
A Single Agent Search of a Two Dimensional Space Using

Probability Collectives and Convex Optimization

Christopher W. Lum,∗

Autonomous Flight Systems Laboratory
University of Washington, Seattle, WA, 98105, USA

March 9, 2006

Abstract

Searching missions are often complicated and difficult
operations to undertake due to their dynamic nature.
For example, in search and rescue missions, targets
are not guaranteed to be stationary and observations
become less reliable as time progresses. In addition,
searches are often initiated with only a very rough
idea of the target location. This work considers the
problem of searching a two dimensional space for tar-
gets using a single autonomous agent. The system
maintains a world model which includes the estimate
of possible target states. The issue of compelling the
agent to converge on possibly moving targets and con-
tinuing to search new regions is formulated as a model
predictive control problem. The world model is prop-
agated forward in time and control decisions are made
on the predicted future state of the world. Waypoints
are assigned by by solving a convex optimization prob-
lem using numerical methods.

1 Nomenclature

Atgt, Btgt Dynamics of estimated target
χ(t) Particle set at time t
d Number of time steps to predict ahead
f0(x) Objective function in (℘)
f0(z) Objective function in (℘3)
fi(z) Inequality constraints in (℘3)
h() Function which returns x̂w(t + p) in (℘1)
Ik Interval of [lk, uk] in (℘)
lk Lower limit of interval Ik in (℘)

∗Research Assistant, Dept. of Aeronautics and Astronautics,
lum@u.washington.edu

M Number of particles in (℘)
n[m] Noise added to particle m in (℘)
(℘) Problem of minimizing over a box
(℘1) Problem of propagating world state
(℘2) Problem of finding cell of maximum score
(℘3) Problem of finding optimal waypoints
rand(x, y) Uniformly distributed random number in [x, y]
uk Upper limit of interval Ik in (℘)
w[m](t) Weight of particle m at time t
X A box
x̄? Quasi-optimal minimizer in (℘)
x[m](t) Particle M at time t in (℘)
x̂tgt(t) Estimated state of target at time t
xw(t) State of world at time t
x̂w(t) Estimated world state at time t
z Decision vector
z0 Agent’s state at time t
z̄? Quasi-optimal solution in (℘2)
z̄ Optimal solution in (℘3)
zuav(t) See z0

2 Introduction

Search and surveillance-type missions typically require
heavy human involvement. Tasks of assigning regions
to search and coordinating sensor measurements are
usually left to human decision making and analysis. In
a noisy environment, it becomes difficult for a human
operator to classify sensor readings and assign confi-
dence in these readings. Determining regions of high
target-location probability and coordinating nearby
agents to converge on a particular spot while allowing
other vehicles to continue searching is also difficult.

1



Therefore, the primary limitation to concurrent oper-
ation of multiple vehicles remains lack of autonomy of
these vehicles.

Many of these search type missions are initiated
with a poor estimate of the target’s actual position.
To aggravate matters, often the target is moving or
evading. Furthermore, visibility and/or lack of com-
putational power eliminates the possibility of identify-
ing targets using a vision based system (either manned
or unmanned). A specific example is the detection of a
submerged submarine in littoral waters. For a search
to be successful, a system must be able to search for
and identify a target in an efficient manner. Even-
tually, these algorithms would be developed to oper-
ate with a team of heterogeneous vehicles. This team
would be comprised of individual vehicles known as
agents. Each agent could have different capabilities
and sensors which dictates that algorithms be easily
adaptable to accommodate these differences.

Previous work at the University of Washington has
established a framework for the integration of various
tasks in an autonomous system. This involves classify-
ing task as either a strategic, tactical, or dynamics and
control problem. These correspond to low bandwidth
tasks such as path planning[1], medium bandwidth
tasks such as target identification, and high band-
width tasks such as state stabilization, respectively.
This works looks at automating the strategic search-
ing task for a single agent in the setting described
above.

Other groups such as Durrant-Whyte et al.[2] have
studied the problem of searching for a target using a
Bayesian probabilistic approach and have investigated
some of the communication issues involved in such a
search. Polycarpou et al.[3] have applied optimization
techniques to generate search patterns over a finite
amount of steps. The search strategy presented here
follows a similar approach and investigates the effect
of incorporating a predictive world estimate to the
problem of finding an optimal search pattern.

Section 3 describes the idea of the occupancy based
maps and the overall architecture of system. Section 4
describes the predictive world model and how it is used
in the overall problem. Finding a quasi-optimal cell to
search is described in section 5. Finding a set of way-
points which are feasible in order to place the agent
in the quasi-optimal cell is described in section 6. Fi-
nally, conclusions and continuing research directions
are present in Section 7.

3 Occupancy Based Maps

In order to effectively search a two dimensional do-
main for a target, the system must keep track of state
of the world in terms of possible target locations. To
do this, an occupancy based map is employed. In this
scheme, the search domain is discretized into rectan-
gular cells. Each cell is assigned a score based on the
probability that the target is located in that grid. This
is similar to a two dimensional, discretized probability
density function [4]. This centralized occupancy based
map is shared and updated by all agents involved in
the search. At each time step, guidance decisions for
each agent are chosen based on this map. An example
of this is shown below in Figure 1.

(a) Total magnetic intensity
map of region

(b) Initial Occupancy Based
Map

Figure 1: Discretization of search region into an occu-
pancy based map.

In Figure 1(b), the blue sections represent scores
with zero scores where as the green represents scores
of 1/2. This is the initial state of the occupancy based
map. It represents having no a priori knowledge of the
targets location other than it cannot be in a section
where no real data exists (i.e. the sections of uniform
blue in Figure 1(a)).

This work does not focus on how the occupancy
based map is updated but instead concentrates on
how to find a optimal cell to search using this oc-
cupancy based map. The overall goal for the agent
would be to attempt to converge on regions of high
score (a high probability that the target is located
there). Of course, the problem of finding a an (x, y)
coordinate which maximizes xw(t) may not be sim-
ple. From an optimization standpoint, xw(t) is in
general non-convex, discontinuous, and has gradient
equal to either zero or infinity. We now propose a
method which yields a quasi-optimal solution which
is feasible and is formulated as a convex optimization

2



problem.
The overall flow of the system is shown below in

Figure 2.

Figure 2: Flow diagram for optimization process

As can be seen, the process is comprised of three
main problems which are referred to as (℘1), (℘2),
and (℘3).

It starts by finding the agent’s state at the current
time, zuav(t). Next, (℘1) is solved to obtain the esti-
mated world state at time t + d. Next, (℘2) is solved
to find the coordinates of the cell with the maximum
score in the reachable cells (these are the cells that the
agent can reach in d steps). Once this quasi-optimal
solution, z∗ is found, (℘3) consists of finding an opti-
mal set of waypoints/controls, z which will take the
agent from its current state to the quasi-optimal state.
This is formulated as a convex optimization problem.

4 (℘1) Predictive World Model

The first problem (℘1) involves creating an estimate
of the world state at a given time and then projecting
this estimate forward in time to obtain the estimated
state of the world at time t + d. The block diagram
for the World Estimator is shown below in Figure 3.

The inputs are the estimated state of the target (po-
sition and velocity) of the target at the current time,

Figure 3: Block diagram for world estimator

x̂(t) and the current state of the occupancy based
map, xw(t). In order to propagate an estimate of the
target state, we assume simple dynamics of the form

x̂tgt(t + 1) = Atgtx̂tgt(t) + Btgtûtgt(t) (1)

The world estimate at time t + p is then a function
of the estimated target state at time t + p and the
world state at the original time t.

x̂w(t + p) = h(x̂tgt(t + p), xw(t)) for p = 0, ..., d (2)

In our example, the function h() simply adds a two
dimensional gaussian centered about x̂tgt(t + d) to
xw(t). An example of this is shown below when the
estimated target state is observed to be moving to the
left at a constant velocity.

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.17

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 1. p = 0

 t = 1 p = 0 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) xw(t)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.17

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 1. p = 1

 t = 1 p = 1 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) x̂w(t + 1)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.17

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 1. p = 5

 t = 1 p = 5 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) x̂w(t + 5)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.17

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 1. p = 10

 t = 1 p = 10 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) x̂w(t + 10)

Figure 4: Estimated world states at different times for
estimated target moving to the left.

3



Now that the state of the world can be estimated
at time t + d, we can attempt to find the coordinates
of a cell with a high score in the reachable cells, z̄?.
This is addressed in (℘2).

5 (℘2) Probability Collectives

5.1 Theory

In order to find the coordinates of a cell with the max-
imum score, we use a method which mixes the ideas of
probability collectives [5] and particle filters [6]. This
provides a method to attempt to find a minimizer to
the following problem

(℘) minimize f0(x) over x ∈ X = a box (3)

Recall that a box is defined by each element xk of
x ∈ X ⊆ <n being in a certain interval Ik = [lk, uk].

X =





x

∣∣∣∣∣∣∣∣∣

x1 ∈ I1 = [l1, u1]
x2 ∈ I2 = [l2, u2]

...
xn ∈ In = [ln, un]





(4)

The difficultly in solving Eq. 3 arises from the fact
that the objective function may not be well behaved
(i.e. non-convex, non-differentiable, etc.). This is es-
pecially true in our case. It may be difficult or impos-
sible to find an optimal solution. An algorithm to find
a quasi-optimal, feasible solution is now proposed.

1. Generate M particles (instances of x ∈ X) dis-
tributed over X in some fashion.

2. Assign weights to each particle based on its ob-
jective function value.

3. Resample the particles proportional to the
weights.

4. Repeat step 2 and 3 until some stopping criterion
is reached.

Let us examine each step in detail.

5.1.1 Initial Particle Distribution

To find a quasi-optimal minimizer of f0(x), a finite
set of possible minimizers are used. Each individual

guess of a minimizer, x[m](t) is called a particle and
together the particles make up the particle set, χ(t).

χ(t) =
⋃

M

x[m](t) =
{
x[1](t), x[2](t), . . . , x[M ](t)

}
(5)

To initialize the algorithm, we need to assign actual
values to the initial particle set. Since there is no
a priori knowledge regarding the minimizer of f0(x),
the initial distribution of the particles is chosen as a
uniform distribution over the set X

x
[m]
k (0) = rand(uk, lk) for m = 1, . . . , M

k = 1, . . . , n
(6)

5.1.2 Assign Particle Weights

We now assign a weight to each particle.

w[m](t) = −f0(x[m](t)) for m = 1, . . . , M (7)

Note that this assigns a higher weight to particles
which yields a smaller objective function value.

5.1.3 Resample Particles

In order to generate the next particle set, we sam-
ple from the current particle set proportional to the
weights.

x̃[m](t) = g(χ(t), w(t)) for m = 1, . . . , M (8)

Here, g() is a sampling function which samples el-
ements from χ(t) proportional to the weights w(t).
One popular method to do this is to use the roulette
wheel method. In this method a roulette wheel with
M slots is created. The weights are normalized so
that they sum to 1. Each normalized weight then rep-
resents the angular percentage that this particle oc-
cupies on the roulette wheel. The wheel is spun and
depending on where it lands, the corresponding parti-
cle x[m](t) ∈ χ(t) is selected as x̃[m](t). This process
is repeated M times.

As with many genetic algorithms, a mutation pro-
cess must be included when evolving one population
to another. This is true here as well and the muta-
tion operation is represented by simply adding noise

4



to each sample x̃[m]. Recall that we require that each
particle x[m](t) ∈ X ∀t. Care must be taken so that
the noise added does not “push the particle out of X”.
The noise must therefore be in the interval

n[m](t) ∈ [l − x̃[m](t), u− x̃[m](t)] for m = 1, . . . ,M
(9)

Finally, the new particle set is determined by

x[m](t + 1) = x̃[m](t) + n[m](t) for m = 1, . . . , M
(10)

This formulation guarantees that each particle
x[m](t) ∈ X ∀ t (each particle represents a feasible so-
lution to (℘)). It has the feature that as this evolves
from generation to generation, the particles with a
higher weight (i.e. lower objective function value) are
more likely to continue on to the next population.

5.1.4 Stopping Criterion

Step 2 and 3 are repeated until some stopping criterion
is reached. This could be something like the variance
of the particles is reduced below some threshold. In
this case, we simply repeat it for T steps. The quasi-
optimal minimizer is then computed from the average
of the final particle set.

x̄? =
1
M

M∑
m=1

x[m](T ) (11)

5.2 Application to Search

We can apply the above method of finding a quasi-
optimal solution to (℘2). We define this problem as

(℘2) minimize f0(z) over z ∈ Z (12)

5.2.1 Parameterizing X

Here, the set Z is all the locations where the agent is
able to reach in d steps (reachable states)

Z =
{

z

∣∣∣∣z = zuav + r

(
cos(π/2− ψ)
sin(π/2− ψ)

)
,
r ∈ Ir

ψ ∈ Iψ

}

(13)
In Eq. 13, the intervals describe the maximum ra-

dius and heading angle that the agent can achieve.

Since we assume a simple model, we have Ir = [0, d ·
∆T · Vmax] and Iψ = [0, 2π]. An example of this set
Z is shown below in Figure 5

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

Reachable Cells

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Reachable locations Z shown inside purple
circle

Note that the set Z is not a box. So to use the
method above, we can parameterize the set using r
and ψ, namely

x =
(

r
ψ

)
=

(
x1

x2

)
(14)

So the set X is simply

X =
{

x

∣∣∣∣
x1 ∈ Ir = [0, d ·∆T · Vmax],

x2 ∈ Iψ = [0, 2π]

}
(15)

Using Eq. 13, we see that the conversion between
x ∈ X and z ∈ Z is simply

z = zuav + x1

(
cos(π/2− x2)
sin(π/2− x2)

)
(16)

5.2.2 Define f0(x)

We now need to define the objective function f0(x).
We know that the scores are a function of the posi-
tion z. We want to find the maximum score, so we
actual find the minimizer of the negative scores. Fur-
thermore, in the context of model predictive control,
instead of minimizing over the current world state at
time t, we actually minimize over the projected world

5



state at time t + d. We can use Eq. 16 to convert be-
tween z and x, so we can define the objective function
as

f0(x) := −x̂w(t + d) (17)

So with Eq. 15 and 17, we see that (℘2) is equivalent
to (℘). Therefore the methods described above can
be used to find a quasi-optimal minimizer x̄? which
can be converted into z̄?. A block diagram showing
inputs and outputs for the probability collective min-
imization routine is shown below in Figure 6.

Figure 6: Block diagram for Probability Collective
minimization

An example of progression of this process is shown
below in Figure 7

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

Reachable Cells

 t = 0 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) χ(0)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 11

 t = 11 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) χ(11)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 24

 t = 24 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) χ(24)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 40

 t = 40 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) χ(40)

Figure 7: Progression of probability collective process.
True minimum is located in upper left corner of reach-
able cells.

The particles are shown at red circles. The cen-
troid of the particles (green triangle) eventually cen-

ters near the true optimal solution. Note that it does
not achieve the true optimal but it does achieve a fea-
sible solution.

6 (℘3) Convex Formulation

We are now consider the final problem (℘3) which con-
cerns finding feasible waypoints which take the agent
from the current state z0 = zuav to the quasi-optimal
state found in (℘2). From an optimization standpoint,
the corresponding decision vector z ∈ <2·d is

z =




z1

z2

z3

z4

...
z2·d−1

z2·d




=




z1(1)
z2(1)
z1(2)
z2(2)

...
z1(d)
z2(d)




(18)

Using Eq. 16, the quasi-optimal solution x̄? ob-
tained by the probability collectives method can be
converted to an (x, y) coordinate z̄?. The objective
function for (℘3) can then be formulated as

f0(z) :=
d∑

t=1

||z(t)− z̄?||22 (19)

Here, each coordinate z(k) is a waypoint which dic-
tates where the agent should be located at time k.
Obviously, the minimum of this function is zero. This
corresponds to all the waypoints being placed at the
quasi-optimal solution z̄?. However this in general
would not be feasible. We know that the agent can
only travel a distance rmax = ∆T · Vmax in a single
step. So in order for the waypoints to be feasible, we
introduce constraints of the form

f1(z) := ||z(1)− z0||22 − r2
max ≤ 0 (20)

fi(z) := ||z(i)− z(i− 1)||22 − r2
max ≤ 0 for i = 2, . . . , d

(21)

Physically, these constraints say that each waypoint
must be within a distance rmax of the previous way-
point. This ensures that flight path generated is a
feasible one.

The problem can now be formally stated as

6



(℘3) minimize f0(z) over z ∈ <2·d (22)
subject tofi(z) ≤ 0 for i = 1, . . . , d

In order to analyze what type of optimization prob-
lem this is, a closer look at the objective function and
constraint functions is required. The objective func-
tion can be written as

f0(z) =
1
2
zT Hz + fT z + r (23)

where H = 2Id×d

fT = 2
(
z̄?
1 z̄?

2 z̄?
1 z̄?

2 . . .
)

r = d||z̄?||22
This is a strictly convex function since it is in a

quadratic form and the Hessian is equal to H which
is positive definite (all eigenvalues are equal to 2).

The constraint functions can be analyzed in a sim-
ilar fashion. The first constraint f1(z) can be written
as

f1(z) =
1
2
zT H1z + fT

1 z + r1 (24)

where H1 = diag(2I2×2, 0d−2×d−2)
fT
1 =

(−2z1,0 −2z2,0 0 . . . 0
)

r1 = −r2
max + ||z0||22

And the constraint functions f2(z) through fd(z)
can be written as

fi(z) =
1
2
zT Hiz + fT

i z + ri for i = 2, . . . , d (25)

where Hi = diag(Ni, A, Mi)
fT

i =
(
0 . . . 0

)
ri = −r2

max

Ni = zeros(2(i− 2))
Mi = zeros(2d− 4− 2(i− 2))

A =




2 0 −2 0
0 2 0 −2
−2 0 2 0
0 −2 0 2




In Eq. 24 and 25, diag(x, y) represents a block diag-
onal matrix with submatrix x in the upper left block
and submatrix y in the lower right corner. Similarly,
zeros(p) represents a square zero matrix of size p× p.
Although this looks like a complicated formulation,

note that only Hi is changes with each i. The formu-
lation just describes that H2 is a block diagonal matrix
with A in the upper left corner and zeros elsewhere.
H3 is a block diagonal matrix where the submatrix A
moves two columns to the right and two rows down.
This process of moving the A matrix by 2 rows and
columns with each i is described by the Ni and Mi

submatrices.
One can now see that the constraint function

fi(z) for i = 1, . . . , d are convex functions because
they are in quadratic forms and their respective Hes-
sians are all positive semi-definite.

Therefore, we see that (℘3) consists of a convex ob-
jective function over a convex set, so this is a convex
programming problem. We can show that it is well
posed and the feasible set is non-empty, so a unique
optimal solution exists. In a similar fashion to the
previous two problems, (℘3) can be packaged nicely
into a system shown below

Figure 8: Block diagram for convex optimization
solver

An example of the solution for the example situa-
tion (with d = 10) is shown below in Figure 9.

8.55 8.6 8.65 8.7 8.75

x 10
5

3.19

3.192

3.194

3.196

3.198

3.2

3.202

3.204

3.206

3.208

3.21
x 10

6

x

Optimal Trajectory

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Optimal solution z̄ to (℘3) zoomed into area
of interest with d = 10

7



Figure 9, the red x represents the location of the
agent, the green triangle is the desired destination z̄?,
and the red circles represent waypoints z̄. The thing
to notice is although d = 10, there are only 8 visible
waypoints. This is because waypoints 8, 9, and 10
are overlapping and all are equal to z̄?. Furthermore,
constraints f1(z) through f7(z) are active. This shows
that the formulation of the objective function yields
waypoints which place the agent at the optimal solu-
tion in the shortest possible time. This is the desired
behavior during a searching type application where it
is desired that the agent location and verify the target
as soon as possible.

7 Conclusions

In conclusion, the method proposed gives a way to
formulate the difficult problem of finding and optimal
coordinate to search as a convex optimization problem
with a guaranteed unique optimal solution. Further-
more, the formulation yields a solution which places
the agent at z̄? in minimum time.

The main approximation that was made is that z̄?

is only a quasi-optimal coordinate. However, if the
procedure is executed for each time step as shown in
Figure 2, then z̄? is only needed to obtain the desired
heading of the agent. Only the first two elements of z̄
are actually used as they are the first waypoint.

Future research will be directed towards incorpo-
rating this process for multiple agents to work in a
coordinated fashion. Also method to update the oc-
cupancy map will be investigated.

References

[1] Pongpunwattana, A. and Rysdyk, R., “Real-Time
Planning for Multiple Autonomous Vehicles in Dy-
namic Uncertain Environments,” AIAA JACIC ,
December 2004, pp. 580–604.

[2] Bourgault, F. and Durrant-Whyte, H. F., “Com-
munication in General Decentralized Filters and
the Coordinated Search Strategy,” Proceedings
of the 7th International Conference on Informa-
tion Fusion, Australian Centre for Field Robotics,
Stockholm, Sweden, 2004.

[3] Flint, M., Polycarpou, M., and Fernandez-
Gaucherand, E., “Cooperative Control for Mul-
tiple Autonomous UAV’s Searching for Targets,”
Proceedings of the 41st IEEE Conference on De-
cision and Control , University of Cincinnati, Las
Vegas, NV, 2004.

[4] Bourgault, F., Furukawa, T., and Durrant-Whyte,
H., “Coordinated Decentralized Search for a Lost
Target in a Bayesian World,” Proceedings of the
2003 IEEE/RSJ Intl. Conference on Intelligent
Robots and Systems, Australian Centre for Field
Robotics, Las Vegas, NV, October 2003.

[5] Huang, C.-F., Wolpert, D. H., Bieniawski, S., and
Strauss, C. E., “A Comparative Study of Proba-
bility Collectives Based Multi-agent Systems and
Genetic Algorithms,” Proceedings of the GECCO
2005 Conference, 2005.

[6] Fox, D., Hightower, J., Liao, L., and Schulz,
D., “Bayesian Filtering for Location Estimation,”
IEEE Pervasive Computing , July 2003, pp. 23–33.

8


