
 1

AN EVOLUTION BASED PATH PLANNING ALGORITHM FOR
AUTONOMOUS MOTION OF A UAV THROUGH UNCERTAIN

ENVIRONMENTS

David Rathbun, Ph.D., Sean Kragelund, Anawat Pongpunwattana,
University of Washington, Seattle, WA

Brian Capozzi, Ph.D., Metron Aviation, Inc., Herndon, VA

Abstract
Adaptive and intelligent on-board path

planning is a required part of a fully autonomous
UAV. In controlled airspace, such a UAV would
have to interact with other vehicles moving though
its environment. The locations of obstacles (other
vehicles) that form obstructions in the environment
may only be known with limited accuracy.
Evolutionary algorithms (EA) have been
successfully used to compute near-optimal paths
through obstructed, dynamically changing
environments. Explicitly accounting for the
uncertainty of the obstacles can result in the
survival of "best" paths which differ from those that
would be favored in a purely deterministic
environment. In this paper, we consider the
application of evolution-based path planning to the
motion of an unmanned air vehicle (UAV) through
a field of obstacles at uncertain locations. We begin
with the static form of the EA algorithm for
generating a path at a single point in time. We
describe the algorithm and show its behavior,
specifically how it responds differently based on the
known accuracy of the predictions of the
environment. We then show how the static structure
can be extended to consider the uncertainties which
change with time. We demonstrate by application
to path planning through a field of moving obstacles
whose future motion is uncertain.

Introduction
The use of Unmanned Air Vehicles (UAVs)

has been increasing recently. Such aircraft, when
operating fully autonomously, are capable of
planning their own trajectory for transitioning
between desired locations, and often also for
avoiding any fixed obstacles in their path. A

number of authors have suggested algorithms for
autonomous path planning. These include methods
such as potential fields [1], graph search methods
like A* and D* ([2],[3]), and evolutionary
algorithmic (EA) techniques ([4],[5]).

Traditionally, however, UAVs have been
restricted to operating in areas that do not contain
any other vehicles outside the control of the
authority in charge of the UAV. If we desire to
move the use of UAVs outside of that restriction
and into areas of general use, the UAV must be able
to plan a path that not only avoids fixed obstacles,
but can effectively deal with moving obstacles
(other vehicles) as well.

Changing the planning problem from fixed
obstacles to moving ones changes the problem from
a geometric one (“don't enter this area”) to a
dynamic one (“don't enter this area at this time
while considering your ability to change your
location at that time”). Equally importantly, it also
changes it from a deterministic problem to a
stochastic problem.

To plan a path which avoids a moving
obstacle, we need to avoid the location occupied by
the obstacle (other vehicle) at some future time. But
for most non-trivial cases, the future location of the
obstacle (other vehicle) can only be estimated.
There will be some degree of uncertainty associated
with that motion. A truly effective path planner is
one that can deal directly with the combination of
the expected motion of the obstacles, the
uncertainty in their location, and how that
uncertainty changes with time.

Depending on the nature of the specific
situation, the degree of uncertainty in the future
location of another vehicle can vary. A commercial
aircraft following a flight plan (or failing to follow)
has a different level of uncertainty than an

 2

uncontrolled personal aviation aircraft. For a
military scenario, an intelligent adversarial aircraft
would have an even higher level of uncertainty. All
of these situations can be thought of as the same
general problem, but with different levels of growth
of uncertainty.

One approach to handling environmental
uncertainty is the Markov localization of Fox
([6],[7]). For evolution-based methods, uncertainty
handling was presented in a simple fashion by
Latourell [8]. A more complete approach for static
obstacles was presented by Rathbun [9].

The uncertainty in an obstacle’s location will
typically grow as we try to predict further into the
future. Because of that growth, there will come a
point during actuation (flying) of distant parts of a
planned path when the current (e.g. sensed)
uncertainty of an obstacle location will be smaller
than the uncertainty used in the earlier plan.
Therefore, at some point it is appropriate to re-plan.
Taking this to the extreme (plan over 2000s, fly first
2s, plan over 2000s, fly 2s, ... etc.), we transform
from a static planner into a dynamic planner.

By considering this growth of uncertainty with
time in conjunction with re-planning, we are
predicting a motion so that the near term motion
will place the vehicle into a location so as to
maximize the likelihood of success of the far term
motion (e.g. maximize the likelihood that the plan
can be executed without change). This does not
imply that such a planner would take the place of an
ultra-fast, rule based, obstacle avoidance safety
system (i.e. TCAS). At low levels of integration,
the path planner considers a long time horizon to
minimize the likelihood that the avoidance safety
system is used. At higher levels of integration, the
avoidance safety system might condition its conflict
resolution based on the “outer” loop path planner
downstream recommendations.

For faster updated rates of a dynamic planner,
performance (speed of response) may become an
issue. Ideally, the problem being solved is a nearby
problem to the original planning problem –
potentially admitting a nearby solution (e.g. one
that does not require a drastic change in UAV
trajectory). A desired feature of a path planner is the

ability to increase performance by using as much as
possible of the previous plan when computing the
new plan.

In this paper we present a design for such a
dynamic, stochastic path planner based on
evolutionary algorithmic (EA) techniques. The EA-
based methods have a number of desirable features,
making them appropriate for this problem. One is
their ability to consider non-linear performance
metrics, which will allow for joint consideration of
geometric avoidance, time based dynamics, and
vehicle performance limitations. Another desirable
feature is the EA structure of iterative solution
improvements over an internal state. This will
allow for the condition at the end of one planning
cycle to more easily be used as a good starting
condition for the next cycle.

In section 2, we present the structure of the
EA-based path planner that we have chosen. In
section 3, we show how the planner deals with the
uncertainty in the obstacle locations and how it
deals with the change in that uncertainty over time.
In section 4, we show how the results of a previous
planning solution can be incorporated into a re-
planning to form a true dynamic planner. In section
5, we present some results of the planner, showing
its behavior while flying through a field of moving
obstacles whose future motion is uncertain.

Structure of Path Planner
We will begin in this section with a description

of the static form (starting location and time does
not change) of an evolutionary algorithm (EA)
based method for solving the desired path planning
problem. Those who desire a more in-depth
description of general EA-based path search
algorithms or their behaviors should see ([10],[11]).

EA-based path planning algorithms use a
population of solutions and random modifications
to those solutions to form a structured, stochastic
search. See Figure 1. The population is seeded
randomly. The algorithm is then run in a loop. At
each step (or generation), additional paths
(members) are first added to the population by
modifying current members (a mutation) or by

 3

Population

Produce
Offspring

(mutation)

Evaluate
(fitness)

Selection

Decode

Environment

Vehicle
Capabilities

Goals

Constraints

Path Encoding Best
Path

Figure 1. Overview of Evolutionary Search

mixing two or more current members
(reproduction). Then the cost function is used to
score (the fitness of) all members of the larger
population. Based on those scores, the population is
reduced (the selection) back to its initial size.
Those paths that score well are likely to be retained;
those that score poorly are likely to be dropped.

Our encoding of the paths is a sequence of
simple splines (termed segments) chained end-to-
end. There are two types of splines: straight lines
and constant radius curves. See Figure 2. Mutation
parameters include: length, radius, and end speed.
Speed and turn radius parameters are limited to
keep motion within the vehicle capabilities. For
line segments, the speed along the segment
transitions linearly from start to end speed. We
enforce continuity between the joining end and
beginning point positions, headings, and speeds.

start position,
heading, speed

start position,
heading, speed

Figure 2. Elemental Path Segment Types

We have four mutation mechanisms:

• Mutate and Propagate – randomly
changes the parameters of one or more
segments, and then re-locates all
following segments to enforce the end
point constraints. The first segment to be
mutated and the number of segments to
be mutated are chosen at random. See
Figure 3(a). The dashed line is the path
before the mutation. The solid line is the
path after mutation. The red segments
are those that have been mutated.

• Crossover – takes the starting segments
of one path and the ending segments of
another, and matches them up using a
point-to-point-join function. See Figure
3(b). The two parent paths are the black
and blue lines. The resultant path is the
solid line. The point-to-point-join
function is the two red segments.

• Go to Goal – chooses a random segment
near the end point and uses the point-to-
point-join function to match directly
from the start location of that segment to
the goal location. See Figure 3(c).

• Mutate and Match – changes the
parameters of one or more segments,
computes the new resultant end point for
those segments (similar to Mutate and
Propagate), and then connects back to the
start of another segment of the path
further along. The beginning segment

 4

and the segment joined to are both
chosen at random. See Figure 3(d). The
solid line is the resultant path. The blue
segments are the mutated segments. The
red segments are the result of the point-
to-point-join function.

(a) Mutate and Propagate

(b) Crossover

(a) Go to Goal

(a) Mutate and Match

Figure 3. Path Mutation Mechanisms

For each generation, one of the mutation
mechanisms chosen at random is applied to each
path in the population (the original path is retained
in the population). The population size is started at
20 paths, and then mutated up to 40 paths. The
broad range of mutation types is included in an
effort to give the path search algorithm an improved
chance of avoiding local minima.

Several of the mutation mechanisms are
enabled by a point-to-point-join function. This
function takes a starting location (position and
heading) and determines the parameters for two
segments that will link to an ending location, while
meeting the continuity requirements. Without this
function, continuity would not be enforced. An
illustration of the nature of the geometric solution
required to make these joins is shown in Figure 4.
There are two possible solutions, depending on
whether the curvature of the two arc segments is in
the same or opposite directions. For creating a join,
both types are calculated and the one with the
shortest total length is used.

In the left-most figure, the construction begins
with lines emanating from the endpoints of each
path segment, perpendicular to the segment
direction. At a distance R from the segment end
point along these lines would be the join segment
center points. The two resultant center points must
be a distance R2 from each other. Solving this
geometrical constraint for R gives the solution.
The common endpoint for each join segment is the
point half way between each center point.

In the right-most figure, the construction
begins with the line connecting the two path
segment endpoints, and the two rays tangent to the
path segment endpoints. Moving a distance A
along one ray and then a distance A along a line
parallel to the connection line gives the possible
common endpoint to the join segments. Doing the
same from the other endpoint with a distance of B
must give the same common point. This
geometrical constraint can be solved for A and B .
The center of the arc is the point of intersection of a
line perpendicular to the connection line through
the common point, and a line perpendicular to one
of the segment endpoints. This solution is derived
from Kosugi ([12]).

Note that the solution must be constrained by
the minimum turn radius of the vehicle. In the
event that either radii for the join is beyond the
vehicle capability, the join is considered to have
failed and a new mutation (chosen at random) is
applied to the parent path.

 5

X

Y

solve for R...

X

Y

solve for a,b...

Figure 4. Geometric Constructions Used for
Point-to-Point Join Function

The selection process for the larger population
is based on a round robin tournament. Random
pairs of paths are chosen to compete. The winner is
selected based on relative fitness, but includes a
random component to occasionally let a lower-
performing individual win (e.g. survive). Those
paths with the greatest number of wins at the end of
the tournament are passed on to the next generation.
The process is elitist, in that the path with highest
fitness is always passed on to the next generation.

We define the objective of the simple search
problem as determination of a path that reaches the
goal location, minimizes the probability of
intersecting an obstacle, while minimizing the fuel
required. This is subject to the constraints that the
path is continuous from the start location to the goal
location and does not violate minimum or
maximum speeds or minimum turn radii. We will
present the discussion in a two dimensional (2-D)
context. We will mention the three dimensional (3-
D) problem only when it requires something
beyond a simple extension of the 2-D concepts.

We use a cost function consisting of a linear
combination of the separate objectives of interest:

() () ()iii PBaPFaPGaJ 1321 ++= (1)

where)(PG represents a measure of the proximity

of the path end point to the goal location,)(PF is

a measure of the percentage of fuel used,)(1 PB
represents the probability that the path intersects an
obstacle, and 1a , 2a , and 3a are relative weighting

factors. The EA-based path planner attempts to find
a path that minimizes this cost function. The

continuity and motion constraints are enforced by
the path encoding and mutation mechanisms.

Obstacle Intersection Probability and
Timing

To compute the cost function (fitness value)
for the EA path search algorithm given above, we
need an approximation of the probability that a
given path will intersect with one or more obstacles.
To get this probability, we will characterized an
obstacle (O) in terms of an expected position (C)
an expected velocity (v), a safe approach radius
(D), an uncertainty specification for the location
(σ), and an uncertainty specification for the
velocity (τ).

For stationary obstacles, it was shown in [9]
that for a path

iP and one obstacle
jO the

probability of intersection of the path/obstacle pair
can be approximated as a summation over the path
length of a probability density field (β) that
surrounds the obstacle.

() ()() sCsPOPB jjki
k

ji ∆−∏= σβ , ,2 (2)

where 2B is the probability of intersection,
jC is

the expected location of obstacle
jO , s is the

distance along the path, and s∆ is the path length
between points ()ki sP and ()1−ki sP . The probability

density field β is defined as

() () ()
r

DrpDrp
r

π
σσσβ

2

,,
,

−−+=
(3)

where),(σrp is the probability that the actual
obstacle location is within a distance r of the
expected location C (i.e. the probability
distribution).

∫=
r

yyyrp
0

d),(2),(σρπσ (4)

where),(σρ y is the probability density function
for the possible locations of the obstacle. For

0<r we define:

() 0 ,),(<−= rrprp σσ (5)

For an obstacle probability density with a
uniform distribution (that used in the simulations),

 6

the distribution function used to construct the field
as defined in equation (3), is given as,

>
≤

=
σ
σσσ

r

rr
rp

1

/
),(

22

(6)

One advantage of the approximation to the
probability of intersection of equation (2) is the ease
with which it can be extended to consider moving
obstacles. It is the form of the solution – a
summation over a parametrically defined function –
that allows for the simple inclusion of time into the
equations. Equation (2) simply becomes:

() () () ()() sTTCsPOPB kjkjki
k

ji ∆−∏= σβ , ,2

(7)

where kT is the time at which

() ()ksPsP = (8)

To compute the obstacle location at a given time,
()kTC , without any other indication of its intent, we

will use a simple dynamic propagation

() () ()00 TTvTCTC kk −+= (9)

If some other indication of vehicle intent is known
(filed flight plan, expectation of strategy from
gaming theory, etc.) then that could be used in place
of Equation (9).

There are a number of terms that must be
considered for propagation of the location
uncertainty, ()kTσ . Since the current obstacle

location and velocity are estimated quantities, there
will be an initial uncertainty in the position. The
uncertainty in the initial velocity will also couple
through the position propagation via equation (9).
So, for a vehicle with no action to change its
trajectory from a straight line, the minimum
uncertainty propagation becomes

() () ()000 TTTT kk −+= τσσ (10)

Additional terms need to be added to account for
action taken by the vehicle (whether intentional or
not). A simple model is to assume that the vehicle
can apply a fixed acceleration, a , in a random
direction. The uncertainty would then grow as

() () () ()2
0000 2

TT
a

TTTT kkk −+−+= τσσ
(11)

This may be a good model for a hostile aircraft,
whose motion is unpredictable. For a commercial

flight following a known trajectory (perhaps badly),
a better model might be an uncertainty which
grows, but is limited to some upper value. There are
many other possible ways to compute future
uncertainty. While the structure of the EA-based
planner allows for inclusion of nearly any method,
we will not provide any further discussion of
possible estimation techniques. For all the
simulation results presented, the uncertainty
propagation model is that of equation (11).

If we can assume that the location of each
obstacle is independent of the location of all other
obstacles, we can express the total probability of
intersection of a path with one or more obstacles as,

() (){ }ji
j

i OPPB ,B-1 1 21 ∏−= (12)

Figure 5 through Figure 7 illustrate the
behavior of this static planner (captured via
snapshots at three different generations) as it
considers the motion of the obstacle over time.
Here, the UAV (blue outlined vehicle) is heading to
the right, trying to reach the goal location (circle,
shown in green). The obstacle vehicle is heading
vertically up the page. The dashed circles
correspond to the planner’s estimate of uncertainty
at different times – which is seen to grow the
further the planner plans (e.g. as the obstacle
vehicle moves further up the page). In this case, if
the UAV were to travel straight to the goal, it would
exactly collide with the expected center of the
moving obstacle.

The fitness function for this simulation allows
the UAV to use 7.2kg of fuel before incurring any
penalty, where the straight line path to the goal
would have required 7.9kg. With such a low penalty
on fuel usage, the UAV path planner is
conservative, choosing a path that has a minimal
encroachment onto the obstacle uncertainty region.

Figure 8 and Figure 9 show the time history of
the motion after the planning has been completed.
The UAV initially heads to its right to come around
behind the moving obstacle. It then heads almost
straight to the goal, in so doing only entering the
uncertainty region of the obstacle by a very small
amount.

 7

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Figure 5. Static path planning showing the effect
of moving, uncertain obstacles (at generation 20)

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Figure 6. Static path planning showing the effect
of moving, uncertain obstacles (at generation 40)

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Figure 7. Static path planning showing the effect
of moving, uncertain obstacles (at generation 60)

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Figure 8. Moving through time (time t1)

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

Figure 9. Moving through Time (time t2)

Re-Planning
Since the uncertainty in the location of

obstacles in the UAV’s environment grows over
time, after the path has been actuated for a period of
time, the measurements of the obstacle locations
will diverge from the predicted locations. This calls
for re-planning the vehicle path.

Planning over time requires an iterative
solution with the following steps:

1. Plan path with “best probability” of success

2. Move along path a given (small?) distance

3. Update estimates of obstacle locations and
motion. Update vehicle locations

 8

4. Use the previous solution to seed initial
conditions for a new search

5. Re-plan path

6. go to Step (2)

Step (4) is an attempt to save the knowledge gained
from the previous planning cycle for the next
search. If done well, it has the possibility of
improving the performance for some types of the
search algorithms. This is of particular importance
for EA-based planners, since they must converge to
an “acceptable” (e.g. flyable and collision-free)
solution in a finite time.

For the EA-based path planner, step (4) will be
a mapping of the population from the previous
cycle into a valid population for the next cycle:

1+Γ→Γ ii (13)

The objective of the mapping is to create a
population of paths that meet the constraints of the
search algorithm; (a) all start from the same
location (position/heading), and (b) are made from
segments that meet the vehicle performance
constraints – while retaining as much as possible of
the characteristics of the original population; (c) a
high level of fitness, and (d) wide “variability”. We
will do so with the following steps (see Figure 10):

1. Choose the path from the population of
iteration i with the best fitness value. This
is depicted as the black path in the left-most
figure.

2. Remove the first segment from that path

iS]1[. This is the segment which the

vehicle will travel along while iteration
1+i is being computed. This is depicted

as the magenta segment at the start of the
black path in both figures.

3. The new start point for the population of
iteration 1+i is the end point of segment

iS]1[.

4. For all other members of the population

• Remove a number of segments from the
start of the path (equal to the number of
segments required to form a join plus
one). These are depicted as the dashed

parts of the green and blue paths in the
left-most figure.

• Add to the path a join between the end
of iS]1[and the start of the (now

shorter) path. These are depicted as the
red segments in the right most figure.

Figure 10. Reset of Path to New Search Criteria

Note that the plan update rate must be on the
order of that required to fly a given trajectory
segment. This implies a tradeoff between the
numbers of segments describing a trajectory (and
thus freedom and flexibility of possible motions)
and computational time required to plan the
remaining trajectory.

Example EA Simulation
In this section we present the results of

simulations which demonstrate the behavior of the
EA-based path planner defined in this paper.

We initialize the simulation with a single UAV
heading towards its final goal location at a distance
of 4km. There are two other aircraft in the area,
each considered as an obstacle for the UAV. One
obstacle is initially heading roughly parallel to the
UAV, but later turns to cross over the UAVs
straight line path to the goal. A second obstacle is
heading crosswise to the UAVs path, and later
shifts its path to directly follow the UAVs straight
line path to the goal. The UAV is restricted to
avoid the other aircraft by a distance of 0.3km.

 9

The EA-based path planner is initialized with a
set of random paths. It is given an initial 20
generations of evolution before time begins.
Thereafter, it is allowed 20 generations of evolution
each iteration before it must provide a segment for
the UAV to fly.

The measurement uncertainty for the location
of the obstacle aircraft is set to 0.1km. The
measurement uncertainty for the velocity is set to
5km/s. It is assumed that no knowledge about the
intent of the obstacle is available, and the
uncertainty growth is set to 0.001 km/s/s.

The UAV is restricted to speeds between
21m/s and 34m/s. The turn radius is restricted to be
above 0.18km. The UAV has enough initial fuel to
travel 1.52 times the initial distance to the goal
location and is not penalized for using the first 91%
of that fuel.

Figure 11 through Figure 17 show the results
of the simulation at various times (time Tn
represents the time at the beginning of the n’th
planning cycle). They depict the current situation,
as well as line representing the possible future
motion. The UAV is depicted as the blue outlined
vehicle. The path that it will fly as the planning
process takes place is depicted as the thick, solid
blue line. The path that the UAV has already flown
is depicted as a thin, solid blue line. The dashed,
blue line shows the path of the population with the
highest fitness from the previous iteration. The
goal location is depicted as a green circle.

The obstacles are depicted as solid, red
vehicles. They are following the dashed, red lines.
These paths are unknown to the UAV path planner.
The dotted, red circles depict the estimate given to
the path planner of the vehicle location at the time
that the UAV will reach the end of the solid blue
line (the end of the planning cycle). The radius of
the circle includes the uncertainty at that time, as
well as the radius of the required separation. The
center of the circle is derived from the current
location and velocity of the obstacle with random
noise added to simulate estimation error. The
dotted, red lines represent the increase in
uncertainty of the obstacle locations for times past
the end of the planning cycle.

Figure 12 also displays a typical challenge for
a path planner that allows the uncertainty of

obstacle locations to grow with time: the level of
that uncertainty must be weighed against other
costs. The uncertainty can grow very large, and
completely cover all paths to the goal location.
Because of this, a simple solution of avoiding all
possible locations of the obstacle results in a
problem with no solution. The best solutions are
those that can trade off a small probability of
obstacle intersection against other performance
constraints.

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 11. Simulation State at time T3

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 12. Simulation State at time T5

 10

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 13. Simulation State at time T7

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 14. Simulation State at time T9

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 15. Simulation State at time T10

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 16. Simulation State at time T11

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 17. Simulation State at time T12

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 18. Moving Through Time (T4)

 11

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 19. Moving Through Time (T14)

Figure 18 and Figure 19 show the final path
flown by the UAV (without depiction of any future
uncertainty of the vehicles) at two different times.
This is what would have been seen by an outside
observer. The dotted, red circles around the obstacle
vehicles represent the size of the restricted approach
distance. As can be seen, the UAV successfully
avoids the two obstacle UAVs without any
knowledge of their future intent, while maintaining
all vehicle speed and fuel use constraints.

Summary and Conclusions
We have presented a simple framework for

path planning using evolution based algorithms,
which allows for consideration of uncertainty in
estimates of the parameters describing obstacles in
the environment, as well as changes in those
parameters over time.

We have presented a method for construction
of a dynamic planner from the static version
through the addition of a state update function.

The structure of the planner was such that the
path generated was continuous in space and within
the speed and maneuverability constraints of the
UAV.

We demonstrated the behavior of the path
planning algorithm by application to scenarios
where the UAV was required to modify its path to
avoid a number of other aircraft flying in its
vicinity. The UAV was able to successfully avoid
all other aircraft without the need for aggressive
avoidance maneuvers or any previous knowledge of

the future trajectories of the other aircraft. The
planner was able to effectively balance the
likelihood of collision against the fuel required to
implement overly cautious avoidance behavior.

Acknowledgments
This research for this paper was completed

under funding from the DARPA Mixed Initiative
Control of Automa-Teams (MICA) project. The
authors would like to thank both DARPA and our
contracting agency, SPAWAR Systems Center San
Diego, CA, (contract N66001-01-C-0089) for their
support that made this work possible.

References
[1]. Khatib, O., 1986, “Real-Time Obstacle

Avoidance for Manipulator and Mobile
Robots, International Journal of Robotics
Research, Vol. 5, No. 1, pp. 90-98.

[2]. Mitchell, J.S.B., and D.M. Keirsey, 1984,
“Planning Strategic Paths through Variable
Terrain Data”, Proc. of the SPIE Conference
on Applications of Artificial Intelligence,
Vol. 485, Arlington, VA, 1984, pp. 172-179.

[3]. Stentz, A., 1994, “Optimal and Efficient Path
Planning for Partially-Known
Environments”, Proc. of the 1994
International Conference on Robotics and
Automation, Vol. 4, Los Alamitos, CA., pp.
3310-3317.

[4]. Fogel, D.B., and L.J. Fogel, 1990, “Optimal
Routing of Multiple Autonomous
Underwater Vehicles through Evolutionary
Programming, Proc. of the 1990 Symposium
on Autonomous Underwater Vehicle
Technology, Washington, D.C., pp. 44-47.

[5]. Capozzi, B.J., and J. Vagners, 2001,
“Evolving (Semi)-Autonomous Vehicles”,
Proc. of the 2001 AIAA Guidance,
Navigation and Control Conference,
Montreal, Canada.

[6]. Thrun, S., D. Fox, and W. Burgard, S. Thrun
and D. Fox and W. Burgard}, 1998, “A
Probabilistic Approach to Concurrent
Mapping and Localization for Mobile

 12

Robots”, Machine Learning and Autonomous
Robots, Vol. 31.

[7]. Fox, D., W. Burgard, and S. Thrun, 1999,
“Markov Localization for Mobile Robots in
Dynamic Environments”, Journal of
Artificial Intelligence Research, Vol. 11.

[8]. Latourell, J., B. Wallet, and B. Copeland,
1998, “Genetic Algorithm to Solve
Constrained Routing Problem with
Applications for Cruise Missile Routing “,
SPIE Proceedings, Applications and Science
of Computational Intelligence, Vol. 3390, pp.
490-500.

[9]. Rathbun, D., and B.J. Capozzi, 2002,
“Evolutionary Approaches to Path Planning
through Uncertain Environments”, Proc. of
AIAA's 1st Technical Conference and
Workshop on Unmanned Aerospace Vehicles,
Systems, Technologies, and Operations,
Portsmouth, VA.

[10]. Xiao, J. et al., 1997, “Adaptive Evolutionary
Planner/Navigator for Mobile Robots,” IEEE
Transactions on Evolutionary Computation,
Vol. 1, No. 1, pp. 18-28.

[11]. Capozzi, B.J., 2001, “Evolution-Based Path
Planning and Management for Autonomous
Vehicles”, Ph.D. Thesis, University of
Washington.

[12]. Kosugi, M. and T. Teranishi, 1977,
“Construction of a Curve Segment with Two
Circular Arcs”, Transactions of the IECE of
Japan, section E, vol. E60, No 11, p. 684

