
  

THE TRANS-PACIFIC CROSSING: LONG RANGE ADAPTIVE PATH 
PLANNING FOR UAVS THROUGH VARIABLE WIND FIELDS 

Juan Carlos Rubio*, University of Washington, Seattle, WA 
Sean Kragelund†, Naval Undersea Warfare Center, Keyport, WA 

 

                                                      
*Research Assistant, Department of Aeronautics and Astronautics 
†Electronics Engineer, National UUV Test & Evaluation Center 

Abstract 
The application of an evolution-based path 

planner for a UAV in long range flight through 
realistic wind fields is presented. The planner 
makes use of wind information obtained from 
actual weather databases. Horizontal wind 
variability in both 3-D space and time is taken into 
account for the planning of the complete path. Two 
additional features in the planner include a spherical 
Earth geometry for path generation and a UAV 
performance and fuel consumption model. The 
objective of the planner is to reduce fuel 
requirements for the entire flight. The planner is 
capable of making in-flight modifications to further 
refine or adapt its path to updated wind information. 
Simulation results for a flight from Honolulu, HI to 
Long Beach, WA with an Aerosonde aircraft are 
presented. 

Introduction 
In August of 1998 the University of 

Washington and The Insitu Group achieved the first 
crossing of the Atlantic Ocean by a miniature 
robotic aircraft, the Aerosonde Laima [1]. It was 
launched from Newfoundland, Canada, and arrived 
in the Scottish Hebrides after flying a distance of 
3270 km in less than 27 hours and consuming about 
5.7 liters of gasoline. The flight route was 
preprogrammed at launch based on current weather 
conditions and forecast information, but once en-
route, changes to the flight plan could no longer be 
made. Thus, luck played an important part in this 
successful flight. 

For proactive success of future long range 
flights of small UAVs, en-route planning will be 
required. Even though forecast models have 
improved, weather and wind patterns continuously 

change and are still difficult to predict. Thus, the 
use of frequently updated weather information 
during the flight will allow adaptation and re-
planning based on current and near-term forecasts. 

This paper presents simulation results of an 
adaptive path planning scheme for the crossing of 
the Pacific Ocean from Honolulu, HI to Long 
Beach, WA with an Aerosonde UAV. The purpose 
of these simulations is to present a direct 
application of Evolutionary Algorithm (EA) 
techniques on nearly realistic scenarios. Actual 
weather data has been extracted from historical 
reanalysis archives for use in the planner. A 
spherical Earth model has been implemented for 
this long-range flight simulation. The airplane 
characteristics have also been taken into 
consideration through simplified tables of flight 
performance and fuel consumption characteristics.  

Algorithms and Implementation 
EA based techniques have shown promise for 

solving optimization problems where complex and 
variable environmental characteristics are an 
important factor [2], [3]. They are able to find near 
optimal solutions while also demonstrating 
adaptability to find solutions when situations 
change. In general, these algorithms operate by 
maximizing (minimizing) a fitness (cost) function 
based on the characteristics of the problem being 
solved. The path planner used for the simulations 
presented here, which is under development at the 
University of Washington, is based on these 
techniques [4]. 

The Path Planner 
The basic idea behind the planner is to 

generate a set of paths (population) that are feasible 
solutions to the problem. After simulating a natural 



  

selection process, those solutions that ‘survive’ 
among their generation are retained. They (now 
parents) are then combined/modified to generate 
new solutions (offspring). These solutions now 
constitute a new population (next generation). The 
process is repeated (evolution) until a solution 
satisfies certain criteria. This is the core of the path 
planner, referred to as the evolver. 

For the problem of this paper, a solution is a 
path. A path is defined as a route for the vehicle to 
follow. Once a path (or a part of one) has been 
selected for use by the vehicle, it is called a 
trajectory and no further evolution is performed on 
that part.  Each path is constructed of segments. 
Each segment is discretized into subsegments for 
computation purposes, but each segment is 
maintained as a single entity (Figure 1). The 
evolution of a path consists of the modification of 
one or more of its segments to generate a new path.   

The path planner consists of two general 
processes: initialization and evolution. Initially a 
population must be generated for it to evolve. A 
specified number of paths is generated from the 
starting point by connecting randomly created 
segments one after the other. The evolution process 
is divided into three main steps: fitness evaluation, 
selection, and mutation. 

PATH SEGMENT TRAJECTORY SUB-SEGMENTS  

Figure 1. Basic Path Planner Route Concepts 

Fitness evaluation. The performance of a path 
is measured using a cost function; the lesser the 
value, the better the ‘fitness’ of the solution. The 
function used in this path planner algorithm is a 
linear sum of parameters of interest. Different 
scaling factors are used to balance the importance 
of each parameter. Fitness evaluation is a subject of 
continuing research in the development of these 
adaptive path planners. However, for the purposes 

of this paper only three parameters were taken into 
consideration, and this very simple type of fitness 
function yielded good results.  

The main optimization objective in these 
simulations is to find paths that minimize fuel 
consumption during a simulated flight. The fitness 
function also includes a term related to the distance 
between the endpoint of the path and the destination 
point. This second characteristic in the fitness 
function is weighted more heavily to ensure that the 
planner ends its paths where requested. At this time, 
no intermediate targets are inserted for the planner 
to consider. A third parameter, weighted less 
heavily, is the overall length of the path segments. 
This is to discourage very long segments compared 
to the average.  

Selection. This process compares each path in 
the population with q=population/2 randomly 
selected competitor paths. Points are assigned based 
on the results of pairwise comparisons, and 
selection is based on the number of points each path 
achieves. Also, the path with the best fitness value 
is always retained regardless of its competition 
results. The number of paths retained is 
predetermined before running the planner; all other 
paths are eliminated. 

Mutation. Once the parent paths have been 
selected through the previous step, offspring are 
generated. Five randomly selected methods of 
mutation are used. The crossover method randomly 
takes some initial segments of one path and some 
ending segments of a second, and joins them with 
some necessary number of segments. The 1-point 
mutation randomly selects a point in the path, keeps 
only the segments up to that point and re-propagates 
the path with new segments. The 2-point mutation 
selects two points in the path, eliminates the 
segments in between, re-propagates from point 1 on 
and then joins the end of the propagation with point 
2. The shrink and expand methods simply eliminate 
or add segments at the end of the path. 

An additional feature implements an 
application of the common phrase ‘two heads are 
better than one’. Instead of a single evolver, two 
independent evolvers perform the same vehicle path 
search. At scheduled intervals, just before the 
planner selects the next trajectory to traverse, the 
best path results of both evolvers are compared. The 
evolver whose population contains the overall best 



  

path (based on fitness value) is selected to continue 
evolving the future path segments (the normal 
process for a single evolver). The second evolver is 
‘reset’ and begins replanning from scratch for the 
remaining distance, with a handicap of a specified 
number of generations. This process provides more 
flexibility for reacting to new situations by having a 
‘fresh’ mind available with a pool of different 
potential solutions. Currently no information 
sharing occurs between the evolvers which could 
eventually result in converging more rapidly to 
better solutions. 

Spherical Geometry and Assumptions 
For this long-range application, a flat Earth 

assumption is not sufficient. Instead, a spherical 
model has been implemented in the path planner. 
This approach takes several factors into account 
such as the distance of one degree of longitude 
varying with latitude; the shortest distance between 
two points in a sphere following a great circle; 
heading azimuth (the angle relative to north) 
varying while moving straight from one point to 
another; etc. 

Two main types of geometries are used for 
segments: straight segments follow a great circle 
path, which is a ‘projected’ great circle path when 
changing altitude, and may include linear speed 
changes; curve segments follow a small circle path 
at constant altitude and speed (Figure 2). 

 

 

Figure 2. Great Circle and Small Circle Paths 

Key parameters used to determine each 
segment are shape type (which defines specific 
parameters for each, i.e. radius of turn for a curve 
segment), initial and final state parameters 
(position, heading, speed), and length. The latter is 
either calculated based on initial and final states, or 

it is specified and used to determine the end of the 
segment based on an initial state. 

Throughout the path planner, concepts such as 
longitude, latitude, altitude, heading azimuth and 
heading elevation (angle of path relative to the 
‘horizontal’ plane) are used for segment 
construction. Required calculations for the spherical 
Earth model were developed using 3-D Cartesian 
vectors based on those five parameters. The original 
coordinate system is a right handed frame X-Y-Z 
with its origin at the Earth’s center, the x axis 
passing through lat 0o, long 0 o, and the z axis 
passing through the North Pole. 

 Two starting vectors are required for others to 
be derived through common vector operations 
(Figure 3). The first is the position vector r, which 
is obtained through a well known relationship with 
latitude and longitude angles. The second is the 
azimuth vector a. Its relationship to the latitude (θ), 
longitude (φ), and azimuth (ψ) angles is given by: 

az = cos θ * cos ψ 

ay = -sin φ * cos ψ * sin θ + cos φ * sin ψ 

ax = -cos φ * cos ψ * sin θ – sin φ * sin ψ 

a 

r 
ψ 

θ 
φ 

z 

x

y

(north) 
 

 (0olat, 0olong)  

Figure 3. Geometry for Azimuth Vector 
Computation. 

These two unit vectors r and a define the 
normal vector n to the great circle plane via the 
cross product r x a. These three vectors form a right 
handed coordinate system R-A-N and provide a 
good basis for segment calculations.  

Straight Segments (Climbs and Lines) 
The general case is the geometry used for 

climbs (lines being the case when the elevation 
angle ε = 0). Figure 4 presents the geometrical 



  

structure/method for these segments. It is a method 
to obtain the final state after traveling a distance S 
from the initial state. The assumption is that the 
path follows a circular type climb with the same 
radius as the great circle that would be flown with 
no altitude change, this given by the radius of Earth 
+ initial altitude (R.E.A.). The final position vector 
p, is obtained by 

p = m + f , where 

m = cr + r , 

f = [cos β, sin β, 0] [cr, e, n] T,  and 

cr = [-cos ε, sin ε, 0] [r, a, n]T + r 

e = cr x n , 

β = S / R.E.A., S being the desired flying 
distance, 

 [cr, e, n] T = 

[[crr, cra, crn],[er, ea, en],[nr, na, nn]] [r, a, n] T 

[r, a, n] T = 

[[rx, ry, rz],[ax, ay, az],[nx, ny, nz]] [x, y, z] T 

Every vector above has been normalized by 
R.E.A.  

ε 

ε 

S 

Earth    center 

new 
center 

cr 
r β 

m

f 
p 

 

Figure 4. Great Circle Projection Method for 
Climb Segments (Normal View of Great Circle 

Plane) 

The final elevation angle is given by the angle 
between vectors f and p. The final azimuth angle 
(which is not the same as the azimuth of the initial 
state) is obtained by computing the azimuth angle 
that points from the end position to the initial 
position (i.e., look ‘backwards’ to where you 
started) through a method referred to as 

getDirectionTo, explained later in this section. This 
angle +180 o gives the final state azimuth.  

This circular geometry used for climbs restricts 
S not to exceed Smax = R.E.A.*(π + ε)/2 in order to 
avoid ‘climbing back down to Earth’. 

Turns (Curve Segments) 
Defining the center of the small circle for the 

curve segment uses calculations as if creating a line 
segment. The method rotates the vector a 90o to 
create a ‘fake azimuth’ vector fa which points 
towards where the center must be located (for 
constructing either a right–clockwise–turn or a left–
counterclockwise–turn). The position vector r, 
together with the vector fa, form a set just as the 
one required to find the end position when moving 
over a great circle. The desired radius R for the 
curve determines where the center will be created. 
The position vector c (of the curve’s center) is then 
found. Vector rc is the projection of r on c, and 
t = r – rc. The set t, n, c form a left-handed 
coordinate system T-N-C; the segment being 
constructed over the plane T-N. The final position 
vector p (see Figure 5), normalized by R.E.A., is 
obtained by 

p = tf + c ,  where c is obtained through the line 
segment method, and 

tf = [cos γ, sin γ, 0] [t, n, c]T,   where  

γ = S / |t|, (S being the desired flying distance) 

[t, n, c] T =  

[[tx, ty, tz], [nx, ny, nz], [cx, cy, cz]] [x, y, z] T  

n 

r

γ 
t tf 

rc 

S 
c 

R 

β 

fa 

a

p 

 

Figure 5. Curve Segment Geometry for a Right 
(or Clockwise) Turn 

 



  

(n being the normal vector generated through 
the line segment method when obtaining c). 

The final state azimuth is obtained through the 
getDirectionTo method (below) from the endpoint 
to the center point, and subtracting or adding 90 o if 
the turn is CW or CCW, respectively. 

Other Geometric Calculations 
Two other main computations are widely used. 

The getDistanceTo method allows the computation 
of the straight distance between two points. The 
constraint here is that the distance must be in 
accordance with the circular way straight segments 
(i.e. climbs) are defined. This distance (see Figure 
6) is given by 

D = β x R.E.A. ,   where 

β = 2 * asin(L /(2*R.E.A.))  

and by the cosine rule: 

L = sqrt [ p1
2 + p2

2 – 2*p1*p2*cos α] 

This method is restricted to cases where 
L<2*R.E.A due to the circular geometry used. 

D 

p1 β 

α 

p2 

1 

2 
L 

 

Figure 6. Computed Distance Between Two 
Points. 

The getDirectionTo method computes the 
azimuth at point 1 with which following a great 
circle path would reach point 2 (not requiring 
altitude change). This angle is given by 

azimuth = asin(cos Ω / cos θ1), where 

cos Ω = nz / |n| 

where n = p1 x p2 is the vector normal to the 
plane defined by the position vectors, and nz the z 
component of this normal vector ( Ω is the angle 
between n and the vertical z axis). 

Other Assumptions 
Continuity between segments is maintained 

through end-start position and end-start speed. 
Heading continuity is maintained whenever a 
segment is added to a series of previous segments. 
When joins between two segments are required, 
heading continuity is currently not enforced for 
long-range simulations. This should not have 
considerable effect as segments (~40km, variable) 
are much larger than the minimum achievable turn 
radius of the vehicle (~100m). This reduces 
computation time as calculations become simpler. 
Similarly, the elevation angle change between a line 
or curve followed by a climb segment is assumed to 
be instantaneous.  

Joins between two existing segments are first 
attempted using five segments of similar length. On 
the first fifth of the distance, a climbing segment 
tries to match speed and altitude (based on the 
vehicle’s capabilities). If the attempt succeeds, the 
remaining distance is joined using four straight 
segments. If the attempt fails, the speed and altitude 
match is attempted on one fourth of the distance; if 
it fails again it tries on one third of the distance and 
so on. If neither of these are possible, attempts are 
made to join to a different segment. This avoids the 
rigidity of joining only with a single segment for 
future mutations. 

Feeding the Path Planner with Realistic Wind 
Information 

Dealing with air vehicles requires 
consideration of winds and airspeeds. In real life 
winds are far from being invariant in space and 
time, and thus any path planning process must be 
adaptable to these changes. And as the ultimate goal 
is to have these methods applied to actual UAV 
flights, realistic weather information must be 
provided to the planner. GRIB (GRIdded Binary) 
format is a World Meteorological Organization 
(WMO) standard for the exchange and storage of 
weather data. Therefore the path planner has been 
designed to extract atmospheric information 
necessary for the planning process from GRIB data 
files.  



  

Extracting GRIB Formatted Weather Data 
GRIB records consist of six different sections 

which identify and define the data contained1. 

IS   – indicator section 

PDS  – product definition section 

GDS  – grid description section  

BMS – bit map section 

BDS – binary data section 

End section 

Each section’s information is classified and 
contained in specific octets (bytes). The first section 
identifies the file and its length. Except for the first 
and last sections (which are invariant in length), 
each section’s first three octets indicate its length, 
and distinguish each section from another. For the 
purposes of the planner, three of these sections are 
the main source of information: PDS, GDS and 
BDS.  

The PDS section contains, among other things, 
information regarding the initial time of the data  
(UTC), the time intervals of data and the total time 
range included, the weather parameters in the 
report,  grid type used, and whether a GDS section 
is included. The GDS section may provide a 
detailed description of the 2-D grid type used. The 
BDS section contains the parameters and data 
values themselves, which are given at different 
pressure altitude levels. This defines a complete 4-
D array of data. 

A vast amount of weather information is stored 
in GRIB formatted files. Since the parameters 
contained may vary from source to source, a pre-
processing step has been developed in order to 
standardize the input data used by the path planner. 
The path planner requires one input file per weather 
parameter (i.e. temperature) for a time frame which 
contains the expected complete flight time. This 
separation process was developed with the aid of a 
freely distributed utility for GRIB data extraction 
called wgrib2. As both forecast data (from the GFS 
forecast model) and observed data (NCEP-NCAR 
Reanalysis data) are stored and distributed in GRIB 

                                                      
1NCEP, Office note 388   
http://www.nco.ncep.noaa.gov/pmb/docs/on388/ 
2http://wesley.wwb.noaa.gov/wgrib.html 

format, only slight differences between them (such 
as the time intervals of the data) must be taken into 
account during preprocessing. Once the data goes 
through this pre-processing step, the information is 
ready to be read by the path planner.  

For the purpose of the simulations presented 
here, the only information used by the planner was 
horizontal wind velocity at seven different pressure 
levels (UGRD and VGRD parameters). A standard 
atmosphere is assumed for the geometric-altitude to 
pressure-altitude relationship. 

Planning with Variable Wind Data 
UTC ‘launch time’ is provided to the path 

planner to determine the applicable weather forecast 
files to use for the flight. Once these files are 
identified, the planner stores all the 2-D spatial 
array data for each pressure level and measurement 
(or forecast) time into a separate 4-D array for each 
weather parameter to be used. 

At the evolver initialization stage, the initial 
state of the wind field is determined using launch 
time and vehicle position to interpolate horizontal 
wind vector components from the 4-D arrays 
created from the weather data files. Once the initial 
wind field state and time have been determined, the 
path planner starts generating the first population of 
paths (as described in the initialization process). 
Every time that a new segment is created, the 
planner estimates the time it will take to traverse it 
and stores the end clock time as part of the 
segment’s information. Estimations are computed at 
a sub-segment level based on length, airspeed at the 
sub-segment’s start point (determined by the final 
airspeed of the previous sub-segment for continuity 
purposes), a randomly defined end airspeed (or pre-
determined if connecting to an existing segment), 
and the wind field at the initial state of the sub-
segment to estimate the groundspeed when 
traversing the sub-segment’s length. This estimation 
(which certainly depends on the number of sub-
segment discretization levels and the rate of change 
of the wind field) provides the approximate time at 
the end of the sub-segment, which is then used to 
determine the wind field at that state (latitude, 
longitude, altitude) for the next sub-segment.  In 
addition, after a mutation process (which can 
modify a path at any point along its length), the 
planner re-computes the estimated end times for all 



  

follow-on segments in order to determine new wind 
fields corresponding to their new 4-D locations. 

This time-variable consideration allows the 
planner to compute fuel consumption by taking into 
account the wind fields that the aircraft will 
encounter at the moment it estimates it will arrive at 
each location. Thus, when going through the fitness 
evaluation and selection process, it is able to 
generate better solutions for the complete flight.  

Dealing with Wind Uncertainty. 
In actual flight, the wind fields for future 

segments of the flight path cannot be precisely 
known; rather they can only be estimated from 
available forecast data. Each forecast contains a 
complete set of horizontal wind field components at 
fixed grid locations and pressure levels for future 
times (forecast intervals). As mentioned previously, 
the planner linearly interpolates this information to 
provide itself with wind field estimates at any given 
location and time. Moreover, the planner may be 
injected with updated forecast data (as it typically 
occurs every six hours) and incorporate new 
information into its continuous in-flight planning 
process. In this way, updated (and presumably more 
accurate) forecasts can begin to influence “future” 
segments of the flight path—those segments not yet 
converted into trajectories. This feature allows the 
planner to adapt to possible changes in the expected 
environment.  

To exploit this feature and allow for path 
refinement even if no important changes occur to 
the expected environment, planning is not confined 
to a pre-launch exercise.  Rather, continuous 
planning and re-planning is performed during the 
entire flight.  At a predetermined time interval a 
“present” path section is selected as the next actual 
trajectory to be flown, but the remaining “future” 
path segments continually evolve until the next time 
interval.  This system allows modifications to the 
planned path if better solutions are found along the 
way. 

The Airplane’s Flight Performance and Fuel 
Consumption Characteristics 

In order to assure that the airplane is capable of 
traversing a path, every segment is constrained by 
the vehicle’s performance characteristics (i.e. 
maximum rate of climb, climb angle, speed, 

altitude, etc.). The planner does not deal with 
vehicle dynamics, and it assumes the vehicle 
maintains course.  

Because mutations in any segment may affect 
the total length of a path, the weight of the vehicle 
(and thus its capabilities) will vary while traversing 
subsequent unmodified segments. For this reason, 
the performance characteristics used to constrain 
every segment are determined by the initial weight 
of the vehicle. However, weight changes during the 
flight are considered in the planner’s fuel 
consumption computations (the UAV consumes 
less fuel as it gets lighter). Therefore, whenever a 
path is modified at any segment (through the 
mutation process), the vehicle’s weight is 
recalculated for the remaining segments along that 
path (similarly to the time re-computation step 
mentioned earlier). The fuel consumption model 
uses linear interpolations from a table of fuel use 
rate (kg/s). Rates for climbs (and descents) are 
determined by altitude, weight and slope under the 
assumption that the UAV uses full throttle to climb 
(idle for descent). Rates for level flight are based on 
altitude, weight and speed. Mutations of segments 
are not restricted only to their geometry, but may 
include the speed at which to fly them, thus taking 
advantage of different fuel consumption rates. 

The performance table used was constructed 
based on a very detailed performance model of the 
Aerosonde. The use of accurate aircraft 
performance data in this planning system adds 
another layer of realism to the close-to-real case 
simulations demonstrated in the following section. 

Honolulu, HI to Long Beach, WA 
Simulations through Real Wind Fields 

Several simulation cases are presented here 
with the intention of showing different 
characteristics of the behavior of the planning 
system. The first cases demonstrate situations in 
which the planner has been provided with wind 
field information for every place and time and has 
generated a good overall plan. These simulations 
are followed by a case in which new wind 
information is provided to the planner during flight, 
which would occur as updated forecast information 
became available.  



  

 The simulation results presented in Figures 7 
through 11 utilized historical (reanalysis) wind data 
covering a mission with launch time on March 23, 
1999, 00:00 UTC. The airplane started with a full 
fuel tank, and its flight is bounded between 300m 
and 4500m altitude. Initial altitude is set at 300m; 
final altitude at the goal is not constrained to a 
specific value. Initial planning consisted of 100 
generations; replanning during the flight was set to 
run for 100 generations every three hours (thus, the 
aircraft repeatedly selects three-hour trajectories to 
fly while replanning the rest of the path). The 
handicap for the losing evolver was also set to 100 
generations each time. Parent and population 
parameters were set to 8 and 16, respectively. Only 
the best path of each evolver is shown. The wind 
fields shown correspond to the altitude at which the 
aircraft is currently positioned. Each figure presents 
the planner’s estimated fuel requirement at the 
given state.  

Figure 7 shows the initial path plan before 
launch. Figure 8, 9 and 10 depict three snapshots 
during the flight. Figure 11 presents the completed 
path. Note from the figures how the actual flight 
followed a path that resembles one of the initially 
planned paths. This shows how the planner was 
able to consider future winds that it estimated it 
would encounter during the flight. Furthermore, en-
route re-planning continued with both evolvers 
achieving refinements to the planned path. It is 
clear from the figures that the aircraft is well-
positioned based on the winds at each time.    

While the available wind information does not 
contain vertical wind field components, the 
variations in the horizontal (dominant) wind field at 
different altitudes are taken into account by the 
planner. Figure 12 presents the altitude history of 
this flight showing that the planner is able to exploit 
all three dimensions. 

To compare this solution against a shorter 
flight (in distance), the simulation was repeated 
with the aircraft forced to fly along a straight path, 
though still allowed to alter its altitude and speed. 
Figure 13 shows that the total fuel consumption for 
this path was higher than the path freely generated 
by the planner of Figure 11. Figure 14 shows that 
the planner decided once again to fly at various 
altitudes for this second case even when laterally 
restricted to fly straight to the goal.  

In order to compare what the planner could 
achieve while restricting the straight plan to a 
constant altitude (and only being able to vary its 
airspeed to affect fuel rates), Figure 15 is presented. 
In this case, the planner was restricted to fly straight 
at 1160m, the average altitude flown in the 
simulation of Figure 13. The estimated fuel 
consumption for this case is clearly higher. 

These simulations demonstrate how the 
planner can plan for a complete flight based on 
future wind information. A different more realistic 
case will be demonstrated next.  In this case, even 
when the planner has initial pre-flight forecast 
information on future wind fields, updated forecasts 
will become available during flight. 

Figure 7. Initial Plan (Mar 23, 1999, 00:00UTC) 

 

Figure 8. State at +9hrs 



  

Figure 9. State at +18hrs 

 

Figure 10. State at +30hrs 

 

Figure 11. Flight Completion (+37.4hrs) 

 

 

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Altitude time history

Time (h)

A
lti
tu

de
 (m

)

 

Figure 12. Altitude history of the flight. 

 

 

Figure 13. Straight Flight Comparison Case 

 
 

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Altitude time history

Time (h)

A
lti
tu

de
 (m

)

 
 

Figure 14. Altitude history of the flight. 

 



  

Figure 15. Straight Flight Case at 1160m 

 

For the following simulation, historical 
weather data was again used as the source of wind 
information. Using this data would give the planner 
access to wind field information at any given 
location and time, failing to present any ‘sudden 
surprises’ to the planner during flight. In the interest 
of demonstrating a more realistic situation, the 
following results were obtained by simulating ‘new 
wind field forecasts’ at predetermined intervals.  
This was accomplished by advancing the airplane’s 
clock at each interval so that it considered wind 
data corresponding to future times. In effect, this 
forced the planner to readapt the path to a new 
‘forecast’ different from one it had previously 
considered. This is similar to what would occur if 
updated forecast information were provided the 
planner. 

Figures 16 through 22 present several 
snapshots of the simulated flight sequence. Initial 
conditions were set to February 5, 1997 at 00:00 
UTC; the initial altitude was now set at 4500m. 
Updated forecast data was simulated by advancing 
the weather data by twelve hours at every trajectory 
selection interval, which was set to occur every six 
hours. For this case, 200 generations were run in 
each step. Two independent evolvers were used. 

These figures show how the initial plan 
suggested a nearly straight path to the goal.  It is in 
general maintained for the first 18 hours of flight, 
even though wind time had already been advanced 
twice in 12hr intervals (thus suggesting that even 
the ‘new forecasts’ were not affecting the plan 
much). However, Figure 18 shows one of the 

evolvers suggesting a plan that deviates from the 
originally selected path due to more intense 
forecasted wind changes. The planner decides to 
take this alternate route as shown in Figure 19. The 
remainder of the path did not require a second 
major change even when the wind time was again 
advanced twice. Once more, note from the figures 
how the aircraft is well-positioned based on the 
wind fields present at each time. Figure 22 shows 
the complete route. Figure 23 presents the altitude 
history of this flight. 

 

 

Figure 16. Initial Plan (Feb 5, 1997, 00:00UTC) 

 

 

Figure 17. State at +6hrs 



  

Figure 18. State at +18hrs 

 

Figure 19. State at +24hrs 

 

Figure 20. State at +30hrs 

Figure 21. State at +36hrs 

 

Figure 22. Flight Completion (+36.2hrs) 

 

 

 

0 5 10 15 20 25 30 35
1500

2000

2500

3000

3500

4000

4500

5000
Altitude time history

Time (h)

A
lti
tu

de
 (m

)

 

Figure 23. Altitude history of the flight. 

 



  

One final comparison case is presented. Figure 
24 shows a solution for a situation similar to the one 
presented in Figures 7 through 11 (launch on March 
23, 1999 at 00:00 UTC). For this case, however, the 
path planning process uses flat Earth geometries as 
presented in [4]. The total time and estimated fuel 
requirement (by comparison with those in Figure 
11) are clear indicators that this long range 
application must consider more than a simple flat 
earth model. 

 
Figure 24. Simulation with a Flat Earth Model 

(to compare with Figure 11) 

It is important to comment that although the 
aircraft used in these simulations can only hold 
5kgs of fuel, simulation results that estimate larger 
fuel requirements have been presented. It was of 
interest for this paper to present results that could 
clearly show the behavior of the planner in different 
situations, regardless of the specific feasibility of 
the simulated flights. However, simulated Honolulu 
to Long Beach flights using actual wind data from 
different dates have been performed in which the 
estimated fuel requirements are within the vehicle’s 
capacity. 

Summary 
An evolution-based path planner has been used 

to simulate the planning of a UAV long range flight 
through variable wind fields. The use of actual wind 
information available in GRIB format is 
implemented for planning purposes. The planner 
combines UAV fuel burn characteristics together 
with favorable tail winds to obtain path solutions 

that reduce fuel consumption over the entire flight. 
Forecasted wind fields are taken into consideration 
to plan for the complete flight. En-route constant 
replanning and the use of two evolvers allow path 
refinement and adaptation to updated forecast 
information. The planner uses a spherical Earth 
model for long range applications. 

Acknowledgments 
The research presented in this paper is funded 

by the NOAA National Sea Grant College Program 
under Grant NA16RG1044, project code R/0T-22. 

The first author would also like to 
acknowledge the support received from CONACYT 
(Mexico). 

References 
[1] McGeer, Tad, Juris Vagners, 1999, Historic 
crossing: an unmanned aircraft's Atlantic flight, 
GPS World 10(2): 24-30 

[2] Fogel, D.B., and L.J. Fogel, 1990, Optimal 
Routing of Multiple Autonomous Underwater 
Vehicles through Evolutionary Programming, Proc. 
of the 1990 Symposium on Autonomous 
Underwater Vehicle Technology, Washington, 
D.C., pp. 44-47. 

[3] Capozzi, Brian, Juris Vagners, 2001, Evolving 
(semi)-autonomous vehicles, Proc. of the 2001 
AIAA Guidance, Navigation, and Control 
Conference and Exhibit, Montreal, Canada. 

[4] Rathbun, David, et.al., 2002, An Evolution 
Based Path Planning Algorithm for Autonomous 
Motion of a UAV through Uncertain Environments, 
Proc. of the 21st Digital Avionics Systems 
Conference, Irvine, CA. 


