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Abstract

The focus of the work in this paper is the im-
plementation of a distributed deconfliction algo-
rithm for vehicles with constraints on velocity
and acceleration. The algorithm was tested on
two testbeds: a quadrotor system and an under-
water vehicle system. The quadrotor system has
vehicles that can hover in place and move in arbi-
trary directions, while the vehicles in the under-
water system move with a constant forward ve-
locity and can only change direction by changing
heading. Results are demonstrated for a variety
of numbers of vehicles as well as types of colli-
sion directions.

1 Introduction

As multi-vehicle autonomous systems are stud-
ied and implemented, the issue of conflict res-
olution becomes increasingly important. From
mobile robots performing a cooperative search
to air traffic control for unmanned aerial vehi-
cles, collision avoidance is of utmost importance
for safety. Much of the work so far on colli-
sion avoidance has been sponsored by the FAA
to support a potential move to free-flight air traf-
fic control [13], [7], whereby aircraft can avoid
each other in a decentralized manner rather than
relying on a land-based controller. Similar con-
cepts have been discussed regarding autonomous
harbor control for ships [11], [6]. These scenarios
will become more important as unmanned vehi-
cles are introduced, because safety will need to

be guaranteed for them to be accepted by their
manned counterparts.

Many conflict resolution strategies have been
proposed using varying degrees of automation.
Some of these strategies are designed specifically
for Air Traffic Control (ATC) applications, while
others are more general in nature. An overview
and classification of many collision avoidance al-
gorithms can be found in [8]. The Distributed
Reactive Collision Avoidance (DRCA) algorithm
developed in [9] is a conflict resolution scheme
guaranteeing collision avoidance, either in the
plane or in 3D, for an arbitrary number, n, of
nonholonomic vehicles. The DRCA algorithm is
designed to work with vehicles that have limited
control authority and complex dynamics (such as
aircraft, which have low acceleration compared
to speed and must bank to turn). According to the
collision avoidance classification in [8], DRCA
is a nominal (projects current states into the fu-
ture along a single trajectory), horizontal plane,
global algorithm that combines turning and speed
changes and detects conflict. It is most closely
associated with a force field approach, although
it does not strictly meet this definition because
DRCA does not treat vehicles as charged parti-
cles.

An imperative feature for any avoidance algo-
rithm used for automating air or shipping traffic
must be a guarantee of collision avoidance. For a
collision avoidance guarantee to be valid for real
vehicles, it must also restrict the maximum ac-
celeration. Any collision avoidance scheme that
does not meet this criteria can be ruled out for
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such applications. Many of the approaches pre-
viously proposed guarantee avoidance, but only
for a limited number of vehicles [15], [2]. Be-
cause traffic in the air and on the sea is rapidly
increasing, a higher likelihood exists for a colli-
sion (or at least a conflict) involving multiple ve-
hicles. The DRCA algorithm is ideal for such ap-
plications because it guarantees collision avoid-
ance (including a restriction on maximum accel-
eration) for an arbitrary number of vehicles si-
multaneously.

Furthermore, a centralized avoidance scheme
should be avoided because of the high compu-
tational load required by the central node, lack
of robustness (what happens if it breaks?), and
inability to respond quickly to emergency situa-
tions. The DRCA algorithm distributes compu-
tation among the entire group because each vehi-
cle accounts only for its own interactions. This
distribution makes for O(n) calculations on each
vehicle, which should be reasonable in most ap-
plications. It is not a centralized algorithm, but
it is not strictly decentralized since states of all
other vehicles are required (not just the nearest
neighbors). Since it is not centralized or decen-
tralized, the term “distributed” is used in naming
the algorithm.

The focus of the work in this paper is to pro-
ceed beyond the theoretical and simulation work
developed in [9] by implementing the DRCA al-
gorithm on actual hardware. The remainder of
the paper is organized as follows to present the
implementation. In Section 2, system modeling
is discussed, and the deconfliction algorithm is
presented. The two testbeds being utilized for im-
plementation are discussed in Section 3. Results
of the deconfliction implementation are given in
Section 4, and conclusions are given in Section 5.

2 Decentralized Reactive Collision Avoid-
ance

2.1 System Model

The work here presents implementation of a
method for deconflicting n vehicles. The notation
throughout this paper will use bold face for vec-

tors, hats over unit-vectors, script capital letters
for sets, standard capital letters for matrices and
functions, and everything else is assumed scalar.
Quantities subscripted with t, n, or b refer to the
tangent, normal, or binormal direction, respec-
tively.

Each vehicle has a nominal desired control
input, ud(t), which comes from an arbitrary
outer-loop controller. This controller is designed
for the vehicle to perform a desired task, which
could range from target tracking to waypoint nav-
igation, area searching, etc. The goal of the
DRCA algorithm is to adjust the control input
on each vehicle to guarantee collision avoidance
while simultaneously staying close to the desired
control input (keeping in mind that this desired
control can change with time).

For this approach to collision avoidance, the
only vehicle states that matter are position and
velocity. Orientations affect performance, as they
often have bearing on the magnitude of acceler-
ation available in a particular direction, but they
do not directly affect the underlying features of
conflict and collision. In this way, many differ-
ent vehicle models work equivalently with this
approach. To simplify the math, a simple vehi-
cle model will be used for most of the following
analysis: a 3D double integrator, which for the ith

vehicle is given by

d
dt

[
ri
vi

]
=
[

vi
ui

]
d
dt

Θi = ΩiΘi,

(1)

where r,v ∈ R3 are the position and velocity of
the vehicle center of mass, and u ∈R3 is the con-
trol input. The matrix Θ = [t̂, n̂, b̂] defines the ori-
entation of a body-fixed coordinate frame located
at the vehicle center of mass relative to an inertial
coordinate frame, and Ω is the cross product ma-
trix of the body rotation vector ωωω = [ωt ,ωn,ωb]T.
Note that the orientation of the vehicle (defined
by the t̂, n̂, and b̂ vectors) is only used as a local
coordinate frame for the DRCA algorithm. The
orientation does not directly affect the dynamics
(r and v), and as such can be arbitrary. How-
ever, many vehicle’s input constraints are related
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to their orientation, and so it can be useful to tie
this local coordinate frame to the actual body co-
ordinates of the vehicle.

We constrain the input by use of an arbitrarily
varying constraint set, ui ∈ Ci. The only require-
ment is that Ci always contain the origin. A sim-
ple example of an input constraint set that limits
maximum acceleration and velocity is

Ci =
{

ui ∈ R3∣∣‖ui‖ ≤ umax,

‖vi‖ ≥ vmax =⇒ uT
i vi ≤ 0

}
. (2)

For the DRCA algorithm, one must choose a
set of rectangular constraints R (which can also
vary with time, state, etc.) for each vehicle that
encloses its C , as well as a corresponding satu-
ration function, S : R → C . The function S must
be continuous, must become the identity map for
any u ∈ C , and must preserve the sign of each
component of u when decomposed in the t̂, n̂,
and b̂ directions. In this example, one can choose

Ri =
{

ui ∈ R3∣∣−umaxi ≤ uti ≤ umaxi, . . .
}

, (3)

and

Si =


ui

umax
‖ui‖ , ‖ui‖> umax

ui−
viuT

i vi
vmax

, ‖vi‖ ≥ vmax,uT
i vi ≥ 0

ui, otherwise.

(4)

An example of how more complex vehi-
cle dynamics can be represented by this simple
model with an appropriate choice of input con-
straint set follows. Let us model a vehicle which
can move forward with variable speed and turn
in two axes (a 3D unicycle model) with limits on
its turn rate, forward acceleration, and maximum
speed. One way to describe the model mathemat-
ically is by

d
dt

[
r
s

]
=
[

st̂
ua

]
d
dt

Θ = ΩΘ,

,

where |ua| ≤ uamax , |ωn| ≤ ωnmax , |ωb| ≤ ωbmax ,
and |s| ≥ smax =⇒ uas ≤ 0. Alternatively, an

equivalent representation of the system is (1) with
u = uat̂+‖v‖ωbn̂−‖v‖ωnb̂. The tangent vector
must be initialized to the same direction as the
velocity vector, but the dynamics will keep the
two vectors aligned from then on. In this case, R
can be defined by

utmax =−utmin = uamax

unmax =−unmin = ‖v‖ωbmax

ubmax =−ubmin = ‖v‖ωnmax ,

and the accompanying saturation function is

S =

{
u− vuTv

smax
, ‖v‖ ≥ smax,uTv≥ 0

u, otherwise.

Normally one would not equate a holonomic
model to a nonholonomic one, largely because
of differences in controllability. However, full
controllability is not essential to the DRCA algo-
rithm since only position and velocity are essen-
tial. The DRCA algorithm is designed to use any
control authority available, assuming controlla-
bility in the position and velocity states. Note
that full controllability is generally required for
the nominal control, ud(t).

The relative position vector from vehicle i to
vehicle j is denoted r̃i j ≡ r j− ri, while the rel-
ative velocity vector is defined in the opposite
sense: ṽi j ≡ vi− v j. Note that these definitions
imply that ˙̃ri j =−ṽi j, and ˙̃vi j = ui−u j.

A useful quantity to define is the dimension-
less Deconfliction Difficulty Factor, η, to com-
pare different systems in which collision avoid-
ance is to be implemented. This factor is defined
as

η =
v2

max
umaxdsep

. (5)

Conceptually, this factor is the ratio of the worst
case turning radius to the required separation dis-
tance. It can also be thought of in terms of stop-
ping distance.

The DRCA algorithm was designed primarily
for systems with large η (greater than unity) such
as aircraft and ships, where the collision avoid-
ance task is difficult because of the dominance
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of vehicle inertia. Vehicles with small η (sig-
nificantly less than unity) such as mobile robots
can often be modeled as having a direct veloc-
ity command, since the inertia becomes insignif-
icant. In such cases, potential function methods
for collision avoidance may be preferable to the
DRCA algorithm because of their simplicity and
ability to closely pack vehicles. The downside of
potential function methods is their general lack
of provable guarantees, especially when inertia is
considered.

2.2 Deconfliction Algorithm

The vehicles considered here are modeled as
point masses, however physical vehicles have fi-
nite size. Therefore, to account for physical con-
straints in the theoretical model, the condition for
conflict is not to attain the same position in space
at the same time, but rather to come within a
minimum allowed distance of each other at some
point in time. This minimum distance could be,
for example, the five nautical mile separation be-
tween aircraft required by the FAA or the sum of
the radii of two vehicles.

Definition 1 (Collision) A collision occurs be-
tween vehicles i and j when∥∥r̃i j

∥∥< dsep,i j,

where dsep,i j is the minimum allowed separation
distance between the vehicles’ geometric centers.

For two vehicles not actively in a collision,
the next question is whether they will collide if
they remain on their present headings. This situ-
ation will be called a conflict.

Definition 2 (Conflict) A conflict occurs be-
tween vehicles i and j if they are not currently in
a collision, but with zero control input (i.e. con-
stant velocity), at some future point in time they
will enter a collision:

dmin,i j ≡min
t>0

∥∥r̃i j
∥∥< dsep,i j. (6)

The following lemma provides a useful way
to check for conflicts. To simplify the notation in

c

dsep

dsep

v j

vi

e

r̃

pt,i jti

α

α
β

ṽ

si pn,i jni

Fig. 1 An augmented depiction of the collision
cone used in DRCA.

the rest of this paper, the i j subscripts will gener-
ally be suppressed (for example, r̃i j will be writ-
ten as r̃).

Lemma 2.1 Let β = ∠ṽ − ∠r̃0, α =
arcsin

(
dsep
‖r̃0‖

)
, and r̃0 be the relative posi-

tion vector at the time conflict is being checked.
A necessary and sufficient condition for no
conflict to occur is

|β| ≥ α.

The angle α represents the half-width of the colli-
sion cone ([3], [4], [2]), which is depicted in Fig.
1.

A proof using this notation is given in [10],
but is conceptually the same as the original colli-
sion cone proofs from [3].

If the system initially contains conflicts, a de-
confliction maneuver must be performed to bring
the system into a conflict-free state. One such
maneuver is for all vehicles to turn left until the
system is conflict-free. Once the deconfliction
maneuver has been performed and the system
is in a conflict-free state, then the deconfliction
maintenance controller can be used to keep the
system conflict-free. This controller allows each
vehicle to use its desired control input unless that
input would cause the vehicle to come into con-
flict with another vehicle. A basic block diagram
of this process is shown in Fig. 2.

In order to smoothly transition from the de-
sired control to the avoidance control, each vehi-
cle needs a way to measure how close its velocity
vector is to causing a conflict. The first step is to
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Separated?Desired

Control

Deconfliction

Maintenance

Deconfliction

Maneuver

Enter

Conflict−Free?

No

Yes

Yes

No

Fig. 2 DRCA algorithm flow chart.

construct a unit-vector, ĉ, representing the side of
the collision cone nearest ṽ. The vector ĉ is found
by rotating r̃ by α around a vector q = r̃× ṽ and
normalizing:

ĉ =
r̃
‖r‖

cosα+
(

q× r̃
‖q‖‖r‖

)
sinα. (7)

Next, construct a normal vector, e, from the
collision cone to the relative velocity vector, ṽ
(see Fig. 1). If ĉTṽ > 0, then e = (I− ĉĉT)ṽ, but
if ĉTṽ ≤ 0 (the vehicles are headed away from
each other), then no normal exists, and the near-
est point on the collision cone is the tip, so e = ṽ.
Therefore:

e =

{
ṽ, ĉTṽ≤ 0
(I− ĉĉT)ṽ, ĉTṽ > 0.

(8)

In order to combine the effects of multiple
collision cones, a useful approach is to decom-
pose the system into three component directions
and analyze those directions separately. Let the
coordinate system be defined by the orthonormal
vectors t̂, n̂, and b̂. The orientation of this coor-
dinate system is arbitrary, but the convention of
using tangent, normal, and binormal notation is
chosen since fixing the coordinates to the body
of the vehicle often simplifies analysis.

The next step is to determine how much con-
trol (change in velocity) can be applied in each of
these directions before a conflict forms. For sim-
plicity, a conservative approach is taken whereby
the signed distance is found from ṽ to the tangent

plane enclosing the collision cone (defined by the
normal vector e) in each of the t̂, n̂, and b̂ direc-
tions. These signed distances are

pt,i j =

∥∥ei j
∥∥2

eT
i j t̂i

, pn,i j =

∥∥ei j
∥∥2

eT
i jn̂i

, and pb,i j =

∥∥ei j
∥∥2

eT
i jb̂i

,

which are described graphically in Fig. 1.
Define εt ,εn,εb > 0 as thresholds such that

when |pt | > εt , the conflict is far enough away
that it can be ignored (and likewise for pn and
pb). The n-vehicle deconfliction maintenance
controller running on vehicle i computes pt , pn,
and pb to each of the other vehicles and then finds
the closest conflict in each direction, i.e.

p+
ti = min

j

{
pt,i j > 0,εti

}
p−ti =−max

j

{
pt,i j < 0,−εti

}
,

(9)

and likewise for pn and pb. Note that by defini-
tion 0 < p±≤ ε. To simplify notation, in any case
where a relation holds in all of the tangent, nor-
mal, and binormal directions, the subscript will
be suppressed.

The input is constructed using a function, F ,
such that in each direction u = F(p+, p−,ud)
(meaning the control choice is does not produce
a conflict-generating velocity). The control func-
tion chosen for the implementation of the DRCA
algorithm here is

F(p+, p−,ud) =
umin

ε
p+ +

umax

ε
p−

+
ud−umax−umin

ε2 p+p−,

(10)

because it is a bilinear interpolation of the follow-
ing ordered triples of the form (p+, p−,u):

P1 = (0,0,0) P2 = (ε,0,umin)
P3 = (0,ε,umax) P4 = (ε,ε,ud).

An example of this control function is shown in
Fig. 3. Because F depends on the desired control,
ud must be saturated such that

umin ≤ ud ≤ umax. (11)
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Fig. 3 Example of the control function, F .
Note that P4 moves increases and decreases with
changing ud .

This choice of control function means that once
u is constructed from its three components, then
u ∈ R . Then the saturation function S will give
the final resultant control vector, which will be in
C . The octant-preserving nature of S will ensure
this final saturation step does not violate the re-
quirements for the proof of collision avoidance.

A more intuitive way to choose a value for ε

is to relate it to a gain-like parameter,

k =
umax−umin

ε
.

Note that k has units of inverse seconds. Also,
one can see that the magnitude of the gradient of
the control function will always be less than or
equal to k, regardless of the desired control.

Assuming the deconfliction group, D , has n
vehicles, this algorithm’s computation time on
each vehicle scales as O(n), because it only re-
quires the computation of each other vehicle’s
collision cone and then substitutes these results
into the control function. Technically O(n2)
computations happen in the entire group, but
since these computations are independent of each
other (only linked by the sensed or communi-
cated states), they can happen in parallel in a dis-
tributed fashion, so only the per-vehicle scaling
affects computation time.

The system is guaranteed to maintain its
conflict-free state despite arbitrary control au-
thority restrictions with the following algorithm

(see [9] for full theorem statement and proof).
Each time a new vehicle is added to the decon-
fliction group, D , it performs its deconfliction
maneuver, broadcasting a conflict-free velocity to
the group. Since this broadcast velocity is the
quantity used by the deconfliction maintenance
algorithm until the new vehicle is truly conflict-
free, the deconfliction group never sees any new
conflicts.

3 Testbeds

Two testbeds were utilized to evaluate the DRCA
algorithm for different vehicle and environment
types. The first testbed is composed of au-
tonomous air vehicles which can hover in place
and move in arbitrary directions. The second
testbed is composed of autonomous underwater
vehicles which are constrained to move at a con-
stant velocity and can only change direction via
heading changes.

3.1 Boeing Quadrotor System

The Boeing Vehicle Swarm Technology Lab
(VSTL) was developed to provide rapid prototyp-
ing capabilities for mission algorithms, vehicle
hardware, and health management ([14],[1],[5]).
The indoor testbed is a 30.5×15.2×6.1m3 vol-
ume that allows for testing a heterogeneous mix-
ture of autonomous vehicles. The testbed has
full-state feedback capability through a VICON
position reference system, pulsing visible light
that bounces off reflective markers attached to the
vehicles and using a system of cameras to tri-
angulate the vehicles’ position, velocity and at-
titude. Position accuracy is sub-millimeter and
angular accuracy is sub-degree. The overall lab-
oratory is shown in Fig. 4. Data for multiple ve-
hicles is provided to the central data processing
hub at 100 frames per second with approximately
10 milliseconds of latency [14]. The vehicles
used for testing the DRCA algorithm are heavily-
modified Draganflyer quadrotors as shown in Fig.
5.
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Fig. 4 Vehicle Swarm Technology Laboratory
(VSTL) developed by the Boeing Research and
Technology group.

3.2 University of Washington Fin-Actuated
Autonomous Underwater Vehicles

The UW testbed is composed of a set of
three fin-actuated autonomous underwater vehi-
cles (Fig. 6) operating in a freshwater tank 6.1×
2.4× 2.4m3 in size. Four grey-scale underwater
cameras in the upper corners of the tank are con-
nected to a computer with a quad-core processor
and 4GB RAM to perform real-time 3D tracking
of objects in the tank. Position and velocity infor-
mation is broadcast from this tracking computer
to the underwater vehicles at 5 Hz. All control
calculations are done onboard the vehicles them-
selves. Additional details on this system can be
found in [12].

Fig. 5 Quadrotor vehicle equipped with refer-
ence markers.

Fig. 6 University of Washington Fin-Actuated
Autonomous Underwater Vehicle system.

3.3 Testbed Constraints and DRCA

Although these testbeds are adequate for testing
the DRCA algorithm, they do not entirely match
the assumed operational criteria of DRCA. The
DRCA algorithm was designed using “velocity
space.” Because rotorcraft are continually chang-
ing velocity while hovering, the quadrotors are
constantly going in and out of conflict even if
they are commanded to be stationary a safe dis-
tance apart. Additionally, the algorithm is de-
signed with the assumption of existence of space
that is free of collision cones. This assumption
guarantees collision avoidance in free operational
space, but it can present problems in an enclosed
environment. In certain scenarios, vehicles may
be presented with the choice of a collision or go-
ing out of bounds (assuming that the boundary is
a choice rather than a hard physical constraint),
so that collision avoidance can no longer be guar-
anteed.

4 Experimental Results

Four experiments were run with the quadrotor
system: one moving vehicle with a static obsta-
cle, one moving vehicle and one vehicle with a
fixed waypoint, two vehicles flying directly at
one another and four vehicles flying at one an-
other. Experimental results were compared to
predicted results from numerical simulation us-
ing Matlab. Four experiments were run with

7



A. P. MELANDER*, N. D. POWEL*, E. LALISH*, K. A. MORGANSEN*, J. S. JANG** AND J. VIAN**

the UW system: two vehicles without colli-
sion avoidance performing a collision, two vehi-
cles with DRCA avoiding the collision from the
first experiment, two vehicles colliding obliquely
without deconfliction, and two vehicles with an
oblique interaction using DRCA.

4.1 Boeing Quadrotor System

The DRCA algorithm was implemented in C and
C++ and is called at 50 Hz. For the purposes
of this demonstration, the prescribed deconflic-
tion maneuver for the vehicles was “all-turn-
left”. Several parameters can be adjusted within
the DRCA algorithm to produce desired behav-
ior: dsep, smax, umax, ε, dt, and bound. The first
three parameters were defined in the discussion
of the DRCA. The term bound is the distance
between vehicles at which deconfliction begins.
DRCA expects to operate at the control (acceler-
ation) level, modifying the desired control input
to produce a new control that guarantees collision
avoidance. However, the Boeing programming
architecture outputs desired velocities instead of
controls, so dt was a gain used to convert desired
control to velocity.

The algorithm was tested both in experiment
and in a Boeing simulation that uses Matlab
Simulink to interact with the simulation environ-
ment SwarmView. The parameters above were
adjusted to produce desirable collision avoidance
performance. Since dsep is defined for safety
and smax and umax are properties of the vehicle,
the three parameters actually determined were ε,
bound, and dt. The parameters were determined
by an initial set from simulation results before
flight test and then refinement during flight test.
The final values used to produce the results below
are given in Table 1. The algorithm was tested
in four different scenarios described below. The
flight path and vehicle separation data came from
the VICON position reference system. The con-
flict and control information used data from in-
ternal logging within the DRCA algorithm itself
and is shown for vehicle 1 only.

Table 1 Parameters used in DRCA simulation
Parameter dsep smax umax

Value 1.0 1.25 5.6638
Parameter ε dt bound

Value 1.0 0.4× smax
umax

6.0

4.1.1 Static obstacle with one flying vehicle

Flight testing for the static obstacle case (with the
static obstacle being a quadrotor with no colli-
sion avoidance running) gives results similar to
those found in simulation (Figs. 7(a)-7(d)). A bit
of delay is present in the flight test that shows
up in the flight path (Fig. 7(a)) and in the con-
trols (Fig. 7(b)). Other than this delay, the flight
path and controls looked similar in flight test and
simulation, as does the algorithm performance.
Observing Fig. 7(c) shows that the vehicles in
flight test and in simulation had similar separa-
tion distances. Upon closer inspection, the vehi-
cles came about 0.2 m closer in simulation than
in flight test. Fig. 7(d) shows the speed of the
moving vehicle and verifies the delay in the hard-
ware environment. It also shows that the max-
imum speed in simulation was greater than the
1.25 m/s specified. This difference in speed prob-
ably resulted in the vehicles moving closer to-
gether in simulation (notice that the time of maxi-
mum speed corresponded to the time of minimum
separation distance).

4.1.2 Fixed waypoint with one flying vehicle

The results for the case of one flying vehicle
and one vehicle with a fixed waypoint (with
DRCA activated on both vehicles) are shown in
Figs. 8(a)-8(d). Fig. 8(a) shows that the flight
paths of the vehicles were virtually identical with
simulation. Likewise, Fig. 8(c) shows that the ex-
perimental controls and conflict resolution were
extremely close to the simulated results. The
speed (Fig. 8(d)) had some minor variations, but
was quite similar overall between experiment and
simulation. As specified, the speed of vehicle two
had a maximum at 1.25 m/s. Fig. 8(b) shows that
the vehicles maintained similar separation over
time in simulation and in flight test. It also shows
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Fig. 7 Static obstacle with one vehicle. Fig. 7(a) shows the trajectories of the vehicles, and Fig. 7(b)
gives the controls of the vehicles and the times that the vehicles were in bound and in conflict. Fig. 7(c)
gives the difference between vehicle separation and minimum separation distance. Note that a collision
occurs if the curve becomes negative. Fig. 7(d) shows the velocity of the moving vehicle.

that the vehicles did not collide. Overall, the
DRCA algorithm performed as designed in this
case.

4.1.3 Two vehicles flying at one another

In the case of two vehicles flying directly at one
another, flight test results were quite similar to
simulation (Figs. 9(a)-9(d)). Fig. 9(a) shows that
the paths in simulation and in experiment were
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Fig. 8 Fixed waypoint with one flying vehicle. Fig. 8(a) shows the trajectories of the vehicles, and
Fig. 8(c) gives the controls for the vehicles and the times that the vehicles were in bound and in conflict.
Fig. 8(b) gives the difference between vehicle separation and minimum separation distance. Note that a
collision occurs if the curve becomes negative. Fig. 8(d) shows the vehicle velocities.

similar, but that they did not line up perfectly. In
flight test, the vehicles began their deconfliction

maneuver earlier than in simulation and seemed
to have a little bit of a lag in the controls when
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Fig. 9 Two vehicles flying at one another. Fig. 9(a) shows the trajectories of the vehicles, and Fig. 9(c)
gives the controls for the vehicles and the times that the vehicles were in bound and in conflict. Fig. 9(b)
gives the difference between vehicle separation and minimum separation distance. Note that a collision
occurs if the curve becomes negative. Fig. 9(d) shows the vehicle velocities.

compared to simulation. Fig. 9(c) shows that
controls in flight test were delayed compared to
simulation, which likely was the cause of the dif-
ferent trajectories. Other than this delay, the con-
trols were quite similar. Fig. 9(c) also shows
that the vehicles deconflicted a bit slower in flight
test compared to simulation. Fig. 9(d) shows the
speed of the vehicles, which further confirms the
delay in the system. Fig. 9(b) shows that the ve-
hicles had similar separation with respect to time
in simulation and flight test. The fact that the

curve did not become negative indicates that the
vehicles succeeded in avoiding collision.

4.1.4 Four vehicles flying at one another

The results from the four-vehicle head-on flight
test are shown in Figs. 10(a)-10(b). Fig. 10(a)
shows the trajectories of all four vehicles in flight
test and compares them with simulation. All
flight paths correspond well between simulation
and experiment. Fig. 10(b) portrays the simi-
lar separation distances in flight test and in sim-
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Fig. 10 Four vehicles flying at one another. Fig. 10(a) shows the trajectories of the vehicles, and
Fig. 10(b) gives the difference between vehicle separation and minimum separation distance. Note that
a collision occurs if the curve becomes negative. Fig. 10(c) shows the vehicle velocities.

ulation, and confirms that no collisions occurred
between any vehicles. Fig. 10(c) shows similar
speeds in simulation and in flight test, although
speeds in the flight test spike a bit higher at the
time when the vehicles are closest together.

4.2 UW Underwater Vehicle System

The DRCA algorithm on the UW underwater ve-
hicles used the “all-turn-left” deconfliction ma-
neuver. The parameter bound used in the quad-
rotors was not used on the underwater vehi-
cles because the DRCA algorithm was run at all
times, regardless of vehicle separation. The ve-
hicles were treated as having a constant com-
manded speed of 1.3 ft/s. The commanded sepa-
ration distance dsep was 1.5 ft.

4.2.1 Two vehicles with intentional collision

To demonstrate that the UW underwater vehi-
cles will actually collide without use of a decon-
fliction algorithm when commanded to move di-
rectly at one another, two vehicles were set at op-
posite ends of the tank and commanded to seek
a waypoint behind the opposite vehicle. DRCA
was not used in this experiment.

Fig. 11(a) shows the trajectories followed by
the vehicles during the experiment. Because the
waypoint sought by each vehicle was directly be-
hind the opposing vehicle, the waypoint algo-
rithm caused the vehicles to engage in a head-on
collision. Fig. 11(b) shows the distance between
the vehicles. The distance between the vehicles
decreases zero as the experiment progresses, in-
dicating that the vehicles collided.

12



Implementation of Deconfliction in Multivehicle Autonomous Systems

(a) (b)

Fig. 11 Two vehicles with intentional collision. Fig. 11(a) shows the trajectory of the underwater
vehicles, and Fig. 11(b) shows the vehicle separation distance. Note that the vehicles collided while
seeking their waypoints. The vehicles were not running the DRCA algorithm.

4.2.2 Two vehicles with DRCA

To demonstrate the effectiveness of the DRCA al-
gorithm, the same waypoint controller and initial
conditions were used as in §4.2.1, but with the
DRCA algorithm running as an additional layer
of control. The DRCA algorithm allowed the
vehicles to reach their waypoints while avoiding
collision.

Fig. 12(a) shows the trajectories of the two
vehicles running the DRCA algorithm. The ve-
hicles started out in conflict and made an im-
mediate turn to the left to reach a conflict-free
state. They then passed each other outside the
minimum separation distance and turned back to
the right toward their waypoints. After they were
completely past each other, they were able to go
to their commanded waypoints, completing their
mission. Fig. 12(b) shows the separation between
the two vehicles during the run. Note that al-
though the vehicles passed close to the minimum
separation distance, they always remained in a
collision-free state.

The only difference between the runs in this
experiment and the runs in the experiment that
intentionally caused a collision was the addition
of DRCA control on top of the desired controller.
The DRCA algorithm successfully prevented col-
lision while permitting the vehicles to efficiently

reach their targets.

4.2.3 Two vehicles with intentional oblique col-
lision

To demonstrate the deconfliction algorithm in a
different situation, two vehicles were placed in
adjacent corners of the tank and given waypoints
along the long edge of the tank opposite their
starting positions. Without the use of a decon-
fliction algorithm these conditions caused the ve-
hicles to collide obliquely. For this experiment,
one of the two fin-actuated vehicles was replaced
with a remote control toy shark controlled by a
human operator. The human operator drove the
toy shark directly to its waypoint at a constant
velocity.

Fig. 13(a) shows the trajectories of the two
vehicles operating without deconfliction. Both
vehicles move diagonally towards the opposing
wall and meet in the center of the tank. Fig. 13(b)
shows the distance between the two vehicles,
which goes to zero, indicating a collision. Note
that this collision is intentional and demonstrates
that a collision will take place with these initial
conditions if deconfliction is not employed.
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(a) (b)

Fig. 12 Two vehicles with DRCA. Fig. 11(a) shows the trajectory of the underwater vehicles, and
Fig. 11(b) shows the difference between vehicle separation and minimum separation distance. Note that
the vehicles reached their waypoints without colliding.

(a) (b)

Fig. 13 Two vehicles with intentional oblique collision. Fig. 13(a) shows the trajectory of the underwater
vehicles, and Fig. 13(b) shows the vehicle separation distance. The vehicles were not running the DRCA
algorithm.

4.2.4 Two vehicles with oblique interaction and
DRCA

In this experiment, the conditions of §4.2.3 were
repeated, but DRCA was added as an additional
layer of control on the green vehicle. The red ve-
hicle (the human controlled toy shark) was con-
trolled directly to its waypoint and did not use the
DRCA algorithm. Fig. 14(a) shows the trajecto-
ries of the two vehicles during the run. Because
the vehicles begin in conflict, the green vehicle
makes an immediate left turn to a safe heading.

It then passes behind the red vehicle until it can
follow its desired controller to the waypoint.

Fig. 14(b) shows the distance between the
two vehicles in excess of the commanded sepa-
ration distance. Note that the DRCA algorithm
permits the vehicles to avoid collision even when
one of the vehicles is not participating in decon-
fliction. At no point in the run did the vehicles
come within the commanded separation distance
of each other. The red vehicle did not inten-
tionally behave antagonistically, but ignored the
green vehicle during its run.
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(a) (b)

Fig. 14 Two vehicles with oblique interaction and DRCA. Fig. 14(a) shows the trajectory of the under-
water vehicles, and Fig. 14(b) shows the difference between vehicle separation and minimum separation
distance. Note that the vehicles reached their waypoints without colliding.

5 Conclusion

The work in this paper has focused on the imple-
mentation of a deconfliction algorithm on two au-
tonomous multivehicle platforms, one composed
of air vehicles and one composed of underwa-
ter vehicles. For both testbeds, the DRCA algo-
rithm was used to prevent collisions in a number
of typical scenarios. Some particular points to
note in these scenarios are that the DRCA algo-
rithm was designed for systems with open bound-
aries with an assumption that conflict-free con-
trol choices exist and in which the only conflicts
being considered are between vehicles using the
algorithm. In fact, the results in the work here
show that these assumptions can be relaxed, at
least to a certain extent, and deconfliction can still
be maintained. Results between experiment and
simulation compared well indicating that the sim-
ulator for the air vehicles is accurately reflecting
experimental performance. Current work is di-
rected at exploring the effects of limited sensing
(range and directionality) on the deconfliction al-
gorithm.
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