known. Let w be defined as the NN approxi-
mation error plus the higher order effects of back propagation
through the nonlinear NN:

w=c+W OVTR)2+WIBV* x.

Considering the properties of the NN structure, (55), and (34),
an upper bound on w in terms of ||7]| is

lw| < Cy + CLIZ[|I%]]-
Combining this with (A-4), then
lw| < co + el Z]| + 2| Z1* + esl| Z1II¢] (56)

where ¢; > 0 are known.
Remark 5: Using the facts that

IZI < Z+ 12| and |Z|* < Z° + ||Z)* + 22| Z||
it is possible to find a known upper bound @ such that

lw| <@ = Co+Ci||Z||+Cal¢|+ sl ZI[¢|+ Call Z1. (57)
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\De

Fig. 6. Geometric representation of sets in the theorem.

In the formulation of this control problem, the error space
can be considered as consisting of a subspace associated with
tracking, and one associated with the NN weights. In the
tracking error subspace, let

Bl ={e:|le|| < r.}. (58)

Let Ap and A, represent, respectively, the maximum and min-
imum eigenvalue of positive—definite matrix P. Let €2, be de-
fined by, Fig. 6

Qe 2 {e € B’ :e’'Pe < oze} (59)
where
e = HnHﬁn e’ Pe =12)\p. (60)

Similarly, in the NN weight subspace with learning rate I' = 1,
where I the identity matrix of appropriate dimension, let

Bl ={Z:||Z|| <r.} (61)

and Q. = {Z € BI}.
Theorem 1: If {e(to), Z(to)} € {Qae, 2.} and if the do-
main D, of x is sufficiently large, such that B, C D, with
2

re > {co+ (A — c2)a’} 3
Ap

(62)

and similarly, the domain D, of Z sufficiently large such that

B’ C D. with
r.>a+fa? 4 —
)\—62

where a = (1/2)(c1 + AZ,)/(\ — ¢2), then all the signals in a
system defined by (41) and (49) will remain bounded.

A proof is presented in the Appendix.

Remark 6: The term w represents the effects of back propa-
gation, which is not applicable to the linear NN. For the linear
NN, Z = W, therefore

re > {6+ AW2/4Y (/33 /Ap.

Remark 7: The external command signals were assumed to
be bounded, as in Assumption 2. The effect of these command

(63)

(64)

903

5 B

Fig. 7. Geometric representation of the effect of r.( \Z o) on the allowable
commands.

signals can be pictured in a geometric representation of the in-
tersection of the sets with the e-subspace, Fig. 7. This shows
that commands of larger magnitude imply smaller values for ~.
This may be interpreted to mean that to limit the closed-loop
bandwidth, smaller NN learning rates may be required when al-
lowing for more aggressive command tracking.

V. TILT-ROTOR SIMULATION RESULTS

The aircraft is simulated using the real time flight simulation
model of a tilt-rotor aircraft Generic Tilt-Rotor Simulator
(GTRS) developed at the NASA Ames Research Center in
support of the XV-15 and V-22 programs [51]. The code was
extended to include actuator dynamics and nonlinearities. The
following results summarize the controller performance in
all channels. In the designs for human piloting investigated
here, both the linear and SHL NN performed similarly, with
only minor differences due to NN sizing and learning rate. It
should be noted however that in more aggressive and highly
nonlinear applications, the SHL NN has been demonstrated to
have superior performance [1], [36], [52].

A. Command Filter Design

The GTRS code includes the existing XV-15 control augmen-
tation, here referred to as original SCAS. This SCAS is gain
scheduled with speed and with mast-angle. In the longitudinal
channel, it provides ACAH and RCAH, depending on the mode
selected by the pilot. The ACAH setting was used for the com-
parison in the following results. The linear PID controller dy-
namics in (15) were designed so that the NN error settles within
0.5 s.

If the model following performance in the architecture of
Fig. 2 is guaranteed over the frequencies of interest for han-
dling qualities (0.2-6.0 rad/s), the Airworthiness Design Stan-
dard ADS-33D requirements [43] can be implemented by means
of, respectively, a second- and first-order command filter. In that
case, the Lyapunov stability offers a guarantee of the ADS-33
performance. Attitude Command can then be implemented with
a second-order pitch-angle command filter, such that its domi-
nant complex poles provide minimal overshoot and a 5% set-
tling time of 1.5 s. This provides Level 1 handling characteris-
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Fig. 8. Longitudinal SCAS comparison. The aircraft starts out trimmed at

nominal-operating configuration. During the first 30 s it responds using the
original gain scheduled SCAS. The aircraft remains within 10 Kts and within
250 ft of its altitude. At ¢ = 32 the model inversion SCAS is activated as
evidenced by the NN weight histories.

tics in the pitch channel. Level 1 Rate Command handling qual-
ities in roll has a phase bandwidth wgyw > 2 rad/s. With the
roll-yaw coupling small, the time constant of the roll response
is approximately the inverse of the bandwidth, therefore

K > LN WBW. (65)
Tp

This provides the roll command filter with a 5% settling time

of approximately 1.5 s. The setup for the yaw-channel is similar

with a time constant, 7,. = 0.25 s. These command filter designs

will provide Level 1 handling qualities when the augmented air-

craft can indeed follow the command filter dynamics up to these

frequencies.

B. Control Augmentation for the Longitudinal Channel

A comparison of the original SCAS with the NN augmented
model inversion augmentation is presented in Fig. 8. The im-
provement in pitch response is clearly visible. The same perfor-
mance was obtained at various points in the operation envelope
and at various configurations, including at 35000 ft in aircraft
configuration. The augmentation in the lateral channel is able
to provide similar performance and consistency in response. To
further evaluate the performance of the NN adaptive control,
a pilot model was developed [53]. The pilot model is able to
follow desired altitude, speed, and conversion profiles, Fig. 9.
Note that the NN weight histories return toward nominal as the
tiltrotor is maneuvered back to trim.

C. Control Augmentation for the Lateral Channels

Two common modes of augmentation in the yaw channel are
heading hold (HH) and TC. In a tiltrotor aircraft, a transition be-
tween these modes is typically made between 25 and 45 Kts. HH
is inherent to the controller architecture as attitude stabilization
in yaw. TC pertains to the need for coupling between the roll and
yaw motion to provide for a comfortable and efficient change in
heading. Etkin [45] defines a coordinated turn as a turn wherein
the rate of change in heading is constant, and the resultant of
gravity and centrifugal force at the center of mass lies in the

E , [ ‘ < ‘ ‘ ‘
2 1000 ———— b
2 — — Mod Iny,
g T — - ﬁglnna\f SEXs
g o) — 1
£ o ‘ . ‘ . ‘ ‘ ‘ ‘
< 0 10 20 30 40 50 60 70 80 90
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>
[
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= or _ i
5 e e
& -10 L L | L L | | L
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[
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g : . \ . . \ \ ;
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Fig. 9. Simulated approach to minimum descent altitude, starting from
1000 ft in nominal operating configuration at 30 Kts helicopter configuration.
The desired descent rate is 1000 fpm. The primary control for establishing
the descent rate is the collective. This has an effect on the velocity, which is
subsequently controlled by the pilot model through pitch commands. Note that
the NN weight histories return toward nominal as the tiltrotor is maneuvered
back to trim.

plane of symmetry. This definition approximates closely a pi-
loted flight on the furn-and-bank indicator. For the implemen-
tation of TC, only the command filter dynamics are considered,
i.e., we assume perfect tracking of yaw rate command. The de-
sired yaw rate can then be expressed as

1

= E{KP(GYcom - aY) + wp + ,(}S¢Ca} (66)

Tcom

where Kp is the gain of the tracking dynamics in the
roll-channel, and ay is the acceleration along the body-y
axis. The dynamics due to v are neglected as its value is usually
not available from measurement. For the guidance outerloop
we take the yaw rate to respond as directed by a first-order
command filter. Grouping the © dynamics with the difference
between measured and actual effects of roll-rate and gravity, as

AY:@—{;EET}@W+9%@) (67)
Equation (67) indicates that the effects of gravity and roll rate
are washed out. The effects due to © are not, but if aycom =
0 and with mild maneuvering, this augmentation will keep ay
suppressed. Closing the loop results in an expression for the
lateral-acceleration transients

Kp TTS+1
75+ (1+ Kp) s+ (1+ Kp)

Fig. 10 compares the performance of the original XV-15 SCAS
with the model inversion controller. The original augmentation
provides rate command and attitude command with attitude re-
tention (ACAH) upon selection. No HH or automatic TC is
available for comparison. Figs. 11, and 12 demonstrate the aug-
mented response in the lateral channels given.

The controller architecture inherently provides for HH.
Fig. 13 displays the difference in performance between TC and
HH mode. HH would typically be used at speeds below 45 Kts,

ay = aycom + A. (68)
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Fig. 10. Lateral SCAS comparison; response to a square wave lateral stick
input at hover, at 5000 ft. The original SCAS is active until ¢ = 15 s, at that
moment the model inversion SCAS is switched on. The 2-s fluctuation in roll
rate is due to the coupling of the yaw augmentation that is now providing HH.
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Fig. 11. Roll channel command and response to roll rate doublet, with

automatic TC, leading to a 45° banked turn. The tiltrotor is flying 170 Kts, at
10000 ft, in cruise configuration. Automatic TC is implemented as in (66),
with ¢y com = 0Og.

TC is used in cruise flight. The 30 Kts flight is representative
for HH operation, but rather an extreme for the TC mode. The
controller is able to provide good performance.

D. Handling Qualities

ADS-33D [43] requirements have a specific focus, in each
channel on: small amplitude (high frequency) responses; mod-
erate and large amplitude responses; and response to disturbance
(attitude hold performance) [31], [54]. The simulation model in-
cludes XV-15 actuator dynamics and nonlinearities. However,
the investigated maneuvers did not lead to actuator saturation.
The small amplitude response to control inputs is tested through
a frequency sweep, 0.2 — 6.0 rad/s. The unaugmented XV-15
displays conventional first-order roll rate characteristics where
aileron deflections produce a proportional roll rate at low fre-
quencies, and acceleration at high frequencies. The dominant
time constant is approximately 1 s. The critical bandwidth is de-
termined by the 45° phase margin [43]. The effective phase time
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Fig. 12. Yaw channel response, control surface deflections and TC
performance in roll rate doublet of Fig. 11.
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Fig. 13. HH versus TC in helicopter configuration, 30 Kts at 3000 ft. Given

a doublet roll rate command, the performance in roll channel shows no
differences. The maximum bank angle is approximately 25°. In HH mode, the
heading remains within 0.25° of its trim value, and the aircraft reaches a lateral
velocity of 20 Kts.

delay is negligible since the phase curve is nearly flat where it is
near 180°. The bandwidth-phase-delay requirement, for Level 1
roll response, is similar to the one in pitch response, referred to
as Small Amplitude Roll Attitude Changes. It is a requirement for
a phase bandwidth of wgwy > 2 rad/s. If the roll-yaw coupling
is small then the time constant of the roll response is approxi-
mately the inverse of the phase bandwidth, 7, ~ (1)/(wBwa)-
So a command filter design with a time constant 7, < 0.5 s
should result in Level 1 handling qualities. Fig. 14 shows the
results of the frequency sweep. Moderate amplitude changes
(attitude quickness) requirements and Level 1 requirements for
so-called large amplitude roll attitude changes for IMC opera-
tions were also achieved [54].

Figs. 15, and 16 give the pitch response to a longitudinal
square wave stick input. The XV-15 is flying at 2000’, at ap-
proximately 100 Kts, in helicopter configuration. The figures
contrasts the commanded pitch angle with the response using
model inversion only, using the linear NN, and using the SHL



906 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO. 6, NOVEMBER 2005

50
o
K=}
D
s
- 0r 1
<
3
= O Command Filter Design
T —— Actual Response
-50 — = .
10” 10 10
‘
3
s Or l
@
123
©
T
-100
&
)
£
I
a  -200

Frequency [rad/sec]

Fig. 14. Roll attitude stick transfer function frequency response at cruise
flight. The magnitude of the stick deflection covers 10% of total travel,
representative under these conditions, compared with a Bode-plot of the
command filter dynamics. The results from the spectrum analysis match the
command filter for all frequencies of interest, and the augmentation satisfies
the Level 1 bandwidth requirements.

Command |

—— Response, zw=0.05 | T T
=
@
k=2
)
E 2000 b
£
2
£ 1980 R

1960 L 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Position [ft]

170 T T T
I
2 1651 e
>
8
@ 1601
>

L L L | !
1550 5 10 15 20 25 30
Time [sec]

Fig. 15. Aircraft states and tracking performance at 100 Kts helicopter
configuration. The aircraft control is “released” at ¢ = 2 s. The model inversion
architecture is activated at t = 3 s.

NN. The manuever provides for a demonstration of operation
away from the nominal operating point, visible as the tracking
error, and in terms of inversion error in Fig. 16. This figure in-
cludes the NN output, which compensates for the inversion error
fg (dotted line), as indicated in (25).

VI. CONCLUSION AND FURTHER WORK

A controller architecture, which combines adaptive feed-
forward NNs with FBL, has been outlined and its effectivenes
demonstrated on a tilt rotor aircraft. The boundedness of
tracking error and control signals is guaranteed. The architec-
ture can accommodate both linear-in-the-parameters NNs, as
well as SHL perceptron networks. Theoretical and experimental
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Fig. 16. Inversion error and NN compensation, and actuator activity. The NN

weights are initialized with zero weight. The linear NN has v = 10. The SHL
NN robustifying gains were kept relatively small in this demonstration, Ko =
K, = K,, =10and Z = 1, and vy = 100 and 7y = 100. These values
provide for a similar response as the linear NN compensation. Though in this
demonstration the different NNs performed similarly, other applications have
shown the advantages of the more powerful nonlinear NNs [32], [33].

research has shown utility in the areas of cost reduction and
improved flight safety.

An important improvement is robustness with respect to ac-
tuator dynamics and limits. The adaptive laws may be extended
to provide for robustness with respect to unmodeled dynamics
[55]. PCH is a powerful extension which may be used to shield
the NN adaptation from specific dynamics or actuator limits
[47], [56]. PCH allows adaptation-while-saturated, which pro-
vides smooth operation when un-saturating. A draw-back of
nonlinear adaptive control as presented here is the need for full
state feedback. The development of an output feedback formu-
lation is a major extension to the presented work [57], [58].

APPENDIX 1
NETWORK INPUT DESIGN

A. Analysis of the Inversion Error

Similar to (12), concentrating on ACAH in the longitudinal
channel, we consider

Ainy = 0= £(6.6.6.). (A-1)
We use a SHL NN to compensate for A,
T T
w*' g (V* )2) = Apy — .
With the model used for inversion given by
b = f_l(ev 0 Vo)
the functional dependency of A;, is

Ainv ~ Ainv(97 9.7 l/o)

~ Ainv(gv g 907 éca éc; Vad, Vr)~ (A-2)
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To approximate the inversion error, the NN input should contain
all the necessary information. Notice from (A-2) and (44) that

Ainv ~ Ainv(é7 57 907 éc; éu Vad, ||Z||)

Therefore, the NN input is chosen as

g=[by 6 6 6. 6. 6. 1Z)I* (A-3)

Vad

where by is the bias value introduced in (31).

B. Bound on NN Input
Using

1ZIl= 112" = 2|l < Z+ || 2|
the NN output may bounded by
Ivaall < ¢(Z +11Z1))

where ¢/ > 0. The design as in (A-3), Assumption 2, and
Lemma 1 imply

1%|| < b+ c41¢] + bl Z]] (A-4)

where ¢, > 0, known.

APPENDIX II
PROOF OF LEMMA 1

Suppose ((t) < ¢, to see how a bounded ¢ implies bounded
elements of e, consider (47) as a first-order filter with input ¢
and output # with feedback gain A = Pjo/Pss. Then

. 1 t

=5 | e M= (r) dr

from which we may conclude

1 C ¢ A( )
) < = [ e *t7g
| ()| P22/0 e T

G
_ng)\(l ¢
<L
~ Pip

IN

(B-1)

Also observe that é(f) = (1/Py2)¢(t) — A(t) and, thus, using
result (B-1)

° 1 A — 2 -
b)) < (P— ; P—) ) S S B2

Expressions (B-1) and (B-2) allow us to transfer bounds from
the signal (, to the elements of the second-order system (41).
Stability of the signal  implies stability in tracking. Specif-
ically, we can now express the bound on |le|| in terms of (,
expression (54).
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APPENDIX III
PROOF OF THEOREM 1

The tracking error dynamics are given by

é= Ae+ b(l/ad - Ainv)~ (C-1

Consider the candidate Lyapunov function
i L r s rn-1v, , Lorp-17
L(e,W,V) = 3¢ Pe + §W Iy W+ §V ryv. (C2)

For Kp > 0and Kp > 0, A is Hurwitz, and for all Q = Q7 >
0 the solution of

ATP+PA=—-Q (C-3)
isP =P >0.

In the sequel we will consider three cases; we start with a
linear NN structure where V' = I and let the Lyapunov analysis
lead to an idealized update law. Next we introduce the use of
an e-modification to the update law which prevents parameter
drift in the absence of persistency of excitation (PE), and finally
apply a similar approach to the nonlinearly parameterized NN.

Case 1: Differentiating (C-2), substituting (33), and using
(C-3), gives

L=—e"Qe+({WTB(z) - W (z) —(z)}
+WITHW + VITEV  (C-4)

where the scalar ¢ was defined in (47). With V' = I and, thus,
V=V= 0, (C-4) is reduced to
i=—-e"Qe—Ce+WT {Cﬂ + rg}W} : (C-5)

For convenience of analysis choose (Q = I. Observe that

T
_ P
e’ Pe < Aplle|®* = —eTe=—|e|* < _e-e°

where Ap signifies the maximum eigenvalue of positive—defi-
nite matrix P and

(| = [e" Pb|
< [e"VP|||[VPb|
= \/Ile”VP|[|VPe| ||V Pb]
< VeT Pey/\p.

With these observations, we may write

(C-6)

T
i< - e
<

+eveT Pey/Ap + WT {cﬂ + F{Vlﬁ/} . ()
This result suggests an update law

W =W = —TwcB. (C-8)
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With this update law, Lis strictly negative when
VeT Pe > eX¥?, (C-9)

Thus, 4. C B[, as defined in (59), is a positively invariant set
of (C-1). Furthermore, define

Qp. = {e€ B! : e’ Pe < 5‘25\31’;} .
If Q5. C Qqe, this requires that
525\:1”7 < Q-
Then the minimum size of B can be quantified by

2
T, >

—273
57)‘1’

py (C-10)

where D, must be sufficiently large, so that B, C D.. This is
sufficient to show that e(¢) remains bounded. Furthermore, if
the NN output layer is persistently exciting (PE) and the afore-
mentioned assumptions are satisfied, this implies boundedness
of W [59]. If € = 0, i.e., no approximation error, then Q. re-
duces to the origin and tl_lfzo e(t) = 0. In this idealized case,
the fact that the NN is linear in the parameters allows use of the
established adaptive control methods [60] to show boundedness
of W, without requirement for the output layer to be PE [59].

Case 2: Consider once more (C-5). We now consider the up-
date law of (C-8) augmented with an e-modification, and al-
lowing for a pretrained weight matrix W,,. PE is very hard to
provide for all but the most simple NNs. The e-modification cor-
rects the potential parameter drift that may occur in the absence
of PE

W =W =-Iw{(B+A|(W - W,)}. (C-11)

The choice of @@ = I and substitution of this update law results
in

L=—-ele— (e = NWT(W —W,).
Use the known bound ||[W* — W, || < W,, and note that

~WITW —-W,) = -WI(W+W*-W,)
= —[W|? - WT (W - W,)

< —[WIP + W[ W, (C-12)
Therefore
T
i< _e7Pe
< o
=ICHAIW I = MW [[Wo} + I¢le
which may be rearranged as a quadratic form
T
i< _e7Pe
< o
I AU = Woy2)? — 2 = aw2/a} . €-13)

This is negative either when

W > \/e/A+W2/4+W,/2 (C-14)
or when
eTPe >\ (e + AW2/4)* (C-15)

which follows from inequality (C-6) as:
e’ Pe/Ap > [(| (E+ AW?/4)
< e’ Pe/Ap > Vel Pe\/Ap (e + AW?/4)
Then for Qg C Q,, the minimum size of B" is quantified by

(64).
Case 3: Consider a Lyapunov function

. 1 1 o~
L(e,V,W) = ~eTPe + —trc(VTV)
2 2’}/V

1 o~
—I—Etrc (WTFWlW) .

By substituting the update laws (45) and (46) and using previ-
ously introduced definition for Z, the derivative with respect to
time of this expression may be expressed as

L=—-e"Qe+ ((v, +w) — NC|tre(ZT(Z - Z,)).
Similarly to (C-12)
_ZT(Z - Zo) < _HZH2 + ||Z||Zo

Therefore
el Pe

P

L<-—

+ [¢lw] = K.(112]] + Zo)¢?
=ACIIZIP + A2 Zo.
Substitution of the bound on w, (56), and reordering

el Pe

L<-—

ot colCl+ (e1 + AZ,) ¢l 4]
+(c2 = VICNZIP + {esll ZIl = Ko (121 + Zo) ST
With K, > c3 and further reordering

T
i< _eiPe
< p

+|CHeo + (e1 + AZ) I Z]1 + (2 = VI Z)1P}
This can be written as a quadratic form

el Pe
Ap

L<- +1CH(e2 = N(IIZ]] - a)® — b}

where a = (c1 + AZ,/2(\ — ¢2)), and b = co + (A — c2)a?,
and with A > ¢y. The Lyapunov function derivative is negative
when either

e Pe > \31? (C-16)
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or

(C-17)

~ Cco
Z|| > 2
121> a2 + 5=~ +a

which leads to expressions (62) and (63), respectively. O
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