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Abstract 
Adaptive and intelligent on-board path 

planning is a required part of a fully autonomous 
UAV.  In controlled airspace, such a UAV would 
have to interact with other vehicles moving though 
its environment.  The locations of obstacles (other 
vehicles) that form obstructions in the environment 
may only be known with limited accuracy.  
Evolutionary algorithms (EA) have been 
successfully used to compute near-optimal paths 
through obstructed, dynamically changing 
environments.  Explicitly accounting for the 
uncertainty of the obstacles can result in the 
survival of "best" paths which differ from those that 
would be favored in a purely deterministic 
environment.  In this paper, we consider the 
application of evolution-based path planning to the 
motion of an unmanned air vehicle (UAV) through 
a field of obstacles at uncertain locations. We begin 
with the static form of the EA algorithm for 
generating a path at a single point in time.  We 
describe the algorithm and show its behavior, 
specifically how it responds differently based on the 
known accuracy of the predictions of the 
environment. We then show how the static structure 
can be extended to consider the uncertainties which 
change with time.  We demonstrate by application 
to path planning through a field of moving obstacles 
whose future motion is uncertain. 

Introduction 
The use of Unmanned Air Vehicles (UAVs) 

has been increasing recently.  Such aircraft, when 
operating fully autonomously, are capable of 
planning their own trajectory for transitioning 
between desired locations, and often also for 
avoiding any fixed obstacles in their path. A 

number of authors have suggested algorithms for 
autonomous path planning.  These include methods 
such as potential fields [1], graph search methods 
like A* and D* ([2],[3]), and evolutionary 
algorithmic (EA) techniques ([4],[5]). 

Traditionally, however, UAVs have been 
restricted to operating in areas that do not contain 
any other vehicles outside the control of the 
authority in charge of the UAV.  If we desire to 
move the use of UAVs outside of that restriction 
and into areas of general use, the UAV must be able 
to plan a path that not only avoids fixed obstacles, 
but can effectively deal with moving obstacles 
(other vehicles) as well.  

Changing the planning problem from fixed 
obstacles to moving ones changes the problem from 
a geometric one (“don't enter this area”) to a 
dynamic one (“don't enter this area at this time 
while considering your ability to change your 
location at that time”).  Equally importantly, it also 
changes it from a deterministic problem to a 
stochastic problem. 

To plan a path which avoids a moving 
obstacle, we need to avoid the location occupied by 
the obstacle (other vehicle) at some future time. But 
for most non-trivial cases, the future location of the 
obstacle (other vehicle) can only be estimated.  
There will be some degree of uncertainty associated 
with that motion. A truly effective path planner is 
one that can deal directly with the combination of 
the expected motion of the obstacles, the 
uncertainty in their location, and how that 
uncertainty changes with time. 

Depending on the nature of the specific 
situation, the degree of uncertainty in the future 
location of another vehicle can vary.  A commercial 
aircraft following a flight plan (or failing to follow) 
has a different level of uncertainty than an 



 2 

uncontrolled personal aviation aircraft.  For a 
military scenario, an intelligent adversarial aircraft 
would have an even higher level of uncertainty.  All 
of these situations can be thought of as the same 
general problem, but with different levels of growth 
of uncertainty. 

One approach to handling environmental 
uncertainty is the Markov localization of Fox 
([6],[7]).  For evolution-based methods, uncertainty 
handling was presented in a simple fashion by 
Latourell [8].  A more complete approach for static 
obstacles was presented by Rathbun [9]. 

The uncertainty in an obstacle’s location will 
typically grow as we try to predict further into the 
future. Because of that growth, there will come a 
point during actuation (flying) of distant parts of a 
planned path when the current (e.g. sensed) 
uncertainty of an obstacle location will be smaller 
than the uncertainty used in the earlier plan. 
Therefore, at some point it is appropriate to re-plan.  
Taking this to the extreme (plan over 2000s, fly first 
2s, plan over 2000s, fly 2s, ... etc.), we transform 
from a static planner into a dynamic planner. 

By considering this growth of uncertainty with 
time in conjunction with re-planning, we are 
predicting a motion so that the near term motion 
will place the vehicle into a location so as to 
maximize the likelihood of success of the far term 
motion (e.g. maximize the likelihood that the plan 
can be executed without change).  This does not 
imply that such a planner would take the place of an 
ultra-fast, rule based, obstacle avoidance safety 
system (i.e. TCAS).  At low levels of integration, 
the path planner considers a long time horizon to 
minimize the likelihood that the avoidance safety 
system is used. At higher levels of integration, the 
avoidance safety system might condition its conflict 
resolution based on the “outer” loop path planner 
downstream recommendations. 

For faster updated rates of a dynamic planner, 
performance (speed of response) may become an 
issue. Ideally, the problem being solved is a nearby 
problem to the original planning problem – 
potentially admitting a nearby solution (e.g. one 
that does not require a drastic change in UAV 
trajectory). A desired feature of a path planner is the 

ability to increase performance by using as much as 
possible of the previous plan when computing the 
new plan. 

In this paper we present a design for such a 
dynamic, stochastic path planner based on 
evolutionary algorithmic (EA) techniques.  The EA-
based methods have a number of desirable features, 
making them appropriate for this problem. One is 
their ability to consider non-linear performance 
metrics, which will allow for joint consideration of 
geometric avoidance, time based dynamics, and 
vehicle performance limitations.  Another desirable 
feature is the EA structure of iterative solution 
improvements over an internal state.  This will 
allow for the condition at the end of one planning 
cycle to more easily be used as a good starting 
condition for the next cycle. 

In section 2, we present the structure of the 
EA-based path planner that we have chosen.  In 
section 3, we show how the planner deals with the 
uncertainty in the obstacle locations and how it 
deals with the change in that uncertainty over time.  
In section 4, we show how the results of a previous 
planning solution can be incorporated into a re-
planning to form a true dynamic planner. In section 
5, we present some results of the planner, showing 
its behavior while flying through a field of moving 
obstacles whose future motion is uncertain.  

Structure of Path Planner 
We will begin in this section with a description 

of the static form (starting location and time does 
not change) of an evolutionary algorithm (EA) 
based method for solving the desired path planning 
problem.  Those who desire a more in-depth 
description of general EA-based path search 
algorithms or their behaviors should see ([10],[11]). 

EA-based path planning algorithms use a 
population of solutions and random modifications 
to those solutions to form a structured, stochastic 
search. See Figure 1. The population is seeded 
randomly.  The algorithm is then run in a loop. At 
each step (or generation), additional paths 
(members) are first added to the population by 
modifying current members (a mutation) or by  
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Figure 1. Overview of Evolutionary Search 

mixing two or more current members 
(reproduction). Then the cost function is used to 
score (the fitness of) all members of the larger 
population. Based on those scores, the population is 
reduced (the selection) back to its initial size.  
Those paths that score well are likely to be retained; 
those that score poorly are likely to be dropped. 

Our encoding of the paths is a sequence of 
simple splines (termed segments) chained end-to-
end.  There are two types of splines: straight lines 
and constant radius curves. See Figure 2.  Mutation 
parameters include: length, radius, and end speed.  
Speed and turn radius parameters are limited to 
keep motion within the vehicle capabilities.  For 
line segments, the speed along the segment 
transitions linearly from start to end speed. We 
enforce continuity between the joining end and 
beginning point positions, headings, and speeds. 

   

start position,
heading, speed

start position,
heading, speed

 

Figure 2. Elemental Path Segment Types 

We have four mutation mechanisms: 

• Mutate and Propagate – randomly 
changes the parameters of one or more 
segments, and then re-locates all 
following segments to enforce the end 
point constraints.  The first segment to be 
mutated and the number of segments to 
be mutated are chosen at random. See 
Figure 3(a).  The dashed line is the path 
before the mutation.  The solid line is the 
path after mutation.  The red segments 
are those that have been mutated. 

• Crossover – takes the starting segments 
of one path and the ending segments of 
another, and matches them up using a 
point-to-point-join function.  See Figure 
3(b).  The two parent paths are the black 
and blue lines.  The resultant path is the 
solid line.  The point-to-point-join 
function is the two red segments. 

• Go to Goal – chooses a random segment 
near the end point and uses the point-to-
point-join function to match directly 
from the start location of that segment to 
the goal location.  See Figure 3(c). 

• Mutate and Match – changes the 
parameters of one or more segments, 
computes the new resultant end point for 
those segments (similar to Mutate and 
Propagate), and then connects back to the 
start of another segment of the path 
further along.  The beginning segment 
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and the segment joined to are both 
chosen at random. See Figure 3(d).  The 
solid line is the resultant path.  The blue 
segments are the mutated segments.  The 
red segments are the result of the point-
to-point-join function. 

(a) Mutate and Propagate

(b) Crossover

(a) Go to Goal

(a) Mutate and Match  

Figure 3. Path Mutation Mechanisms 

 

For each generation, one of the mutation 
mechanisms chosen at random is applied to each 
path in the population (the original path is retained 
in the population).  The population size is started at 
20 paths, and then mutated up to 40 paths. The 
broad range of mutation types is included in an 
effort to give the path search algorithm an improved 
chance of avoiding local minima. 

Several of the mutation mechanisms are 
enabled by a point-to-point-join function. This 
function takes a starting location (position and 
heading) and determines the parameters for two 
segments that will link to an ending location, while 
meeting the continuity requirements. Without this 
function, continuity would not be enforced. An 
illustration of the nature of the geometric solution 
required to make these joins is shown in Figure 4.  
There are two possible solutions, depending on 
whether the curvature of the two arc segments is in 
the same or opposite directions. For creating a join, 
both types are calculated and the one with the 
shortest total length is used. 

In the left-most figure, the construction begins 
with lines emanating from the endpoints of each 
path segment, perpendicular to the segment 
direction.  At a distance R  from the segment end 
point along these lines would be the join segment 
center points. The two resultant center points must 
be a distance R2  from each other.  Solving this 
geometrical constraint for R  gives the solution.  
The common endpoint for each join segment is the 
point half way between each center point. 

In the right-most figure, the construction 
begins with the line connecting the two path 
segment endpoints, and the two rays tangent to the 
path segment endpoints.  Moving a distance A  
along one ray and then a distance A  along a line 
parallel to the connection line gives the possible 
common endpoint to the join segments.  Doing the 
same from the other endpoint with a distance of B  
must give the same common point.  This 
geometrical constraint can be solved for A  and B .  
The center of the arc is the point of intersection of a 
line perpendicular to the connection line through 
the common point, and a line perpendicular to one 
of the segment endpoints.  This solution is derived 
from Kosugi ([12]). 

Note that the solution must be constrained by 
the minimum turn radius of the vehicle.  In the 
event that either radii for the join is beyond the 
vehicle capability, the join is considered to have 
failed and a new mutation (chosen at random) is 
applied to the parent path. 
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Figure 4. Geometric Constructions Used for 
Point-to-Point Join Function 

The selection process for the larger population 
is based on a round robin tournament. Random 
pairs of paths are chosen to compete.  The winner is 
selected based on relative fitness, but includes a 
random component to occasionally let a lower-
performing individual win (e.g. survive). Those 
paths with the greatest number of wins at the end of 
the tournament are passed on to the next generation. 
The process is elitist, in that the path with highest 
fitness is always passed on to the next generation. 

We define the objective of the simple search 
problem as determination of a path that reaches the 
goal location, minimizes the probability of 
intersecting an obstacle, while minimizing the fuel 
required.  This is subject to the constraints that the 
path is continuous from the start location to the goal 
location and does not violate minimum or 
maximum speeds or minimum turn radii. We will 
present the discussion in a two dimensional (2-D) 
context. We will mention the three dimensional (3-
D) problem only when it requires something 
beyond a simple extension of the 2-D concepts. 

We use a cost function consisting of a linear 
combination of the separate objectives of interest: 

( ) ( ) ( )iii PBaPFaPGaJ 1321 ++=  (1) 

where )(PG  represents a measure of the proximity 

of the path end point to the goal location, )(PF  is 

a measure of the percentage of fuel used, )(1 PB  
represents the probability that the path intersects an 
obstacle, and 1a , 2a , and 3a  are relative weighting 

factors. The EA-based path planner attempts to find 
a path that minimizes this cost function.  The 

continuity and motion constraints are enforced by 
the path encoding and mutation mechanisms. 

Obstacle Intersection Probability and 
Timing 

To compute the cost function (fitness value) 
for the EA path search algorithm given above, we 
need an approximation of the probability that a 
given path will intersect with one or more obstacles.  
To get this probability, we will characterized an 
obstacle ( O ) in terms of an expected position ( C ) 
an expected velocity ( v ), a safe approach radius 
( D ), an uncertainty specification for the location 
(σ ), and an uncertainty specification for the 
velocity (τ ). 

For stationary obstacles, it was shown in [9] 
that for a path 

iP  and one obstacle 
jO  the 

probability of intersection of the path/obstacle pair 
can be approximated as a summation over the path 
length of a probability density field ( β ) that 
surrounds the obstacle. 

( ) ( )( ) sCsPOPB jjki
k

ji ∆−∏= σβ , ,2  (2) 

where 2B  is the probability of intersection, 
jC  is 

the expected location of obstacle 
jO , s  is the 

distance along the path, and s∆  is the path length 
between points ( )ki sP  and ( )1−ki sP . The probability 

density field β  is defined as 

( ) ( ) ( )
r

DrpDrp
r

π
σσσβ

2

,,
,

−−+=  
(3) 

where ),( σrp  is the probability that the actual 
obstacle location is within a distance r  of the 
expected location C  (i.e. the probability 
distribution). 

∫=
r

yyyrp
0

d ),(2),( σρπσ  (4) 

where ),( σρ y  is the probability density function 
for the possible locations of the obstacle.  For 

0<r  we define: 

( ) 0    ,),( <−= rrprp σσ  (5) 

For an obstacle probability density with a 
uniform distribution (that used in the simulations), 
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the distribution function used to construct the field 
as defined in equation (3), is given as, 
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One advantage of the approximation to the 
probability of intersection of equation (2) is the ease 
with which it can be extended to consider moving 
obstacles. It is the form of the solution – a 
summation over a parametrically defined function – 
that allows for the simple inclusion of time into the 
equations. Equation (2) simply becomes: 

( ) ( ) ( ) ( )( ) sTTCsPOPB kjkjki
k

ji ∆−∏= σβ , ,2

 

(7) 

where kT  is the time at which  

( ) ( )ksPsP =  (8) 

To compute the obstacle location at a given time, 
( )kTC , without any other indication of its intent, we 

will use a simple dynamic propagation 

( ) ( ) ( )00 TTvTCTC kk −+=  (9) 

If some other indication of vehicle intent is known 
(filed flight plan, expectation of strategy from 
gaming theory, etc.) then that could be used in place 
of Equation (9). 

There are a number of terms that must be 
considered for propagation of the location 
uncertainty, ( )kTσ . Since the current obstacle 

location and velocity are estimated quantities, there 
will be an initial uncertainty in the position.  The 
uncertainty in the initial velocity will also couple 
through the position propagation via equation (9).  
So, for a vehicle with no action to change its 
trajectory from a straight line, the minimum 
uncertainty propagation becomes 

( ) ( ) ( )000 TTTT kk −+= τσσ  (10) 

Additional terms need to be added to account for 
action taken by the vehicle (whether intentional or 
not).  A simple model is to assume that the vehicle 
can apply a fixed acceleration, a , in a random 
direction.  The uncertainty would then grow as 

( ) ( ) ( ) ( )2
0000 2

TT
a

TTTT kkk −+−+= τσσ  
(11) 

This may be a good model for a hostile aircraft, 
whose motion is unpredictable.  For a commercial 

flight following a known trajectory (perhaps badly), 
a better model might be an uncertainty which 
grows, but is limited to some upper value. There are 
many other possible ways to compute future 
uncertainty.  While the structure of the EA-based 
planner allows for inclusion of nearly any method, 
we will not provide any further discussion of 
possible estimation techniques. For all the 
simulation results presented, the uncertainty 
propagation model is that of equation (11). 

If we can assume that the location of each 
obstacle is independent of the location of all other 
obstacles, we can express the total probability of 
intersection of a path with one or more obstacles as, 

( ) ( ){ }ji
j

i OPPB ,B-1 1 21 ∏−=  (12) 

Figure 5 through Figure 7 illustrate the 
behavior of this static planner (captured via 
snapshots at three different generations) as it 
considers the motion of the obstacle over time.  
Here, the UAV (blue outlined vehicle) is heading to 
the right, trying to reach the goal location (circle, 
shown in green).  The obstacle vehicle is heading 
vertically up the page.  The dashed circles 
correspond to the planner’s estimate of uncertainty 
at different times – which is seen to grow the 
further the planner plans (e.g. as the obstacle 
vehicle moves further up the page).  In this case, if 
the UAV were to travel straight to the goal, it would 
exactly collide with the expected center of the 
moving obstacle. 

The fitness function for this simulation allows 
the UAV to use 7.2kg of fuel before incurring any 
penalty, where the straight line path to the goal 
would have required 7.9kg. With such a low penalty 
on fuel usage, the UAV path planner is 
conservative, choosing a path that has a minimal 
encroachment onto the obstacle uncertainty region. 

Figure 8 and Figure 9 show the time history of 
the motion after the planning has been completed.  
The UAV initially heads to its right to come around 
behind the moving obstacle.  It then heads almost 
straight to the goal, in so doing only entering the 
uncertainty region of the obstacle by a very small 
amount. 
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Figure 5. Static path planning showing the effect 
of moving, uncertain obstacles (at generation 20) 
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Figure 6. Static path planning showing the effect 
of moving, uncertain obstacles (at generation 40) 
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Figure 7. Static path planning showing the effect 
of moving, uncertain obstacles (at generation 60) 
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Figure 8. Moving through time (time t1) 
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Figure 9. Moving through Time (time t2) 

Re-Planning 
Since the uncertainty in the location of 

obstacles in the UAV’s environment grows over 
time, after the path has been actuated for a period of 
time, the measurements of the obstacle locations 
will diverge from the predicted locations. This calls 
for re-planning the vehicle path. 

Planning over time requires an iterative 
solution with the following steps: 

1. Plan path with “best probability” of success 

2. Move along path a given (small?) distance 

3. Update estimates of obstacle locations and 
motion.  Update vehicle locations 
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4. Use the previous solution to seed initial 
conditions for a new search 

5. Re-plan path 

6. go to Step (2) 

Step (4) is an attempt to save the knowledge gained 
from the previous planning cycle for the next 
search.  If done well, it has the possibility of 
improving the performance for some types of the 
search algorithms.  This is of particular importance 
for EA-based planners, since they must converge to 
an “acceptable” (e.g. flyable and collision-free) 
solution in a finite time. 

For the EA-based path planner, step (4) will be 
a mapping of the population from the previous 
cycle into a valid population for the next cycle: 

1+Γ→Γ ii  (13) 

The objective of the mapping is to create a 
population of paths that meet the constraints of the 
search algorithm; (a) all start from the same 
location (position/heading), and (b) are made from 
segments that meet the vehicle performance 
constraints – while retaining as much as possible of 
the characteristics of the original population; (c) a 
high level of fitness, and (d) wide “variability”. We 
will do so with the following steps (see Figure 10): 

1. Choose the path from the population of 
iteration i  with the best fitness value.  This 
is depicted as the black path in the left-most 
figure. 

2. Remove the first segment from that path 

iS ]1[ .  This is the segment which the 

vehicle will travel along while iteration 
1+i  is being computed.  This is depicted 

as the magenta segment at the start of the 
black path in both figures. 

3. The new start point for the population of 
iteration 1+i  is the end point of segment 

iS ]1[ . 

4. For all other members of the population  

• Remove a number of segments from the 
start of the path (equal to the number of 
segments required to form a join plus 
one).  These are depicted as the dashed 

parts of the green and blue paths in the 
left-most figure. 

• Add to the path a join between the end 
of iS ]1[  and the start of the (now 

shorter) path.  These are depicted as the 
red segments in the right most figure. 

 

Figure 10. Reset of Path to New Search Criteria 

 

Note that the plan update rate must be on the 
order of that required to fly a given trajectory 
segment.  This implies a tradeoff between the 
numbers of segments describing a trajectory (and 
thus freedom and flexibility of possible motions) 
and computational time required to plan the 
remaining trajectory. 

Example EA Simulation 
In this section we present the results of 

simulations which demonstrate the behavior of the 
EA-based path planner defined in this paper. 

We initialize the simulation with a single UAV 
heading towards its final goal location at a distance 
of 4km.  There are two other aircraft in the area, 
each considered as an obstacle for the UAV.  One 
obstacle is initially heading roughly parallel to the 
UAV, but later turns to cross over the UAVs 
straight line path to the goal.  A second obstacle is 
heading crosswise to the UAVs path, and later 
shifts its path to directly follow the UAVs straight 
line path to the goal.  The UAV is restricted to 
avoid the other aircraft by a distance of 0.3km. 
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The EA-based path planner is initialized with a 
set of random paths.  It is given an initial 20 
generations of evolution before time begins.  
Thereafter, it is allowed 20 generations of evolution 
each iteration before it must provide a segment for 
the UAV to fly. 

The measurement uncertainty for the location 
of the obstacle aircraft is set to 0.1km.  The 
measurement uncertainty for the velocity is set to 
5km/s.  It is assumed that no knowledge about the 
intent of the obstacle is available, and the 
uncertainty growth is set to 0.001 km/s/s. 

The UAV is restricted to speeds between 
21m/s and 34m/s.  The turn radius is restricted to be 
above 0.18km.  The UAV has enough initial fuel to 
travel 1.52 times the initial distance to the goal 
location and is not penalized for using the first 91% 
of that fuel. 

Figure 11 through Figure 17 show the results 
of the simulation at various times (time Tn 
represents the time at the beginning of the n’th 
planning cycle).  They depict the current situation, 
as well as line representing the possible future 
motion. The UAV is depicted as the blue outlined 
vehicle.  The path that it will fly as the planning 
process takes place is depicted as the thick, solid 
blue line.  The path that the UAV has already flown 
is depicted as a thin, solid blue line. The dashed, 
blue line shows the path of the population with the 
highest fitness from the previous iteration.  The 
goal location is depicted as a green circle. 

The obstacles are depicted as solid, red 
vehicles. They are following the dashed, red lines.  
These paths are unknown to the UAV path planner.  
The dotted, red circles depict the estimate given to 
the path planner of the vehicle location at the time 
that the UAV will reach the end of the solid blue 
line (the end of the planning cycle).  The radius of 
the circle includes the uncertainty at that time, as 
well as the radius of the required separation.  The 
center of the circle is derived from the current 
location and velocity of the obstacle with random 
noise added to simulate estimation error. The 
dotted, red lines represent the increase in 
uncertainty of the obstacle locations for times past 
the end of the planning cycle. 

Figure 12 also displays a typical challenge for 
a path planner that allows the uncertainty of 

obstacle locations to grow with time: the level of 
that uncertainty must be weighed against other 
costs. The uncertainty can grow very large, and 
completely cover all paths to the goal location.  
Because of this, a simple solution of avoiding all 
possible locations of the obstacle results in a 
problem with no solution. The best solutions are 
those that can trade off a small probability of 
obstacle intersection against other performance 
constraints. 
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Figure 11. Simulation State at time T3 
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Figure 12. Simulation State at time T5 
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Figure 13. Simulation State at time T7 
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Figure 14. Simulation State at time T9 
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Figure 15. Simulation State at time T10 
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Figure 16. Simulation State at time T11 
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Figure 17. Simulation State at time T12 
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Figure 18. Moving Through Time (T4) 
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Figure 19. Moving Through Time (T14) 

 

Figure 18 and Figure 19 show the final path 
flown by the UAV (without depiction of any future 
uncertainty of the vehicles) at two different times.  
This is what would have been seen by an outside 
observer. The dotted, red circles around the obstacle 
vehicles represent the size of the restricted approach 
distance. As can be seen, the UAV successfully 
avoids the two obstacle UAVs without any 
knowledge of their future intent, while maintaining 
all vehicle speed and fuel use constraints. 

Summary and Conclusions 
We have presented a simple framework for 

path planning using evolution based algorithms, 
which allows for consideration of uncertainty in 
estimates of the parameters describing obstacles in 
the environment, as well as changes in those 
parameters over time. 

We have presented a method for construction 
of a dynamic planner from the static version 
through the addition of a state update function. 

The structure of the planner was such that the 
path generated was continuous in space and within 
the speed and maneuverability constraints of the 
UAV. 

We demonstrated the behavior of the path 
planning algorithm by application to scenarios 
where the UAV was required to modify its path to 
avoid a number of other aircraft flying in its 
vicinity.  The UAV was able to successfully avoid 
all other aircraft without the need for aggressive 
avoidance maneuvers or any previous knowledge of 

the future trajectories of the other aircraft.  The 
planner was able to effectively balance the 
likelihood of collision against the fuel required to 
implement overly cautious avoidance behavior. 
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