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Abstract

Long Range Evolution-based Path Planning for UAVs through Realistic

Weather Environments

Juan Carlos Rubio Torroella

Co-Chairs of Supervisory Committee:

Assistant Professor Rolf Rysdyk
Aeronautics and Astronautics

Professor Emeritus Juris Vagners
Aeronautics and Astronautics

The application of an evolution-based path planner for UAVsin long range flights is pre-

sented. The planner makes use of wind information from actual weather forecast databases

and considers areas of potential icing hazard. Weather variability in both 3-D space and

time is taken into account for the planning of the complete path. Examples show how the

planning system makes use of favorable winds for fuel consumption benefit, avoids areas

of potential icing, and is able to follow weather reconnaissance type of trajectories by vis-

iting areas of interest as well as scanning the atmosphere with desired vertical maneuvers.

A spherical Earth model for path generation has been implemented within the planner for

long range applications. Vehicle performance and fuel consumption models are integrated

into the planner with the use of performance tables, allowing the system to plan for any

type of vehicle. The planner is capable of making in-flight modifications to further refine

or adapt its path to updated weather information.
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Chapter 1

INTRODUCTION

Over recent years, interest in the use of Unmanned Aerial Vehicles (UAVs) has contin-

uously increased together with the research and development on these systems. These ve-

hicles offer potential benefits for a variety of applications where otherwise high cost and/or

risky operations are involved. One of these applications isthe use of UAVs in weather

reconnaissance programs which motivated the research presented here.

The accuracy of numerical weather forecasts depends heavily on observation data avail-

able to the models. The sparsity of observational data over the oceans is a major cause for

poor forecasting. At the present time, observations over these areas are obtained primar-

ily from three different sources. Satellite data provide a good amount of information in

the upper troposphere (such as water vapor and cloud track winds) and near the surface

(scatterometer winds). However, they are limited in providing data within cloud systems.

A second source of observations is measurement from commercial aviation aircraft flying

across the oceans, but this information is in general limited to jet stream level. Thirdly,

buoy and ship observations provide additional observation, but in a sparse capacity. This

in general leaves the lower two-thirds of the troposphere lacking weather sampling over

the oceans (0 to 6000m), compared to a much larger information database available over

terrain surfaces where radiosondes lifted by balloons are launched twice a day. Thus, the

lack of tropospheric sampling over the oceans creates a major area of potential for applica-

tion of model sized UAVs, which offer continuous, long range, economical and multi-level

observation of the atmosphere.
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Among other systems, the Aerosonde and Seascan UAVs have shown promise on long

range flights suitable for weather reconnaissance missions. The Aerosonde was the first

unmanned aircraft (and smallest) to cross the Atlantic Ocean in 1998, taking off from Bell

Island, Newfoundland and landing on South Uist in Scotland’s Western Isles, a distance of

3270km [1]. In this successful flight, however, the vehicle flight computer was loaded by

the research team with pre-defined way points based on the most recent available weather

conditions and forecast, which the vehicle followed without further modifications. Au-

tonomous planning and navigation capabilities are required for proactive future success of

long range flights of small UAVs. Adaptation of the path to changing environment condi-

tions while en-route is essential in future UAV systems. Autonomy will reduce the human

operation work load which is still very high in unmanned vehicle flights.

The research presented here involves the integration of weather information from ac-

tual databases and forecast algorithms with evolutionary path planning techniques for long

range autonomous flights. It addresses a 4-dimensional problem of space and time, requir-

ing adaptation to account for unexpected changes in the environment. The objective is the

planning of trajectories that balance fuel consumption, icing hazard avoidance and obser-

vation requirements, considering performance characteristics of the target vehicle. Prelim-

inary results of this research were presented in [2]. Application of evolutionary planning

techniques to multiple autonomous vehicles [3] is a significant part of the research at the

University of Washington Autonomous Flight Systems Laboratory.
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Chapter 2

EVOLUTION-BASED PATH PLANNER

This chapter presents the main concepts behind the path planner. It begins with some

background of Evolutionary Computation methods and concludes with a description of the

algorithm implemented in the Path Planner.

2.1 Evolutionary Computation

Evolutionary Computation (EC) is a class of global optimization techniques which mimic

the evolution process witnessed in nature. Since the idea was introduced in the 1960s, sev-

eral EC-based techniques such as genetic algorithms and evolutionary programming have

been developed [4]. The techniques are slightly different in the actual implementations.

They, however, use the same metaphor of mapping the problem to be solved onto a simple

model of evolution. The mapping of terms used in evolutionary computation to the problem

solution domain is shown in Figure 2.1.

Evolution

Individual

Population

Fitness

Problem Solution

Candidate solution

Set of candidate solutions

Quality

Figure 2.1: Mapping of problem solution onto a model of evolution.

Algorithms which are developed based on the concept of Evolutionary Computation are
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generally called Evolutionary Algorithms (EA). The problem solving process of an evolu-

tionary algorithm is done by successively modifying a population of individuals each of

which represents a candidate solution of the problem being solved in search of the opti-

mal solution. The starting population is initialized randomly by an algorithm-dependent

method. The trial solutions move their way through the search space by evolving the pop-

ulation toward the region with the highestfitnessby means of randomizedmutation, and

selection. Each generation of the evolution consists of the followingthree phases: fitness

evaluation, selection, and production of offspring. Fitness is a measure of the quality of

a candidate solution represented by an individual in the population. Mutation is a process

to alter an individual using a specific mechanism. The selection process is a procedure to

reduce the size of the population by eliminating some individuals with lower fitness. The

individuals that survive through the selection process arethe parentswhich are used to

createoffspring, new individuals, for the nextgeneration.

Regardless of their implementation, all evolutionary algorithms have the same funda-

mental procedure. The following are the primary steps in an evolutionary algorithm solving

the generalized optimization problem:

1. Generate an initial population,P(n = 0), of µ + λ individuals. This initial pop-

ulation can be created completely at random or based on specific knowledge, or a

combination of the two.

2. Evaluate the fitness of each individual using a fitness function F (~P j) where~P j is an

individual in the population.

3. Selectµ individuals out of the entire population based on their fitness to be parents

used to generate offspring in the next step. The selection scheme can be either deter-

ministic or probabilistic.

4. Generateλ offspring from theµ parents. Each of the offspring can be spawned by

mutating a copy of one of the parents using a set of mutation mechanisms or by

combining a pair of the parents.
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5. Setn = n + 1 and go to step 2 until termination criterion is reached or theplanning

time expires.

The fitness functionF used to evaluate fitness of each individual must be a combination

of an objective function and a constraint function. The fitness function can also be in the

form of a vector of functions~F . The detailed implementation of these steps largely depends

on the problem.

Two popular EC-based techniques are Genetic Algorithms and Evolutionary Program-

ming. Genetic Algorithms (GA) are the most well-known type of evolution-based opti-

mization techniques developed by Holland [5], a computer scientist at the University of

Michigan. The main idea behind them is that individuals in a population are encoded as

’chromosomes’ (in bit form) through which mutation and propagation occurs based on ex-

ternal fitness criteria. On the other hand, Evolutionary Programming (the method adopted

for the path planner used here) models candidate solutions directly in the output space —

the search space of the problem being considered; that is, each individual in the population

is represented by the variables of interest for the problem,which are subject to direct modi-

fications through the evolution process. The original Evolutionary Programming (EP) idea

was introduced by L. J. Fogel, and was later extended by D. B. Fogel [4].

2.1.1 Evolution-based Path Planning

There are many advantages of using EC-based techniques in path planning problems. First,

they are open architecture techniques. It is easy to solve optimization problems with lin-

ear or nonlinear performance functions and constraints. Second, EC-based planning ap-

proaches are continual adaptation techniques. They can runcontinuously as the vehicles

execute the plans, and handle changes in the operating environment and vehicle capabilities.

Furthermore, EC-based techniques respond to the changing environment quickly because

they do not have to recompute the entire plans. The current plan is adapted in response to

the changes.
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EA based techniques have shown promise for solving optimization problems where

complex and variable environmental characteristics are animportant factor. Much interest

has existed in the application of these techniques for path planning problems.

Fogel [6] applied Evolutionary Programming (EP) to an optimal routing problem of

autonomous underwater vehicles (AUVs). This work shows that the planning algorithm

can handle unexpected changes in dynamic environments. Fogel also considers a number

of problems including multiple goal locations, detection avoidance, and cooperative goal

observation for a pair of AUVs. Solution to these complex problems was achieved by only

modifying the performance objective function.

Xiao [7] presented an adaptive evolutionary path planner for mobile robots. This ap-

proach combines off-line planning and on-line replanning in the same evolutionary algo-

rithm. In this approach, a path is represented as a set of waypoints chosen at random

connecting the initial and goal locations. The probabilityof selecting different mutation

operators is adapted during the search to improve performance.

Capozzi [8] presented an evolutionary technique for path planning of an aerial vehicle in

a simulated dynamic environment. The planning algorithm was tested in several complex

scenarios: varying terrain, wind variations, dynamic obstacles, and moving targets. The

simulation results show that the algorithm can efficiently search simultaneously in space

and time to find feasible, near-optimal solutions.

Hacaoglu and Sanderson [9] developed an evolution-based planning algorithm using

a multi-resolution path representation. The use of the multi-resolution path representation

reduces the complexity of the planning problem and in turn reduces the computational time.

They show that the planning system can be applied to mobile robots or manipulators with

many degrees of freedom and provides effective results. In addition, they also proposed a

multi-path planning algorithm which generates multiple alternative paths simultaneously.

Rathbun and Capozzi [10] developed an evolution-based path planner which explicitly

accounts for uncertainties in the environment. In this work, the planning algorithm does not

only use the estimate of the obstacle locations in the environment but also the uncertainty
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associated with the estimate. This work suggests an approximation method to compute the

probability of intersection of the vehicle path with an obstacle. This probability of inter-

section is used in the fitness function to evaluate candidatepaths. The proposed planning

algorithm shows reasonably good results in comparison to graph-based search methods.

2.2 Evolution-based Path Planning Algorithm

The general concept of the EC-based planning algorithm used in this research is illustrated

in Figure 2.2. The algorithm runs in a loop which has three phases. It starts by randomly

generating a population of encoded plans. Then it evaluatesthe fitness value of each plan.

The next step is to select the best plan to be the candidate solution for this generation and

also select a portion of the plans in the population to be the parents of the next generation

based on their fitness values using a selection scheme. The last step is to produce offspring

from the parents selected in the previous phase. An offspring is generated by cloning a

parent and applying a mutation mechanism to it or by crossover of two parents. This loop

is run continuously to update the plan as the optimization process proceeds.

Population

Produce

Offspring

( mutation )

Evaluate

( fitness )

Selection

Decode

Environment

Vehicle

Capabilities

Goals

Constraints

Plath Encoding Best
Path

Figure 2.2: Overview of Evolutionary Computation based planning algorithm.
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The EC-based planning algorithm used in this research is based on both Genetic Al-

gorithms (GA) and Evolutionary Programming (EP) [11]. Workby Capozzi [12] suggests

that the algorithm combining features of both paradigms canimprove the performance of

the optimization process. The design of an EC-based path planning algorithm involves the

following issues: path encoding, fitness evaluation, mutation mechanisms, and selection

scheme. The path planning algorithm for a single vehicle used in this research is based on

the algorithm described in Rathbun and Capozzi [10].

2.2.1 Path Encoding

In the path planning algorithm used in this research, a path is encoded as a sequence of

simplesegmentschained end-to-end, shown in Figure 2.3. For the long range application

considered here, construction of segments was extended from a simple flat Earth model to

a spherical Earth model. Chapter 3 presents the geometric details for such implementation.

The segment parameters are limited to keep motion within thevehicle capabilities; the

integration of vehicle performance into the path planner isconsidered in Chapter 4.

Continuity is maintained between the joining end of a segmentand the starting point.

Continuity in heading and speed at the join of two segments is not strictly enforced con-

sidering that the dimension of the problem is large enough toallow the vehicle’s controller

to adjust accordingly. We also enforce every path to end at the goal location by adding a

necessary number of segments at the end of the last segment toextend the path to reach the

goal location. Thego-to-goalsegments are added to a new path after it is created.

2.2.2 Fitness Evaluation

Fitness of a candidate path is the value that represents the performance measure of the path

based on the objectives given by the problem. The fitness of individuals in the population

must be determined during the evaluation process. It may be computed directly through a

fitness function, or inversely as a cost function. Individuals with higher fitness (or lower
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G

Figure 2.3: An encoded path which is composed of a chain of connected segments.

cost) have more chance to survive during the selection process. The quality of the resulting

path depends heavily on this function.

The fitness (cost) function may be defined in several ways. A typical case consists of a

weighted linear combination of parameterized terms which represent the mission specifica-

tions and constraints. Another approach consists of multi-objective optimization methods;

rather than a single function, individual non-linear functions are designed for each param-

eter considered in the problem which allows one to define different competition methods

between paths. The objective of any approach is to define fitness functions that may lead the

solution to an expected performance. The planning examplespresented in chapter 6 have

primarily used the second approach by comparing the maximumvalue of all cost functions

of each path. The parameters considered are:

• fuel requirement,

• icing encounters,

• target achievement.

A typical cost function relation between these objectives is represented in Figure 2.4.

2.2.3 Mutation Mechanisms

Mutation mechanisms are essential for the evolution process to improve the fitness of a

candidate path generated in each generation and to eventually converge to the optimal so-

lution. A mutation has the effect of randomly moving a candidate solution from one point
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Figure 2.4: Example of Multiple Cost Functions for a Path.

in the search space to another. Therefore, an effective set of mutation mechanisms must be

able to move a candidate solution from one point to any other point in the search space by

applying a series of these mutation mechanisms to it.

In each generation, offsprings are created either by crossing over two randomly selected

individuals in the population, or by copying an individual and mutating it using one of the

mutation mechanisms chosen at random. We have five mutation mechanisms which are

illustrated in Figure 2.5. The list below explains each of the mutation mechanisms.

• Mutate 1-Point - randomly changes the parameters of one or more segments, and

then re-locates all the following segments. The first segment to be mutated and the

number of segments to be mutated are selected at random.

• Mutate 2-Point - randomly changes the parameters of one or more segments, com-

putes the new resultant end point for those segments (similar to Mutate 1-Point), and

then connects back to the start of another segment of the pathfurther along. The
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Figure 2.5: Path mutation mechanisms.
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beginning segment and the segment joined to are both chosen at random.

• Crossover - takes the starting segments of one path and the ending segments of an-

other and join the two sets of segments together.

• Mutate Expand - adds one or more randomly created segments onto the end of the

path. All original parts of the path are left untouched.

• Mutate Shrink - removes one or more segments from the end of the path. The

number of segments to be removed are selected at random.

Mutations of segments are not restricted only to their geometry, but may include the

speed at which to fly them, thus taking advantage of differentfuel consumption rates.

2.2.4 Selection Scheme

Given a population of the sizeµ + λ, the selection scheme is a mechanism for selecting

µ individuals to be parents at thenth generation. Theseµ parents will be used to create

λ offsprings later in the next mutation process. The selection scheme is independent of

the instantiation of evolutionary computation chosen for aparticular application. In this

research, a q-fold binary tournament selection scheme is chosen. Figure 2.6 illustrates the

procedures of the selection scheme which can be described asfollows. For each individual

i ∈ {1, 2, . . . , µ + λ}.

1. Drawq ≥ 2 individuals randomly from the population (excluding individual i) with

uniform probability 1

µ+λ−1
. Denote these competitors by the indices{i1, i2, . . . , iq}.

2. Compare individuali’s fitness against each of the competitors,ij, j ∈ 1, 2, . . . , q.

Whenever the fitness of individuali is not worse than that of competitorij, individual

i receives a point.

The score of each individual received during the tournamentis an integer in the range [0,q].

After the scores of all individuals are determined, the topµ individuals with the best scores

are selected as the parents for the next generation.
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Figure 2.6: Illustration of the tournament selection scheme.

2.2.5 Dynamic Planning

Dynamic path planning is an iterative process. The planner of the vehicle continuously

updates the path while the vehicle is moving in the field of operation. The steps in the

dynamic path planning algorithm are described as follows:

1. Run the EC-based algorithm described above continuously toupdate the candidate

path.

2. Send a portion(trajectory)of the current best path computed in step 1 to the vehicle

controller once the vehicle reaches a new spawn point.

3. Update the estimates of the environment.

4. Update the paths in the population for a new vehicle location by removing a number

of segments from the start of the paths and adding back segments to join the path to

the new vehicle location.

5. Go to step 1

A diagram describing the concept of the dynamic path planning algorithm is shown in

Figure 2.7. In dynamic path planning, the planning problem in each cycle is a nearby

problem of that in the previous cycle. This approach attempts to preserve some information



14

Start Point

Best Path
New Start

Fly this trajectory
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Figure 2.7: Concept of dynamic path planning algorithm whichretains the knowledge
gained from the previous planning cycle.

of the past solutions and uses it as the basis to compute new solutions even though the new

problem is slightly different from the previous problem.

In highly dynamic environment situations, one would want the already-committed non-

adapting sections of paths to be short to allow as much adaptability as possible. However,

this comes with a trade-off on the time-available-to-plan requiring fast enough algorithms

to compute new plans within a specified time limit. Figure 2.8illustrates this concept.

We define aspawn pointas the point that specifies the starting point of a new trajectory

which will be generated by the planner. In the figure, the current spawn point is located

on the trajectory at timetsp
which is theexecution time horizonof the vehicle controller.

This spawn point divides the committed section and the adapting section of the planned

trajectory. The committed section, which will not be altered, is a portion of the path for the

time periodtk < t < tsp
. The adapting section of the trajectory is free to be furtherrefined

by the planner. The timetN at the end point of this trajectory segment is theplanning time

horizon. A new committed trajectory is sent to the vehicle’s controller for execution every

time when the vehicle reaches a spawn point. The time difference between two adjacent

spawn points (∆Ts = (tsp
− tsp−1

)) specifies the maximum time-available-to-plan for the
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planner to update the adapting section. In this manner, the planner can account for new

information about the environment that becomes available during execution.

Vehicle
at time tk

Spawn point tsp

Planning
horizon

Committed section

tk < t < tsp

Path computed 

at time

Adapting section

tsp 
< t < tN

Previous 

spawn point tsp-1

tsp-1

time

Execution

time horizon
Planning

time horizon

t
k

tsp

tsp-1
t
N}

Time-available-to-plan

Figure 2.8: Dynamic Planning Concept. A vehicle (at timetk) is moving along a trajectory
previously computed at timetsp−1, shown as a gray line. The current spawn point at time
tsp

is shown as a black diamond.

2.2.6 Parallel Evolvers

The use of parallel evolution has a potential of addressing several issues for path planning:

a) acceleration of the EC-based search for a feasible optimalsolution, b) avoidance of lo-

cal minima traps and c) integration of human operator inputs. Studies have shown that

results computed using Evolutionary Algorithms can converge to global optimum solutions
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in simple optimization problems ([11], [13], [14], [15]). However, convergence properties

rely heavily on the strength of the mutation mechanisms and selection scheme used in the

algorithm to ensure global search space coverage. In addition, the optimization algorithm

used in the planning system must converge ’fast enough’ relative to the speed of the envi-

ronmental dynamics, which becomes essential for real-timeapplications. Addressing these

issues, some researchers [16], [17] have shown that runningseveral evolution processes in

parallel can improve the speed of convergence and avoid local minima as well as tracking

moving peaks in dynamic optimization problems [18].

Figure 2.9 illustrates the concept of the parallel evolution technique. In essence, mul-

tiple evolvers are coded to run independently based on the same fitness function. The key

issue is to determine the best merging scheme. One does not wish to directly compete these

parallel populations until comparable fitness levels are reached. Two possible strategies

among many others for two parallel evolvers are: 1) Compare the two populations; if the

secondary population is better, replace individuals in theprincipal population by those in

the secondary population. 2) Replace individuals in the principal population by the top

individuals from the two populations.

The use of parallel evolution may also allow the integrationof inputs from various

algorithms. Being independent, each evolver can be initialized in different ways. One

possibility is the integration of human operator inputs, animportant issue in automated

algorithms. This scheme may allow human input to compete effectively with algorithm

solutions. For example, if the operator has a high level of confidence that a particular path

should be followed, then this information can be accommodated in the planner algorithm

as hard constraints. If, however, it is not clear that the operator inputs are better than

what the algorithm is deriving, the input paths are treated as initial conditions to a parallel

evolver that is then merged at an appropriate time with the primary evolver. Other sources

of initialization to each evolvers may include independentrandom seeds or deterministic

method solutions (e.g. from A* [19] or D* [20] algorithms).

A preliminary application of the parallel evolution concept was used in the planning
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Figure 2.9: Parallel Evolution Concept.

examples presented in chapter 6. Two evolvers perform the same path search. They are

randomly initialized and the best path results of each evolver are compared at every trajec-

tory selection interval. The evolver containing the overall best path provides the portion of

the path to commit and to continue evolving with its current population. The second evolver

is re-initialized with random seeding to plan for the remaining distance, with a handicap

number of generations.
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Chapter 3

SPHERICAL GEOMETRIES BEHIND THE PATH PLANNER

Long range applications require consideration of the curvature of the Earth to account

for factors such as:

• The distance of a degree of longitude varies with latitude,

• Heading azimuth (angle in horizontal plane relative to north) is not constant while

moving directly from one point to another (i.e. in a ’straight’ path),

• Shortest distance between two points on a sphere follows a great circle.

This chapter presents all the geometry-related computations and assumptions developed

and implemented in the path planner. A spherical Earth has been assumed.

3.1 Coordinate System and Main Vectors

A 3-D Cartesian coordinate system was adopted for the development of the required com-

putations. The main coordinate system is a right handed frame X-Y-Z with its origin at the

Earth’s center, thex axis passing through lat0◦, long0◦, and thez axis passing through the

North Pole.

Five main parameters for path encoding are used throughout the planner: latitudeθ,

longitudeφ, geometric altitude with respect to the Earth’s surfaceΛ, heading azimuthψ,

and heading elevationγ (angle relative to a horizontal plane). Two main types of vectors are

required for the development of the necessary computations: position vector~r and azimuth

vector~a (Figure 3.1). They are constructed as unitary vectors basedon θ, φ andψ.
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Figure 3.1: Position and Azimuth Vectors, in earth-centered frameFec

The normalized position vector~r is obtained by the known relationship:

~r =











rx

ry

rz











ec

=











cos θ cos φ

cos θ sin φ

sin θ











ec

(3.1)

In the case of the azimuth vector, it was necessary to find a relation between the carte-

sian components of the azimuth vector~a andθ, φ andψ. Figure 3.2 shows a closer look

to a tangent plane similar to that appearing in Figure 3.1. Itshows how the unit azimuth

vector may be constructed as:

~a = ~ar + ~ap + ~az (3.2)

where~az is in the direction of the z-axis, and~ar and~ap correspond to theradial andper-

pendicularvectors of the projection of the azimuth vector on thex − y plane (Figure 3.3).

It is clear from Figure 3.2 that~az corresponds to the projection of~a on thez axis; thus,

in theFec frame it corresponds to
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~az = az











0

0

1











ec

(3.3)

From Figure 3.3 we may relate vectors~ar and~ap to theFec frame by theirx andy

components:

~ar = ar











− cos φ

− sin φ

0











ec

(3.4)

~ap = ap











− sin φ

cos φ

0











ec

(3.5)

Thus, substituting in 3.2 we have

~a = ar











− cos φ

− sin φ

0











ec

+ ap











− sin φ

cos φ

0











ec

+ az











0

0

1











ec

(3.6)

Referring back to Figure 3.2, and recalling that~a is a unit vector, it is clear thatar, ap,

andaz are given by

ar = cos ψ cos α (3.7)

ap = sin ψ (3.8)

az = sin α cos ψ (3.9)

Substituting them in 3.6, we then have

~a =











ax

ay

az











ec

=











− cos φ cos ψ cos α − sin φ sin ψ

− sin φ cos ψ cos α + cos φ sin ψ

sin α cos ψ











ec

(3.10)
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And sinceα = 90◦ − θ, the relation between the azimuth vector~a and the parameters

θ, φ andψ in theFec frame is finally given by:

~a =











ax

ay

az











ec

=











− cos φ cos ψ sin θ − sin φ sin ψ

− sin φ cos ψ sin θ + cos φ sin ψ

cos θ cos ψ











ec

(3.11)

Vectors~r and~a define vector~n via the cross product~n = ~r×~a, which defines the great

circle plane formed by the previous two vectors.

~n =











nx

ny

nz











ec

=











sin φ cos ψ − sin θ cos φ sin ψ

− cos φ cos ψ − sin θ sin φ sin ψ

cos θ sin ψ











ec

(3.12)

These three normalized vectors are of basic use for segment calculations.

3.2 Segment Construction

Two main types of geometries for the encoding of segments of apath have been imple-

mented in the path planner: straight segments following a great circle path (which is a

projectedgreat circle path when changing altitude), and curve segments following a small

circle path (Figure 3.4).

3.2.1 Straight Segments (Climbs, Descents and Lines)

A straight path segment is defined by the following parameters:

• Initial positionθi, φi, Λi,

• LengthS,

• Initial heading,ψ, γ, whereγ = 0 for constant altitude segments referred to aslines

• Final position,θf , φf , Λf , which is either computed based on the parameters above,

or defined by a pre-defined position to join to.
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Figure 3.4: Great Circle and Small Circle Paths.

Figure 3.5 presents the vector structure to generate these type of segments. The method

computes the final position after traveling a distanceS from the initial position and heading.

The assumption is that even for climbs and descents, the pathfollows a circular geometry

with the same radius as the great circle that would be flown with no altitude change, given

by the radius of the earth + initial altitude (RE+Λi
). The final position vector~p, normalized

by RE+Λi
, is obtained by:

S

Earth    center

new 

center

q

r β

m

f
p

γ

S

Earth    center

new 

center

β

γ

Figure 3.5: Great Circle Projection Method for Climb Segments(Normal View of Great
Circle Plane).
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~p = ~m + ~f (3.13)

where~m is the vector defining the translation of the Earth center to thenew centerfor the

projected great circle climb and~f is the final position vector from thenew centerlocation.

These two vectors are constructed with the aid of the two frames R-A-N, based on~r, ~a, ~n;

and N-(-Q)-E, a right handed frame based on~n, −~q, ~e (see Figure 3.6):

~m = ~q + ~r (3.14)

and

~f =
[

0 cos β sin β
]











~n

−~q

~e











(3.15)

β =
S

RE+Λi

(3.16)

where~q and~e are defined by

~q =
[

− cos γ sin γ 0
]











~r

~a

~n











(3.17)

~e = ~n × ~−q (3.18)
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Figure 3.6: Local Auxiliary Frames for Straight Segment Computation.
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Recall from Section 3.1 that~r, ~a, ~n form an R-A-N system with transformation given by,
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(3.19)

From the ending position vector~p we directly obtain the final latitudeθf , longitudeφf

and altitudeΛf (note thatΛf = Λi + RE+Λi
(|~p| − 1), as~p was normalized byRE+Λi

). The

final elevation angleγf is simply given by the angle between~f and~p. The final heading

azimuth is computed as

ψf = ψf→i + 180◦ (3.20)

whereψf→i is the azimuth direction from the final position to the initial position, computed

with the method presented in subsection 3.3.2.

Strictly, for this geometry to make sense (i.e. for climbs) we are subject to a geometric

restriction such that

Smax = RE+Λi

π + γ

2
(3.21)

to avoid ”climbing back down to Earth” (see Figure 3.7). Typically the planner is restricted

to generate segments of a much smaller scale for the path planning to be acceptable.
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Figure 3.7: Geometric Limitation for Maximum Length of Straight Segments.
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3.2.2 Curved Segments (Turns)

A curved path segment is defined by the following parameters:

• Initial position,θi, φi, Λi

• Length (flying distance)S,

• Initial heading,ψ, γ = 0, (no altitude change commanded for curved segments)

• RadiusRs,

• Direction of turn, either clockwise (CW) or counter-clockwise (CCW),

• Final position,θf , φf , Λf , which is computed based on the parameters above.

Figure 3.8 presents the geometric construction of this segment type. First, it is necessary

to locate the center of turn, for which the method to construct straight segments is used.

Based on the current heading azimuth, afake azimuthis computed by adding±90◦ to the

current azimuth, in order to point in the direction where thecenter of turn must be located

(depending on if the turn is to be clockwise or counterclockwise). This being done, a fake

azimuth vector~fa may be constructed. Vectors~r and ~fa form a set just as the one required

to find the end position when moving on a great circle, withγ = 0. In this case, the desired

radius of turnRs (which is acurvedradius following the sphere’s shape) determines where

the center is located, and its position vector~c is obtained (see subsection 3.2.1). Other

required vectors (Figure 3.8) are

~rc = Proyc~r (3.22)

and

~t = ~r − ~rc (3.23)

The set~t, ~n, ~c form a left-handed frame T-N-C, the curve segment of interestbeing con-

structed lying on the plane T-N. The final position vector~p, normalized byRE+Λi
is given

by

~p = ~tf + ~c (3.24)
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where

~tf =
[

− cos ε sin ε 0
]











~t

~n

~c











(3.25)

ε =
S

‖~t‖
(3.26)

The final azimuth heading is obtained by

ψf = ψf→c +

{

180◦ if turn is CCW
−180◦ if turn is CW

(3.27)

whereψf→i is the azimuth direction from the final position to the centerpoint, computed

with the method presented in subsection 3.3.2.

3.3 Supporting Calculations

Several other computations are required to support the construction of paths, as in many

situations (particularly during the mutation and joining mechanisms) the planner does not
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only need to generate a segment based on initial location andheading, but also between

two predefined locations or must be constrained to meet certain parameters.

3.3.1 Distance and Range between Two Points

We define distance as the arclength between them subject to the geometric shape used for

straight segments. Range is defined as the arclength between them not considering altitude

change, and based on the altitude of the ’initial’ point, also subject to the circular shape.

Figure 3.9 shows the geometry structure for the distance calculation. Clearly, the dis-

tance between the two points is simply given by

D = β RE+Λ1
(3.28)

where the angleβ is obtained by

β = 2 sin−1 l

2 RE+Λ1

(3.29)

The distancel in equation 3.29 is computed using the cosine rule

l =
√

R2
E+Λ1

+ R2
E+Λ2

− 2 R2
E+Λ1

R2
E+Λ2

cos α (3.30)

whereα (the angle between the two position vectors) is computed viathe dot product,

which in terms ofθ andφ results in:

α = cos−1(cos θ1 cos θ2 cos(φ1 − φ2) + sin θ1 sin θ2) (3.31)

The range, as previously defined, is simply computed as

Range = α RE+Λ1
(3.32)

Strictly speaking, this method is valid only forl < 2RE+Λ1
; otherwise point 2 is not

reachable according to the circular shape of the straight segment definition.
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3.3.2 Shortest Distance Azimuth Direction

Knowing the heading azimuth required to go straight from onepoint to another is an im-

portant calculation. Figure 3.10 presents the geometry involved. The method computes the

azimuth angle that corresponds to the shortest distance to travel from point 1 to point 2.

Angle Ω is the inclination angle of the great circle plane with respect to thez axis

obtained by

cos Ω = nz/|~n| (3.33)

The figure on the right shows a closer look to the spherical triangle formed. Being a

right angled triangle, Napier’s rules for spherical triangles may be applied (see Appendix

A). Thus, we can directly relate anglesΩ, θ1 andψ by

sin Ω = cos θ1 cos ψ (3.34)

which is equivalent to

cos Ω = cos θ1 sin ψ (3.35)

Solving forψ we have

ψ = sin−1

(

cos Ω

cos θ1

)

(3.36)
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Figure 3.10: Heading Azimuth from Point 1 to Point 2.

By using 3.36, the returned angleψ is in the range[−π/2, π/2], corresponding to

northerly headings. For this reason, a correction may be required in order to account for

southerly headings. This is achieved by computing the tangent vector to the great circle

~tan = ~n × ~r1 and computing it’sz component. Iftanz < 0, the actual azimuth must be a

southerly azimuth, and thus the correctionψreal = π−ψ is necessary, whereψ is the angle

computed directly by equation 3.36.

As may be noticed, this method is only concerned with the azimuth angle for the di-

rection from one point to another. If required, the elevation angle is computed through the

method presented in 3.3.4.

3.3.3 Length based on Initial Elevation Angle and Altitude Change

In many cases it is necessary to compute the required segment’s length, S, based on a

desired altitude change∆Λ and a specified initial elevation angle,γi (i.e. determined by

maximum or minimum achievable climb angles by the vehicle).Again, computations were

restricted by the circular geometry used for straight segments. Figure 3.11 presents the

main geometric parameters involved.

The segment length is

S = β RE+Λi
(3.37)
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From the figure, we note that

β = α − (
π

2
−

γi

2
) (3.38)

Also, from the cosine rule, we have

R2
E+Λf

= m2 + R2
E+Λi

− 2(m)(RE+Λi
) cos α (3.39)

Solving forα in equation 3.39 we have

α = cos−1
m2 + R2

E+Λi
− R2

E+Λf

2(m)(RE+Λi
)

(3.40)

This can be substituted in equation 3.38, which itself is substituted into 3.37, giving the fol-

lowing equation for the segment length based on initial elevation angle and altitude change:

S =

∣

∣

∣

∣

∣

cos−1
m2 + R2

E+Λi
− R2

E+Λf

2(m)(RE+Λi
)

−
π − γi

2

∣

∣

∣

∣

∣

RE+Λi
(3.41)

(the absolute value required in case∆Λ < 0), where

RE+Λf
= ∆Λ + RE+Λi

m = 2 RE+Λi
sin(γi/2)
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3.3.4 Initial Elevation Angle required between Two Points

By specifying the required initial and final locations for thesegment, and computing the

distance between them, one can calculate the required initial elevationγi by solving for it

from equation 3.41. In this case, a simple solution is difficult to obtain; but considering that

γ will normally be a small angle, we use the approximations

sin(γ/2) ≈ γ/2 cos(γ/2) ≈ 1

Thus, we end up with a quadratic relation, from which we find

γi ≈
sin( S

RE+Λi

)

cos( S
RE+Λi

) − 1
−

√

(R2
E+Λi

sin2( S
RE+Λi

) − (cos( S
RE+Λi

) − 1)(R2
E+Λf

− R2
E+Λi

))

RE+Λi
(cos( S

RE+Λi

) − 1)

(3.42)

3.3.5 Relating Final and Initial Elevation Angle

As part of the attempt to make a segment flyable by the vehicle capabilities, it is sometimes

required to compute the initial elevation angle required toachieve certain final elevation

angle (or viceversa). This relation may be obtained referring back to figure 3.11, where we

notice that the triangleRE+Λi
− m − RE+Λi

is isosceles, so

sin(γi/2) =
m/2

RE+Λi

(3.43)

or

γi = 2 sin−1 m

2 RE+Λi

(3.44)

where, by the cosine rule, we see from the figure that

m =
√

R2
E+Λf

+ R2
E+Λi

− 2 R2
E+Λf

R2
E+Λi

cos γf (3.45)
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3.4 Bounding Boxes

Path planning may involve interaction with other objects, which are referred to assites.

These may be obstacles (sites to avoid) or targets (sites to approach) depending on the

objectives of the flight. They may be static or moving sites, with paths associated with

them. The planner must then be able to consider intersectionof the vehicle’s planned path

with those of the sites in the search space. Methods to determine probabilities of intersec-

tion in uncertain environments are explained by Rathbun, et.al. [10] and [21], and are not

addressed here. We instead focus on algorithms developed toaccelerate intersection com-

putations that involve spherical geometry based methods for path planning in a spherical

Earth representation.

Instead of checking intersection at every point in a path (which requires a much smaller

discretization), intersection checks are made first on amacro level. Each segment in a

path, and each site in the world and their estimated trajectory, is enclosed in a 3-D space

by aBounding Box. If two Bounding Boxes from different paths do not overlap, then no

intersection is possible between those segments in the paths and the check is done for some

other Bounding Boxes of interest. Only when Bounding Boxes overlap an intersection is

possible and checks on a much smaller discretization level are made.

Bounding Boxes are intended to be simple shaped, and are determined by six basic

parameters:

• maximum and minimum latitudes (θmx
Ξ , θmn

Ξ ),

• east and west longitudes (φE
Ξ , φW

Ξ ),

• maximum and minimum altitudes (Λmx
Ξ , Λmn

Ξ ).

The following subsections present the calculation of Bounding Boxes in a spherical Earth

model, as well as the overlapping check algorithm.
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3.4.1 Straight Segments Bounding Box

Let P be the spherical Earth’s perimeter. Bounding latitudesfor a Straight Segment are

given by

(θmx
Ξ , θmn

Ξ ) =































(Ω, min{θi, θf}) : ΨN → ΨS andS < P

(max{θi, θf},−Ω) : ΨS → ΨN andS < P

(max{θi, θf}, min{θi, θf}) : Ψk → Ψk andS < P/2

(Ω,−Ω) :
Ψk → Ψk andS > P/2
or S > P

(3.46)

k = {N,S}

whereΩ is the great circle inclination angle in equation 3.33 (fromFigure 3.10 it is clear

that the maximum and minimum possible latitudes for a straight segments are±Ω). ΨN

andΨS representNortherly andSoutherlyheading azimuths respectively, andΨj → Ψj

indicates a”j”-erly heading azimuth change from start to end of the segment.

Bounding longitudes are given by

(φW
Ξ , φE

Ξ ) =



















(φi, φf ) : ΨE andS < P

(φf , φi) : ΨW andS < P

(0◦,→ 360◦) : S > P

(3.47)

whereΨE andΨW representEasterlyandWesterlyheading azimuths respectively.

Finally, bounding altitudes are simply given by

(Λmx
Ξ , Λmn

Ξ ) = (max{Λi, Λf}, min{Λi, Λf}) (3.48)

(this assumes theSmax restriction in the case of climb segments).

Figure 3.12 shows two examples of resulting bounding boxes (constant altitude and

climbing segments, respectively). They correspond to a case whereΨNE → ΨSE (for

S < P ).
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Figure 3.12: Bounding Box for Straight Segments.

3.4.2 Curved Segments Bounding Box

Let P be the perimeter of the small circle that defines the curved segment. Similar to

equation 3.46, bounding latitudes are given by

(θmx
Ξ , θmn

Ξ ) =































(ΘM , min{θi, θf}) : ΨN → ΨS andS < P

(max{θi, θf}, Θ
m) : ΨS → ΨN andS < P

(max{θi, θf}, min{θi, θf}) : Ψk → Ψk andS < P/2

(ΘM , Θm) :
Ψk → Ψk andS > P/2
or S > P

(3.49)

k = {N,S}

whereΘM andΘm are the tangent latitudes to the small circle, corresponding to maximum

and minimum possible latitudes for the curve (Figure 3.13).They are obtained by

ΘM = θc + β (3.50)

Θm = θc − β (3.51)

whereθc is the small circle center’s latitude, andβ = Rs/RE+Λ. When the center of
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Figure 3.13: Maximum and Minimum Possible Latitudes for Curved Segment’s Bounding
Box.

the curve is close to either pole such that|90◦ − θc| < β, then

ΘM = 180◦ − (θc + β) if θc > 0 (3.52)

Θm = −180◦ + (θc + β) if θc < 0 (3.53)

Bounding longitudes, for a small circle far from the poles such that|90◦ − θc| > β, are

given by

(φW
Ξ , φE

Ξ ) =































(ΦW , ϕ{φi, φf}) : ΨE → ΨW andS < P

(ϕ{φi, φf}, Φ
E) : ΨW → ΨE andS < P

(ϕ{φi, φf}, ϕ{φi, φf}) : Ψk → Ψk andS < C

(ΦW , ΦE) : Ψk → Ψk andS > C
or S > P

(3.54)

k = {E,W}

where

ϕ{φi, φf} =







φi : 0 < ψi→f < π

φf : π < ψi→f < 2π
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and

C =







2RsA
τ (π − A)1−τ : k = E

2RsA
1−τ (π − A)τ : k = W

τ =







1 : CW

0 : CCW

ΦW andΦE are the maximum possible west and east longitudes, which aretangent to the

small circle. The tangent points occur at anglesA and−A as shown in Figure 3.14. Angle

A may be computed using one of Napier’s Rules for spherical triangles (Appendix A),

applied to the red triangle in the figure:

sin A = tan b tan(90◦ − θc) (3.55)

which is equivalent to

cos A = tan b tan θc (3.56)

so

A = cos−1(tan b tan θc) (3.57)

With these anglesA and−A, the longitudes that are tangent to the small circle can

be found by using the method in section 3.2.1, by ’moving’ from the small circle center a

distanceRs with a heading azimuthψ = A to find the east longitudeΦE, and withψ = −A

to find the west longitudeΦW .

When the small circle’s center is close to a pole, such that|90◦ − θc| < β, there are

no tangent longitudes, andA does not exist. Then the bounding longitudes are given by

equation 3.47.

For constant altitude curved segments as used in the planner, altitude bounds are simply

(Λmx
Ξ , Λmn

Ξ ) = (Λ, Λ).

Figure 3.15 (left) shows the resulting bounding box for the curve segment of Figures

3.13 and 3.14, which corresponds to a case whereΨSW → ΨNE andS < P . The figure

on the right shows a case where the turn was close to a pole.
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Figure 3.14: Maximum Possible West and East Longitudes for Curved Segment’s Bounding

Box.
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Figure 3.15: Bounding Box for Curved Segment.Left: far from the pole.Right: close to the

pole.
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3.4.3 Site Bounding Box

Sites are in general treated as uncertain objects of which only some information is available

at certain times. Thus, their location at other times must beestimated based on uncertainty

model methods [21]. At every timetk a site location may be estimated with some uncer-

tainty radiusσ(tk) based on available information such as heading, speed, intentions, etc.,

at some earlier timet0. And by adding the knownsize of the siteµ (i.e. due to physical

size, payload range, etc.), a site is considered having a radiusρ(tk) = σ(tk) + µ. Certainly,

if no updated information of the site’s location is available, the uncertainty radiusσ(tk),

and thusρ(tk), should increase as time advances (Figure 3.16).

The computation of a site’s bounding box over some time range[ti, tf ] must then con-

sider these factors (notice that bounding boxes for segments are effectively the bounding

box of the vehicle also at some time intervals). As sites are modeled as a center location

with a radiusρ, the site at a given timetk has effectively the shape of a small circle (a full

perimeter curve segment). And if the site’s estimated trajectory (of lengthS) is consid-

ered as a straight path based on initially known heading and speed, then computation of

the bounding box for a site in the time range[ti, tf ] is a combination of the methods for

bounding boxes for straight segments and curved segments.

ρ(tk)

Figure 3.16: Site’s radiusρ increasing over time due to uncertainty.
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For cases in which the site location in the range of interest is far from the poles (i.e.

|90◦ − θc,k| > ρk/RE+Λ for all tk in the range[ti, tf ]), the bounding box is computed as

follows:

Let P be the spherical Earth’s perimeter. West and East longitudes are given by

(φW
Ξ , φE

Ξ ) =



















(ΦW
initial, Φ

E
final) : ΨE → ΨW andS < P

(ΦW
final, Φ

E
initial) : ΨW → ΨE andS < P

(0◦,→ 360◦) : S > P

(3.58)

And maximum and minimum latitudes are given by

(θmx
Ξ , θmn

Ξ ) =































(max{Ωr, µM}, µm) : ΨN → ΨS

(µM , min{−Ωr, µm) : ΨS → ΨN

(µM , µm}) : Ψk → Ψk andS < P/2

(max{Ωr, µM}, min{−Ωr, µm}) : Ψk → Ψk andS > P/2

(3.59)

where

µM = max(ΘM
initial, Θ

M
final)

µm = min(Θm
initial, Θ

m
final)

and

Ωr = Ω + ρΩ

(ρΩ meaning the site’s computed radius when hitting latitudeΩ).

When the site location gets close to a pole in some time during the range of interest (i.e.

|90◦ − θc,k| < ρk/RE+Λ for any tk in the range[ti, tf ]), then the bounding box would be

defined within all longitudes

(φW
Ξ , φE

Ξ ) = (0◦,→ 360◦) (3.60)
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and latitude bounds are given by

(θmx
Ξ , θmn

Ξ ) =







(90◦, µm) : pole involved is North Pole

(µM ,−90◦) : pole involved is South Pole
(3.61)

Finally altitude bounds would simply be given by

(Λmx
Ξ , Λmn

Ξ ) = (max(Λmx
Ξinitial, Λ

mx
Ξfinal), min(Λmn

Ξinitial, Λ
mn
Ξfinal)) (3.62)

Figure 3.17 presents a case where the site is far from the pole, as well as a case where

it is close to a pole. In both cases,Λmx
Ξ = Λmn

Ξ was assumed.

3.4.4 Bounding Box Overlapping Check

Having defined the bounding box with the six basic parametersmentioned previously, box

overlapping is quickly checked. Altitude and latitude bound intersection criteria are straight

forward, but special consideration is required for criteria involving longitudes.

Let box 1 be the bounding box with the minimum left longitude value. Then, no inter-

section between paths can occur if at least one of the following criteria is true:

z

x

(north)z

x

y

(0o lat, 0o long)

Figure 3.17: Bounding Box for a Site.Left: far from the pole.Right: close to the pole.
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• Λmx
Ξ1 < Λmn

Ξ2

• Λmn
Ξ1 > Λmx

Ξ2

• θmx
Ξ1 < θmn

Ξ2

• θmn
Ξ1 > θmx

Ξ2

And, only if (φW
Ξ1 > φE

Ξ1 andφW
Ξ2 > φE

Ξ2) is false:

• {φW
Ξ2 > φE

Ξ1 | φW
Ξ1 < φE

Ξ1 andφW
Ξ2 < φE

Ξ2}

• {φW
Ξ1 > φE

Ξ2 andφW
Ξ2 > φE

Ξ1 | φW
Ξ1 > φE

Ξ1 or φW
Ξ2 > φE

Ξ2}
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Chapter 4

VEHICLE PERFORMANCE

This chapter presents how Vehicle Performance informationis integrated into the plan-

ner to assure that the airplane is capable of traversing a path, as well as considering an

appropriate fuel consumption model for the vehicle of interest. The planner does not deal

with vehicle dynamics, and it assumes the vehicle maintainscourse.

4.1 Performance Constraints to the Path Planner

Every segment of a path generated by the planner is constrained by vehicle performance

characteristics:

• Descent rates,

• Climb rates,

• Descent angles,

• Climb angles,

• Speeds (descents, climbs, cruise),

• Achievable turn radius,

• Altitudes for flight.

All these characteristics depend heavily on altitude and vehicle weight. Therefore, it has

been necessary to constrain segment construction appropriately to assure that every path

would be flyable.

Changes in any segment of a path during mutation processes hasan effect on the subse-

quent unmodified segments. This effect may be strictlygeometric(i.e. increasing the total
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length of a path by adding new segments at some middle portionof it) as well as effects

due to interaction with the environment (i.e. similar segments passing through different

wind fields will have different fuel requirements). Thus, the estimated weight of the vehi-

cle at a certain position in a path (and thus its performance characteristics) will vary from

the original estimate if the path undergoes a mutation process during evolution (Section

2.2). If each segment is constructed based oncurrent estimates of vehicle characteristics

(i.e. weight at arrival), then whenever the path is subject to mutation, a recomputation of

all subsequent segments would be required to account for thenewvehicle characteristics,

and very likely would need modifications to every segment (which in fact would have a

’propagation’ effect for every segment). Thus, a mutation which was intended only at some

middle part of the path would effectively change the path almost entirely and would loose

characteristics that where not to be mutated from the parentpath, affecting the overall idea

of how the Evolution Algorithm should work.

To avoid this problem, instead of constructing segments restricted bycurrent vehicle

weight, they are built based on the most restricting performance criteria that the vehicle

could have throughout the planned path. That is, segments are constrained by performance

characteristics based on maximum or minimum weight (depending on the performance

parameter in question) that the vehicle could have during the planned path. Effectively

then, performance characteristics constraints are based on one of the following:

maximum weight= weight at start point for the planned path

(i.e. weight at end of the trajectory commited to fly),

minimum weight = empty weight.

Besides the performance parameters mentioned earlier, the planner is designed to con-

sider varying fuel consumption rates of the vehicle (i.e. the UAV consumes less fuel as

it gets lighter -it gets lighter as it consumes fuel). For this reason, even though max-

imum and minimum weights are used to determine performance characteristics to limit

segment parameters, weight changes throughout the flight ofa planned path are considered

for fuel consumption computations. Therefore, whenever a path is modified at any seg-
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ment (through the mutation process), the vehicle’s weight is recalculated throughout the

remaining path.

4.2 Performance Tables

The use of Performance Tables was chosen as a standardized input interface to provide the

planner with vehicle performance information. The plannercan then utilize any vehicle

model for path planning.

Table 4.1 shows the parameters to read and their required arguments. Tables are read

through linear interpolations of the appropriate arguments.

Other required inputs are Fuel Capacity, Empty Weight, Initial Fuel and Initial Weight

(all in kg); an estimate of the best achievable acceleration (currently a single value inm/s2,

although can be extended to be a function of altitude, mass, etc.); as well as Maximum and

Minimum Altitudes (m) for the flight.

4.2.1 Seascan Performance Tables

The Insitu Group (www.insitugroup.net) has provided a flight performance library (C-code)

with functions that can be accessed to compute performance characteristics of Seascan

UAVs. These performance functions use the lift coefficient as the central parameter. A C++

code has been developed to use this library to create performance tables according to the

format and parameters required by the planner. Therefore, performance tables can be gener-

ated for any Seascan model with the use of the appropriate aircraft parameter file provided

by The Insitu Group. The planner can run this application (SeascanPerformance.exe)

during the initialization process to generate the performance table (in the case of using a

Seascan UAV), or it can be fed with a pre-constructed table.

The use of accurate aircraft performance data in this planning system adds an important

layer of realism.
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Table 4.1: Required Parameters and Dependencies in Vehicle Performance Tables.

Dependency Units Parameter Units

Altitude m Maximum Descent Rate (-) m/s

Mass kg Maximum Climb Rate (+) m/s

Minimum Level Speed m/s

Maximum Level Speed m/s

Maximum Descent Slope (-) m/m

Maximum Climb Slope (+) m/m

*Minimum Descent Rate (-) m/s

*Minimum Climb Rate (+) m/s

*Minimum Descent Slope (-) m/m

*Minimum Climb Slope (+) m/m

*Cruise Best Range Fuel Use kg/s

*Cruise Best Range Speed m/s

Altitude m Maximum Descent Speed m/s

Mass kg Minimum Descent Speed m/s

Slope m/m Maximum Climb Speed m/s

Minimum Climb Speed m/s

Altitude m Minimum Turn Radius m

Mass kg Level Flight Fuel Use kg/s

Speed m/s

Altitude m Descent Fuel Use kg/s

Mass kg Climb Fuel Use kg/s

Slope m/m

Speed m/s

*Optional parameters
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Chapter 5

INTEGRATING WEATHER INFORMATION INTO THE PATH

PLANNER

Expected weather conditions must be considered for the successful planning of long

range flights. This Chapter presents the use of weather forecast information in the planner.

Two main weather factors are considered: Forecast Winds andIcing Potential.

5.1 Sources of Weather Information and Prediction

5.1.1 GRIB-format Databases

In 1985 the World Meteorological Organization (WMO) approved a general purpose data

exchange format designated FM 92-VIII Ext GRIB (GRIdded Binary) [22]. It is a compact

bit-oriented format for efficient transmitting of large volumes of gridded data allowing

faster computer-to-computer transmissions compared to character-oriented bulletins. It also

serves as a data storage format with similar benefits in termsof information storage and

retrieval devices. Therefore, numerous weather products are available in GRIB format. For

such reason, GRIB format products have been adopted as the main source of atmospheric

information for the path planner.

This standard format has continuously gone through revisions, changes and modifica-

tions throughout the years. However, by the end of the 20th century it became apparent that

GRIB1 could no longer satisfy the requirements for new data andinformation management,

and more structural changes where required. This triggeredthe development of GRIB Edi-

tion 2 (GRIB2, which in fact now stands for General Regularly-distributed Information in

Binary Form), approved for operational use starting November 7, 2001. Although, ICAO
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(International Civil Aviation Organization) requested continuation of GRIB1 for the dis-

semination of its World Area Forecast System (WAFS) products, for which the United

Kingdom and United States WAFS centers agreed to continue the production of data in

GRIB1. Thus, both GRIB1 and GRIB2 are currently in use and it is expected to continue

this way for some time.

As of September 2003, the National Centers for EnvironmentalPrediction (NCEP) of

the U.S. have been running pilot studies on the use of GRIB2, andhave maintained the

publication of products using GRIB1. Having adopted the NCEP asthe main operational

source of weather information for our planner (due to the availability of databases through

the internet), GRIB1 has been maintained as the format implemented for the use in our al-

gorithm. We will therefore focus here on GRIB Edition 1. As GRIB2becomes the standard

format of use, it may become necessary to work on modifications in our algorithms and use

of decoding programs to adapt to the appropriate changes. Main differences between the

two formats may be found in [22], [23].

5.1.2 GRIB Edition 1

Each GRIB record contains a single parameter with values located at an array of grid points.

Records are logically divided in six different sections to control, identify and define the data

contained:

• Section 0: Indicator Section (IS)

• Section 1: Product Definition Section (PDS)

• Section 2: Grid Description Section (GDS) - optional

• Section 3: Bit Map Section (BMS) - optional

• Section 4: Binary Data Section (BDS)

• Section 5: End section (ES)

Each section’s information is classified and contained in specific octets (bytes). With

the exception of the first four octets of the Indicator Section, and the End Section itself,
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all octets contain binary values. Each section’s first threeoctets indicate its length, and

distinguish each section from another (except for the IS andES, which are invariant in

length). We revise here the main information contained in each one. A much more detailed

description, as well as tables of corresponding values for each octet may be found in GRIB

format code guides ([24], [25], [26]).

Indicator and End Sections

The Indicator Section is eight octets long. It identifies thestart of the record with the

first four octets indicating ’GRIB’ in the International Reference Alphabet (IRA) No.5

(international name for the U.S. version known as ASCII). Octets 5 to 7 indicate the total

length, in octets, of the GRIB record (including Sections 0 and 5). Octet eight corresponds

to the Edition number of GRIB used.

The End Section is only four octets long containing ’7777’ coded in IRA No.5. This

serves as indication of the ending of the GRIB record.

Product Definition Section (PDS)

This section provides relevant information for the path planner. It defines the initial time

of the data in Coordinated Universal Time (UTC) as well as the time intervals of each

forecast and the total time range included. It specifies the weather parameters in the report,

the altitude level or layer, the grid type used, and whether aGrid Description Section is

included. The complete PDS section structure is presented in Table 5.1.

Grid Description Section (GDS)

Even though the GDS section is optional, it is highly recommended that it be included in

any report as it provides a detailed description of the 2-D grid type used. Even if the record

is based on ’standard’ grid types, the inclusion of this section eliminates any question about

the ’correct’ geographical grid for a particular field. The GDS content is presented in Table
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Table 5.1: Product Definition Section.

Octet 

no.

1-3

4

5

6

7

8

9

10

11-12

13 Year of century

14 Month of year

15 Day of month

16 Hour of day

17 Minute of hour

18

19

20

21

22-23

24

25

26

27-28

29-40

41-...

PDS Content

Length in octets of the Product Definition Section

Parameter Table Version number. Currently Version 3 for international 

exchange. Parameter table version numbers 128-254 are reserved for 

local use.

Grid Identification (geographical location and area)

Flag specifying the presence or absence of a GDS or a BMS

Indicator of parameter and units

Identification of center

Generating process ID number

Indicator of type of level or layer

Height, pressure, etc. of the level or layer

Forecast time unit

P1 - Period of time (Number of time units) (0 for analysis or initialized 

analysis). Units of time given by content of octet 18.

Reserved for originating center use.

Time range indicator

Number included in average, when octet 21 indicates an average or 

accumulation; otherwise set to zero.

Number Missing from averages or accumulations.

Century of Initial (Reference) time (=20 until Jan. 1, 2001)

Initial (or Reference) time of 

forecast - UTC or Start of 

time period for averaging or 

accumulation of analyses 

Identification of sub-center

The decimal scale factor D. A negative value is indicated by setting the 

high order bit (bit No. 1) in octet 27 to 1 (on).

Reserved (need not be present)

P2 - Period of time (Number of time units) or Time interval between 

successive analyses, successive initialized analyses, or forecasts, 

undergoing averaging or accumulation. Units given by octet 18.
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5.2

Bit Map Section (BMS)

The purpose of this optional section is to provide a bit map consisting of contiguous bits

with a bit-to-data-point correspondance as defined in the grid description. If a bit is set

equal to 1, it implies the presence of a datum for that grid point in the Binary Data Section;

a bit value of zero implies the absence of such. This is usefulin shrinking fields where

fair portions of the field are not defined. For example, in the case of global grids of sea

surface temperature, the bit map may be used to suppress the ’data’ at grid points over land

by setting the corresponding bits to zero. It is not recommended to use the BMS if only a

small portion of the grid has un-defined data, as adding the bit map may add more bits than

the removal of few data values.

Binary Data Section (BDS)

The BDS section contains the packed data for the altitude level specified in the PDS, as

well as the binary scaling information required to reconstruct the original data (different

methods for packaging may be used in GRIB records). The contents of this section are

presented in Table 5.3.

5.1.3 Weather Information Products

There are numerous weather products that are distributed inGRIB format. The two main

products that have been used to run path planning simulations are GFS and Reanalysis

information.

GFS stands for the Global Forecast System, which became operational in 2002 [27]. It

is an integrated version of the Medium Range Forecast (MRF) andAviation (AVN) models,

providing real-time numerical weather forecasts for the entire globe out to 16 days four

times per day (00UTC, 06UTC, 12UTC, and 18UTC). This integrationprovides increased
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Table 5.2: Grid Description Section.

Octet 

no.
GDS Content

1-3 Length in octets of the Grid Description Section

4 NV, the number of vertical coordinate parameters

PV, the location (octet number) of the list of vertical coordinate 

parameters, if present

or

PL, the location (octet number) of the list of numbers of points in each 

row (when no vertical parameters are present), if present

or

255 (all bits set to 1) if neither are present

6 Data representation type

7-32 Grid description, according to data representation type, except Lambert, 

Mercator or Space View

or

7-42 Grid description for Lambert or Mercator grid

or

7-44 Grid description for Space View perspective grid

PV List of vertical coordinate parameters (length = NV x 4 octets); if present, 

then PL = 4 x NV + PV

PL List of numbers of points in each row, used for quasi-regular grids 

(length = NROWS x 2 octets, where NROWS is the total number of rows 

defined within the grid description)

5

Table 5.3: Binary Data Section Section.

Octet 

no.
BMS Content

1-3 Length in octets of binary data section

Bits 1 through 4: Flag

Bits 5 through 8: Number of unused bits at end of Section 4.

5-6 The binary scale factor (E). A negative value is indicated by setting the 

high order bit (bit No. 1) in octet 5 to 1 (on).

7-10 Reference value (minimum value); floating point representation of the 

number.

11 Number of bits into which a datum point is packed

12-nnn Variable, depending on octet 4; zero filled to an even number of octets.

14 Optionally, may contain an extension of the flags in octet 4.

4
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resolution and additional satellite data allowing improved forecasts.

Reanalysis (historical) products are the result of a joint effort put in place by the NCEP

and the National Center for Atmospheric Research (NCAR) called the Reanalysis Project.

Its goal is to produce new atmospheric analyses using historical data (from 1948 onwards)

as well as to produce analyses of the current atmospheric state.

These products provide, among many others, the parameters of interest for the current

state of the path planner. Their processing and use is described in section 5.2.

5.1.4 Icing Potential Algorithms

Icing is a major issue in aerial vehicles, particularly affecting small aircraft. Small-sized

UAVs are thus highly vulnerable to icing conditions. Continuous research has been taking

place on several aspects of icing hazards: from ice accretion prediction models [28], [29],

[30], to performance degradation [31],[32], to control of vehicles in icing encounters [33].

Certainly, identification and prediction of regions of potential icing have also been of

much interest. In the past several years, a number of icing diagnostic and forecast algo-

rithms have been under development. They have used different sources of information. A

general observation is that algorithms based purely on model output capture most icing pi-

lot reports (PIREPs) but tend to over forecast icing by indicating it in areas where clouds

do not exist (a necessary condition for encountering icing). On the other hand, algorithms

that are based primarily on data from instruments (such as radars, satellites, or surface ob-

servations) are quite accurate in the locations where they indicate icing, but tend to under

forecast it because these instruments are unable to identify all icing locations.

In 2002 the Aviation Weather Center began the routine production of the Current Ic-

ing Potential (CIP) product developed by the NCAR In-flight Icing Product Development

Team [34], [35]. The CIP is the operational version of the Integrated Icing Diagnosis Al-

gorithm (IIDA) which has been verified over several years. Itis an hourly 3-Ddiagnosisof

icing likelihood which integrates information from five data sources: Rapid Update Cycle

(RUC) model, satellite and radar data, surface observations(METARs) and PIREPs. With
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this integration of sources, it attempts to capture the maximum number of PIREPs while

trying to avoid over indication of icing presence in a 3-D space. It outputs alikelihood of

encountering icing, also referred to asicing potential.

The interest in determining icing conditions has certainlynot only been restricted to

diagnosis (analysis of current conditions), but to generate icing forecasts. Among other

efforts and algorithms developed in recent years, the NCAR has also worked in develop-

ing the Integrated Icing Forecast Algorithm (IIFA), now theForecast Icing Potential (FIP)

algorithm, that became operational in January 2004. The FIPalgorithm uses the CIP al-

gorithm as a template. It creates forecasts every hour out to3 hours, as well as 6, 9 and

12 hour forecasts every three hours. However, because of observations not being available

in a forecast mode, the FIP needs to create surrogates from the model for the observations

available to the CIP to build its forecasts. The FIP algorithmis explained in [36].

The performance of both algorithms has been studied and monitored continuously. In

general, the method to evaluate their performance is based on computing three basic statis-

tics: PODy = probability of detection ofYesPIREPs (proportion of positive icing PIREPs

that were correctly forecast to be in locations with icing conditions), PODn = probability of

detection ofNo PIREPs (proportion of negative icing PIREPs that were correctly forecast

to be in locations withno icing conditions) and % Volume = the percentage of the airspace

volume that has a Yes forecast icing. Their overall results have been quite good, considered

asskillful as determined by the evaluation methods. Details on the methodology and statis-

tical performance results of past years can be obtained from[37], [38], [39]. Results for the

past 12 months (updated quarterly) for the CIP algorithm may also be found through the

internet in the Aviation Weather Center’s web-site (http : //adds.aviationweather.gov).

For our purpose, an adapted version of the IIFA is used to provide the planner with

information regarding areas of potential icing to avoid (section 5.2.2).
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5.2 Processing Weather Information for use in the Path Planner

A vast amount of weather parameters are stored in GRIB formatted files. Since the param-

eters contained may vary from source to source, a pre-processing step has been developed

in order to standardize the input data used by the path planner. Once this step has taken

place, the decoding and processing of weather information occurs during the initialization

stages of the Planner, followed by the computation of icing potential. This section provides

a description of these steps (Figure 5.1).

      UGRD
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      VGRD

-all forecasts-

        RH

-all forecasts-
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Figure 5.1: Processing of Weather Information for the Planner.

5.2.1 GRIB-format Weather Data Processing

Pre-processor

One weather data file may contain several GRIB-format weather records (recall each record

corresponds to one parameter; see section 5.1.2). The objective of the pre-processing step is
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to generate one binary input file per weather parameter (i.e.UGRD). It is expected that the

raw GRIB sources contain records covering the complete flighttime of interest (otherwise

the last record is used to determine weather conditions for further times). The generated

files have the following format:

• Each file contains all records for a given parameter at each pressure level and forecast

times (records are sorted in order of increasing forecast time).

• Each record consists of a header and a data section.

• The header section has information from the Product Definition Section (PDS) and

the Grid Description Section (GDS) from the original GRIB message.

• The data portion contains weather variable data decoded into native binary floating

point format.

Also, as not all parameters from the weather sources may be required, this pre-processing

step may serve as a filter. Only files for the weather parameters of interest may be gener-

ated. Similarly, it is possible to filter and retain only specific pressure levels records. For

our purpose, the parameters of interest are:

• horizontal wind vectors UGRD and VGRD (m/s),

• temperature TMP (K),

• relative humidity RH (%),

• geopotential height HGT (gpm).

which are stored for the following pressure levels:

• 1000mb (occurs near 0m),

• 925mb,

• 850mb (occurs near 1500m),

• 700mb (occurs near 3000m),

• 600mb,
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• 500mb (occurs near 5500m),

• 400mb

The pre-processing has been designed to accommodate both input files from GFS or Re-

analysis products. The data extraction and separation process itself is made with the use of

a freely distributed utility for GRIB data extraction calledwgrib developed at the National

Weather Service (refer to the wgrib home pagehttp : //wesley.wwb.noaa.gov/wgrib.html

for details).

Processing

Having generated the files in the ’standard’ format for the planner to read, the planner

extracts the data at its initialization stages. The algorithm used to read the data simply

follows the rules and structure for the PDS, GDS and BDS contents of stored records in the

binary files for each parameter.

The 2-dimensional data grids contained in the BDS (and based on projection-type infor-

mation from the GDS) are extracted as 2-D arrays of latitude-longitude data. The extraction

from three of the most used projection-types are currently implemented: latitude-longitude

grids, gaussian latitude-longitude grids, and polar stereographic grids (refer to PDS and

GDS descriptions in GRIB format code guides for details); thefirst one being the com-

monly used for GFS and Global Reanalysis products.

With the time of forecast and pressure level information found on the PDS content

for each 2-D BDS grid, complete 4-D arrays are constructed foreach weather parameter

(i.e. one 4-D array per binary file obtained from the pre-processing stage). These arrays

(UGRD, VGRD, RH, TMP, HGT) constitute the source for direct reading of data for the

planner during the planning process.
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5.2.2 Computing Icing Potential

The CIP and FIP products (which are distributed in GRIB-format)currently only cover the

continental United States (CONUS). However, we are interested in providing the planner

with areas of potential icing that should be avoided in any region (i.e. over the Pacific

Ocean). For this reason, the algorithms behind these products (particularly the IIFA) have

been integrated with our path planner with appropriate and necessary modifications.

Integrating the IIFA with the planner must deal with the factthat the sources of input

information used for the operational FIP are unavailable. One of the main sources is the

Rapid-Update-Cycle 2 (RUC-2) weather model (refer to [40] for details). The RUC-2 pro-

vides high frequency updates of current conditions and short-range (0 to 12-hr) forecasts

of high resolution by assimilating continuous observations and reporting every 1 hour (this

model is in fact useful for confirming, or questioning, short-term predictions of longer time

frame models such as the GFS). The RUC-2 is used in the IIFA to generate equivalent

information that observations would provide to the CIP.

An alternative for the use of the IIFA in the planner is found from weather parame-

ters included in the GFS and Reanalysis products. The RH (relative humidity) and TMP

(temperature) from the weather products may substitute some of the outputs of the RUC

model. These two parameters, aided by the HGT (geopotentialheight), serve as the inputs

for the cloud forecast scheme in the IIFA providing an estimate of cloud presence and icing

potential. And having extended forecast weather products,areas of potential icing may be

computed for all records in which these parameters are available.

The computation of icing potential takes place after the RH, TMP and HGT arrays are

generated. From these, a similar 4-D ICING array is constructed filled with icing potential

data. Because the IIFA scans the atmosphere vertically (i.e.columnwise), the RH, TMP

and HGTplain grids are rearranged intocolumngrids prior to feeding the IIFA. The icing

potential grid obtained from the algorithm is re-arranged into plain type grids to be used

the same way the UGRD and VGRD are.
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The use of this adapted IIFA is definitely not expected to provide exactly the same

results as those that the FIP may generate, as other inputs such as initial data from satellites

are unavailable. Nevertheless, the results are quite closeand it is certainly advantageous

to provide the planner with 1) estimates of icing potential areas for any region and 2) for

extended forecasts, not available from regular FIP reports. Figure 5.2 shows a comparison

example between the icing potential as computed with our implemented algorithm versus

actual reports from the CIP (current conditions). Figure 5.3shows a similar comparison,

comparing an FIP report for a 12hrs forecast based on the sameinitial report as in Figure

5.2.

Figure 5.2: Current Icing Potential Comparisons.Left: CIP report on Jan10,2004 at
00UTC.Right: Computed Icing Potential for path planner using GFS report of Jan10,2004
at 00UTC for 00UTC forecast. Altitude: FL030 (915m).

5.3 Reading Data and Planning through Wind Fields and Icing Potential

The UGRD, VGRD and ICING 4-D grid arrays are used through linear interpolations to

determine wind field and potential icing encountered according to the vehicle’s position
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Figure 5.3: Forecast Icing Potential Comparisons.Left: FIP report on Jan10,2004 at
00UTC for 12UTC forecast.Right: Computed Icing Potential for path planner using GFS
report of Jan10,2004 at 00UTC for 12UTC forecast. Altitude:FL030 (915m).

and time, as explained below. A standard atmosphere is assumed for the geometric-altitude

to pressure-altitude relationship.

5.3.1 Use of Wind Data

Wind field data from the UGRD and VGRD array is used in a double sense (although

related one to the other). They are used to determine the timeof arrival to any point of a

path, and from this information two other data are obtained:the fuel consumed to get there,

and the weather state present at that time, for that location. This information is computed

as follows.

At the evolver initialization stage, launch time and position are used to determine the

initial state of the wind field by linearly interpolating data from the UGRD and VGRD.

Once the initial weather state has been determined, the pathplanner starts generating the

first population of paths. Every time that a new segment is created, the planner estimates

the time it will take to traverse it and stores the end clock time as part of the segment’s
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information. This time estimation is computed at a sub-segment level based on length, air-

speed at the sub-segment’s start point, a random or pre-defined end airspeed, and the wind

field at the initial state of the sub-segment to estimate the groundspeed when traversing the

sub-segment’s length. This calculation provides the approximate time at the end of the sub-

segment, which is then used to determine the wind field at thatstate (latitude, longitude,

altitude) for the next sub-segment. In addition, after a mutation process (which can modify

a path at any point along its length), the planner re-computes the estimated end times for all

follow-on segments in order to determine new wind fields corresponding to their new 4-D

locations. This time-variable consideration allows the planner to compute fuel consump-

tion by taking into account the wind fields that the aircraft will encounter at the moment it

estimates it will arrive at each location. Thus, when going through the fitness evaluation

and selection process, it is able to generate better solutions for the complete flight.

5.3.2 Icing

Icing potential has a more passive role than the use of wind fields. Its information is effec-

tively used only during fitness evaluation of paths in the population. Again, on a subseg-

ment discretization level, icing potential values are obtained through interpolations from

the ICING array according to position and time. Asingle icing potentialvalueΥ for the

complete path used for fitness comparisons is computed as:

Υ = 1 −
∏

i

(1 − κi) (5.1)

whereκi is the icing potential value at position and timei.

5.3.3 Forecast Updating

In an actual flight, the weather data (winds, icing) for future segments of the flight path

cannot be precisely known, as they constitute data from numerical model outputs. As men-

tioned previously, the planner linearly interpolates thisinformation to provide itself with
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wind field estimates at any given location and time. Moreover, the planner may be in-

jected with updated forecast data (as it typically occurs every six hours) and incorporate

new information into its continuous in-flight planning process. In this way, updated (and

presumably more accurate) forecasts can begin to influence ”future” segments of the flight

path-those segments not yet converted into trajectories. This feature allows the planner to

adapt to possible changes in the expected environment. To exploit this feature and allow

for path refinement even if no important changes occur to the expected environment, plan-

ning is not confined to a pre-launch exercise. Rather, continuous planning and re-planning

is performed during the entire flight. At a predetermined time interval, a ”present” path

section is selected as the next actual trajectory to be flown,but the remaining ”future” path

segments continually evolve until the next time interval. This system allows modifications

to the planned path if better solutions based on updated information are found along the

way.
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Chapter 6

PATH PLANNING SUBJECT TO WIND FIELDS, ICING

POTENTIAL AND TARGETED FLIGHT

This chapter presents a series of planning results showing several characteristics of

the algorithm and its behavior on different scenarios. Eachsection discusses one case of

interest:

• Section 6.1: Planning through Wind Fields

• Section 6.2: Re-planning for Updated Wind Field Forecast

• Section 6.3: Icing Avoidance

• Section 6.4: Site Observation

• Section 6.5: Altitude Scan

• Section 6.6: Local vs Global Optima: Potential for ParallelEvolvers

The first three sections are specifically intended to show thebehavior of the path plan-

ning algorithm through realistic weather environments. The next two sections present addi-

tional characteristics in which the planning involves sometargeted flight. The last section

has been included as a clear example of the potential benefitsof using parallel evolvers.

Every case presented here includes maps of the flight and a corresponding table spec-

ifying the data and parameters used for the path planning. Each map presents the planned

paths (black) as well as the trajectory that the vehicle has followed after specified time in-

tervals (red). The estimated consumed fuel, elapsed time and current altitude are indicated

at the left of each map. Weather conditions correspond to thealtitude at which the aircraft

is currently positioned. As a reference, the maximum and minimum wind speeds and their
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location are also indicated. In the cases in which icing potential is considered, a colorbar to

the right of each map is included.

The planning examples presented here used performance datafrom Insitu’s vehicles.

The fuel consumption model uses: full throttle for climbs, idle engine for descents, best

range (km/kg) for cruise. In some cases the fuel consumptionas computed by the planner

exceeds the fuel on board of the vehicle; however, the relevance of the results is the behavior

of the planning algorithm. The results from the planner can thus be used to define the

range of capabilities required from a specific vehicle to achieve the given mission objective.

Further improvements to the planner may add the ability to deviate to alternate ’landing

sites’ if necessary.

Dynamic planning (see Section 2.2.5) is used in all cases. This allows the planner to

continuously search for other solutions as well as to refine planned paths even in cases

where no new forecast information is received during flight.Two independent evolvers

perform the same vehicle path search. At scheduled intervals, just before the planner selects

the next trajectory to traverse, the best path results of both evolvers are compared. The

evolver whose population contains the overall best path (based on fitness value) is selected

to continue evolving the future path segments (the normal process for a single evolver). The

second evolver is ’reset’ and begins replanning from scratch for the remaining distance,

with a handicap of a specified number of generations. Currently no information sharing

occurs between the evolvers which could eventually result in converging more rapidly to

better solutions.

6.1 Planning through Wind Fields

The objective of this case is to show the ability of the planner to find routes that reduce the

fuel consumption by taking advantage of favorable tailwinds based on future wind infor-

mation. Several planning examples are presented as a matterof comparison. Flights are

planned from Honolulu, HI to Long Beach, WA using weather information of November
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11, 1998.

For the first example the flight was bounded between 300m and 5000m. Figure 6.1

shows several snapshots of the flight. After the pre-planning stage, each evolver suggested

two different paths; the planner chose the best of the two. Itcan be seen from the figures

how the actual flight followed a path that certainly resembles one of the initially planned

paths. This shows how the planner was able to consider futurewinds that it estimated

it would encounter during the flight. Furthermore, en-routere-planning continued with

both evolvers achieving refinements to the planned path. It is clear from the figures that

the aircraft is well-positioned based on the winds at each time. While the available wind

information does not contain vertical wind field components, the variations in the horizontal

(dominant) wind field at different altitudes are taken into account by the planner. Figure

6.1 presents the altitude history of this flight showing thatthe planner is able to exploit all

three dimensions.

To compare this solution against a shorter flight (in distance), the simulation was re-

peated with the aircraft forced to fly along a straight path, though still allowed to alter its

altitude. Figure 6.3 shows that the total fuel consumption for this path was higher than the

path freely generated by the planner in Figure 6.1. Figure 6.4 shows that the planner de-

cided once again to fly at various altitudes for this second case even when laterally restricted

to fly straight to the goal.

In order to compare what the planner could achieve while restricting the straight path

to a constant altitude, Figure 6.5 is presented. In this case, the planner was restricted

to fly straight at 300m, the initial altitude of the previous examples. The estimated fuel

consumption for this case is clearly higher. Table 6.1 presents the specific parameters used

for these three planning examples. Table 6.2 compares the results for the three cases.
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Figure 6.1: Free Planning through Winds, November 11, 1998.
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Figure 6.2: Altitude Time History of the Flight in Figure 6.1.

Figure 6.3: Direct Heading Planning through Winds, November 11, 1998.
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Figure 6.4: Altitude Time History of the Flight in Figure 6.3.

Figure 6.5: Straight Path at Constant Altitude, November 11,1998.
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Table 6.1: Settings for Planning through Winds Case.

Flight: Honolulu, HI - LongBeach, WA

Launch Time (UTC): November 11, 1998 (00:00)

Initial Altitude: 300m

Altitude Bounds: 300m-5000m / 300m-5000m / 300m

Weather Source: Reanalysis

Trajectory commitment & replanning: Every 3 hrs

Updated weather information during flight: No

Vehicle: Seascan (acp00003.002)

Fuel Capacity: 5.22kg

Planner settings:

                Parents, Population:  8,16

Pre-planning generations: 100

En-route planning generations: 100 (x2 for the loosing evolver)

Constraints in Planner:

Fuel: Yes

Icing: No

Target: No

Altitude Scan: No

Other: Free / Direct (free Altitude) / Straight

Table 6.2: Results Comparison for the Planning through Wind Fields Cases.

Example Flight Fuel Consumed Elapsed Time

Free Planning 4.39 kg 32.0 h

Direct Heading, Free Altitude 4.70 kg 34.1 h

Straight Path at Constant Altitude 5.08 kg 38.6 h
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6.2 Re-Planning for Updated Wind Field Forecast

The planning examples presented in the previous section demonstrate how the planner can

plan for a complete flight based on future wind information. In the interest of demonstrating

the adaptability of the algorithm, a more realistic case will be demonstrated next. In this

case, even when the planner has initial pre-flight forecast information on future wind fields,

updated forecasts will become available during flight.

For the following simulation, historical weather data was again used as the source of

wind information. As using this data would give the planner access to wind field infor-

mation at any given location and time, the following resultswere obtained by simulating

’new wind field forecasts’ at predetermined intervals. Thiswas accomplished by advancing

the airplane’s clock at each interval so that it considered wind data corresponding to future

times. In effect, this forced the planner to readapt the pathduring flight to a new ’forecast’

different from one it had previously considered. This is similar to what would occur if

updated forecast information were provided to the planner.

Figure 6.6 presents several snapshots of the planned flight sequence, corresponding to

a launch time on February 5, 1997 at 00:00UTC. Updated forecast data was simulated by

advancing the weather data by twelve hours at every trajectory selection interval, which

was set to occur every six hours. These figures show how the initial plan suggested a nearly

straight path to the goal. It is in general maintained for thefirst 18 hours of flight, even

though wind time had already been advanced twice in 12hr intervals (thus suggesting that

even the ’new forecasts’ were not affecting the plan much). However, once the first 18 hours

were flown, the figure shows one of the evolvers suggesting a plan that deviates from the

originally selected path due to more intense forecasted wind changes. The planner decides

to take this alternate route. The remainder of the path did not require a second major change

even when the wind time was again advanced twice. Once more, note how the aircraft is

well-positioned based on the wind fields present at each time. Figure 6.2 shows the altitude

history of this flight. Table 6.3 presents the parameters used for this example.
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Figure 6.6: Forced Forecast Jumps, February 5, 1997.
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Figure 6.7: Altitude Time History of the Flight in Figure 6.6.

Table 6.3: Settings for Forced Forecast Jumps Case.

Flight: Honolulu, HI - LongBeach, WA

Launch Time (UTC): February 5, 1997 (00:00)

Initial Altitude: 4500m

Altitude Bounds: 300m / 4500m

Weather Source: Reanalysis

Trajectory commitment & replanning: Every 6 hrs

Updated weather information during flight: Yes (+12hrs winds every cycle)

Vehicle: Aerosonde

Fuel Capacity: 4.95kg

Planner settings:

                Parents, Population:  8,16

Pre-planning generations: 200

En-route planning generations: 200 (x2 for the loosing evolver)

Constraints in Planner:

Fuel: Yes

Icing: No

Target: No

Altitude Scan: No

Other: None
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6.3 Icing Avoidance

The examples presented next show some comparison results when constraining the planner

to completely avoid any region of potential icing (not considered in previous examples).

They correspond to a launch time set for February 2, 1999 at (02:02UTC). Figure 6.8

presents the snapshots for a constant altitude flight at 5000m. By following the sequence

carefully, it may be noticed how the planner made the vehicle’wait’ for the first several

hours before a favorable clearing was available. From the snapshot corresponding to 24

hours of elapsed time it may be noticed how the planner had already developed a plan

anticipating theopening, with the correct timing to get through.

By allowing a free altitude plan, rather than constraining itto a constant altitude, Figure

6.9 shows how the planner rapidly descends in order to avoid icing in high altitudes. The

resulting path is certainly more fuel efficient than in the previous constant altitude case.

Table 6.4: Settings for Icing Avoidance Case.

Flight: Honolulu, HI - LongBeach, WA

Launch Time (UTC): February 2, 1999 (02:02)

Initial Altitude: 5000m

Altitude Bounds: 5000m / 300m - 5000m

Weather Source: Reanalysis

Trajectory commitment & replanning: Every 6 hrs

Updated weather information during flight: No

Vehicle: Seascan (acp00007.004)

Fuel Capacity: 3.9kg

Planner settings:

                Parents, Population:  8,16

Pre-planning generations: 400

En-route planning generations: 100 (x2 for the loosing evolver)

Constraints in Planner:

Fuel: Low constraint / Yes

Icing: Yes

Target: No

Altitude Scan: No

Other: None
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Figure 6.8: Icing Avoidance at Constant Altitude, February 2, 1999.
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Figure 6.9: Icing Avoidance, Free Altitude, February 2, 1999.
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Figure 6.10: Altitude Time History of the Flight in Figure 6.9.

6.4 Site Observation

The following planning example simply shows the ability of the planner to consider not

only flying between two points, but to respond when instructed to visit a specified obser-

vation area. This is achieved by adding a static site into theplanner’s environment. Figure

6.11 shows the resulting flight from Long Beach, WA to San Diego, CA requiring a visit to

a specified location in the Pacific. Table 6.5 presents the parameters used in the planner.

6.5 Altitude Scan

This last example shows the implementation of an added feature in the planner involving

full use of the 4-dimensional capability. The planner is notonly instructed to fly to the

goal, but it is required to follow a path thatscansthe atmosphere at specified intervals.

This scanning flight path must, however, not be a hard constraint but part of all the soft

constraints within the planner’s cost function, as it has toallow flexibility in the planner

to decide whether it is best for the mission to follow such scanning trajectory versus, for

example, making sure fuel consumption is maintained withincapabilities, or assuring that

the aircraft not enter into icing conditions at some part of the instructed scanning path. The
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Figure 6.11: Site Observation, November 4, 2003.

Table 6.5: Settings for Site Observation Case.

Flight: Long Beach, WA - San Diego, CA

Launch Time (UTC): November 4, 2003 (00:00)

Initial Altitude: 5000m

Altitude Bounds: 300m - 5000m

Weather Source: GFS

Trajectory commitment & replanning: No

Updated weather information during flight: No

Vehicle: Seascan (acp00003.002)

Fuel Capacity: 5.22kg

Planner settings:

                Parents, Population:  15,30

Pre-planning generations: 400

En-route planning generations: -

Constraints in Planner:

Fuel: Yes

Icing: No

Target: Yes (lat: 40°, lon: 228°)

Altitude Scan: No

Other: None
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way this feature was implemented involves in part the use of the task concept presented by

Pongpunwattana [41]. It is not a task planning process, but it uses the concept of tasks and

time windows, where each of them has a score that is a directlyrelated to the time the task

is executed.

For the application presented here, tasks are set to match altitudes at specified intervals

and time windows. This task achievement must be done efficiently during the trajectory

from one point to another, and a path must not be rewarded if tasks are not spread in space

(i.e., we would not want the vehicle to fly directly to the goalat some constant altitude,

and then start scanning the atmosphere just in a region closeto the goal until it runs out of

fuel). But as the planner must still be able to freely determine the path to follow, altitude

tasks must at the same time not be associated to a specific region in the horizontal plane

(i.e. latitude, longitude) as an attempt to spread the scanning path in space. The approach is

then to use an ’adaptable’ method of task assignment where the number of tasks to reward

are not fixed, but depend on each particular path in the population. As a remark, consider

that the best trajectory will very likely have a different 2-D projection (i.e. as seen from

above) if a scanning type path is requested rather than letting the planner to freely plan in

all dimensions.

Figures 6.12 and 6.13 present an example result of the implementation of this feature

considering the above mentioned conditions. In particular, Figure 6.13 presents the altitude

history of the flight together with the requested scan time windows. Potential icing condi-

tions were ignored for this example to appreciate the results of the scanning path and the

desired scan without possible altitude limitations due to icing regions that would have made

the planner not execute the desired scan (certainly a flight from Alaska to Washington State

is very likely to present icing conditions).

With this approach, any type of scanning profile (frequency,altitudes, time windows)

may be instructed to the planner while maintaining flexibility rather than being a hard con-

straint.
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Table 6.6: Settings for Altitude Scan Case.

Flight: Alaskan Peninsula - Long Beach, WA

Launch Time (UTC): November 10, 2003 (00:00)

Initial Altitude: 4000m

Altitude Bounds: 300m - 5000m

Weather Source: GFS

Trajectory commitment & replanning: Every 6 hours

Updated weather information during flight: No

Vehicle: Seascan (acp00003.002)

Fuel Capacity: 5.22kg

Planner settings:

                Parents, Population:  30,60

Pre-planning generations: 1000

En-route planning generations: 100 (x2 for the loosing evolver)

Constraints in Planner:

Fuel: Yes

Icing: No

Target: No

Altitude Scan: Yes (Scan Down)

Other: None

Figure 6.12: Altitude Scanning Flight, November 10, 2003.
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Figure 6.13: Desired Altitude Scan and Altitude Time History of the Flight in Figure 6.12.

6.6 Local vs Global Optima: Potential for Parallel Evolvers

Dealing with weather information in a 4-D environment makesit difficult in most cases to

determinevisually if the planner has achieved a local or a near-global optimum;a global

optimum may not be as clear as in other types of path planning problems involving fixed

targets and 2 dimensional search spaces. However, an interesting case was found where

a local vs. a global optimum is quite clear in our application, which is worth presenting.

It serves as a good scenario where the use of parallel evolvers may have a potential in

improving the solution obtained by the algorithm (section 2.2.6).

The scenario is as follows. Using forecast information corresponding to November 10,

2003 at 00:00hrs, a flight from Honolulu, HI to San Diego, CA is planned. It was found

that at high altitudes ranging from about 4000m to 5000m, strong winds were forecast

south of the great circle from Honolulu to San Diego. Below these altitudes winds are not

as strong, and in fact they are forecast as crosswinds and headwinds for a flight between

the two cities. On the other hand, forecast winds north and near the great circle path are

also strong crosswinds and headwinds at mainly all altitudes due to a high pressure system

located north of the route. Only by following the clockwise direction of the high pressure
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system, for which it is necessary to travel first a long distance to the north, tail winds may

be found for almost the entire flight at basically any altitude. The following examples and

figures will make this situation much clearer. A flight south of the great circle at high

altitudes would achieve the best fuel savings; although theregion is small compared to the

entire search space, not only due to the narrow flow of the favorable winds but due to the

presence of icing. Flying around the high pressure system will also allow for good savings

compared to a simple direct flight; this is a local optimum which is much easier to find

as it includes a much larger altitude range and spread area incomparison to the ’global’

optimum, and where lower altitudes are free of icing conditions.

Figure 6.14 presents a case in which one of the evolvers was able to find the global

optimum, while the other wasstuckin a local optimum. The planner selected to follow the

best path achieving the best fuel consumption. As a comparison, Figure 6.17 presents a

case where the path followed corresponds to a local optimum.The total fuel consumption

is higher than the global, but is certainly much lower than what the vehicle would require

if flying just straight to the goal (as an interesting point, notice how the planned path at the

beginning perfectly considered the movement and timing of the high pressure system, as

shown on the snapshot corresponding to 36 hours). Note that even having two evolvers in

this case, both pre-planned away from the global optimum. Chances are certainly improved

with the use of two evolvers, but the highest potential of this concept involves continuous

comparison and population mixing between evolvers; the examples presented here are only

a preliminary use of two evolvers, where no information sharing occurs. A deep evaluation

of the parallel evolution concept would involve assessmentof Evolution-based Algorithms,

which is beyond the scope of this work. Table 6.7 presents thedata and planner settings for

the examples presented here.



82

Figure 6.14: Global Optimum, November 10, 2003.
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Figure 6.15: Altitude Time History of the Flight in Figure 6.14.
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Figure 6.16: Altitude Time History of the Flight in Figure 6.17.
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Figure 6.17: Local Optimum, November 10, 2003.
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Table 6.7: Settings for Global vs. Local Optimums Case.

Flight: Honolulu, HI - San Diego, CA

Launch Time (UTC): November 10, 2003 (00:00)

Initial Altitude: 5000m

Altitude Bounds: 300m - 5000m

Weather Source: GFS

Trajectory commitment & replanning: Every 6 hrs

Updated weather information during flight: No

Vehicle: Seascan (acp00003.002)

Fuel Capacity: 5.22kg

Planner settings:

                Parents, Population:  25,50

Pre-planning generations: 200

En-route planning generations: 50 (x2 for the loosing evolver)

Constraints in Planner:

Fuel: Yes

Icing: Yes

Target: No

Altitude Scan: No

Other: None
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Chapter 7

SUMMARY

This chapter serves as a summary of the research presented inthis work, as well as

proposed ideas of further research.

7.1 Summary of Work

The following features of the research have been presented:

• Evolutionary Computation techniques have been used for pathplanning of autonomous

vehicles.

• The planning algorithm considers 4-dimensionality (3-D space and time). Both static

(pre-plan) and dynamic (en-route) planning are performed.

• A spherical Earth model has been implemented in the path planner for long range

applications.

• Vehicle maneuverability is considered to assure that path generation is limited to the

vehicle’s capabilities. This information, as well as the fuel consumption model, is

provided to the planner with the use of performance tables which allows path plan-

ning for any type of vehicle.

• Weather information from standard GRIB format databases is fed into the planning

system to consider realistic weather scenarios. Actual weather forecasts may be up-

dated into the planner as they become available.

• Regions of potential icing conditions are computed by providing information from

the weather forecasts to an Integrated Icing Forecast (based) Algorithm.
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• Objectives for path generation include: optimizing fuel requirement, icing avoidance,

site observation, altitude scanning.

• A preliminary implementation of the parallel evolution concept has been used.

7.2 Further Research

Areas of further work and research include:

• Methods to improve performance of the planning algorithms such as a more refined

use of the parallel evolution concept.

• Research on fitness function models and user-friendly methods for problem objec-

tives definition.

• Research on the integration of vehicle performance degradation models with the pre-

diction of potential icing.

• Integration of path planning and guidance algorithms.

• Implementation of feedback from the vehicle’s actual trajectory compared to the de-

sired track for re-planning purposes.

• Hardware-in-the-loop and on-board UAV implementation of planning algorithms.
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Appendix A

NAPIER’S RULES FOR SPHERICAL RECTANGULAR

TRIANGLES

Ref:[42], [43].

Consider the right angle spherical triangle of figure A.1. Angles A, B and C are the

angles formed by crossing sides, and angles a, b, and c are theangles formed by the sides

of the triangle, at the center of the sphere. To understand Napier’s rules, each angle of the

triangle is arranged in the same sequence (excluding the known right angle C) as shown

in the circle on the right of the figure, and taking the complement of those angles not in

touch with angle C in the triangle. These five angles are called thecircular parts of the

triangle. Looking at thepartsof the arranged circle, the two parts that are to each side of

any selected part (calledmiddle partare referred to asadjacent parts; the two parts in front

of a middle part are calledopposite parts. With this being said, Napier’s rules are stated as

follows:

A

B

C

a

b

c

Ac

B

a

b

Figure A.1: Rectangular Spherical Triangle.
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Rule 1. The sine of a part is equal to the product of the cosines of the two opposite

parts. Example:

sin c = cos a cos b

Rule 2. The sine of a part is equal to the product of the tangentsof the two adjacent

parts. Example

sin b = tan a tan A


