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ABSTRACT

Evolutionary algorithms (EA) have been successfully
used to compute near-optimal paths through obstructed,
dynamically changing environments. The locations of
the obstacles that form the obstructions in these environ-
ments may only be known with limited accuracy. Ex-
plicitly accounting for this uncertainty can result in the
survival of “best” paths which differ from those that
would be favored in a purely deterministic environment.
In this paper, we consider the application of evolution-
based path planning to the motion of an unmanned air
vehicle (UAV) through a field of obstacles at uncertain
locations. Specifically, we focus on the “cost function”
utilized by the evolutionary algorithm to judge the like-
lihood of a given path successfully traversing the uncer-
tain environment. We first show a method for computing
a cost function based on the exact probability of inter-
section of the vehicle with an obstacle. A more compu-
tationally tractable approximation technique for this cost
function is then derived. Both cost functions are com-
pared to the weighted graph search technique found in
much of the literature on path planning.

INTRODUCTION

The number of applications that are considering the use
of intelligent un-manned air vehicles (UAV’s) is increas-
ing dramatically. These applications include areas such
as reconnaissance, search and rescue, and weather obser-
vation. However attrition rates for UAV’s used in such
applications can be high, particularly when the vehicle
must operate autonomously through an environment that
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is different from that which had been envisioned by the
human operators.

The use of UAV’s will become more effective and cost
efficient as the vehicles achieve a greater ability to in-
telligently modify their internal plan based on changes
in the environment. One of the areas in which greater
autonomy could benefit the application is in the area of
path planning. These applications require a UAV that
can autonomously plan its path to achieve a set of goals
given an estimate of the environment through which it
flies. More specifically, they require a vehicle that can
modify its path enroute based on new data about that en-
vironment, while still making a best effort at achieving
the mission goals.

A number of authors have suggested algorithms for
autonomous path planning. These include methods such
as potential fields [1], graph search methods like A* and
D* ([2], [3]), and evolutionary algorithmic (EA) tech-
niques ([4], [5]).

In this paper we will focus our attention on methods
based on evolutionary algorithmic (EA) techniques. The
EA-based methods have a number of desirable features.
One is their ability to consider nonlinear performance
metrics. This includes such things as time of arrival con-
straints, nonlinear vehicle motion capabilities, and num-
ber of passes over a desired target. Another desirable
feature is that they do not require complete re-planning
when environmental parameters change. At any time,
the algorithm retains a broad range of solutions to draw
upon, which provide a good set of initial conditions for
solving the “nearby” problem.

The path planning algorithm (EA-based or otherwise)
will be creating paths for motion through a given envi-
ronment. In a real-world scenario, there will be uncer-
tainty in the parameter estimates that describe the envi-
ronment. For a tactical scenario, this could be uncer-
tainty about the exact location of obstacles and radar de-
tection threats to the UAV. In other scenarios, this could
be the future locations of other vehicles. The path plan-
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ner must avoid these obstacles, even though their loca-
tions are not fully known.

A fully capable planner must consider not only the
best estimate of the obstacles in its environment, but also
the uncertainty associated with that estimate. An object
with an accurate estimate of its location can be passed
very closely. An object with a more uncertain estimate
might be better off being avoided. An object with an
extremely large uncertainty should have relatively small
effect on the outcome of the planning algorithm.

One approach to handling environmental uncertainty
is the Markov localization of Fox ([6], [7]). For EA-
based methods, uncertainty handling was presented in a
simple fashion by Latourell [8].

In this paper, we will consider the application of an
evolutionary algorithm based search method for path
planning through an environment that contains a number
of obstacles, while explicitly accounting for the uncer-
tainty in the estimates of the location of those obstacles.
In section 2, we give the path planning problem formula-
tion and show the structure of the EA-based planner. We
will show how the solution can be expressed in terms of
a function that returns the probability that a given path
will intersect a single obstacle. In section 3, we present
a method for calculation of the exact probability of inter-
section. In section 4, we develop a method for approx-
imating the exact solution, but in a more computation-
ally efficient manner. In section 5, we will relate the use
of this approximate solution to the graph based search
methods for handling uncertain environments. In section
6, we will present simulation examples of an EA-based
path planner using the derived approximation techniques.

EA PLANNING

In order for an unmanned air vehicle (UAV) to move au-
tonomously between desired locations, it needs to be able
to determine a path that does not interfere with any of
the obstacles that may be in the region that the vehicle
transverses. In general, the vehicle must also be able to
consider a number of additional constraints on the path
planning problem, such as motion across desired target
regions, speed and maneuverability constraints, or time
of arrival requirements. However, for the purposes of an-
alyzing the behavior of a search algorithm relative to an
uncertain environment, we will consider only the ability
to arrive at a goal location while avoiding obstacles.

We define the simple search problem as determination
of an algorithm to find a path that is; [A] continuous from
the start location to the goal location, [B] has a length
less than some maximum value, and [C] maximizes the
probability of reaching the goal without intersecting an

obstacle. Obstacles in the environment will be expressed
as; [A] a known size and [B] a probability density field
describing the location of the center. We will present the
discussion in a two dimensional (2-D) context. We will
mention the three dimensional (3-D) problem only when
it requires something beyond a simple extension of the
2-D concepts.

For implementation on-board the vehicle, this resul-
tant path planning algorithm would be run in an iterative
fashion. A solution would be found, some initial seg-
ment of the path would be run, and then new estimates
of the obstacle locations would be formed based on ob-
servations at the new location. The next iteration would
then be run, using as much information as possible from
the previous solution about the best path. In effect, we
are computing a “near term” path that puts the UAV at
a location to give a better probability of achieving “long
term” success, though we don’t know a-priori what the
true value of that measure of success will be.

We will start here with a very brief description of an
evolutionary algorithm (EA) based method for solving
this path planning problem. Those who desire a more in-
depth description of EA or it’s application to path plan-
ning through environments with fully known obstacles
should see ([9],[10]).

The design of the EA-based path planning algorithm
starts with: [A] a way to encode a path as a finite se-
quence of numbers (the genetic material), and [B] a (non-
linear) cost function that scores the relative value of a
candidate solution (the fitness). The algorithm is initial-
ized with a grouping of encoded paths (the population).
See figure 1. The algorithm is run in a loop. At each
step (or generation), additional paths (members) are first
added to the population by modifying current members
(a mutation) or by mixing two or more current members
(reproduction). Then the cost function is used to score all
members of the larger population. Based on those scores,
the population is reduced back to its initial size. Those
paths that score well are likely to be retained, those that
score poorly are likely to be dropped.

As the iterations progress, a well designed EA algo-
rithm will produce a population of diverse solutions that
score well against the problem requirements. The disad-
vantage in using a path planner based on an EA formu-
lation is that the population may not progress to a truly
optimal solution (the solution is optimalizing, but not op-
timal). This is often outweighed by both the robustness
of the algorithm to changes in the environment as a re-
sult of the large diverse population, and by the ability to
handle a wide variety of complex constraints in the cost
function.

From here on, we will limit our focus to the cost func-
tion of the EA-based path planner. For the EA-based path
planner to work well, its cost function must give a good
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Figure 1: Overview of Evolutionary Search

measure of how well a candidate path Pi meets the re-
quirements of the problem. For the simple problem ad-
dressed here, we will model the cost function as a linear
combination of the path length and the probability of in-
tersection with an obstacle:

Ji = a1 G (Pi) + a2 F (Pi) + a3 B1 (Pi) (1)

where G(P ) represents a measure of the proximity of the
path end point to the goal location, F (P ) is the distance
by which the path exceeds the maximum path length,
B1(P ) represents the probability that the path intersects
an obstacle, and a1, a2, and a3 are relative weighting fac-
tors. The EA-based path planner attempts to find a path
that minimizes this cost function.

If we can assume that the location of each obstacle is
independent of the location of all other obstacles, we can
express the probability of intersection as,

B1 (Pi) = 1 −
∏
j

{1 − B2 (Pi, Oj)} (2)

where B2(Pi, Oj) is the probability that the ith path, Pi,
intersects with the jth obstacle, Oj .

The rest of this paper will focus on methods for com-
puting B2(Pi, Oj), and how those methods relate to the
performance of an EA-based path planner.

PROBABILITY OF INTERSECTION

The true probability that a vehicle following along path
P will intersect (hit) an obstacle O can be defined math-
ematically as follows:

For an obstacle of radius Ro and a vehicle of radius
Rv, the vehicle will hit an obstacle with a center location

of Cx(O) if at any length s along its path P ,

|P (s) − Cx (O) | < D (3)

where the “intersection distance” D is defined as

D = Ro + Rv (4)

This can thought of as either the vehicle getting too
close to the obstacle, or, alternatively, that the location of
the obstacle gets too close to the path.

So if we define a region in space, X, as all points
within a distance D from the path P ,

X = {x : |x − P (s) | < D, for all s} (5)

then if Cx(O) is contained in X, the vehicle will hit the
obstacle. See figure 2. Note that, as pictured, if the min-
imum turn radius of the vehicle is less than D, the deter-
mination of the boundaries of region X is not a simple
matter.

However, for an uncertain environment, the location of
the center of the obstacle, Cx(O), is not known. Rather,
it is described by the probability density function ρ(x),

ρ (x) � probability[ x− ε < Cx(O) < x + ε ]
2ε

(6)

The probability that the vehicle will hit the obstacle is
the integral of the density function over the area where
an intersection is possible:

B2 (Pi, Oj) =
∫

X

ρ dxdy (7)

Because of the form of the solution, for any path more
complex than a straight line passing in the vicinity of an
obstacle, a simple measure of the geometry of the in-
teraction could be a very bad approximation to the true
probability. Consider a simple measure of the probability
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Figure 2: Obstacle Intersection Geometry

of intersection such as one based on the closest approach
of the path to the expected value of the location of the
obstacle center:

B2 (Pi, Oj) = Func
(
d
)

(8)

d = min[ |Pi (s) − ηj |, all s ]

ηj = E[ Cx (Oj) ]

where E[ ] is the expectation operator.
Figure 3 shows two paths, P1 and P2, that pass an

obstacle at the same closest approach distance d. For
a simple density field ρ(x) and an approach distance D
smaller than the radius of the density field, the true prob-
ability of intersection for path P1 is much greater than
for path P2.

(a) (b)

d d

ρ(x) ρ(x)

P1 P2

η η

Figure 3: Failure of Simple Estimation Methods

The difficulty with the exact formulation of the proba-
bility as given in equation 7 is the ability to compute the
result in a closed form manner. We know of no closed

form solution of the integral for a path that consists of
a piecewise continuous set of path segments (such as
would be produced from an EA-based path planner).

A numerical approximation to the integral is possible.
The probability density function ρ (x) could be evalu-
ated over a finite element mesh ρ (xi, yj) of small area
∆x · ∆y. The path could similarly be discretized into
small segments P (sk) of length ∆s. For each path seg-
ment P (sk), all probability grids [xi, yj] that are less
than distance D from the path segment are flagged. At
the end of the evaluation, all marked grids are summed
and multiplied by the grid area.

Figure 4 gives a depiction of this digital approxima-
tion for a probability density field that is non-zero over a
finite radius σ. This digital approximation is the method
used in this paper to evaluate the true probability. The
difficulty with such a method is the computational load
required for the evaluation. Each evaluation in 2-D space
requires three nested loops; the path segments, the den-
sity function x grid, and the density function y grid. Eval-
uation in 3-D space requires four nested loops.

D

σ

∆x

∆y

X

Figure 4: Digital Computation of Exact Solution

FIELD INTEGRAL APPROXIMATION
TECHNIQUE

In this section we analyze a method for approximating
the exact probability defined in the previous section in a
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more computationally efficient manner. We will assume
a continuous field β() related to the probability density
field for the location of the center of the obstacle. The
probability that the vehicle hits the obstacle will be de-
fined as the integral of the path length through the field.

B2 (Pi, Oj) ≡
∫

Pi

βj ds (9)

The question that needs to be answered is how to de-
termine such a function, and to what degree it produces
a good approximation of the exact probability.

Examine figure 5. The figure shows two paths which
move past an obstacle. We assume that the probability
density function for the location of the obstacle center is
radially symmetric and non-zero over a finite radius σ.
The distance at which an intersection between the vehi-
cle and obstacle can occur D = Rv + Ro is equal to
σ. In 5(a) exactly half the density function is in the re-
gion X for that path, and so the probability is exactly
0.5. In 5(b), using similar arguments, the probability for
that path must 0.75. Therefore, if using a field integra-
tion method, the amount contributed by path segment S 3

must be 0.25. ∫
S3

β ds = 0.25 (10)

(a) (b)

σ

D

S 1

S 2

S 1

S 2
S 3

Figure 5: Thought Experiment

Therefore, we will define the field β (r) as the value
required to give the correct probability of intersection
given a path of a single 360◦ revolution about the ex-
pected value of Cx(O) at a distance of r. This results
in,

β (r) =
p (r + D) − p (r − D)

2πr
(11)

where p(r) is the probability that Cx(O) is within a dis-
tance r of the expected value (i.e. the probability distri-
bution).

p (r) =
∫ r

0

2π y ρ (y) dy (12)

where, for r < 0, we define:

p (r) = −p ( |r| ) r < 0 (13)

For simple types of paths, a closed from solution to
the integration of equation 9 may be possible. For more
complex types of paths, a digital approximation will once
again be used. However, there is a computational ad-
vantage to the field integration method due to the fact
that; [A] the required integration of ρ (r) can be done off-
line and closed from, since the area is simple and known
a-priori, and [B] a discrete version of the algorithm re-
quires only a single summation loop over the path seg-
ments.

B2 (Pi, Oj) =
∏
k

β ( |Pi (sk) − ηj | )∆s (14)

ηj = E[ Cx (Oj) ]

To examine how well the field integration method ap-
proximates the true solution, consider the case of a sim-
ple path, similar to figure 5(a), where the path is a straight
line past the obstacle at a closest approach of d. The
probability density function is uniform with a radius of
σ = 1. The intersection distance D is set to α σ. For
this simple problem, a closed form solution for the exact
probability can be found. Figures 6(a)-6(c) plot the exact
solution and approximation as a function of the approach
distance d for various values of α.

From figure 6(a)-6(c), we see that the field integration
method can produce good results for many cases, but is
not exact. The approximation deteriorates for larger val-
ues of α (smaller size of the probability density func-
tion), though it still gives correct results in regions of
complete or non-existent intersection. The effect of this
is to provide a good approximation for more uncertain
obstacles, and to give an indication of hit/no hit for more
certain obstacles.

We have found that, for our example problem of a ve-
hicle passing an obstacle along a straight line, the field
integration method is relatively insensitive to the size of
the discritization interval. Good approximations are ob-
tained for any path interval ∆s of σ/5 or smaller. For
probability density functions significantly more complex
than the uniform and triangular density functions we
have tested against, smaller discritization intervals ∆s
may be required to capture the behavior of the intersec-
tion probability.

Since the field function β (r) that we have defined
gives the only values that produce a correct result for
one type of path (a single revolution), but at the same
time gives an incorrect result for another type of path (a
straight line), we can make the claim that any method
based on integrating or summing a static field without
consideration of the history of the path cannot produce a
correct result for all paths.
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Figure 6: Evaluation of Path Integration Method

COMPARISON TO GRAPH-BASED
SEARCHES

The field integration method can be compared to meth-
ods used in graph based search algorithms. In the graph
based search algorithms, the area that the vehicle may
traverse is divided into a set of discrete nodes. Each node
is assigned a weight, and the cost of the path is produced
from a summation of the weights over the nodes tra-
versed by the path. Searches for the “best” path are made
using network optimization techniques such as Dijkstra’s
method, A∗, or D∗. Typically, these nodal weights are
assigned as an estimate of the probability that the obsta-
cle will occupy a given position. In the extreme, these
nodal weights are assigned either a one or zero. This is
particularly the case if the objective is simply to find an
obstacle-free path through the environment.

Obviously, given the correct assignment of the node
weights, the graph search method can be thought of as a
discrete version of the field integration method. There-
fore, a graph based search would have the same property
as the field integration method, where the solution can-
not be exact for all paths, regardless of the discretation
size.

For a simple path planning problem where obstacle in-
tersection is the only concern, a node weight such as the
probability of intersection at that location may be suffi-
cient to produce an obstacle free path. For a more com-
plex set of requirements, where the probability of inter-
section needs to be directly compared against other con-
straints (such as a limited amount of fuel or power), it
would be necessary to scale the node weights to produce
an accurate estimate of the exact probability. The scal-
ing would have to account for various values of the in-
tersection distance D and the size of the grid spacing.
Such scaling would enable the search algorithm to make
explicit tradeoffs between potentially conflicting objec-
tives.

Figures 7(a)-7(c) repeat the tests of figures 6(a)-6(c)
for a graph-based search. For purposes of this compari-
son, the node weights are set according to

W [n] =
w (n)∆x

2D
(15)

where w (n) is the probability of intersection if the ve-
hicle was at the node n location, and ∆x is the dis-
tance between nodes. The grid size for this example was
set to σ min{1/5, α/3}. This is comparable to the dis-
critization size used in figures 6(a)-6(c), while still large
enough to show the digital effects. Techniques are avail-
able for reducing the computational load of such graph
search methods by adaptively changing the node spacing
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∆x, but those techniques are beyond the scope of this
paper.

Comparing figures 6(a)-6(c) and 7(a)-7(c), we can see
that there are slight differences between the field integra-
tion and graph search methods, but the results are simi-
lar. This is not unexpected, as both methods are based on
similar principles. Other considerations, such as compu-
tational efficiency and the ability to accommodate time
based probabilities may be important in distinguishing
which method is more appropriate for a given problem.
For application to an EA-base path planner, the field in-
tegration method provides certain flexibility of use that
the graph based search does not. It is important to re-
member that, regardless of the discritization size, both
methods are only approximations to the true probability
of intersection.

EXAMPLE EA SIMULATION

In this section we present the results of simulations
which demonstrate the use of the field approximation
technique to compute probabilities of intersection to
drive simulated evolution. The cost function utilized in
these simulations is identical to that given in equation
(1), namely a weighted combination of the probability
of intersection with a function penalizing excessive path
length.

For the purpose of demonstration, we choose a rel-
atively simple problem domain in which a set of ob-
stacles, each of known size, is distributed through the
environment. The objective of the planner is to find a
path through the obstacle field that reaches the goal loca-
tion. The actual location of each of the obstacles is only
known approximately. Uncertainty is explicitly modelled
in terms of a probability density describing the obstacle
center location. This density is assumed uniform in all
directions, with a modelled radius of σ.

For the uniform obstacle probability density function,
the distribution function used to construct the field as de-
fined in equation 11, is given as,

p (r) =
{

r2/σ2 r ≤ σ
1 r > σ

(16)

The evolutionary model used for illustration is a ge-
netic algorithm, where each individual in the population
consists of a “string” of arbitrary length. Each “char-
acter” in the string represents a steering or speed com-
mand (e.g. speed up, slow down, turn right, etc.). The
dynamics of the vehicle are represented through a simple
2-D kinematic model assuming constant acceleration and
turn rate. The vehicle’s maneuverability is constrained
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Figure 7: Evaluation of Node Summation Method
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via a limited turning rate (e.g. turn radius) and accelera-
tion/deceleration. The vehicle’s trajectory is modelled at
a one-second resolution.

In figures 8-10 we present the results comparing three
different cases using identical start location, goal loca-
tion, expected obstacle locations, and known obstacle
sizes. For each case, we only vary the size of the uncer-
tainty in the estimate of the obstacle center location. For
all three figures, the solid line represents the path from
the EA-based search algorithm with the best fitness after
a fixed number of generations. The thin lines are other
(less fit) members of the population. The red circles rep-
resent the non-zero area of the probability density func-
tion. The gray circles represent the locations that could
possibly be covered by the obstacle (radius σ + D). The
white circles represent the actual location of the obsta-
cles (unknown to the planning algorithm).

In figure 8, we show the route generated when the ob-
stacle locations are assumed to be known nearly exactly
(e.g. zero uncertainty). For this case, the red circles are
small, since the obstacle locations are known with high
certainty. Because of the high certainty, the algorithm
chooses a path that passes through the small space be-
tween the obstacles which is known to be free of inter-
section.

In figure 9 we illustrate the effect of a medium sized
uncertainty. In this case, the algorithm chooses a path
that circles around all possible obstacle locations, since
the probability that a shorter route between them (as in
figure 8) would be obstacle free is too low.

In figure 10 we demonstrate the difference in trajec-
tory obtained when a very high level of uncertainty is
present. For this case, the algorithm chooses a nearly
straight path to the goal. Since the (relatively small) ob-
stacles could be nearly anywhere in the space, the prob-
ability that the straight line path is free of an obstacle in-
tersection was high enough that it outweighed the added
path length required to completely circle the region.

CONCLUSIONS

We have presented a simple framework for path planning
using evolutionary algorithms that allows for considera-
tion of uncertainty in estimates of the parameters describ-
ing obstacles in the environment. The planner was de-
fined in terms of a function that produced the probability
of intersection of a candidate path from the uncertainty
specification of an obstacle.

We presented the theoretical solution for getting this
probability of the intersection of the vehicle and the ob-
stacle. Because this solution was based in the integra-
tion of a function over an arbitrary and nonlinear region,
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closed form solutions are difficult and digital approxima-
tions are computationally intensive.

We compared the exact method with simpler methods
based on either an integration or summation of a fixed
field defined over the space of the environment. We
showed that these methods cannot produce completely
accurate results, but can give reasonable approximations
for many scenarios. We showed that the approximation
techniques had the most difficulty for tight radius turns
or intersection distances of the same size as the obstacle
probability density field.

We presented one method for defining an integration
field for a radially symmetric probability density func-
tion that gave a good approximation to the exact solution.
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