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ABSTRACT

In a highly dynamic environment, an adaptive real-time
mission planner is essential for controlling a team of au-
tonomous vehicles to execute a set of assigned tasks.
The optimal plan computed prior to the start of the op-
eration might be no longer optimal when the vehicles
execute the plan. This paper proposes a framework and
algorithms for solving real-time task and path planning
problems by combining Evolutionary Computation (EC)
based techniques with a Market-based planning architec-
ture. The planning system takes advantage of the flexibil-
ity of EC-based techniques and the distributed structure
of Market-based algorithms. This property allows the ve-
hicles to evolve their task plans and routes in response to
the changing environment in real time.

1. INTRODUCTION

Recently many researchers have successfully applied
Evolutionary Computation (EC) based techniques to
many problems that include task and path planning. EC-
based techniques have been used for both single-vehicle
planning 1–3 and multi-vehicle planning problems .1,4, 5

There are many advantages in using EC-based tech-
niques for task and path planning problems. First, they
are open architecture techniques; it is easy to solve opti-
mization problems with linear or nonlinear performance
functions and constraints. Second, EC-based planning
approaches are on-line adaptation techniques; they can
be formulated to run continuously as the vehicles ex-
ecute their plans, and handle changes in the operating
environment and vehicle capabilities. Third, EC-based
techniques respond to the changing environment quickly
because they do not have to recompute the entire plan;
the current plan is adapted in response to the changes.
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Although previous research has shown good results
using EC-based techniques in task and path planning
for multiple autonomous vehicles,4, 5 most of these ap-
proaches are based on a centralized implementation,
i.e. all of the planning computation takes place in one
location. The computed paths for the team are subse-
quently transmitted to the team members. One primary
advantage of this approach is that it can produce globally
optimal solutions. Nonetheless, the centralized planning
approach has some disadvantages. First, it has diffi-
culties in finding optimal plans for large scale complex
problem. Second, the centralized planning approach as-
sumes that all local information can be transmitted to
a central location to update the plans corresponding to
changes in the environment and vehicles capabilities.
Lastly, the vehicles respond slowly to changes in the
environment if there is any delay in communication. Al-
though some of centralized approaches are implemented
using parallel algorithms running on multiple proces-
sors, they assume perfect communication and require a
scheme for synchronizing the processes. Therefore, the
parallel algorithms do not have the robustness of dis-
tributed algorithms.

Using distributed-architecture planning can improve
the drawbacks of the centralized-architecture EC-based
techniques mentioned above. A promising approach is
integration of EC-based techniques with a Market-based
planning architecture. One of the original formulations
of a Market-based approach is Smith’s Contract Net Pro-
tocol (CNP).6 Several researchers have extended the con-
cept of the CNP algorithm7,8 for clustering tasks and task
decomposition. Market-based algorithms for task plan-
ning have been proposed by Wellman and Wurman9 and
Dias and Stentz.10

There are several advantages of the Market-based ap-
proach. One of its greatest advantages is the ability to
deal successfully with an uncertain environment. Be-
cause of its distributed architecture, the real-time planner
of each vehicle can quickly access information about the
operating field and its states and capabilities detected by
the on-board sensors. Therefore, the planner responds
more quickly and efficiently to changes than with a cen-
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tralized planning approach. Another advantage is the
scalability of the planning system since the computa-
tion is distributed among the vehicles. The system can
handle large scale complex problems. The Market-based
approach is also robust to single points of failure in the
system. Its planning structure does not require a des-
ignated vehicle in the team to plan paths for all other
vehicles. Any tasks that are assigned to disabled mem-
bers are reallocated to other vehicles through a bidding
process, and the entire mission can still be accomplished.

This paper proposes a framework and algorithms for
solving real-time task and path planning problems for a
team of autonomous vehicles by combining EC-based
techniques with a Market-based planning architecture.
An overview of the problem formulation is shown in
section 2. Section 3 describes the architecture of the
planning system. In section 4, we explain details of the
evolution-based planning algorithms. Section 5 reports
the simulation results of the planning algorithms. Sec-
tion 6 provides concluding remarks.

2. PROBLEM FORMULATION

The main objective of the research presented here is to
develop algorithms and techniques to dynamically allo-
cate tasks and to find a set of paths for a team of het-
erogeneous autonomous vehicles. The generated set of
paths will support the desired system states correspond-
ing to the assigned mission objectives. It is also required
that the path and tasks assigned to each vehicle are within
its capabilities. In addition, the planning algorithm must
provide a set of paths that minimize the probability that
vehicles are destroyed due to collision with obstacles or
damage from threats in the field of operation.

There are two main concepts presented in this pa-
per. One is real-time planning and the other is inte-
grated task and path planning. In real-time planning,
the trade-off between time-available-to-plan and adapt-
ability becomes important. One would want the non-
adapting sections of the generated paths to be short in
a highly dynamic environment, however that shortens
the time-available-to-plan. The shorter time-available-
to-plan requires faster planning algorithms. Hence, real-
time planning algorithms must be fast enough to compute
new plans within a specified time limit. Figure 1 illus-
trates this concept. In the figure, we define a spawn
point located on the trajectory at time tsp

> tk. There
are also other spawn points along the trajectory at time
tsp+1 , tsp+2 , . . . , tN where tN is the time at the end of
the planning horizon. The time difference between two
adjacent spawn points (∆Ts = (tsp+1 − tsp

)) specifies
the maximum time-available-to-plan for the planner to
update the adapting section. In this manner, the planner
can account for new information about the environment
that becomes available during execution. The concept of

this real-time planning is very similar to that of Model-
based Predictive Control.11

Vehicle
at time tk

Spawn point
tsp

Planning
horizon

Committed section
tk < t < tsp

Initial path

Adapting section
tsp 

< t < tN

Fig. 1 Real-time planning concept. A vehicle (at time tk) is
moving along a previously computed trajectory, shown as
a gray line. The spawn point at time tsp , shown as a black
square, is the closest spawn point to the current position of
the vehicle. This spawn point divides the committed section
and the adapting section of the planned path. The commit-
ted section, which will not be altered, is a portion of the path
for tk < t < tsp . The committed trajectory is then sent to
the vehicle’s controller for execution. The adapting section
of the path is free to be further refined by the planner.

The other main part of our research is solving the inte-
grated task and path planning problem. This problem is
composed of two subproblems. The first is task planning,
which includes task allocation and scheduling. The sec-
ond is path planning. These two subproblems are highly
coupled. In order to solve for an optimal task plan, the
task planner requires the cost of each optimal path to
execute a particular set of tasks. Conversely, the path
planner needs the allocated set of tasks before it can find
an optimal trajectory for each vehicle. The coupling be-
tween these two subproblems makes this problem very
complex. The block diagram shown in figure 2 illus-
trates the combined concepts of real-time planning and
integrated task and path planning.

The objective of both the task planner and the path
planner is to maximize the predicted score obtained in
accomplishing each task while minimizing the predicted
operation cost given the information about the world at
time tk. The objective function at time tk can be written
as

J(k) =
N−sp∑
n=1

NT∑
i=1

Ŝi(sp + n | k)

−
M−1∑
m=0

NV∑
v=1

C(Pv(sp+m | k)) (1)
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Fig. 2 Block diagram of a real-time mission control system. To simplify our notation, a sampled signal y(tk) where k can
take on any integer value will be simply written as y(k).

The variables represent:
U(k) = controller commands at time tk

X̂(k) = estimated internal states (e.g. position, velocity) of the world at time tk

Ŷ (k) = estimated states of the tasks indicating the percent of accomplishment of the tasks at time tk

Ỹ = input commands of the planners
Z(k) = observed information about the world at time tk

X̂(sp | k) = predicted internal states of the world at time tsp , tsp+1, . . . , tN given information about the world up to time tk

Ŷ (sp | k) = predicted states of the tasks at time tsp , tsp+1, . . . , tN given information about the world up to time tk

Ê(sp | k) = predicted errors in the states of the tasks at time tsp , tsp+1, . . . , tN given information about the world up to time
tk

P (sp | k) = planned trajectory segments for time tsp < t < tsp+1 given information about the world up to time tk

P (sp | k) = planned trajectory segments for time tsp < t < tN given information about the world up to time tk

D(sp | k) = task-level planning decisions at time tsp given information about the world up to time tk.

where Ŝi(sp + n | k) is the estimated score of task i
at time tsp+n given information about the world up to
time tk, C(Pv(sp+m | k)) is the cost associated with
a portion of the planned path P of vehicle v for time
tsp+m

< t < tsp+m+1 , NV is the number of vehicles in
the team, NT is the number of all tasks, N is the index
of sampled signals at the planing horizon tN , and M =
(N − sp)/(sp+1 − sp). The estimated score of task i at
time tq given information about the world at time tk is
given by

Ŝi(q | k) = −(Êi(q | k) − Êi(q − 1 | k)) · αi(q) (2)

where αi(q) is the score weighting factor of task i at
time tq. Given information about the world at time tk,
the segment of planned path P of vehicle v for time
tsp+m

< t < tsp+m+1 is a function (Γ) of the task-level
planning decisions Dv at time tsp

, and the predicted er-
rors in the states of the tasks Ê and the predicted states

of the world at time tsp
, tsp+1, . . . , tN . It can be written

as

Pv(sp+m | k) = Γ(Dv(sp | k), Ê(sp | k), X̂(sp | k))
;∀m ∈ {0, 1, . . . ,M − 1} (3)

Given the objective function in equation 1, the path plan-
ning problem can be written as

max
Pv(sp+m|k)

J(k) (4)

and the task planning problem is given by

max
Dv(sp|k)

J(k) (5)

Equations 1, 3, 4, and 5 clearly show the coupling be-
tween the task and path planning problems.

The task-level decision variable D is an array of de-
cision matrices {D1,D2, . . . , DNv

}, where Dv is the
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decision matrix for vehicle v with dimension NT × NT .
The element of Dv at row i column j is denoted by dv

ij .
dv

ij = 1 if vehicle v plans to execute task i at sequence
number j, otherwise dv

ij = 0. For example,

D1 =




1 0 0
0 0 0
0 1 0




means that the task plan for vehicle 1 is to execute task 1
and task 3 in sequence.

The problem considered in this paper is not finding
the true optimal paths and task plans with respect to an
objective function, but rather finding a near-optimal so-
lution within the planning time available. The benefit
of this approach is that the planning system can pro-
vide trajectories and task plans to the vehicles at any
given time. This property allows on-line and dynamic
replanning while the vehicles execute the current plans.
If the conditions of the problem remain constant, and a
sufficiently long planning time window is available, the
solution will approach the optimum.

In this problem, we assume that each vehicle contains
a guidance law to guide the vehicle along the path gen-
erated by the planner. Full communication connectivity
is assumed among all the vehicles and the command and
control center of the team. However, those communica-
tion channels can be limited.

3. PLANNING ARCHITECTURE

The overall distributed structure of the planning system
is illustrated in figure 3. In this system, a market-based
scheme is used to optimize the team’s objective function.
Individual vehicles are autonomous. Under the market
protocol, they can choose their own tasks and plan their
routes that will in turn benefit the team. Each vehicle
generates its own path that allows it to accomplish the
tasks in its current plan. Accomplishing tasks will bring
reward to the team. However, there is cost associated
with executing the task. The function of the task planning
is to schedule and allocate tasks to those vehicles that can
achieve them optimally.

This planning architecture considers the vehicles as if
they are in a market where the trading items are tasks.
However, it is not a free market that allows anyone to
trade directly to others. In this system, vehicles buy or
sell tasks through coordinator agents. The presence of
coordinator agents may weaken the notion of distributed
systems. However, this planning system largely retains
the same properties as those of a completely distributed
one. Coordinator agents enable organized and efficient
trading in the market, as well as facilitate human op-
erator interaction. A coordinator agent is implemented
on-board each vehicle, but only one is active at any give

Ground Station

Planner

Coordinator 
Agent

Vehicle 
Agent

Planner

Coordinator 
Agent

Vehicle 
Agent

Planner

Coordinator 
Agent

Vehicle 
Agent

- Mission Objectives
- Global data

- Trading Bids
- Local sensor Info

Plan suggestion

-Trading announcement
-Trading results

- Planners status
- Local data

Active Coordinator

Fig. 3 Overall distributed structure of the planning system.

time. Another advantage of having coordinator agents
is the monitoring of the team and the current task allo-
cation. Therefore, if the coordinator agent finds that a
vehicle is destroyed, it will put its tasks up for auction.
Conversely, if the coordinator agent is damaged, a simple
mechanism can be executed to elect a new coordinator
agent.

The trading among the vehicles is governed by the
Market Protocol. The listed items below describe the
protocol used in the system.

1. There is only one active coordinator agent in a team.

2. Vehicle agents can only sell and buy tasks through
the coordinator agent by submitting sell bids or buy
bids.

3. Each vehicle agent is allowed to submit only one
sell bid and one buy bid per trading cycle.

4. Each vehicle agent must submit a sell bid every
trading cycle.

5. The tasks in a buy bid must be only those currently
put up for sale in the market.

6. Vehicle agents must commit to every submitted sell
bid.

7. A vehicle agent can remit its buy bid by sending a
reject message to the coordinator when it is notified
that it won the bidding. Otherwise, it must send a
message to confirm the buy bid.

8. The coordinator agent will accept a sell bid only if
there is at least one vehicle agent bid on the selling
item with a higher price than the sell price.

9. The coordinator agent will accept a buy bid only if
its price is the highest one of all the submitted bids
for the bidding item.
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10. The final price of a selling item for the winning bid-
der is equal to the second highest bid price.

The block diagram showing the architecture of each ve-
hicle’s planning system is illustrated in figure 4.

Coord Agent

Vehicle Agent

Task Planner

Path Estimator Path Planner

World

Vehicle

Controller

Assigned 

tasks
Estimated

path cost

Coarse path

Path cost

Fine path

Trajectory

Trial tasks

Guidance 

commands

Market infoPotential

bids

- Task selling bids

- Task buying bids

- Task list/constraints

- Trading announcement

- Trading results 

Vehicle 

states

Payload 

Controller

- Assigned tasks

-Trajectory

Payload

commands

Payload
status

World Info

World Info

World Info

- Mission (Set of tasks)

- Constraints

- Plan Status

- Problems & 

  suggestions

Fig. 4 Block diagram of each vehicle’s planning system.
Every vehicle contains a vehicle agent that sells and buys
tasks for the vehicle. A task will be sold if its price is higher
than the benefit for the vehicle upon executing the task. A
task is bought if the benefit of its execution is more than its
price. Each vehicle agent interacts with a coordinator agent
and its local task planner.

In each vehicle, the task planner is the brain of the ve-
hicle agent. It uses market price in addition to predicted
environment states to make trading decisions. The task
planner also schedules tasks that it currently possesses.
An EC-based technique is used as the optimization en-
gine of the task planner. One major beneficial property
of EC-based techniques for coordinated systems is the
availability of an intermediate solution at any time during
the optimization process. A viable solution is available
and continues to be improved until its output is required.
Therefore, the task planner can provide a trading deci-

sion at any time to meet a deadline for submitting sell or
buy bids.

To achieve the optimal solution for a task planning
problem, the task planner needs to know the cost of ev-
ery path for a vehicle executing each possible sequence
of tasks. However, finding the optimal paths for all per-
mutations is subject to the ‘curse of dimensionality’. For
example, the number of permutations of ten tasks is more
than ten million. One way to approach this problem is
to simultaneously optimize the path and task plan us-
ing multi-level optimization.12 However, this approach
is also computationally intensive and may be impossible
to run on-line in real time. To simplify this problem, in
our approach, the task planner selects a ‘best’ plan using
estimated cost. This cost is based on the deviation of the
estimated path from the straight line connecting the tar-
get locations. The data used in this estimation is stored
in a table containing every cost of the best path from one
target location to another. Once a set of tasks is allocated,
the path planner searches for the optimal path for the as-
signed tasks and updates the estimates in the cost table.
This technique improves the speed of the response of the
planning system, and can provide viable solutions within
short planning time.

The task planner of each vehicle also interacts with its
path planner. It provides the task sequence as an input
to the path planning module. The path planner computes
the best path to execute the assigned tasks based on its
knowledge of the operating field. It then sends this path
to the vehicle guidance controller and feeds back the cost
of the path to the task planner. The path planner can also
interact with the path estimator by using the path pro-
vided by the path estimator as the initial guess in the
optimization process, and it can then give the path es-
timator a detailed path for the current set of tasks and its
cost. The task planner and path planner run simultane-
ously and continuously, although they may be updated
at different rates. They can be used to generate off-line
plans and also can run on-line while the vehicles execute
the plans. Both of them use EC-based optimization algo-
rithms which will be explained in the next section.

4. PLANNING ALGORITHMS

The general concept of the EC-based planning algo-
rithm4 used in this paper is illustrated in figure 5. The
algorithm runs in a loop which has three phases. It starts
by randomly generating a population of encoded plans.
Then it evaluates the fitness value of each plan. The
next step is to select the best plan to be the candidate
solution for this generation and also select a portion of
the plans in the population to be the parents of the next
generation based on their fitness values. In our current
implementation, a tournament selection scheme is used
in the selection process. The last step is to produce off-
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springs from the parents selected in the previous phase.
An offspring is generated by cloning a parent and apply-
ing a mutation mechanism to it or by crossover of two
parents. This loop is run continuously to update the plan
as the optimization process proceeds.

Population

Produce
Offspring

( mutation )

Evaluate
( fitness )

Selection

Decode

Environment

Vehicle
Capabilities

Goals

Constraints

Plan Encoding Best Plan

Fig. 5 Overview of Evolutionary Algorithm.

4.1. Path Planning

The path planning algorithm for a single vehicle we
use in this paper is described in Rathbun and Capozzi.3

The algorithm was further modified for dynamic replan-
ning and presented in Rathbun et al.13 The planning
algorithm takes into account the uncertainties in the en-
vironment. The planner has knowledge of approximate
locations of sites (targets and obstacles). Those loca-
tions are modelled as probability ellipsoids described by
a probability density function. The probability that a ve-
hicle’s path will intersect with a site is approximated by
digitally integrating the probability density function of
the site along the vehicle path. The cost function C(Pv)
associated with a path Pv is based on the probability that
vehicle v will hit obstacles in the field and the amount of
fuel required to travel along the path.

A path is encoded as a sequence of simple segments
chained end-to-end, shown in figure 6. The segment pa-
rameters are limited to keep motion within the vehicle
capabilities. Continuity is enforced between the joining
end of a segment and the starting point, heading, and
speed of another joining segment. The four mutation
mechanisms used in the mutation process are illustrated
in figure 7.

4.2. Task Planning

In our approach, there is no centralized planner assign-
ing tasks for each of the vehicles in the team. In contrast,
the task allocation is a result of the task trading among
the vehicles in the team. The trading is restricted by the
Market Protocol described in section 3. Figure 8 shows
the task trading sequence in a trading cycle.

The algorithm used in the task planner of each vehi-
cle is similar to the path planning algorithm described
above. A task plan for a vehicle is encoded as a sequence
of tasks indicated by their task numbers. There are two
parts in a task planner. One is used to schedule the cur-

start position,
heading, speed

len
gth en

d s
pe

ed

start position,
heading, speed

len
gth

radius

Fig. 6 Elemental path segment types. In the approach
considered here, there are two elemental types of segments,
straight lines and constant radius curves.

(a) Mutate and Propagate

(b) Crossover

(a) Go to Goal

(a) Mutate and Match

Fig. 7 Path mutation mechanisms

rent set of tasks, the other is used to determine trading
bids. When the vehicle is not making a trading decision,
the task planner runs the EC-based planning algorithm
using the scheduling mutation illustrated in figure 9. To
determine a buy bid, the scheduling process stops and
the task planner generates a new population from a set
of current best task plans. Each plan in the initial popu-
lation is created by cloning one of the current best task
plans, and then inserting a randomly selected selling task
in the market at a random position. Then the task planner
evolves the initial population by running the EC-based
algorithm using the trading mutation mechanism shown
in figure 9. The number of evolving steps depends on the
time limit set by the coordinator agent. When a vehicle
is asked for a sell bid, the task planner responds with a
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Fig. 8 Task trading sequence in one trading cycle. This pro-
cess can be initialized by either randomly assigning tasks to
each of the vehicles or putting all the tasks up for bidding
with no reserved price until there are no more tasks left.
The trading and planning processes run simultaneously.
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Fig. 9 Mutation mechanisms for task planning.

The fitness function used in both scheduling a task
plan and determining a buy bid is the estimated team
objective function described in equation 1. Using the
team objective function, J , as the fitness function instead
of each vehicle’s individual objective function allows
more cooperative behavior to emerge. Each vehicle es-
timates the team objective function based on the prices
of the selling tasks and information acquired by commu-
nicating with the other vehicles. The more information
sharing exists among the vehicles, the more cooperative
behavior results in the task allocation plan. In the current
implementation, the planning algorithm only uses prices
to estimate the team objective function.

In the selling process, each planner sets a price for the
randomly selected task using the same pricing strategy
which is:

sell price = −∆Ĵs

where ∆Ĵs is an estimate of the difference in the team
objective function value if the vehicle does not execute
the task. The buying process is more difficult because
each vehicle sells and buys in each trading cycle. The
outcome of the buying decision depends on the unsettled
sell bid. Therefore, the planner must make an assumption
about the sell bid when submitting the buy bid. Based on
that assumption, the price of a buy bid is set by

buy price = ∆Ĵb

where ∆Ĵb is the estimate of the difference in the value
of the objective function if the buying vehicle executes
the buying task and no other vehicles do it.

Assuming the sell bid will be accepted is defined as
Type 1 assumption. A Type 2 assumption assumes the sell
bid will be rejected. Making a wrong assumption about
the sell bid may result in an unfavorable trading outcome
at the end of each trading cycle. Table 1 shows all pos-
sible outcomes after a vehicle participates in a trading
cycle using type 1 assumption when there is no buying
confirmation steps which are the red outlined boxes in
the trading sequence shown in Figure 8. Tables 2 and 3
show the decision tables based on type 1 and type 2
assumption respectively with addition of the buying con-
firmation steps. These tables show that there are fewer
chances for a wrong buying decision.

In fact, we can guaranteed the result of each trading
cycle to be beneficial. This can be accomplished by let-
ting each planner turns away every pre-accepted buy bid
if there is a chance that the buying based on a wrong as-
sumption results in lower objective function value. How-
ever, the search process could be struck in local minima14

because swapping tasks between two vehicles would not
occur in this situation. To avoid that problem, the vehi-
cle using type 1 assumption has to take a risk to confirm
a buy bid every time when it knows that its sell bid was
pre-accepted. Therefore, the outcome in the dark shaded
area in the decision table I will not happen. The outcome
in the dark shaded area in the decision table II will not
happen either because the planner will accept every buy
bid if the initial sell bid result is according to its assump-
tion.

After some investigation, we found that buying deci-
sions based on the type 1 assumption are more suitable
in some situations and those based on the type 2 assump-
tion in others. Therefore, both of them must be used to
achieve optimal solutions. In our implementation, the
planner algorithm randomly selects an assumption about
the sell bid and uses it in the buying decision process.
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Accept

Accept

Reject

Reject

Buy bid

Sell bid

Benefit increases

Benefit unchanges

Benefit may decreases

Symbols:

?

Benefit not decreases

Depend on decision

Table 1 Agent decision table based on type 1 assumption
when there is no buying confirmation steps in the trading
sequence. This table shows all the possible outcomes, one of
which results in reducing the value of the objective function.

Buy bid

Sell bid
Pre-Accept Pre-Reject Post-RejectPost-Accept

Pre-Accept

Pre-Reject

Post-Accept

Post-Reject

?

?

Buying confirmation

Table 2 Agent decision table I based on type 1 assumption
with addition of the buying confirmation steps. The dark
and the light shaded areas show all the possible outcomes
of a trading cycle.

Buy bid

Sell bid
Pre-Accept Pre-Reject Post-RejectPost-Accept

Pre-Accept

Pre-Reject

Post-Accept

Post-Reject

?

Buying confirmation

Table 3 Agent decision table II based on type 2 assumption
with addition of the buying confirmation steps. The dark
and the light shaded areas show all the possible outcomes
of a trading cycle.

To test our task planning algorithm, we applied it to
a static multiple travelling salesman problem. In this
problem there are five vehicles visiting thirteen depots.
All the vehicles have the same goal location at (10,10).
The score for each task is 200. The operating cost of
each vehicle is the distance of the straight line connect-
ing its starting position, allocated depots’ locations and
the goal multiplied by a scale factor. The results after
40 trading cycles are shown in figure 10 and 11. From
the figures, we can see that the algorithms in both cases
provide the optimal solution, but the algorithm in the lat-
ter case converges faster and its objective function value
increase monotonically.
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Fig. 10 Results of static multiple travelling salesman prob-
lem. The dashed line represents the value of the team
objective function at each trading cycle without buying con-
firmation steps, and the solid line presents the value of the
team objective function after addition of the buying confir-
mation steps.
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Fig. 11 Final task plan after 40 trading cycles, correspond-
ing to figure 10. The triangles represent initial locations
of the vehicles and the circles represent locations of the as-
signed depots. The goal location is at (10,10). The color of
each depot is the same as the vehicle to which it is assigned

5. SIMULATION RESULTS

In this section, we present some of the results of simula-
tions which demonstrate the performance of the planning
algorithms described in section 4. In the scenario used
for our simulations, there are three vehicles in the team.
They are assigned to observe five different targets. The
targets are distributed in various locations in the operat-
ing field. Each vehicle has a camera which has a limited
zoom range for observing targets. We assume that the
camera can rotate 360 degrees. Each vehicle also has a
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sensor for detecting targets. The sensors have a specified
range and a limited angle of detection. There are some
obstacles in the field which the vehicles need to avoid.
The vehicles are required to reach a goal location after
executing their tasks.

The planning computation was initialized by randomly
generating paths and assigning targets to the vehicles.
Figure 12 shows the result of the off-line task and path
planning before the vehicles start executing the plans.
The vehicles efficiently allocate the tasks and success-
fully observe all the targets while avoiding the obstacles.
The computation time for the off-line planning was less
than one minute. In this simulation, the algorithms were
implemented in C++ language and all the computation
was processed on one computer with a Pentium 4 2.0
GHz processor. However, in a real system, the planner
for each vehicle runs on a dedicated on-board processor.
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Fig. 12 Simulation result of off-line planning at time T0.
The vehicles are illustrated as small triangles with differ-
ent colors. Each vehicle has a dashed circle around it to
show the camera range of view. Targets are drawn as cir-
cles which have the same color as the vehicle to which they
are allocated. The red circles in the figure are obstacles.
The goal location is the small green circle.

Figure 13 illustrates the simulation result of the on-
line planning at time T6 after the vehicles have moved
along the planned paths and just detected changes in the
target locations. Figure 14 shows the result after the ve-
hicles reallocated the tasks and replanned their paths at
time T7. Since the task and path planners of each vehicle
run continuously, they adapt the task plan and path in re-
sponse to the changes while the vehicle is executing the
plan. The results show the vehicles successfully reallo-
cate the tasks and replan their routes. The cycle time of
the planner was about one second.
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Fig. 13 Simulation result of on-line planning at time T6.
Since T0 the vehicles have moved along the planned paths
and just detected changes in the target locations. The dot-
ted lines in the figure show the past trajectories of the vehi-
cles.
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Fig. 14 Simulation result of replanning after detecting
changes in target locations at time T7 after the vehicles re-
allocated the tasks and replanned their paths.

6. CONCLUSION

In this paper, we have presented a framework and algo-
rithms for combined task and path planning for multiple
autonomous vehicles. The planning system takes advan-
tage of the flexibility of EC-based techniques and the
distributed structure of Market-based algorithms. This
planning system can be used in both off-line planning
and on-line replanning for vehicles in a dynamic envi-
ronment. The results show that the algorithms are com-
putationally feasible and capable of providing effective
solutions. The research presented in this paper is an on-
going project. Future improvement of the algorithms will
focus on path estimation and its interaction with path
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planning, Market Protocol, the communication structure,
and information flow among the vehicles and the com-
mand and control center.
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