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This article introduces a market-based cooperation planning system for a team of 

autonomous vehicles operating in a dynamic environment.  The system combines the 

flexibility of evolution-computation techniques with the distributed nature of market 

strategy to compute task and paths plans.  Optimization is based on a team utility function 

which accounts for uncertainty in knowledge of the environment.  Multiple vehicles will 

cooperate on the same task if doing so increases the predicted team utility value.  The team 

utility function and the associated stochastic model that predicts future system states are 

described.  The minimum required information exchange among the vehicles is identified.  

Simulation results, using the Boeing Company developed Open Experimental Platform, 

demonstrate the effectiveness of the planning.  

Nomenclature 

 A = task allocation matrix 

i

vB  = probability that the path of vehicle v intersects target location of task i 

v

jB  = probability that vehicle v collides with obstacle j 

vC  = function to compute the expected operation cost of vehicle v 

 D = team task plans 

 Dv = task plan of vehicle v 

Vd  = task assignment vector 
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  f = state transition function 

i

vH  = probability that task i will be completed by vehicle v 

v

jH  = probability that vehicle v will be destroyed by obstacle j 

  J = team utility function 

  Jv = individual utility function of vehicle v 

 NO = number of obstacles 

 NS = number of sites 

 NT = number of tasks 

 NV = number of vehicles 

 Q = planned trajectories of all vehicles 

 Qv = planned trajectory of vehicle v 

iR  = expected value of task score obtained by executing task i 

 xE = states of the environment 

 xF = task states 

F

ix  = expected value of the state of task i 

 xV = states of vehicles 

 u = control inputs to the system 

 zE = site positions 

Ez  = expected values of site positions 

Ez  = site velocities 

Ez  = expected values of site velocities 

 zV = vehicle positions 

Vz  = expected values of vehicle positions 

Vz  = commanded vehicle positions 

Vz  = vehicle velocities 

Vz  = expected values of vehicle velocities 



Vz  = commanded vehicle velocities 

F

iα  = score weighting factor of task i 

Qα  = path cost weighting factor 

V

vα  = vehicle cost weighting factor of vehicle v 

O

jη  = effectiveness of the payload of obstacle j 

V

vη  = effectiveness of the payload of vehicle v 

ξE = health states of sites 

Eξ  = expected values of health states of sites 

 ξO = health states of obstacles 

Oξ  = expected values of health states of obstacles 

ξV = health states of vehicles 

Vξ  = expected values of health states of vehicles  

 πi = price of task i 

 ρx = probability density function of the uncertainty in site positions 

 ρv = probability density function of the uncertainty in site velocities 

x

jσ  = bound of the uncertainty in the position of site j 

v

jσ  = bound of the uncertainty in the velocity of site j 

i
wτ  = estimated execution time of task i 

 

I. Introduction 

In this work we investigate dynamic planning for a team of autonomous vehicles to cooperatively execute a set 

of tasks.  Communication of the proposed solution benefits from dynamic presentation of the simulation results.  

Included with this work are representative examples based on simulations using the Boeing Company developed 

Open Experimental Platform (OEP). 



Interest in the use of unmanned vehicles is increasing.  The Department of Defense has a variety of research 

programs whose objectives include the development of the technologies that enable unmanned vehicles.  The DoD 

envisions using various types of unmanned vehicles; unmanned ground vehicles (UGVs), unmanned aerial vehicles 

(UAVs), and unmanned underwater vehicles (UUVs) in its future combat systems1. Unmanned vehicles are also 

envisioned for many civilian applications such as weather forecasting, reconnaissance, search, and rescue missions, 

and observation during wildfire incidents. 

A vehicle with the ability to independently plan, adapt, and execute its actions based on sensed or communicated 

information, is referred to as an autonomous vehicle. 

 In complex applications, the environment in which a vehicle operates is dynamic and uncertain.  Therefore, it is 

not practical to execute a plan that was computed prior to the start of the mission.  Consequently, a planning system 

is needed that is capable of replanning on-line in real time to adapt the precomputed plan in response to changes.  

This concept essentially transforms the vehicles from passive command followers to active decision makers. 

For certain missions, multiple autonomous vehicles may be required.  Planning for multiple vehicles involves not 

only generating trajectories for the vehicles, but also the coordination of their task execution.  The challenging 

aspect of this problem is to generate plans that obtain higher performance by means of coordination and cooperation. 

Intelligent Planning is among the key technologies for achieving increased autonomy of unmanned vehicles.  

Planning is an active research area in the Artificial Intelligence community and the modern gaming industry. 

Planning is a decision making process requiring processing time, which limits the responsiveness of the system.  

Another approach to autonomous action is reactive behavior-based control, in which the vehicle is preprogrammed 

with a set of behaviors to react to particular events. With reactive behaviors, the vehicle can respond quickly, which 

may be desirable, e.g. in collision avoidance or tactical operations in dense urban terrain.  However, purely reactive 

behaviors can result in inefficient actions or instability.  Therefore, an intelligent autonomous vehicle must be able 

to plan its future actions continuously, while allowing for tactics which include reaction to sudden changes.  

A. Problem Definition 

The question we consider in this research is: how should a networked team of autonomous vehicles behave to 

complete a set of tasks in a dynamic environment?  This poses a complex problem which includes coordination 

among the vehicles, and generation and assignment of paths that support the executions of these tasks.  These paths 

must be constrained to the vehicle capabilities, traverse multiple target regions, and avoid collision with obstacles 



and other team members in a dynamic hostile environment.  All computational processing and communication must 

be achieved in real time on board the aircraft.  Our approach to this problem is based on the design of autonomous 

task and path planning algorithms for a system for networked UAVs. We call the combination planning-system. 

Dynamic uncertainty in the environment is a major aspect of the problem. The autonomous vehicles operate in 

an environment where the available information about the environment is known with limited level of certainty.  

Ideally, the planning-system reacts to unanticipated threats and opportunities efficiently and effectively.  Generated 

plans should maximize the probability of future success of the mission based on the latest available information.  

The planning-system must have the ability to dynamically reallocate tasks among the vehicles and continually adapt 

their paths. 

 

Fig. 1 Illustration of a reconnaissance mission 

Failures of system components are likely during complex missions, e.g. failures in communication links or a 

damaged team member.  The planning-system must be able to adapt to unexpected failures. 

The planning-system developed in this research can be applied to several types of missions.  An example is a 

reconnaissance mission whose objective is to obtain information by visual observation or other detection methods in 

specific areas.  In this example scenario, a team of autonomous vehicles is assigned to collect data of camp sites.  

The vehicles have on-board sensors which can collect information and communication devices to transmit the data.  

The vehicles have to minimize exposure to threats.  The exact locations of the camp sites and threats are unknown.  

What is known are the general areas where these camp sites and threats might be located.  The camp sites and 

threats might move during the mission.  Their future motions, however, are unknown at mission initiation. The 



information about the operating field is updated and shared among the vehicles during the operation.  All the 

vehicles are required to reach a goal location at the end of the mission.  This mission is illustrated in Fig. 1. 

B. Assumptions 

The planning-system is based on the following assumptions.  First, each vehicle contains a guidance system 

capable of guiding the vehicle along its path.  Second, each vehicle activates its payload according to the planned 

actions. Third, each vehicle communicates information with other vehicles and ground stations.  Bandwidth and 

quality of these communication channels may be limited.  Lastly, each vehicle merges data from its sensors and 

information from other vehicles to estimate system states. 

C. Contributions 

This article provides the following contributions. First, we develop a unique market-based distributed planning 

framework for coordinating multiple autonomous vehicles.  This framework was designed to solve a class of 

complex planning problems posed by the DARPA’s MICA program.  Such problems have not been solved 

previously with the given constraints.  Second, we introduce a stochastic dynamic world model and a team utility 

function both of which take into account the uncertain information of the environment and the coupling in the states 

of the system. Third, we develop a unique approach using evolution-based algorithms for allocating tasks and path 

planning simultaneously. We further extend the planning algorithms for dynamic replanning using the concept of 

Model Predictive Control.  Lastly, we introduce a cooperative planning scheme which improves performance by 

considering probability of failure in prosecuting targets. 

II. Background 

A. Single Vehicle Planning 

To move autonomously from an initial location to a desired task location, involves a large array of engineering 

aspects, including planning of each route segment and the guidance, navigation, and control laws to follow these 

segments. 

1. Graph-Based Approaches 

A popular approach to path planning is graph-based search, e.g. Murphy2. In graph-based search the environment 

is discretized and represented by a graph which is composed of a number of nodes linked together with arcs. Each 



node usually corresponds to a location and an arc links two nodes.  There is a cost associated with each arc.  A path 

is a series of connected arcs.  The path planning problem is to find the path that minimizes the total cost.  A graph 

search algorithm such as Dijkstra’s Algorithm or the A*("A-star")-algorithm can be used to find the shortest path3.  

Thrun4 investigated the problem of high-speed navigation of indoor mobile robots using a grid-based algorithm 

called ‘value-iteration’.  The map of the environment was created autonomously from sonar and camera information 

and using Bayesian analysis techniques.  Mata and Mitchell5 proposed a new algorithm for path planning on planar 

polyhedral surfaces.  The terrain is represented as a sparse graph called ‘pathnet’.  They showed that the algorithm 

can provide highly competitive solutions.  Mandow et al.6 developed the PRIMO-A*-algorithm which extends the 

original A*-algorithm to multi-objective path planning problems.  This is a solution to problems which require that 

resultant paths be optimal but also be within the limitations of the vehicle capabilities.  Bander7 developed an 

adaptive A*-algorithm which used a heuristic function to improve convergence of the A*-algorithm.  This work also 

investigated mechanisms for incorporating sources of a-priori knowledge, and human inputs, to accelerate the search 

process.  

2.  Probabilistic Roadmap Planners 

Probabilistic roadmap planning (PRM) is an efficient method to compute collision-free paths for vehicles or 

robots with many degrees of freedom8.  This method consists of two phases, a building and a query phase.  The 

building phase is the construction of a graph called ‘roadmap’.  The nodes in the roadmap are collision-free 

configurations and the edges linking the nodes are collision-free paths.  The query phase is finding a path between 

an initial and goal configurations by connecting these nodes to the road map and searching them for a sequence of 

edges linking the two nodes.  This method was originally developed for holonomic robots in a static environment.  

Overmars9 applied PRM to holonomic and non-holonomic robots with constrained kinematics and high degrees of 

freedom, showing how this technique can be extended to handle kinematic constraints in car-like robots.  Kavraki 

and Latombe10 extended the PRM approach and applied it to several robots with 3 to 16 degrees of freedom 

operating in a known static environment.  LaValle and Kuffner11 proposed a randomized path planning technique 

related to PRM.  This technique was used to compute collision-free ‘kinodynamic’ trajectories for high degree-of-

freedom robots with kinematic and dynamic constraints operating in a cluttered environment.  Using a state space 

formulation, it transforms a n-dimension planning problem in configuration space into a 2n-dimension problem in 

state space.  Song et al.12 proposed a new method of building and querying PRMs.  In this method, some of the 



validation checks in the building phase are postponed to the querying phase.  A coarse roadmap is built during the 

building phase and further refined in the querying phase with focus on the area of interest, and customized to 

specific preferences such as maximum number of sharp turns. 

3. Evolution-Based Approaches 

Evolutionary Computation (EC) is a class of optimization methods which are inspired by the evolution processes 

found in nature.  In EC-based path planning, optimization is approached through a stochastic search method. For 

initialization, a population of paths is generated at random.  These paths are evaluated for fitness.  The path with the 

highest fitness value is selected as the candidate solution of the current generation.  The paths with high fitness 

values are selected and used to produce new candidate paths via mutation mechanisms.  This evolution process 

continues until the candidate solution meets a certain stopping criterion.  Fogel13 applied EC to optimal routing of 

AUVs, and shows that EC can handle unexpected changes, multiple goal locations, detection avoidance, and 

cooperative goal observation.  Solution to these complex problems was achieved by simply modifying a 

performance objective function.  Xiao14 presented an adaptive EC path planner for mobile robots.  This approach 

combines off-line planning and on-line replanning in the same algorithm.  A path is represented as a set of 

waypoints chosen at random connecting the initial and goal locations. The probability of selecting different mutation 

mechanisms is adapted during the search to improve performance. Potter15 developed the cooperative coevolution 

algorithm for complex planning problems, dividing evolving solutions into several interacting co-adapted 

components.  This work presents a case study involving the evolution of artificial neural networks and shows that 

this architecture can solve very complex problems which might not be possible with standard EC algorithms. 

Capozzi16,17 presented an EC technique for path planning of a UAV in a simulated dynamic environment. The 

planning algorithm was tested in several complex scenarios with varying terrain, wind variations, dynamic obstacles, 

and moving targets. The simulation results show that the EC technique can efficiently search simultaneously in 

space and time to find feasible, near-optimal solutions.  Hacaoglu and Sanderson18 demonstrated EC-based planning 

using a multi-resolution path representation.  Their approach does not require a map of the free configuration space.  

The use of the multi-resolution representation reduces the complexity and the computational cost.  This work shows 

that the planning system is efficient for mobile robots or manipulators with many degrees of freedom.  To further 

improve efficiency, they also proposed a multi-path planning algorithm that generates multiple alternative paths 

simultaneously.  Rathbun19 developed an EC-based path planner which explicitly accounts for uncertainties in the 



environment.  This planning algorithm uses probability information of the obstacle locations, and suggests an 

approximation method to compute the probability of inter-subsection of the vehicle path with an obstacle. The 

probability of the inter-subsection is used in the fitness function to evaluate candidate paths.  The present research 

builds upon these results. 

B. Multi-Vehicle Planning 

There is an increasing demand for applications where a single vehicle is not efficient, effective, or desirable.  

Examples include the desire for ‘distributed sensing’, small-scale or expendable vehicles and sensors, coordinated 

and cooperative sensing.  This demand drives a need for planning methods applicable to multiple autonomous 

vehicles.  For ease of discussion, we broadly categorize the associated efforts into three approaches: centralized, 

decentralized, and market-based. 

1. Centralized Approaches 

Centralized approaches are characterized by architectures in which only one agent manages the entire system.  

This agent can be one of the vehicles in the system or a command center.  Adams20 presented a hierarchy to control 

distributed teams of UAVs in military operation.  The hierarchy consists of several levels which contain decision 

making nodes that exchange information and interact.  It accounts for uncertainty in estimated states and the risk of 

losing team members during the mission.  The proposed structure allows human operators to interact with the 

system at any level.  Bellingham21 presented a planning system for a fleet of UAVs using mixed-integer linear 

programming.  The planning algorithm accounts for the probability of losing UAVs during the mission.  The 

proposed system can improve the probability of success of the mission and the probability of survival of the 

vehicles.  Maddula22 assigns targets to UAVs based on the objective to minimize path length as well as target 

exposure in visiting all targets.  The environment is represented by a ‘Voronoi diagram’, which is a graph of 

collision-free paths and waypoints assuming the environment is static.  The planning algorithm computes target 

assignments using a semi-greedy heuristic.  The target assignment is further refined using constrained exchange 

among the UAVs of subpaths in the Voronoi diagram. Capozzi23 developed an EC-based planning system capable of 

generating and coordinating paths for multiple autonomous vehicles.  He demonstrated this system in coordinated 

rendezvous and coordinated target coverage problems. 



2. Decentralized Approaches 

A common problem with centralized approaches to managing a large number of vehicles in complex missions is 

the lack of responsiveness to changes in the environment. The essence of a decentralized approach is the division a 

complex problem into subproblems which can be solved by components of the system.  Estlin et al.24,25  coordinated 

multiple ‘rovers’ with a planning system developed to perform scientific tasks in a dynamic environment.  The 

planning system is distributed and capable of coordinating activities among the rovers, monitoring plan execution, 

and performing replanning.  Parker26,27 developed a distributed behavior-based software architecture for fault 

tolerant cooperative control of teams of heterogeneous mobile robots.  Each robot is autonomous and has ability to 

perform high-level functions and select appropriate actions.  This system was demonstrated in a hazardous waste 

cleanup mission.  Aicardi28 presented a decentralized approach to coordinate motion of mobile robots based on team 

theory.  The planned motion is derived from conservative force field techniques.  Feddema29 provides a control 

theoretic analysis of the problem of decentralized coordination of multiple vehicles.  This work focuses on system 

properties such as stability, observability, and controllability. The analysis resulted in explicit limits on system 

parameters. 

3. Market-Based Approaches 

The concept of market-based approaches was introduced by Smith30 in his work on the ‘contract net protocol’ 

(CNP).  This concept uses an economic model to coordinate multi-agent systems.  Several researchers adopted the 

concept and extended its applicability.  Sandholm31 formalized the bidding and awarding decision process that was 

undefined in the original CNP.  Each agent is self-interested, making decisions based on its own local criteria.  This 

work also extends the CNP to allow trading of task-clusters.  Fischer32 developed a system for cooperative 

transportation scheduling.  This is an extension of the CNP using task decomposition and allocation, providing 

increased flexibility for dynamic scheduling and execution.  Wellman and Wurman33,34 developed a market-oriented 

programming technique for solving distributed resource allocation problems.  Autonomous agents in the system 

interact by offering to buy or sell commodities at fixed prices.  The market system reaches an equilibrium point 

which is analytically demonstrated.  Golfarelli35,36,37 proposed a negotiation protocol based on the CNP in which the 

only type of contract is task swapping.  The performance is improved by allowing tasks to be swapped in clusters.  A 

clustering algorithm is presented, which considers both spatial and temporal distances between tasks.  Dias and 

Stentz38 presented an architecture for coordinating multiple robots based on the concept of free market systems. The 



proposed market architecture defines explicit revenue and cost functions for the computation of bid prices.  The 

results show that the overall team profit can be maximized by allowing agents to be self-interested. 

C. Dynamic Planning 

In most applications, autonomous vehicles operate in dynamic uncertain environments, and planning systems 

must have the ability to dynamically replan when facing unexpected circumstances. Stenz39,40 developed the D* 

algorithm, which is a dynamic variant of the A* algorithm.  It generates motion plans for a mobile robot operating in 

a partially known environment. The algorithm handles situations where path cost parameters change during the 

search process.  The planning algorithm is analytically shown to be optimal and efficient for sensor-equipped robots.  

Brumitt41 developed a planning system for multiple mobile robots using the D* algorithm.  The planning system is 

capable of dynamic reassignment of tasks in order to minimize mission completion time.  In this approach, a set of 

dynamic planners are used to continually update the paths of all robots to all goals. Chien et al.42 discussed the use 

of iterative repair techniques for continuous planning.  This work presents an approach to integrate planning and 

execution in a feedback setting.  This continuous planning framework is shown to improve the responsiveness of the 

on-board planning process to changes in the environment or mission objectives. 

D. Cooperative Planning 

The goal in ‘cooperative planning’ is to achieve cooperative behavior in a system with multiple autonomous 

vehicles.  Cooperative behavior in this context may be defined as ‘coordinated action of multiple vehicles requiring 

communication between participating vehicles’.  Cao43 presents a survey of early research in this field.  Gillen44 

presented a system developed for finding and engaging targets using wide area search munitions in unknown 

environments, and methods to improve the cooperative behavior of the system.  The cooperative engagement is 

controlled by a parameterized decision rule, and a study of the sensitivities of the parameters to the precision of 

autonomous target recognition is included.  Bredenfeld45 presented a framework for coordinating a team of mobile 

robots using a behavior-based scheme.  The framework allows the system designer to implement cooperation 

policies using the concept of ‘Dual Dynamics’.  Dual Dynamics combines the ideas from self-organizing systems 

and hybrid control in order to specify and constrain the behavior of a robot.  McLain46,47 presented a cooperative 

path planning approach for teams of multiple UAVs under timing constraints.  This approach introduces the use of 

coordination variables and functions which define the cooperative strategy.  The path planning problem is solved 



using a Voronoi diagram and Eppstein’s ‘k-best paths’ algorithm.  The approach provides effective solutions to 

cooperative planning problems with three types of timing constraints: simultaneous arrival, tight sequencing, and 

loose sequencing.  Polycarpou et al.48,49,50 developed a distributed planning system for cooperative search by a team 

of autonomous vehicles.  Vehicles are equipped with limited sensors and wireless communication devices. The 

proposed system is capable of on-line learning of the environment and generating a search map which is shared 

among the vehicles.  Each vehicle uses the search map and the predicted states of the other vehicles to compute its 

collision-free trajectory that maximizes the team search coverage.  The path planning algorithm is based on a q-step 

dynamic programming algorithm. 

III. Stochastic World Model and Team Utility Function 

In real-world applications, environmental information often is known with a limited level of certainty.  It is 

possible to explicitly account for this uncertainty in the planning algorithms by using a stochastic model to predict 

future states.  The team utility function, which is used to judge the quality of a candidate plan, is defined as a 

function of the expected values of the random variables of the stochastic model.  This section presents the team 

utility function and the stochastic model of the system.   

To simplify our notation in the following equations, any sampled signal s(tk) at time tk , where k can take on any 

non-negative integer value, is simply written as s(k).  The system considered here consists of a team of vehicles and 

their environment.  We call this system the world. 

There are NV vehicles which are assigned to perform NT tasks.  Given a planning time horizon tN, the world 

model used to predict future states during the time k Nt t t< ≤  can be written in a discrete form as 

 ( 1) ( ( ), ( )), , 1, , 1x q f x q u q q k k N+ = = + −…  (1) 

where f is the state transition function, u is the input vector provided by the planning system, x is the state vector of 

the system which includes states of the vehicles xV, states of the environment xE, and task states xF, i.e. 

[ ]V E F Tx x x x= .  We assume that the information of all the states at time tk is available to the planner except 

xE(k) which is known with a limited level of certainty. 

The state of each task i, F
ix , indicates whether the task is completed; 1F

ix =  when the task is initially assigned 

to the team, and 0=F
ix  if it is completed.  The states of the vehicles consist of their positions Vz , velocities Vz , 



and health states Vξ , i.e. [ ]V V V V Tx z z ξ= . The health state of vehicle v indicates if the vehicle is alive or 

destroyed; 1V
vξ =  if the vehicle is alive, and 0V

vξ =  if it is destroyed.  

We define sites as any objects in the environment.  The states of the environment are the states of all the sites in 

the environment.  Let NS denote the number of sites.  Obstacles are special types of sites with ability to change states 

of vehicles if they make contact.  A target is defined as a site in the environment associated with a task.  Thus, a site 

can be a target and an obstacle simultaneously or it can be neither. The number of obstacles NO plus the number of 

targets NG is not necessary equal to the number of all the sites. The states of the environment are composed of the 

positions Ez , velocities Ez , and health states Eξ  of all the sites, i.e. [ ]E E E E Tx z z ξ= .  The health state of 

site j indicates whether the site exists or not; 1E
jξ =  if the site exists, and 0E

jξ =  if it does not. 

The inputs to the system, u, are commanded positions Vz  and velocities Vz  of the vehicles, and task 

assignment vector Vd , i.e. [ ]V V V Tu z z d= . Given a set of planned trajectories 1( )pQ s −  previously computed 

at time 
1ps kt t
−
< , the commanded positions and velocities of the vehicles while ),

pq k st t t∈  , are given by 

 1

1

( ) ( ( ), )
( ) ( ( ), )

V
x p

V
v p

z q h Q s q
z q h Q s q

−

−

=
=

 (2) 

where Q represents a set of parameters needed to define the planned trajectories.  The mapping functions hx and hv , 

and Q , depend on how the trajectories are encoded.  
pst is the time when a new plan computed at time tk will be 

deployed.  We call this point in time a spawn point.  The commanded positions and velocities of the vehicles while 

),
pq s Nt t t∈   are given by 

 
( ) ( ( ), )
( ) ( ( ), )

V
x p

V
v p

z q h Q s q
z q h Q s q

=
=

 (3) 

The task assignment vector ( )Vd q  can be expressed as 



 

1

2

( )
( )

( )

( )
V

V

V
V

V
N

d q
d q

d q

d q

 
 
 =  
 
  

 (4) 

where ( )V
vd q  is the task assignment vector of vehicle v with NT  elements.  ( )V

vd q  can be expressed as 

 1( ) ( ) 1V
v v pd q D s −= ⋅  (5) 

while ),
pq k st t t∈  , and 

 ( ) ( ) 1V
v v pd q D s= ⋅  (6) 

while ),
pq s Nt t t∈  .  Here 1  is the vector all of whose elements are equal to one.  Dv is the decision matrix for 

vehicle v with dimension TT NN × .  It is an element of team task plan 1 2{ , , , }
VND D D D= … .  The element of 

Dv at row i column j is denoted by v
ijd . 1v

ijd =  if vehicle v plans to execute task i at sequence number j, otherwise 

0v
ijd = .  

We assume that each vehicle’s guidance system can follow its commanded trajectory.  Therefore, the predicted 

positions and velocities of the vehicles are equivalent to commanded inputs: 

 
( ) ( )
( ) ( )

V V

V V

z q z q
z q z q

≡
≡

 (7) 

Assuming the location of each obstacle is independent of the location of all other obstacles, the dynamic propagation 

of the expected health state V
vξ  of vehicle { }1, 2, , Vv N∈ …  is given by 

 ( )
1

( 1) ( ) 1 ( 1)
ON

V V v
v v j

j

q q H qξ ξ
=

+ = − +∏  (8) 

for { }, 1, , 1q k k N∈ + −… .  NO is the number of obstacles in the environment, and ( 1)v
jH q +  is the probability 

that the vehicle v will be destroyed by obstacle j during the time 1+<≤ qq ttt .  ( 1)v
jH q +  is given by 



 ( 1) ( 1) ( )v v O O
j j j jH q B q qξ η+ = +  (9) 

where ( 1)v
jB q +  is the probability that vehicle v collides or intersects with obstacle j during the time 1+<≤ qq ttt ,  

O
jξ  is the expected value of the health state of obstacle j,  O

jη is the effectiveness of the obstacle j in destroying a 

vehicle if they make contact.  The value of O
jη  is in the range [0, 1].  v

jB  is computed using the probability field 

integral approximation technique51. 

The position of site { }1, 2, , Sj N∈ …  at time tk is a random variable which can be expressed by 

 ( ) ( )E E x
j j jz k z k ε= +  (10) 

where E
jz  is the expected value of the position and x

jε  is a random variable with zero mean and a probability 

density function 

 
21/( ( ) ),

( , )
0 ,

x x
j jx

x j x
j

x
x

x
π σ σ

ρ σ
σ

 ≤=  >
 (11) 

x
jσ  is a given parameter specifying the uncertainty radius of site j. The area within the circle with center location 

E
jz  and radius x

jσ  contains all possible locations of the site. 

The velocity of site { }1, 2, , Sj N∈ …  at time tk is also a random variable which can be written as 

 ( ) ( )E E v
j j jz k z k ε= +  (12) 

where E
jz  is the expected value of the velocity and v

jε  is a random variable with zero mean and a probability 

density function  

 
21/( ( ) ),

( , )
0 ,

v v
j jv

v j v
j

x
x

x
π σ σ

ρ σ
σ

 ≤=  >
 (13) 

v
jσ  is a given parameter specifying the bound of the uncertainty in the velocity. 



In the model presented here, each site is assumed to maintain constant velocity at all times. Thus, the expected 

velocity of site { }1, 2, , Sj N∈ …  while ( , ]q k Nt t t∈  is given by 

 ( ) ( )E E
j jz q z k=  (14) 

As a result, the dynamic propagation of the expected position of site { }1, 2, , Sj N∈ …  becomes 

 ( 1) ( ) ( )E E E
j j jz q z q z k t+ = + ∆  (15) 

for { }, 1, , 1q k k N∈ + −… and 1q qt t t+∆ = − , and the dynamic equation of the uncertainty radius x
jσ  is given 

by 

 ( 1) ( ) ( )x x v
j j jq q k tσ σ σ+ = + ∆  (16) 

Both of the expected future position of a site and its uncertainty radius are used to compute the probability that a 

vehicle will intersect with the site. 

If site { }1, 2, , Sj N∈ …  is not a target associated with a task, its expected health state is assumed to remain 

constant at all times: 

 ( ) ( )E E
j jq kξ ξ=  (17) 

for { }1, 2, ,q k k N∈ + + … .  If the site is a target associated with task { }1, 2, , Ti N∈ …  which is to destroy the 

site, then 

 ( ) ( )E F
j iq x kξ =  (18) 

The dynamic propagation of the expected value of the state of task i is described by 

 ( )
1

( 1) ( ) 1 ( 1)
VN

F F i
i i v

v

x q x q H q
=

+ = − +∏  (19) 



where ( 1)i
vH q +  is the probability that task i will be completed by vehicle v during the time 1q qt t t +< ≤ . 

( 1)i
vH q +  is given by 
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( 1) ( 1) ( )
TN

i i V V v
v v v v ij

j

H q B q q dξ η
=

+ = + ∑  (20) 

where ( 1)i
vB q +  is the probability that the path of vehicle v intersects the target location G

iz associated with task i. 

V
vη is the effectiveness of the payload of  vehicle v in executing a task. The value of V

vη  is in the range [0, 1]. v
ijd  is 

the element at row i and column j of decision matrix Dv. 

We define a variable ( )iR q  as the predicted task score the team will have at time tq through executing task i. 

This task score is used as a measure of success of the mission. The dynamic propagation of the expected task score 

is described by 

 ( )
1

( 1) ( )

( ) ( ) 1 1 ( 1)
V

i i

N
F F i
i i v

v

R q R q

q x q H qα
=

+ = +

 
− − + 
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 (21) 

where ( )F
i qα  is the time-dependent score weighting factor of task i. ( )F

i qα is used to define a time window for 

the vehicles to execute each task. 

The objective of the planner is to maximize the predicted total score obtained by completing each task while 

minimizing the predicted total operation cost during the time 
ps Nt t t< ≤  given the information about the world 

observed at time tk. The objective function, also called the team utility function, can be written as 

 ( )
1 1

( ) ( ) ( ( ), ( ))
VT NN

i i p v p p
i v

J R N R s C D s Q s
= =

= − −∑ ∑  (22) 

where vC  is the function used to compute the expected operation cost of vehicle v travelling along its planned path 

( )v pQ s  and executing the task plan ( )v pD s  during time 
ps Nt t t< ≤ . Generally, operation cost of each vehicle is 



a function of all vehicle paths and task plans because of the coupling in the system states. Using Eq. 20, we can 

rewrite the team utility function as 
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In this paper, we define the cost function vC , { }1, 2, , Vv N∈ …  as 
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( ( ), ( )) ( ) ( )

1 ( )

V V V
v p p v v p v

Q
v

C D s Q s s N

F N

α ξ ξ

α

= −

+ −
 (24) 

where V
vα  is the vehicle cost weighting factor and Qα  is the path cost weighting factor, and ( )vF N  is the ratio of 

the amount of fuel remaining in vehicle v’s fuel tank at time tN to the full capacity of the fuel tank. The weighting 

factors F
iα , V

vα , and Qα  are parameters set by the operator.  Their value depends on the cost of vehicle loss, task 

accomplishment, and fuel consumption.  Specifically, F
iα can also be time-dependent, which is a means to define 

task-execution time windows. 

IV. Cooperative Planning 

From the description of the stochastic world model described in Section 2, we can clearly see that the states of 

the world — task states, vehicle states, and states of the environment — are coupled. For example, the probability of 

success in executing a task at a time during the mission depends on the probability of survival of the vehicles at that 

time which, in turn, depends on the states of the obstacles intersecting with the vehicles along the path.  Hence, to 

accurately evaluate the team utility function J, we need to run a simulation to predict the expected values of the 

world states at each discretized time step. 

Given the team utility function in Eq. 22, the integrated task and path planning is an optimization problem which 

can be expressed as 

 
( ), ( )
max ( ( ), ( ))

p p
p pD s Q S

J D s Q s  (25) 



The optimal solution to the problem described above can only be obtained with centralized planning algorithms 

which take the coupling of all decision variables and system states into account, and is consequently considered very 

difficult.  However, it can be shown that if every task assigned to the team does not involve changing states of 

obstacles in the environment, a distributed planning system can solve the said problem52.  In this case, the 

probability that task i will be completed by vehicle v at time tq ( )( )i
vH q  can be predicted with only the knowledge 

of ( )v pD s  and ( )v pQ s  in addition to the current states of the environment.  In non-cooperative planning where 

each task can be assigned to only one vehicle at a time, 

 { }
1 1
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v
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= =
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The team utility function can then be simplified and given by 
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where 
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We name the function Jv individual vehicle utility function.  The team utility function in the form described above is 

suitable for distributed planning especially with market-based planning schemes. Because the team utility function J 

is now just a summation of each individual vehicle utility function Jv, the planner of vehicle v can determine whether 

receiving task i from vehicle w increases the team utility only with the knowledge of the difference in the individual 

utility of vehicle w if task i, Ti , is removed from its current set of tasks wT . This knowledge is essentially 

equivalent to the price in market-based planning systems. In this case, the price of the task i in the market is given 

by 

 { }( ) ( )w w
i w i wJ T Jπ  = − − − T T  (29) 



where ( )w
wJ T  is the individual utility function of vehicle w, and { }( )w

w iJ T−T  is the individual utility function 

of vehicle w when the task i is removed from its task plan. 

In cooperative planning, each task is allowed to be assigned to more than one vehicle, 

 { }
1 1

1, 1,2, ,
V TN N

v
ij T

v j

d i N
= =

≥ ∀ ∈∑∑ …  (30) 

Therefore, Eq. 26 is no longer valid.  In this case, each task state F
ix  depends on the plans of all vehicles 

cooperating on the task i. Assuming that each vehicle plans to execute each task only once, 
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the state of task i at time 
pl st t>  can be predicted by 
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where i
vτ  is the estimated time that vehicle v will execute task i. iΛ  is the set of all vehicles which cooperate on 

task i, and { }1,2, ,i VNΛ ⊂ … . If   i i
v wτ τ≠  for any { }, iv w ⊂ Λ , the team utility function can then be written 

as 

 
1

VN

v
v

J J
=

= ∑  (33) 

where 
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where { }| i i
i i u vW u τ τ= ∈Λ <  



 

For optimization using market-based planning algorithms, the information that the planner of vehicle v needs 

from the other cooperating vehicles iw∈Λ  to make trading decisions for each task { }1, 2, , Ti N∈ …  includes 

1) price ( iπ ) 

2) estimated execution time ( i
wτ ) 

3) probability that task i will be executed successfully at time i
wτ  ( ( )i i

w wH τ ) 

We call this information cooperation data set of task i.  Therefore, the minimum amount of information needed to 

be shared among the vehicles in order to make decisions comprises the cooperation data sets of all the tasks. 

Using the team utility function given in Eq. 31, the integrated task and path planning problem can be simply 

considered as a three-level optimization problem.  The top-level subproblem is the task allocation problem which 

can be written as 

 * *

( ) 1
max ( ( ), ( ))

V

p

N

v v p v pA s v
J D s Q s

=
∑  (35) 

where A is a T VN N×  task allocation matrix whose element at row i and column v is given by 

 *

1
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v

iv ij
j

a d
=

=∑  (36) 

and *v
ijd  is the element of *

vD  at row i column j. *
vD  and *

vQ  are the solutions of the middle-level task scheduling 

problems which are given by 

 { }*

( )
max ( ( ), ( )), 1, 2, ,

v p
v v p v p VD s

J D s Q s v N∀ ∈ …  (37) 

with ( )v pD s  whose element v
ijd  satisfies the condition 
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where †
iva  is the element at row i and column v of a candidate solution of the top-level problem †A . *

vQ  is the 

solution of the bottom-level path planning problem which is given by 

 { }‡

( )
max ( ( ), ( )), 1, 2, ,

v p
v v p v p VQ s

J D s Q s v N∀ ∈ …  (39) 

where ‡
vD  is a candidate solution of the task scheduling problem defined in Eq. 35. 

V. Planning System 

To address the planning problem stated in the previous section, we developed a cooperative task and path 

planning system for multiple autonomous vehicles operating in dynamic uncertain environments.  We name this 

system Evolution-based Cooperative Planning System (ECoPS)52.  ECoPS is capable of effectively allocating tasks 

among the vehicles in a team and generating feasible paths that support the assigned tasks in distributed fashion. 

ECoPS is a real-time planning system in that it runs continuously and dynamically reallocates tasks and adapts the 

planned trajectories to the changes in the environment, and it can provide a solution by interrupting the 

computations at any time during the sampling period (execution cycle time). 
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Fig. 1 Distributed structure of ECoPS 

The overall structure of ECoPS is illustrated in Fig. 1.  In this system, a market scheme and evolutionary 

algorithms are used to compute near-optimal paths and task plans.  This concept is motivated by optimization 

processes in market economies and the evolution process in nature. Team composition, overall team objectives, and 

the tasks required in attaining these objectives are specified by the command center at the start of a specific mission.  



Individual vehicles are autonomous.  Each vehicle has an on-board intelligent processing unit called vehicle agent.  

Vehicle agents perform task trading, communication, and planning. Under the market protocol, each vehicle can 

choose its own tasks and plan its path that will in turn benefit the team. Accomplishing tasks will bring reward to the 

team. However, there is cost associated with executing the tasks.  The function of the task planning is to schedule 

and allocate tasks to those vehicles that can achieve them optimally. 

This planning architecture considers the vehicles as if they are in a market where the trading items are tasks. In 

contrast to systems using the Contract Net Protocol (CNP)53, this market is not a free market that allows anyone to 

trade directly to others. In this system, vehicles buy or sell tasks through one of the vehicles acting as the team 

coordinator. Each vehicle has another on-board processing unit called coordinator agent, but only one is active at 

any give time. The computational requirement for a running coordinator agent is small comparing to planning. The 

presence of the coordinator may weaken the notion of distributed systems. However, this planning system largely 

retains the same properties as those of a completely distributed one. Having a coordinator in the team enables 

organized and efficient trading in the market, as well as facilitates human operator interaction with the system. 

Another advantage of having the coordinator is monitoring of the team members and the current task allocation. 

Therefore, if the current coordinator finds that a vehicle is destroyed, it will put its tasks up for auction. Conversely, 

if the vehicle acting as the coordinator is damaged, a simple mechanism can be executed to elect another vehicle to 

be a new coordinator from the existing team members. 

Key components in the ECoPS are vehicle agents. A vehicle agent contains a planner and a communication unit 

called communicator which interacts with the active coordinator agent and its local planner. In each vehicle, the 

planner is the brain of the vehicle agent. Each vehicle’s planner has three components: task planner, path planner, 

and state predictor. The main function of the task planner is making trading decisions in order to obtain a set of tasks 

that the vehicle can do best for the team. The path planner determines the best task sequence and path that supports 

the actions required by the obtained tasks. In the planning process, the state predictor is used by both of the task 

planner and the path planner to predict future states of the world for a given set of task and a candidate path. 

The task planner uses market price, shared information, and predicted states of the world to make trading 

decisions. An Evolutionary Computation (EC) based technique is used as the optimization engine of the task 

planner. One major beneficial property of EC-based techniques for on-line planning is the availability of an 

intermediate solution at any time during the optimization process. A viable solution is available and continues to be 



improved until its output is required. Therefore, the task planner can provide a trading decision at any time to meet a 

deadline for submitting sell or buy bids. 

To achieve the optimal solution for a task allocation problem, the task planner needs to know the optimal path 

for the execution of each possible sequence of tasks.  However, finding the optimal paths for all of these task 

sequences is subjected to the curse of dimensionality. For example, the number of all possible sequences of ten tasks 

is more than ten million. Finding the optimal path for just one of them is considered a hard problem. In our 

approach, the task planner also searches for the best task sequence in the process of making trading decisions. 

However, it does not search for the optimal path for the execution of the resultant task sequence. Given a task 

sequence, the task planner approximates the team utility based on the predicted states of the world provided by the 

state predictor. The details of this approximation method are provided in Ref. 52. This technique improves the speed 

of the response of the planning system, and can provide viable solutions within short planning time. 

The task planner of each vehicle also interacts with its path planner. It provides the current set of tasks as an 

input to the path planner. The path planner computes the best path to execute the assigned tasks based on the 

predicted states of the world. The path planner then sends this resultant path to the vehicle guidance controller and to 

the task planner. Like the task planning, an EC-based algorithm is used in the path planning.  In general, the 

algorithm initializes its set of candidate solutions, so-called population, at random. These candidate solutions are 

feasible paths, i.e. the random elements of the paths are all within the capabilities of the aircraft. They are not 

required to be closed to an optimal solution for the evolution to succeed. Through the evolution process (mutation 

and selection), the candidate solutions move toward the optimal solutions. Collision avoidance is achieved by 

modeling each teammate as a dynamic site with a defensive range and effectiveness, and requires that each vehicle 

has information about the position and velocity vector of its teammates. Detailed implementation of the path planner 

is provided in Ref. 52, and 54.  In the problem where the search space is large and there are several local optima 

traps, a parallel evolution approach55 can improve the performance of the planning. In this approach, multiple 

populations evolve simultaneously and compete with each other periodically, reducing the likelihood of being 

trapped in local optimal solutions. The task planner and path planner run simultaneously and continuously, although 

they may be updated at different rates. 

It has been shown that the ECoPS can provide effective solutions for off-line planning, and it can dynamically 

adapt the generated plans in response to unexpected changes in the environment56.  However, the original ECoPS 



was designed for non-cooperative planning only. We modified our market-based planning system to be used in 

cooperative planning.  In the modified ECoPS, a vehicle can cooperate on a task with other vehicles only if its 

current task plan is empty. Each vehicle is allowed to cooperate on only one task at a time.  It also needs to bid for 

the right to cooperate on the chosen task. Once the cooperation right has been received from the coordinator, the 

cooperating vehicle must plan to execute the task after the vehicle which owns the task does. For each task, there are 

several levels of the cooperation right that a vehicle can bid on. Each vehicle must execute the cooperating task after 

the other vehicles which have the cooperation right at lower levels have done so.  The larger the number of 

cooperation levels of a task, the larger the number of vehicles working together on the task. 
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Fig. 2 Cooperative task trading sequence 

 

Each vehicle selects a cooperation level of the task it plans to cooperate on and its execution time using the team 

utility function given in Eq. 31 where Wi in the equation is the set of the vehicles which cooperate on task i at lower 

levels. The individual vehicle utility of each cooperating vehicle given in Eq. 32 is called cooperation utility.  To 

accommodate the cooperative planning process, we modified the task trading sequence by adding an additional 

phase called cooperation phase after the transferring phase.  The modified task trading sequence is shown in Fig. 2. 

The cooperation phase comprises several steps which allow information sharing and the bidding for cooperation 



rights. In the other phases, the planner of each vehicle makes trading decisions using the team utility function given 

in Eq. 26 and 27. 

A vehicle can bid on an available cooperation right in the market. It can also bid on a cooperation right at a new 

higher level which no other vehicle possesses if its cooperation improves the team utility. In the cooperation phase, 

each cooperating vehicle must sell its cooperation right to the coordinator agent at a price.  All selling cooperation 

rights are accepted.  The following items describe the steps in the cooperation phase. 

1) Each vehicle broadcasts the cooperation data sets of all the tasks in its current task plan once it received the 

final trading results from the coordinator agent. 

2) The coordinator agent broadcasts a request for cooperation data to the cooperating vehicles. 

3) Each vehicle sends the cooperation data set of its cooperating task to the coordinator agent. 

4) The coordinator agent broadcasts all the cooperation data sets received from the cooperating vehicles. 

5) The coordinator agent broadcasts a request for sell prices of all cooperation rights. 

6) Each cooperating vehicle determines the sell price of the right to execute the cooperating task at the level it 

possesses. It also sends the updated cooperation data set of the task to the coordinator agent using the 

cooperation data received from other cooperating vehicles. 

7) The coordinator agent broadcasts the price of all the selling cooperation rights and the updated cooperation 

data sets received from the cooperating vehicles. 

8) The coordinator agent broadcasts a request for buy bids for cooperation rights. 

9) Each agent with empty task plan determines a buy bid for a selling cooperation right or a cooperation right 

of a task at a new higher level. 

10) The coordinator agent determines and broadcasts the bidding results. 

The price strategy of a selling cooperation right is the same as that used in the selling phase.  Both the sell price and 

the buy price are equal to the cooperation utility given in Eq. 32.  The planner of each cooperating vehicle iteratively 

searches for a task and its cooperation level to bid that most increases the team utility. 

The ECoPS was designed to solve a class of complex problems presenting here. Such problems have not been 

solved previously with the given constraints. Evolutionary Computation techniques were chosen for their 

algorithmic efficiency for solving complex non-linear optimization problems. Even tough they are not 

computationally efficient in finding the optimal solution to simple convex problems.  Due to the complexity in the 



nature of the EC and Market-based planning techniques, the algorithms do not lend themselves to analytical 

assessment. 

VI. Simulation Results 

In this section we present two planning examples to demonstrate the performance of the planning system to 

generate off-line plans (solve the task and path planning problem prior to start of mission based on initial knowledge 

of the scenario) and dynamically replan in response to the changes in the environment once the mission is underway. 

The mission objective is to observe all the targets assigned to the team. The planning examples presented here are 

based on simulations using the Boeing Company developed simulation environment, the Open Experimental 

Platform (OEP). The computations for each of the examples include both the actual algorithms which generate plans 

for all vehicles as well as simulation of the environment.  The algorithms were implemented in C++, and processed 

on one 2.0 GHz Pentium 4 PC.  In an onboard system, the planner of each vehicle runs on a dedicated processor. 

In these planning problems, the path planner of each vehicle runs the evolution-based optimization algorithm 

with a population size of 30. The tournament selection algorithm selects 15 of them to be parents for the next 

evolution step. During the simulation, the evolution-based path planner evolves one generation every 10 seconds 

simulation time. We intentionally set the number of evolution steps to be small to represent the situation where the 

on-board processing unit has limited computational power. The size of the execution time horizon (time difference 

between two consecutive spawn points) is 100 seconds. The sample period to run one round of trading is 40 seconds 

simulation time.  The computation time for running each execution time period was less than one second.  
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Fig. 3 Normal profile of score weighting function 



All vehicles have complete knowledge of the environment as it changes. Each vehicle needs to estimate 1) the 

binary state of each of the tasks it has in its current task plan and those available in the market 2) the position and 

velocity of each of the targets associated with the tasks 3) the position, velocity, and binary health state of each 

dynamic obstacles 4) the position, velocity, and binary health state of its teammates. Each vehicle has an on-board 

camera for observing targets. We assume that the camera can rotate 360 degrees. Each vehicle also has a sensor for 

detecting nearby sites. The sensors have a specified range. There are some obstacles in the field which the vehicles 

need to avoid, for these examples, the obstacles have defensive capabilities and the ability to destroy a vehicle when 

it comes into range. The vehicles are required to reach a goal location after executing their tasks. The score 

weighting function of each is shown in Fig. 3. The profile of this function is the same for both planning examples 

presented here. 

In the plots showing simulation results, each vehicle is represented by a triangle with its vehicle number on it. 

The dashed circle around each vehicle represents the range of the on-board camera. The square markers represent 

actual locations of targets. Each of these square markers will have a vehicle number on it if the site is a target and 

assigned to that vehicle. A solid circle located near each square marker represents an area which covers all of the 

possible locations of the site represented by the marker known to the vehicles. The radius of the circle shrinks as a 

vehicle gets closed to the site. Each filled square marker with a dashed circle around it represents a site with 

defensive capabilities which can destroy or change the health states of vehicles if they are within the area marked by 

the dashed circle. The goal location where the vehicle is required to be at the end of the mission is represented by a 

hexagram in the plots. 
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Fig. 4 Initial result of offline-planning 



The first example is a simple planning problem with five vehicles and one target.  The effectiveness of each 

vehicle’s payload is 0.8 so a vehicle’s encounter with the designated target does not automatically guarantee 

successful observation.  There is also an obstacle near the target.  Initially the target is not moving and is outside the 

effective protective range of the obstacle.  Fig. 4 shows the off-line planning result.  The target is assigned to vehicle 

1 and vehicle 2 decides to cooperate on the target.  The other vehicles decide not to cooperate and plan their paths 

directly to the goal location.  The results of dynamic replanning are shown in Fig. 5, Fig. 6, and Fig. 7 which are 

snapshots from the simulation movie “Simple Cooperation”.  Once the simulation starts, the target begins moving  

toward the protective range of the obstacle. Fig. 5 shows the simulation result at time 1400 seconds.  At this time, 

the target has moved to be within the effective protective range of the obstacle.  The increased difficulty of the task 

causes the predicted team utility to drop as shown in Fig. 8.  Since there is less chance that vehicle 1 and vehicle 2 

will executed the task successfully, vehicle 3 and vehicle 4 decide to cooperate on the target. Inspection of the 

individual vehicle utility shows that vehicle 1 missed the target and traded it to vehicle 2 which later execute the task 

successfully.  This result can be seen in Fig. 6.  Vehicle 1, vehicle 2, and vehicle 3 are destroyed quickly after the 

task was completed.  Since vehicle 4 detects the completion of the task, it just adapts its path from going toward the 

obstacle to instead go directly to the goal which can be seen in Fig. 7. 
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Fig. 5 Simulation result at time 1400 seconds 
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Fig. 6 Simulation result at time 2200 seconds 
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Fig. 7 Simulation result at time 2900 seconds 
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Fig. 8 Predicted team utility during the mission 



The second example is a more complicated scenario. In this scenario, there are 5 vehicles and 3 targets. The 

effectiveness of each vehicle’s payload is 0.8.  Initial knowledge is that all targets and obstacles are stationary. The 

score weighting factor of the target located at (10.5, 3) is two times of that of the other targets. The target located at 

(10.5,3) has min 10000Fσ =  and max 20000Fσ = .  The other targets have min 5000Fσ =  and max 10000Fσ = .  

After 150 evolution steps of path planning and 30 rounds of task trading, the result of off-line planning is shown in  

Fig. 9.  In this result, the three targets are assigned to vehicle 1, vehicle 2, and vehicle 3. Vehicle 4 and vehicle 5, 

however, decide to cooperate with vehicle 1 and vehicle 3.  

Fig. 10- Fig. 14 are snapshots from the simulation movie “Multi-Targets Cooperation” which shows the on-line 

replanning results.  At time 300 seconds, all three targets have moved to new locations and are assigned to vehicle 2, 

vehicle 3 and vehicle 5 as shown in Fig. 10. Based on the value of cooperation utility, vehicle 1 and vehicle 4 are 

cooperating with the other vehicles.  However, their planners have not be able to find paths to the targets they are 

cooperating on. At time 1600 seconds, the planner of vehicle 4 has found a path to the target which is owned by 

vehicle 3 at that moment. Vehicle 1 has moved faster toward the high-value target than vehicle 2, so the target is 

assigned to vehicle 1. Vehicle 2, however, keeps moving toward the target to cooperate with vehicle 1. Fig. 12 

shows the simulation result at time 2500 seconds. 
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Fig. 9 Initial result of offline-planning 
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Fig. 10 Simulation result at time 300 seconds 
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Fig.  11 Simulation result at time 1600 seconds 
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Fig. 12 Simulation result at time 2500 seconds 
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Fig. 13 Simulation result at time 2900 seconds 
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Fig. 14 Simulation result at time 4200 seconds 
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Fig. 15 Predicted team utility during the mission 



At this point in time, vehicle 3 and vehicle 5 have completed their previously assigned tasks. The only 

unfinished task is taking a picture of the target which stays within the range of the obstacle located at (12.5,3).  

Vehicle 1 attempted to reach the target, but it was destroyed in the process by the obstacle.  At that moment, the task 

is assigned to vehicle 3 which is the closest vehicle to the target.  Vehicle 4 and vehicle 5 decide to cooperate with 

vehicle 3 on the task because doing that gains the team utility as shown in Fig. 15.  Vehicle 2 decides not to 

cooperate and is on its way to the goal location. At time 2900, all the tasks are completed, but the team lost another 

vehicle in executing the last task.  Once the completion of the task is detected, vehicle 4 quickly adapts its path to 

avoid getting within the nearby obstacle range. Fig. 14 shows that vehicle 4 successfully goes around the said 

obstacle.  Both vehicle 4 and vehicle 5 are heading straight to the goal location.  

VII. Conclusion 

This article introduces a cooperative task and path planning system for a team of autonomous vehicles in a 

dynamic uncertain environment. We present an analytic dynamic world model and a team utility function both of 

which take into account the uncertain information of the environment and the coupling in the states of the system. 

Using the stochastic world model, we develop algorithms for allocating tasks and path planning simultaneously. By 

modifying the task trading sequence and sharing some information among the vehicles, the planning system 

computes cooperative plans which improve the performance of the team operation compared to that without the 

cooperation scheme.  We identified the minimum amount of shared information needed for cooperation.  The 

simulation results show that the planning system can be used effectively for both off-line planning and on-line 

replanning in a dynamic uncertain environment. During the simulation, the planning system ran continuously and 

dynamically reallocates tasks and adapts the planned trajectories to the changes in the environment.  
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