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Abstract 
Evolutionary computation (EC) techniques 
have been successfully applied to compute 
near-optimal paths for unmanned aerial 
vehicles (UAVs). Premature convergence 
prevents evolutionary-based algorithms from 
reaching global optimal solutions. This often 
leads to unsatisfactory routes that are sub-
optimal to optimal path planning problems. To 
overcome this problem, this paper presents a 
framework of parallel evolutionary algorithms 
for UAV path planning, in which several 
populations evolve simultaneously and 
compete with each other. The parallel evolution 
technique provides more exploration capability 
to planners and significantly reduces the 
probability that planners are trapped in local 
optimal solutions.  

1. Introduction 
In recent years, evolutionary computation (EC) 
techniques have been successfully applied to 
real-time task and path planning problems for 
unmanned aerial vehicle (UAV) systems, 
including single-vehicle systems [2,5,9] and 
multi-vehicle systems [2,3,8,12]. The EC-based 
techniques are attractive for solving large-scale 
complex optimal planning problems because 

gradient information about objective functions 
and constraints is not needed during search for 
optimal solutions. Gradients usually do not 
exist for all feasible solutions in the search 
space. Another major advantage of EC-based 
techniques is that they can eventually give the 
global optimal solutions for large-scale 
complex planning problems c.f. [8]. In practice, 
it is not always the case when the available 
computation resources and/or computation time 
are limited. Once the evolution converges to a 
local optimal plan, it often takes a long time for 
planners to escape from that local optimal 
solution. This is called premature convergence. 
In dynamic environments, premature 
convergence slows planners’  responses to 
environmental changes because the optimal 
plans before changes are often locally optimal 
in new environments.  

Parallel evolution is one approach to overcome 
premature convergence [1,4,6,7]. In parallel 
evolution, several populations evolve 
simultaneously. After several generations, each 
population updates its individuals by 
individuals in the planner or other sources. This 
process is repeated until a good solution is 
generated. In [4], populations with different 
encoding schemes evolve concurrently. After a 
number of generations, each population 
combines its own individuals with the best 
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individuals from all other populations. In [7], 
populations are encoded in the same way, but 
evolve independently with different values of 
evolution parameters. In [1], after several 
generations, each population merges with its 
adjacent populations to form a bigger 
population. The number of populations is 
reduced by 1. Eventually, there is only one 
huge population. In [6], each population only 
maintains individuals with fitness in a certain 
range and an individual will be moved to 
another population once its fitness goes outside 
that range. 

In this paper, we present a parallel evolutionary 
algorithm for real-time UAV path planning 
applications where several populations with the 
same encoding scheme evolve simultaneously 
but independently. When comparable fitness 
levels are achieved, either in part or for the 
entire set, the populations are compared based 
on population fitness. The best population 
continues to evolve and the others are 
reinitialized. The re-initialization can be based 
on a random seed or deterministic input, e.g. 
from a human operator of the UAVs or from 
other path planner algorithms such as A*  
search. By exploring more regions in the search 
space, this parallel evolutionary algorithm 
provides planners more chances to reach global 
or near global optimal solutions.  

This paper is organized as follows. Section 2 
describes the path planning problem for UAV 
systems and reviews the evolutionary 
computation techniques used in this paper. 
Section 3 presents and analyzes the parallel 
evolutionary path planning framework. In 
Section 4, an example demonstrates the 
effectiveness of the proposed parallel 
evolutionary framework. 

2. Path Planning for UAVs and 
Evolutionary Computation 

In this paper, we consider the path planning 
problem for a UAV that starts from a initial 
position Ox , visits several sites of interest for 

certain tasks, avoids unsafe regions and goes to 
a goal position Gx . The path needs to satisfy 

certain physical constraints, e.g., maximal and 
minimal speeds, maximal acceleration and 
minimal turn radius. We formulate this path 
planning problem as the following optimization 
problem: 
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In this optimization, the objective function J  
consists of three parts: the cost of UAV fuel 
consumption, F , the penalty of loss of the 
UAV, D , and the reward for finishing tasks, R . 

Fα , Dα  and Rα  are weights for these three 

terms respectively. [ ]GO ttx ,  denotes the values of  

the UAV position, x , between time Ot  and Gt . 

v  and a  are the velocity and acceleration of 
the UAV, respectively. The optimization 
contains a set of equality constraints and 
inequality constraints. The equality constraints 
define the UAV dynamics and the initial and 
end constraints of the path. The inequality 
constraint g  includes constraints that reflect 
the UAV capacities, e.g. maximal and minimal 
speed, maximal acceleration and minimal turn 
radius.  

The optimization minimizes the expected value 
of the weighted sum of F , D  and R  because 
their values are random, not deterministic.  The 
cost of UAV fuel consumption F  is not 
deterministic because the fuel consumption 
depends not only on geometric characteristics 



of a path but also on the weather condition 
along the path, which is not deterministic. For 
many applications c.f. [10,11] one must use a 
probabilistic weather model of the region 
wherein the UAVs operate. Once the UAV 
appears in an unsafe region, e.g. icing areas or 
areas with defense weapons, it could be 
destroyed with certain probability depending on 
the duration in that region. The value of penalty 
D  along the path is random since the loss of 
the UAV is random. Similarly, when the UAV 
passes through a site of interest, the 
corresponding task is finished with some 
probability depending on capacities of onboard 
payloads and the duration over that site. So, the 
reward R  is random. For details about 
computation of the expected value of the sum 
of F , D  and R   and computation of  penalty 
D , see [8]. 

Solving the optimization problem (1) described 
above exceeds the capability of traditional 
optimization techniques. The remainder of this 
section gives a brief review of evolutionary 
path planning techniques we used in this paper. 
For details, see [8]. 

Figure 1 illustrates the evolutionary 
computation used in this paper. It starts from 

creating the first generation of the population, 
usually by encoding a set of randomly selected 
feasible solutions. During each iteration loop, 
the planner first evaluates fitness of each 
individual based on information about 
environment, vehicle capacities, goals and 
other constraints. Then, a set of individuals are 
selected as parents for the next generation 
according to their fitness. The last step is to 
generate offspring individuals by cloning a 
single parent with a mutation or combing two 
parents by crossover. The iteration is repeated 
until it converges or the number of iterations 
reaches a pre-set value. The individual with the 
best fitness in the last generation is decoded as 
the optimal plan. 

A path for the UAV is encoded as a sequence 
of segments from the start point Ox  to the goal 

position Gx . Each element is either a straight 

line or an arc, illustrated in Figure 2. The 
acceleration is constant along a straight line and 
the speed is constant along an arc. If two 
segments are joined, the heading and the speed 
at the starting point of the second segment are 
enforced to be the same as those at the ending 
point of the first segment. 

 

Figure 1. Evolution process for path planning 



Three mutation mechanisms shown in Figure 3 
are used: one-point mutation, two-point 
mutation and crossover. By one-point mutation, 
a randomly selected segment is changed 
randomly and all segments are re-propagated 
with same length and/or radius as the 
corresponding previous segments. By two-point 
mutation, two points are randomly selected and 
a set of new segments are created to connect 
them. By crossover, the initial segments of the 
new path come from one parent and end 
segments are selected from another parent. A 
set of segments are created to connect segments 
from two parents. If needed, a set of segments 
will be set up to connect the end point of the 
new path to the goal position. If a new path 
does not satisfy capacity constraints, it will be 

dropped. For details about connecting two 
segments, see [8]. 

3. Parallel Evolutionary Path 
Planning Algorithm 

The evolutionary computation scheme 
described in the above section also has the 
premature convergence problem as other 
evolutionary computations. To solve this 
problem, we designed a parallel evolutionary 
path planning framework illustrated in Figure 4. 

This parallel evolution process of a group of 
populations has a similar structure as the 
evolution process of a population. The process 
starts from initialization of all populations. The 
first step in iteration is to evolve all populations. 
The initialization and evolution of a single 

 

(a) A straight line 

 

(b) An arc 

Figure 2. Path segment types for constructing a path 

 

(a) 1-point mutation 

 

 

(b) 2-point mutation 

 

 

(c) Crossover 

Figure 3. Mutation mechanisms for evolution 



population use the techniques presented in 
Section 2. When all populations are well 
evolved, they compete with each other based 
on population fitness. The winner continues 
evolving and all other population are re-
initialized. After several iterations, the planner 
decodes the best individual in the best 
population to output the optimal path. Within 
this framework, we could have different 
parallel evolutionary algorithms by setting 
different parameters, such as different encoding 
schemes for different populations [4], different 
evolution parameter values for different 
populations [7], different update schemes for 
different populations [1,6]. In this paper, we 
use the same encoding schemes and set the 
same evolution values for all populations. We 
look at different update schemes. 

In our scheme, the populations in a planner are 
divided into three different types: one principal 
population, one or several randomized 
populations and some specialized populations. 
The principal population and randomized 
populations are initialized randomly, while the 
specialized populations are initialized based on 
results from other search algorithms, e.g. A*  
and D*, or from human operator inputs. After 
competition, the principal population is updated 
based on individuals in all populations. Similar 
to the initialization process, the randomized 
populations are re-initialized randomly and the 

specialized populations are re-initialized by the 
results from the corresponding search 
algorithms used in initialization. To compare 
different populations, the population fitness is 
set to be the fitness of the best individual. 
Although the average fitness reflects the 
evolution of the whole population, the best 
individual shows the potential optimal results it 
can achieve since the best individual will be 
decoded as the optimal path. To update the 
principal population, we consider the following 
schemes: 

(1) Replacing the individuals in the principal 
population by the individuals in the best 
population. 

(2) Taking a selected number of the best 
individuals from each population and 
constructing the principal population from 
these individuals. 

(3) Putting individuals from all populations 
together and selecting the best individuals to 
construct the new principal population. 

Among these three strategies, the first one is 
the easiest to implement, but it ignores 
potential improvements available from 
individuals in other populations. The second 
strategy takes into account all populations by 
combining individuals from them. If the 
number of populations is large and all 
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Figure 4. Parallel evolution of multiple populations 



populations are quite different, it becomes 
similar to randomly re-initializing the principal 
population. The third strategy combines the 
advantages of the first two strategies. If the best 
population beats other populations significantly, 
the third strategy then is the same as the first 
one. If all populations are of similar fitness, the 
third strategy works like the second strategy. If 
several populations with similar fitness are 
much better than others, the third strategy 
combines these populations by taking 
individuals from them. 

Evolutionary computation is a random search 
strategy. The evolution process can be modeled 
as a Markov Chain. Given the encoding method, 
evolution parameters and search space, there is 
one corresponding Markov model. According 
to the theory for Markov models, if, from any 
point in the search space, there exists a 
mutation or a sequence of mutations to drive 
the search to the global optimal solution, the 
computation can eventually converge to the 
global optimal solution. After a certain number 
of iterations, the probability of reaching local 
optimal solutions, including the global optimal 
solution is significantly larger than that for 
other non-optimal solutions, but it takes many 
more iterations, usually more than allowed by 
the available computation time constraints, to 
have the probability of reaching the global 
optimal solution significantly larger than that of 
reaching other local optimal solutions. This 
leads to premature convergence.  

To analyze the effectiveness of the parallel 
evolution strategy, we consider a simple case 
where the planner has one principal population 
and N  randomized populations. We assume 
that the planner compares all populations after 
M  generations or when improvements of each 
population fitness are smaller than a small 
number ε . If there are K  local optimal 
solutions and one global optimal solution, from 
the theory of Markov models, given a  
distribution of  initial individuals in a 
population, this population gives the global 

optimal solution with probability 0p  and the 
thk  local optimal solution with probability kp , 

Kk ,,2,1 �= . Suppose the local optimal 
solutions are ordered in the way such that the 

thi  local optimum is better than the thj  local 
optimum for Kji ≤<≤1 . After updating, the 
best individual in the principal population is the 

global optimum with probability ( ) 1
011 +−− Np  

and the thk  local optimum with probability 
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increase the probability of reaching the global 
optimum, we can increase either the number of 
populations or the number of competitions. To 
guarantee that the planner outputs the global 
optimal solution with probability no less than 

δ−1 , N  and Q  need to satisfy the following 
condition: 

( ) 1
1ln
ln

0

−
−

≥
p

QN
δ

. (2) 

4. Experimental Studies 
Interpretation of complex UAV path planning 
simulation results is often very difficult, 
particularly since EC algorithms often give 
non-intuitive results. In this section, we present 
a simple example for which the local and 
global optimal solutions are easily visualized. 
As shown in Figure 4, the UAV (green triangle) 
goes to destroy two targets (black circles) and 
to come back safely to the goal position (small 
black point). The red circles illustrate the 
unsafe areas. The green curve gives the global 
optimal path for the UAV. In the following 



discussion, the term global optimal path refers 
to paths along which the UAV attacks the 
closest target first and then the other target and 
the UAV only flies in the middle region. For 
this path planning problem, local optimal 
solutions can be categorized into four types, 
shown as Figure 5. We note that type I local 
plans are similar to the global optimal plan 
except for the attack order. 

We performed 30 experiments for the planner 
with a single population and for the planner 
with one principal population and one 
randomized population. In these experiments, 
each population contains 40 individuals and 20 
of them are parents for new generations. In the 
experiments for the planner with a single 
population, the populations evolve 8000 
generations before it gives optimal solutions. In 
the experiments for the planner with two 
populations, each population evolves 2000 
generations before comparison. The evolver 
gives solutions after 2 comparisons. This 
section presents the experiment results by the 
first strategy for updating the principal 
population. After competition, the individuals 
in the principal population are replaced by the 
individuals in the randomized population if it is 
better than the principal population. The results 
by the other two strategies are similar to this, 
because there is only one randomized 
population and no specialized population. For 
the second strategy, even if we pick the best 20 
individuals from both populations to construct 
the principal population, only the best 20 
individuals, usually from the best population, 
are selected as parents. By the third strategy, 
the best 40 individuals from the two 
populations are used to build the new principal 
population. Typically, most of them come from 
the best individual. 

Figures 6 and 7 summarize these experiments. 
The value of the fitness function is within the 
ranges [40, 42], [41, 43], [43, 45], [45, 47] and 
[47, 49] for global optimal plans and type I, II, 
III, and IV local optimal plans, respectively. 
The regions of the fitness function for type I 

local optimal plans overlap with that for global 
optimal plans because they are similar to each 
other. Comparing Figure 6(a) and Figure 6(b), 
we see that the parallel evolver with two 
populations over beats the one with a single 
population with respect to occurrences of local 
optima. Figure 7 gives the distribution of 
solutions in different types of optima. From 
Figure 7(a), 16.67% of solutions are global 
optimal and the type I, II, III and IV local 
minimal solutions are 50%, 13.33%, 13.33% 
and 6.67%, respectively. According to the 
analysis in Section 3, by the parallel 
evolutionary plan, the expected occurrence of 
the global optimum is 42.13% and the expected 
occurrences of the type I, II, III and IV local 
minima are 54.17%, 2.9%, 0.77% and 0.03%, 
respectively. The experimental result shown in 
Figure 7 (b) is consistent with this theoretic 
result. The experimental occurrence of the 
global optimum is 46.67% and the 
experimental occurrences of the type I, II, III 
and IV local optima are 50%, 3.33%, 0 and 0, 
respectively. The experiment results are close 
to the theoretical analysis in Section 3. 

 

Figure 4. Example planning problem 



 

(a) Type I local optimal solution 

 

 

(c) Type III local optimal solution 

 

(b) Type II local optimal solution  

 

 

(d) Type IV local optimal solution 

 
Figure 5. Local solutions to the example planning problem. 



 

(a) Fitness values of solutions by the planner with a single population 

 

 

(b) Fitness values of solutions by the planner with two populations 

Figure 6. Fitness values of solutions. 



 

(a) Distribution of solutions by the planner with a single population. 

 

 

(b) Distribution of solutions by the planner with two populations 

Figure 7. Distribution of solutions. 

5. Conclusion 
This paper presents a parallel evolutionary 
computation scheme for UAV path planning to 

overcome premature convergence. Analysis 
shows that the parallel scheme significantly 
increases the probability of the planner to 
output the global optimal path with limited 
computation resources. A small example, one 



vehicle, two targets and six unsafe regions with 
four local optimal solutions, demonstrates the 
performance of the parallel scheme. Given the 
performance requirement, we give the 
conditions for design parameters: number of 
populations and number of competitions 
(Equation 2). If memory is limited, we need to 
increase the number of competition, i.e., 
computation time. For online dynamic 
optimization, to achieve quick computation, we 
need to put more memory on board. 

For the example presented in Section 4, all 
three strategies for updating the principal 
populations perform similarly because the 
number of populations is very small. For large 
scale problems, two populations might not be 
enough. For the planner with more than two 
populations, the three strategies can work 
differently. In the future, we will apply the 
parallel evolutionary planning scheme to larger 
problems and investigate the performance of 
different strategies. 

This paper studies the parallel evolutionary 
path planning in a centralized fashion, i.e. all 
computations in a single computer. In 
distributed path planning, all vehicles have 
onboard computation payload and each vehicle 
plans path for itself. In a coordinated system, 
the vehicles will exchange their plans. We will 
investigate how to utilize information from 
other vehicles in their local parallel 
evolutionary planners. 
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