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Abstract

Evolution-Based Path Planning and Management for Autonomous

Vehicles
by Brian J. Capozzi

Chair of Supervisory Committee

Professor Juris Vagners
Aeronautics and Astronautics

This dissertation describes an approach to adaptive path planning based on the prob-
lem solving capabilities witnessed in nature - namely the influence of natural selection
in uncovering solutions to the characteristics of the environment. The competition for
survival forces organisms to either respond to changes or risk being evolved out of the
population. We demonstrate the applicability of this process to the problem of finding
paths for an autonomous vehicle through a number of different static and dynamic envi-
ronments. In doing so, we develop a number of different waysin which these paths can
be modeled for the purposes of evolution. Through analysis and experimentation, we
develop and reinforce a set of principles and conditions which must hold for the search
process to be successful. Having demonstrated the viability of evolution as a guide for
path planning, we discuss implications for on-line, real-time planning for autonomous

vehicles.
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Chapter 1

INTRODUCTION

Autonomy (circa 1800): undertaken or carried on without outside control;
existing or capable of existing independently; responding, reacting, or de-
veloping independently of the whole.(Webster’s Dictionary)

The focus of this dissertation is on the application of evolution-based models of
computation to the problem of path planning and management for autonomous vehicles.
We will explore an array of different aspects of vehicle navigation and management
ranging from path planning for an individual vehicle to coordinated mission planning
for ateam of automatato preliminary investigation of co-evolving strategiesfor asingle
vehicle maneuvering against an intelligent adversary. Throughout this process, we will
concern ourselves with planning in both static and dynamic environments and the rapid
generation of aternative plansin the face of unanticipated changes, taking place either

in the mission definition, the environment, or the vehicle itself.

1.1 Motivation

Automata operating in all military domains (land, air, sea, space) will play amajor role
in the increasingly dynamic battle control that will evolve in the 21st century. Pro-
jected growth in the next 25 years[1] in key technology areas such as avionics, sensors,
data links, information processing capabilities, energy sources and vehicle platform
construction ensures that the potentia role of automata will be limited only by our

imagination. Realization that increased capabilities imply increasing information and



decision loads on force commander(s) dictates that design of automata systems must
become explicitly human-centered. This means that the human being must be inte-
grated into the hierarchical control process in conjunction with automated higher level
decision aids and lower level individual automaton capabilities. In this context, the hu-
man involvement becomes one of a decision manager, in addition or as an alternative
to direct participation. One interpretation of the interaction between automata and hu-
mans is given below in Figure 1.1. Here, we assume that mission direction is initialy
given in the form of dialogue between a human mission manager and the automata us-
ing a natural language syntax. This high-level syntax then goes through a number of
transformations as depicted.

Q—< Natural Language Syntax >
O—

y

is task

Translate to Tasks, i
possible?

Objectives , Constraints

Available Resources

' @

O Associate Vehicles with PN ; :j
Tasks %

y

Human Interface Points

(O——— Create Details of Doing update
tasking

Figure 1.1: Overview of the capabilities needed to turn objectives into action.

First, a set of tasks and constraints is formulated based on the context of the mis-
sion. These tasks are then combined with the available vehicles, which serve as action

and computational resources, to form a composite decision space. This space is then



searched to match vehicles and capabilities with tasks, taking advantage of cooperation
whenever possible. These potential teaming arrangements are formed on the basis of
the estimated value accomplishing the tasks subject to the constraints imposed by the
tasks themselves, the environment, and the vehicle capabilities. Once the available re-
sources have been mapped to the required tasks, an additional search is conducted to
determine the detailed plan (forward in time) to be used as a guide for carrying out
the mission. Ideally, these two searches, associated with mapping resources to tasks
and determining the action details, could be carried out in isolation in a strictly hier-
archical fashion. Due to the dynamic nature of the environments in which automata
are deployed, however, this is seldom the case. Search in the abstract mission-level
space requires details regarding the low-level detail space and viceversa. Thus, thereis
inherent coupling between the dynamics of these two spaces which one must account
for. This coupling isindicated by the “feedback” arrowsin Figure 1.1. We refer to this
concept asintegrated mission and path planning. We append the terminol ogy “manage-
ment” to denote the real-time adaptation at the various levels of the architecture shown

in response to changes in information.

We now focus our attention to the bottom block in Figure 1.1, namely that of creat-
ing the “details of doing”. One of the key enabling technologies for autonomy in this
regard is a combination of deliberative and reactive behaviors. In particular, delibera-
tive reasoning is responsible for looking forward in time to plan actions that maximize
future “reward” in some respect. For many robotic systems, a primary ingredient of
action is the ability to get to the appropriate place at the appropriate time in order to
carry out whatever is supposed to be done. In an ideal world, with perfect knowledge
of both current and future state, this would be a trivial task. Inevitably, however, real
situations are wrought with uncertainty, requiring the robotic system to adapt its be-
havior in the face of unanticipated changesin order to continue to carry out its mission
to whatever extent is possible. True autonomy implies the ability for this adaptation to

occur without direct human intervention. A semi-autonomous system allowsthe human



to establish and manage the objectives for the system and participate in the planning at
will while removing the need for direct control. Indeed, the architecture described in
Figure 1.1 indicates the various points at which the human can interface with automata -
where the “mode” or means of communication can vary drastically depending at which

level the interaction takes place.

Our view is that the autonomous system should serve not only as a remote exten-
sion of the human’s eyes, ears, nose, and hands, but as a cognitive extension, actively
contributing to the decision making process involved in carrying out the mission in the
face of uncertainty. A natural extension of these ideas involves the pursuit of automata
that not only work in isolation, but concurrently with other agents, whether these be
robotic or human “teammates’, toward a common objective. As the number of robotic
systems contained in the “swarm” or fleet grows, the ability of a single human “man-
ager” to direct and monitor the mission can degrade sharply, depending on the extent
of attention required and the level of interaction. Ideally, the human mission manager
can interact with the group of vehicles as a single entity, passing high-level mission ob-
jectives and receiving high-level status updates, leaving the details of implementation
to the autonomous system(s). We foresee scenarios in which each vehicle is capable of
making localized decisions on its own and relaying its intended high-level strategy for
review/consultation with the human decision manager as well as to other (non-human)
members of the team. Essentially, the communication channels become bi-directional

brainstorming channels rather than one-way command channels.

The impact of the above ideas on mission and path planning technology is to re-
quire the automaton to dynamically adapt its future (yet to be executed) motion plan
to account for changes in performance requirements, uncertainties, and other factors.
This adaptation must occur in real-time, while the vehicle is executing its current mo-
tion plan. As it carries out this adaptation, it communicates changes in its high-level
strategy to its corroborating teammates, whether these be human or robotic in nature.

In the context of combat automata, possible changes include: battle damage, resource



shortfalls (e.g. ammunition and/or weapon functioning), sudden addition or deletion of
targets and threats, or sensed discrepancies or errorsinitsinternal representation of the
environment. In coping with such situations, each automaton must often determine a
new routing or otherwise modify its existing motion plan in order to carry out as many
of the initial mission objectives as possible. To be effective, this re-routing must take
account of any reduction in capability of the vehicle as well as the current state of the
environment. 1n a multi-automaton scenario, for example, it is possible that a coordi-
nated effort between several vehiclesmay provide“cover” for another vehicle, allowing
it to venture into an area which it would generally avoid if acting in isolation. Further,
should a given automaton render a certain threat out of commission, the threat repre-
sentation of all the other vehicles should be updated so that they can adjust their routes
accordingly, potentially gaining a strategic advantage in their own local situations.
Realization of this potential requires path and mission planning algorithms that can
easily integrate inputs from a variety of sources and efficiently search the space of fea-
sible solutions to deliver motion plans in real-time. Regardless of the details of its
implementation, any such planning algorithm inevitably involves searching forward in
time in order to predict the most advantageous sequence of actions relative to a speci-
fied objective. Through this process, the planner explores and discovers the boundary
between what the vehicle is supposed to do, and what it is capable of doing. The
remainder of this dissertation describes an approach to integrated mission/path plan-
ning for automata based on Evolutionary Computation (EC). We describe properties of
this agorithmic approach that make it particularly amenable to the dynamic adaptation
problem and discuss its applicability to real-time decision support for both individual

and multiple vehicle teams.

1.2 Necessary Capabilities

In order to enable increased autonomy, arobust fault-tolerant control architecture, sim-
ilar to that proposed by Antsaklis[2] or Payton et. al. [3], isrequired. Thisarchitecture



requires several key capabilities, including the ability to:

1. communicate with the vehicles through high-level (even fuzzy) mission objec-

tives and constraint definitions.

2. monitor/diagnose vehicle capabilities and resources and predict future vehicle

state

3. cooperate and communicate with other similar and dissimilar agents to achieve

common as well as disparate goals

4. continually update and re-order mission priorities based on vehicle health and
capabilities, on-board sensing of the environment, and information obtained from

outside sources (including other vehicles)

5. update the assignment of resources to objectives, including collaboration and
teaming arrangements, in light of changesin world state discovered through local

sensing or external communication

6. dynamically adjust routings/trajectories to account for changesin mission priori-
ties and new information not available at the time the current executing plan was
made

7. represent motion plans in a manner wherein the vehicle is not committed to fol-
lowing a single tragjectory, but rather can refer to the motion plan as a “resource
for action” (as defined by Payton [4]). In this sense, the motion plan serves as
a suggestion for local guidance, based on simulated experience forward in time.
The direction of motion actually chosen by the vehicle hinges on the combination

of the forward-looking suggestion with inputs from local reactive behaviors.

Note that these capabilities map one-to-one with the description of automata given in

Figure 1.1. Theresearch described in this dissertation primarily focuses on the dynamic



adaptation of motion plans (Capability 6 above), with some effort put forth toward
addressing aspects of Capabilities5 and 7.

1.2.1 Planning for Intelligent Control

Planning for an autonomous vehicle consists of a mechanism for generating decisions
regarding action. For a planner to be effective, it must look both outward and inward.
Not only must it be responsive to the environment within which the vehicleis operating,
but the planner should also sensitiveto the evolving state of the vehicleitself. Decisions
with regard to planning should be madein light of the best information available at any
given time. However, it may not be sufficient for the planner to be purely reactive in
nature. Rather, it may be necessary to ingtill a certain amount of predictive capability -
particularly for real-time planning. Before delving into the details of planning, however,
it isuseful to consider the relative role of planning in the context of the overall vehicle
control system. Generally, such a control system can be broken down into a series of
layers asillustrated in Figure 1.2 which is adapted from [2].

A primary feature of such an architecture is the increase in the relative intelligence
exhibited by the layers as one proceeds upward from the lower levelsof control. Ideally,
all external interaction with the vehicle control system would take place with the Mis-
sion Management layer and would involve a high-level fuzzy syntax such as “follow
that ridgeline but stay low to remain stealthy”. This objective would then be interpreted
by the Mission Manager to develop atrgjectory satisfying the objectivesand constraints
addressed by the natural language syntax. This trajectory would then in turn be trans-
formed by the Coordination Layer into a language which the lower-level Executive
Layer understands such as a schedule of headings and speeds. Of course, communica
tion inevitably must occur in both directions. For example, should the Executive Layer
identify an actuator failure, it sendsthisinformation up to the Coordination Layer which
must interpret this failure in terms of its impact on vehicle control and manueverabil-

ity. The Coordination Layer could then deliver a message to the Mission Manager such
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Figure 1.2: Overview of a generic autonomous vehicle control system.

as “the vehicle can no longer perform sustained right turns and hold altitude.” Agents
within the Mission Manager would then be required to adjust the mission objectives
accordingly, either sacrificing objectives or initiating a re-plan to take account for the

reduction in vehicle capability.

The planning system resides within the Mission Management Layer, interpreting the
high level goals and transforming these into a trgjectory representation which satisfies
the mission objectives and constraints, as depicted in Figure 1.1. Due to the informa-
tional dependency of the planner, however, it requires inputs from a number of sources,
asillustrated in Figure 1.3. Obviously the path planner must know the system goals and
thelr relative priorities, but it must also be made aware of the vehicle's current resource
levels, performance levels, health status, and the state of the environment in which it
is operating. Note that knowledge of the current state drives reactive behaviors, while
look-ahead planning requires estimates of future state. Asindicated in Figure 1.3, we

presuppose the existence of several “monitors’ within the Mission Management Layer
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Figure 1.3: The interactions of the path planning system within the vehicle control
system
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which communicate with the Path Planner across a shared communication channel. En-
vironmental data may come from one of two sources - either from on-board sensors or
external “maps’ or models. These dependenciesillustrate the overall complexity of in-
telligent control and highlight the variouslevels of interactionsrequired for autonomous
behavior. Communication is not only necessary between the vehicle and external data

sources, but also between and within the various layers of the vehicle control system.

1.3 Objectives

The primary goal of this dissertation is to assess the feasibility of evolutionary compu-
tation to provide near real-time decision aids for autonomous vehicles. The following

objectives are the milestones in achieving this goal:

e Develop efficient population representations and assess their applicability for

near real-time evolution-based planning

e Extend the abstraction of the individual representation to allow application to

integrated mission/path planning and management

¢ Investigate frameworks for cooperative planning of multiple vehicles

e Assess the nature of solution found through simultaneous evolution of strategies

in adversaria confrontations (in the context of differential games)

1.4 Approach/Methodology

We view the cooperative path planning problem as a search over amixed discrete/continuous
space to discover a course of action which tends to optimize agiven set of criteria. The
effective planning space is in general quite complex, consisting of many dimensions
with potentially significant coupling between degrees of freedom. This space may also
exhibit gross discontinuities, making it ill-conditioned to application of gradient based
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techniques. Towards this end, we propose the use of algorithms rooted in evolutionary
computation as the basis of such a planning system. The motivation behind this ap-
proach is based on the observation that evolution in nature is a very effective optimizer,
allowing adaptation of species to their environments. Casting the dynamic planning
problem in the appropriate context allows the principles of natural selection to be ap-
plied in order to simulate evolution of potential strategies. In thisfashion, the decision
space spanned by the various degrees of freedom can be efficiently searched to yield
highly profitable strategies. Note that we are not searching for true optimal solutions
in most cases. Rather, we are searching for “optimalizing” solutions - that is, those
which satisfy specified constraints and continuously tend toward optimal solutions over
time. The rationale behind this approach is that, given the uncertain and dynamic na-
ture of the environment in which automata operate, it may be impossible even to define,
not to mention find true optimal solutions. Rather, what is needed is a rapid planning
capability that is able to quickly reconfigure a sequence of actions or distribution of
forces in response to unanticipated threats and opportunities that present themselvesin
the problem domain. As such, we ignore the traditional vocabulary of “planning” and
“re-planning” and instead adopt the notion of continual adaptation of plans. Thisis
not to say that much cannot be learned from exhaustive off-line scenario testing prior to
mission execution. Such testing can be quite useful in terms of anticipating the outcome
of various offensive and defensive strategies. But, most off-line planning will become
obsolete soon after the initial wave of forces is launched; thus the need for rapid plan
adaptation.

1.5 Contributions

The mapping from the objectives to the contributions is essentially one-to-one. The

milestones which mark progress toward our objectives are:

e Development of several new population representations for path planning. This



12

included:

— assessment of the relative advantages and disadvantages of each representa-

tion,

— gaining of insight with regard to the suitability of different representations

for different path planning scenarios, and

— exploration of the potential for solving more general mission planning prob-

lems.

e Creation of arobust, flexible evolutionary computational framework that includes:

— planning in static and dynamic environments
— planning for both individual and multiple vehicles

— hybrid or mixed population representations

e Validation of this evolutionary framework through extensive ssmulations. The
nature of the solution obtained is suitable as aresource, providing alternativesfor

action.

e Suggestion of several mechanismsfor combining look-ahead planning with reac-

tive behaviors for real-time implementation

e Application of simultaneous evolution to the development of strategies for one-

on-one adversarial games

1.6 Dissertation Layout

In Chapter 2 we provide a detailed survey of previous work related to path planning,
mission planning, and coordination of action among multiple agents. In Chapter 3 we

give an overview of evolutionary computation and study its general properties through
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some specific applications to general function optimization. Chapter 4 describes the
space of path planning and introduces a number of different population representations.
In Chapter 5, we focus on the evaluation of fitness of the population, detailing the vari-
ous components of cost used to score potential solutions to the path planning problem.
Chapter 6 presents a numerical comparison of the performance of an evolution-based
algorithm relative to a graph search technique and another stochastic global optimiza-
tion algorithm in finding paths through static environments. In Chapter 7, we expand
the application of evolution-based search to dynamic domains. Thisis followed by a
brief foray into simultaneous evolution of strategy in problemsinvolving intelligent ad-
versariesin Chapter 8. In Chapter 9, we address simultaneous co-evol ution of plans for
multiple vehicles coordinating to accomplish a set of team level objectives with both
individual and team constraints. Real-time implications are discussed in Chapter 10.
Finally, we conclude in Chapter 11 with a summary of the research, the conclusions

reached, and some suggestions for future work.
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Chapter 2

REVIEW OF LITERATURE

2.1 Prologue

When one takes a step back and looks at the big picture, one sees that autonomy really
represents a sequence of transformationsfrom abstract, often fuzzy objectivesto action.
Regardless of the steps which follow, the first transformation involves changing the ab-
stract high-level objectiveinto aset of tasksto be achieved. Thetypical implementation
then invokes a path planner to define paths between each possible pair of tasks. For this
purpose, it is generally assumed that the details of action which take place within and
between each task are accounted for elsewhere. Finally, a separate mission planner then
attempts to take the jumbled up pile of tasks and the corresponding paths and find an
“ordering” of tasks (and thus paths) which meets the overall system goals.

What this implementation ignores, however, is the spatial and time dependencies
between the various tasks and the effect that the time-varying nature can have on the
corresponding paths. The mission and path planners are inherently coupled. Ignoring
this coupling, although improving the computational tractability, can lead to situations
where feasible quality solutions cannot be re-constructed. Further, the nature of plan-
ning in uncertain environments must be, by definition, responsive to change. As events
occur, it is often necessary to re-order tasks (and thus recompute paths). Even in sit-
uations where task ordering remains the same, local interaction with the environment
may dictate the need for re-routing. The need for adaptation only becomes more evident
when one begins to consider mission planning and management in the face of not only
“constant initiative” threats or hazards, but also intelligent adversaries. In such cases,

the environment (or actors therein) actively attempts to disrupt the best-laid plans of an
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autonomous agent, requiring an even greater ability to react and strategize simultane-
oudly.

Fundamentally, planning involves figuring out what to do - looking forward in time
to determine a sequence of actions which will achieve a certain objective. The idea
behind planning isto effectively try to anticipate “Murphy’s Law” to discover what can
(or will) go wrong before taking a wrong step. Ideally, one wishes to search quickly
over the entire space of possible actions to find the sequence of future decisions which
provide the largest potential payoff. Obviously thisis an impossible goal. Thus, one
must either constrain the space of possible decisions or find ways of efficiently search-
ing the space to maximize the probability of discovering fruitful avenues of action. The
approaches to planning in the literature thus stake their claim at various points along
this continuum.

In this chapter, we present an overview of the vast array of path planning approaches
found in the literature. Thisisfollowed by a discussion of various architectures devel-
oped for mission planning, including both single vehicle concepts and more elaborate
schemes enabling coordination of multiple vehicles. We then give a brief description of
work related to the generation of strategies against intelligent adversaries. The chapter
concludes with acritical discussion of the contributions made by others in the existing
literature and where they succeed and fall short relative to the “big picture” set out in
Chapter 1. Included is a commentary on how the research presented in this dissertation

fits within the context of these contributions.

2.2 GettingfromAtoB (toCtoD...)

One of the key building blocks of autonomy is the ability of arobotic system to move
itself from one location to another without human interaction. There are several issues
involved in even this simple task. First, the robot must know where it currently is and
must have a representation for where it should go next. Second, it must have an ap-

proach to “navigate” between the two states. Finally, it must “know” when it arrives at
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the new location, which impliesameans of keeping track of its absolute (or relative) po-
sition asit ismoving. Thisdissertation deals primarily with the second “ skill” - creation
of a“path” which the robot can follow to achieve its objectives. Admittedly, however,
itistypically not sufficient to simply pre-plan aroute which the robot then blindly exe-
cutes. Rather, it isnecessary to instill the robot with a Sense-Plan-Execute cycle which
runs continuously over the course of the mission. It isalso in general necessary to have
apurely reactive set of behaviors to handle unanticipated events which occur outside of
the bandwidth of the planner (e.g. the time necessary for the Sense-Plan-Execute cycle

to complete).

2.2.1 Purely Reactive Motion

As one considers the range of options available in terms of navigating around an un-
known environment, one scheme which seems appealing is to rely entirely on reactive
behaviors and do away with planning altogether. This approach is driven directly by
sensor measurements which are mapped directly to action as the primary means of con-
trol. Such ascheme was proposed by Brooks[5] inwhich the robotic system isendowed
with different behaviors. The simplest behaviors include basic obstacle avoidance and
the ability to wander around a room avoiding collisions. Incorporation of additional
sensors (or an absolute navigation capability) allows additional behaviors, such as at-
traction to a goal, to be developed. This is the approach considered by Arkin [6, 7]
in which these motor schemas are combined to control the various actuators. This
approach has proved viable for control of soccer playing robots in which additional
higher-level “roles’ (e.g. offense, defense, goalie) are used as a means for selecting
different schema as well as coordination between different robots.

Schoppers[8] developed what he termed universal plans as an alternative to manual
programming as a means of achieving reactive robot behavior. These plans integrate
goal-directed planning with situation-driven reaction, generating appropriate behavior

even in unpredictable environments - essentially allowing the environment to determine
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the robot’s current goals. Thisis meant to undo the problems with classic approaches
to Al planning which depend on specific ordering of events and predicates. Instead
the planner must anticipate possible situations and predetermine its reactions to those
situations. Universal plan execution requires predicates from a variety of sources - a
problem aggravated in domains requiring knowledge of objects other than the robot
itself when those locations cannot be controlled (by robot alone).

Khatib [9] developed the concept of potential fields as a means for local guidance.
In this framework, obstacles are defined to have repulsive forces, while goals are in-
terpreted as attractors. The vector sum of forces forms the basis for local guidance
commands for the mobile robot or manipulator. A drawback to this method isthat it is
known to suffer from local minima effects when the net force sums to zero in certain
portions of the search space.

What these reactive approaches lack however, is any sort of deliberative or reason-
ing component which can take advantage of available information to plan future action
as opposed to merely reacting to the current situation. Of course, the value of “look-
ahead” capability islimited, based on the accuracy of the information used for planning.
Having said that, given enough computational horsepower, a deliberative planning com-
ponent can be useful even in the face of uncertainty in cases where this uncertainty can
be bounded in some fashion. In these cases, it may be possible to plan for the best pay-
off over a“set” of scenarios represented by the uncertainty in various elements of the
problem scenario. To this end, we discuss a number of ways in which motion “plans”

can be generated.

2.2.2 Motion Planning Methods

In this section we discuss the myriad of techniques available for solving the basic prob-
lem of transitioning a given system from a known initial state to a specified terminal
state. In doing so, we highlight the relative strengths and weaknesses of the various

approaches and their applicability to the more general problem of planning in dynamic,
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uncertain environments.

Calculus of Variation

A comprehensive survey of direct and indirect numerical methodsfor cal culusof variation-
based trajectory optimization is given in [10]. Here, Betts argues that methods such as
evolutionary algorithms, ideal for handling combinatorial optimization of discrete vari-
ables, are not the natural choice for trajectory applications as these are fundamentally
continuous problems. He contends that these evolutionary approaches have attracted
attention because they can be applied without a detailed understanding of the system
being optimized. Further, he argues, by not exploiting gradient information, these dis-
crete methods are not computationally competitive. The remainder of this thesis will
argue against Betts' conjecture, demonstrating that evolution-based search isin fact a
feasible means of solving path planning problems. Further, its lack of dependence on
gradient information is what makes it amenable to realistic problem domains in which
the measure of performance is notably discontinuous.

Work by Miles[11] develops a gradient-based parameter optimization method that
improves a vehicle's trgjectory in real-time as the vehicle moves along it. Beginning
motion as soon as a feasible non-optimal trgjectory is created, the algorithm works by
continually trying to improve the portion of the path not yet traversed while maintain-
ing continuity/smoothness of the trgjectory. What is particularly interesting about this
work is that the behavior (trial paths) of the optimization process |looks very similar to
evolutionary programming convergence toward a solution.

Vian et. a. [12] illustrate use of an adaptive method based on the calculus of varia-
tions (Pontryagin’s Minimum Principle) and an iterative Fibonacci search for generating
optimal aircraft trajectories (velocity, flight path) with respect to time, fuel, risk and fi-
nal position. This time-constrained tragjectory optimization method is integrated with a
passive threat localization and avoi dance methodology (based on multiple sample cor-

relation) to provide intelligent control for unmanned and piloted systems operating in
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threat environments. By coupling these two ideasin an integrated approach, the optimal
trajectory is continually adapted based on the threat location determined by the threat
localization correlations as the vehicle proceeds toward the target.

Milam [13] presents a computational approach to the generation of aggressive tra-
jectoriesin real-time for constrained mechanical systems. This approach hinges on the
mapping of the system dynamic equations to a lower dimensional space (differentially
flat). These outputs are then parameterized in terms of spline basis functions. Sequen-
tial quadratic programming is then used to solve the resulting constrained non-linear
optimization problem. Preliminary results indicate that this approach is promising for

real-time implementation

Graph Search

Mitchell, Keirsey et. a. ([14],[15],[16],[17],[18]) did considerable work related to al-
gorithmic approaches to terrain navigation for autonomous land vehicles. The resulting
overall system architecture which stemmed from thiseffort is discussed in detail in [14]
covering everything from digitization bias corrections for grid-based searches to threat
risk functions to replanning to the relative role of a priori knowledge and reflexive be-
haviors. Mitchell [15] provides adetailed summary of the terrain navigation algorithms
employed in this work as well as a brief survey of related approaches and comments
regarding areas of open research. The planning framework in [16] included threelevels:
amission planner, along range planner, and alocal planner. The mission planner isthe
highest level of planning responsible for establishing the goals of the system and deter-
mining destination goals which satisfy these objectives. The long range planner uses
a graph search agorithm (typically A*) to find paths through the digitally represented
grid of the terrain map [17]. The local planner obtains additional terrain/topography
information from onboard sensory data and is responsible for planning around (unan-
ticipated) obstacles as well as incorporating this new information into the global plan

for the mission/long range planners[18]. Planning is carried out using both pre-existing
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map databases as well as sensor-based range scans used to build/modify terrain maps
on thefly.

Work by Krozel ([19],[20]) investigated the feasibility of applying various artificial
intelligence search techniques such as dynamic programming and A* to VVoronoi search
diagram graphs for navigation path planning.

Sorensen ([21],[22]) describes work related to on-board flight management to gen-
erate low cost flight profiles between given city pairs, including time of arrival control
at certain waypoints along the route and utilizing time-varying wind and temperature
model data. He discusses various levels of “sophistication” with regard to trajectory
generation including dynamic programming and approaches based on the calculus of
variations. He suggests that a possible technique might be to couple these two ap-
proaches using dynamic programming to provide an approximate solution and then us-
ing calculus of variationsto fine-tune this trajectory by finding the neighboring optimal
solution. Sorensen comments, however, that the running time constraint for on-board

processing may eliminate the calculus of variation framework as a viable approach.

Wilson et. al. at Seagull Technology continue this work in their development of a
free-flight dynamic programming-based planner [23] for routing and scheduling com-
mercial airline flights between citiesin the United States. They included actual gridded
weather model output in the evaluation of potential routes and allowed for separate or
combined horizontal and vertical route planning utilizing alocal optimization loop for
speed scheduling in cases where speed was a free parameter.

Other work by Krozel [24] involves casting problems involving prediction of time
of arrival ininclement weather as constrained shortest path problemsinvolving weather
avoidance. The search technique used in this case isagain a variant of the dynamic pro-
gramming approach (Bellman-Ford algorithm) which searches for generalized shortest
paths with at most £ links.

Hagelauer and Mora-Camino [25] present a method based on discrete dynamic pro-

gramming to generate optimal 4D trajectories in the presence of multiple time con-
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straints. They demonstrated improved performance by selective bounding of the search
space (flight levels, state/control bounds) and reducing computation time in repetitive
performance evaluations. Thislatter reduction was accomplished by the use neural net-
works at each decision step for cost evaluations. By using a two-layer neural network,
they were able to reduce the dynamic programming computation time by a factor of

approximately 8.5.

Work by Wilkin[26],[27] involves development of a planner which uses A* in com-
bination with Dynamic (Bayesian) Belief Networks. The Bayesian Belief Network is
used to predict the vehicle state forward in time and is the basis for decisions regarding
the need for re-planning due to disagreements between a World Model and the actual
state.

Once it was shown that graph search algorithms, such as A*, could be applied to
navigation problems, the question became how these basic algorithms might be modi-
fied to account for variationsin the “maps’ used for navigation which might occur over
the course of mission execution. Further, there was a desire to begin to consider the

incorporation of secondary objectivesin the path planning process.

Aninteresting concept devel oped by Payton [4] involvesrobust planning using plans
as resources as opposed to recipes for action. He proposes the use of the results of
search (such as A*) in an arbitrary domain to create a gradient field which represents
alocal “best direction to head” toward the goal. He illustrates how this gradient field
approach naturally allows for handling of unanticipated threats and opportunities with

minimal re-planning effort.

Stentz [[28],[29]] developed a dynamic variant of the classic A* search agorithm
[30] specifically designed to handle situations where arc costs change (relative to the
values assumed during prior planning iterations) while the vehicleis progressing toward
the goal. He shows that this algorithm, termed D*, is particularly efficient in terms of
propagation of these cost changes over effected portions of the search space - a quality

further improved through introduction of afocusing heuristic.
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Linden and Glicksman [31] describe aroute planner for an autonomousland vehicle
which incorporates contingency to account explictly for incompleteness and uncertainty
of digital map data. The idea is that the planner finds preferred routes taking into
account the potential cost of detours along the way (i.e. if “choke’ regions are found to
blocked). Thiswork includes estimates of the probability that a given choke region will
be traversable.

Mandow et. al. developed the PRIMO-A* algorithm [32] to extend the standard
A* agorithm to handle multiple objectives ordered relative to their priority. Their mo-
tivation was to not only minimize path length but also add robustness by dealing with

practical limitations of the sensor and vehicle/robot system during task execution.

Bander [33] presents an adaptive A* algorithm (AA*) in which the search isguided
by a generalization of the heuristic function, a set of pre-determined optimal paths,
and a set of desirable paths which may or may not be optimal. This work investigates
mechanisms for incorporation of knowledge from a variety of sources, some possibly
human, to guide the numeric search process and the use of previously computed optimal

paths for accelerating the determination of new optimal paths.

Sutton [34] presents an incremental approach to dynamic programming based on
the continual update of an evaluation function and the situation-action mapping of a
reactive system. Actions are generated by the reactive system and thus involve minimal
delay whilethe incremental planning process guarantees that the actions and eval uation
function will eventually be optimal, regardless of the extent of search required. This
method is particularly well suited to stochastic tasks and to tasks in which a complete
and accurate model is not available. Supervised learning is used in cases where the

situation-action map is too large to be implemented as atable.

Ablavsky and Snorrason [35] propose a divide-and-conquer geometric approach for
constructing optimal search pathswithin arbitrarily shaped regionsof interest for amov-
ing target. Thiswork is directed toward UAV operations requiring exhaustive search of

aregion of terrain such as in search-and-rescue operations and uses isochronal contours
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(a generalization of the wavefront propagation of a Dijkstra’s single source shortest
path search) and a set of optimal primitive shapes. The core of the path planner isin the
search for sub-regionsthat match alibrary of primitive geometric shapesincluding box-
spiral, raster and zamboni coverage patterns. Thiswork may be particularly relevant to

the efficient mining of aregion for collection of observation data.

Biologically Inspired Approaches

Virk and Kadar discuss the use of field theory ([36],[37]) as one of the most promising
formal approaches for achieving natural flexibility in the navigation of autonomous
systems. In this context, they show the superiority of abiased random walking strategy
as compared with chemotaxis for finding stationary targets and present preliminary
work extending this approach to the tracking of a moving target emitting an attracting
chemical gradient field. In [38], they further extend these basic ideas to compare the
relative performance of independent and cooperative searching.

Parunak and Brueckner [39] construct a model of pheromone-based coordination
as ameans of enabling emergent self-organization in multi-agent systems. This appar-
ent contradiction to the second law of thermodynamics (which states that entropy must
increase) is explained through the definition of a macro level which hosts an appar-
ent reduction in entropy (i.e. self-organization) and a micro level in which entropy is
allowed to increase. This increase is sequestered from the interactions in which self-
organizationisdesired. The macro level reflects the agents whilethe micro level models
the drift and expansion of released pheromones.

Parunak [40] extractsaset of engineering principlesfrom naturally occurring multi-
ple agent systems. Thiswork isin response to an increasing trend of agent architectures
to become more and more complex and reason explicitly about their coordination - a
trend which tends to counteract the point of software localization and encapsulation in
the first place. The motivation being to provide guidance for the construction of arti-

ficial multi-agent systems which support behavior significantly more complex than the
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behavior of the individual agents. He argues that the coordination between agents does
not necessarily need to be modeled and accounted for explicitly, but rather can emerge
naturally. Drawing on the characteristics of ants (path planning, brood sorting), ter-
mites (nest building), wasps (task differentiation), birds and fish (flocking), and wolves
(surrounding prey), Parunak develops a number of general principles to guide the con-
struction of artificial agents. These include keeping agents “small in mass’, “small in
time”," small in scope”; decentralization of control; diverse (randomness and repulsion)
- explore the fringes; provide an entropy leak; allow sharing of information (species,
individual, and society levels); plan and execute concurrently. Brueckner and Parunak
[41] describe the use of multiple synthetic pheromones, each with differing qualities,
for spatial coordination of multi-agent systems. This concept enables communication
between agents through interaction with a shared environment (viathe distribution and

diffusion of pheromones) [42].

Probabilistic Roadmaps/Randomized Planners

The probabilistic roadmap (PRM), described by Kavraki [43], is a technique enabling
fast and efficient planning for multiple queries in a geometric space. Essentialy it
amounts to the random sampling in the configuration space of a manipulator (robot)
to determine the “free space”’ and then searching for simple connections between the
random samples which can “see” one another. By searching the resulting network, this
technique can be used to find collision-free paths between arbitrary configurations. This
technique has been shown to be probabilistically complete. In itsinitial formulation,
however, the probabilistic roadmap planner isonly applicableto path planning for holo-
nomic robots (no dynamics, no kinematic constraints). Mainly considered as a means
of generating a fixed motion knowledge base, all information is assumed known during
the construction phase - attempting to minimize on-line computation. An extension of
these concepts, known as the Lazy PRM, providesfor on-line construction and query.

A related concept involves rapidly-exploring random trees (Lavalle [44], Kindel
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[45]), which represent an example of a single-query PRM agorithm. Thisinvolves suc-
cessively growing the tree outward from a “root” node by generating random samples
in the free space and grow the tree toward the closest node for a small time. In this
manner, the search space is“explored”. If the path to the node is found to be collision-
free, the node is added to the tree. This process is continued until a node is sampled
sufficiently close to the target. This process can alternatively be run “backwards’ from
the target to the start point. Another option isto grow separate trees in both directions
and terminate once the branches from the two treesintersect. Thistechnique was shown
to be effective for planning in static environments as well as through a dynamic field of
moving obstacles.

Frazzoli et. a. [46], extend work on probabilistic roadmaps utilizing a Lyapunov
function to construct the roadmap. In this fashion they deal with the system dynam-
icsin an environment characterized by moving obstacles. Thiswork utilizes a“hybrid
automaton” concept in which discrete state transitions transfer the system between dif-
ferent sets of continuous dynamics corresponding to various trim trajectories of the

vehicle.

Evolution-Based Approaches

Ahuactzin et. al [47] use a genetic algorithm to search over a set of Manhattan paths
to find collision-free paths for planar manipulators with multiple degrees of freedom.
They apply asimilar technique, coding the search space in termsof alist of “rotate” and
“move” commands for the individual jointsto plan paths for holonomic mobile robots.
Thiswork is extended through the development of the Ariadne’s Clew agorithm [48],
which utilizes both an explore function to build a representation of accessible space and
a search function which looks for the target end state. Implemented in a massively par-
alel (128 transputers), this algorithm proved capable of planning collision-free paths
for asix degree of freedom manipulator allowing it to avoid a separate six-dof manipu-

lator driven by random trajectory commands.
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Xiao et. al. [49], present an adaptive evolutionary planner/navigator for mobile
robots which unifies off-line planning and on-line replanning processes in the same
evolutionary algorithm. The basic formulation of apath isin terms of a set of “knot” or
waypointsinitially chosen at random, which connect a known initial and goal location.
Candidate paths are scored based on minimization of distance traveled, smoothness,
and clearance around obstacles. Thiswork utilizes a set of eight very domain-specific
heuristic operators such as “smooth” and “repair” to pull trial paths around obstacles.
The probability of “firing” different operators is adapted systematically over the course
of search to improve performance. Timing results indicate that this approach isfeasible

for navigation planning of indoor mobile land-based robots.

An aternative approach to solving path planning problems was put forth by Fo-
gel in his application of Evolutionary Programming (EP) to the well-known Traveling
Salesperson Problem [50]. As part of this work, he showed the operational efficiency
of this approach to be on the order of n? (n the number of citiesincluded in the tour) on
a seria computing machine despite the fact that the total number of possible solutions
to be searched increases as afactorial. Fogel further postulates that parallel implemen-
tation of the EP algorithm might allow near linear time approximate solutions of the
TSP problem. Thiswork showed the applicability of the EP approach to combinatorial

optimization problems.

Fogel and Fogel extend the EP approach to handle the dynamics of moving vehicles
with work related to optimal routing of autonomous underwater vehicles (AUVs) [51].
This work spanned a number of subproblems including time of arrival requirements
at multiple goal locations, detection avoidance, and cooperative goal observation for a
pair of AUV's. Only modification of the performance objective function was required

to handle the increasingly complex problems addressed.

McDonnell and Page supply an additional application of the EP approach to routing
of UAVsin both 2D [52]and 3D [53] space with obstacles. What differentiates their
work from that of Fogel isthe use of a biased random walk representation for both the
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path and mutation strategy.

Vadakkepat et. a. [54], combine genetic algorithms with the artificial potential
field to derive optimal potential field functions. Thisis done to extend the basic artifical
potential field approach which are efficient at finding safe paths, but not typically opti-
mal ones. Rather than adjusting the path explicitly, this technique adjusts the potential
functions around the goal and obstacles in order to implicitly optimize the resulting
path through the aggregate potential fields. The search space is represented by a set of
tunable values parameterizing or “shaping” the various potential fields (multiplicative
factors and powers). This approach proves capable of navigating robot(s) among mov-
ing obstacles. Multiple objective evolutionary algorithm is used to identify the optimal
potential field functions. Fitness functions like goal-factor, obstacle-factor, smoothness
factor and minimum-pathlength are developed as selection criteria. An escape force

algorithm isintroduced to avoid/escape from local minima.

2.3 Figuring out what/where/when A is: Mission Planning

2.3.1 Individual \Vehicles

Work at Draper Lab by Adamset. al. ([55, 56]) developed a hierarchical planner which
distinguishes between what they call a mission planner and a path planner. They em-
phasi ze the differences between short-term (limited horizon) and longer-term planning
and the need for both. Their planner essentially uses a constrained A* search (incor-
porating penalties for constraint violation) to find detailed routings between goals and
then uses a simulated annealing type approach to handle the combinatorial optimization
of these sub-path segmentsrelative to overall mission objectives and constraints. Real-
time planning was investigated by Beaton et. al [57] by viewing the time available for
planning as an explicit constraint on the planning algorithm. A key to this system was
the evaluation of the utility of candidate mission plans done via Monte Carlo smula-

tions (w/ importance sampling). This utility was represented in terms of the probability
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of reaching a given objective using a particular candidate mission plan.

Hino [58], based on the architecture proposed by Mitchell et a. [14], discussesthe
problem of mission selection (related to maximizing the value of a run based upon the
availability of system resources) wherein amission is broken down into combinations
of traversal and search phases. All combinations and permutations of missions are sim-
ulated and a best sequence of missionsis selected. Thiswork used a heuristic geometric
approach to route planning and included penalties for depletion of resources.

JPL has developed ASPEN (Automated Scheduling and Planning Environment)
[59] which is geared toward trandation of high-level mission goals into a schedule
of discrete eventsto be carried out. ASPEN allows optimization of plans for a specific
set of goals such as maximizing science data or minimizing power consumption. Based
on Al techniques, it uses temporal constraint networks, resource timelines, state time-
lines, a parameter dependency network, and constructive or repair-based scheduling
algorithms. Iterative repair techniques are the basis of CASPER (Continuous Activity
Scheduling Planning Execution and Replanning) which has been integrated with AS-
PEN to support continuous plan modificationsin light of a changing operating context
[60]. Key features of ASPEN include: an easy to use modeling language, a generic
architecture allowing the user to choose among severa different search engines and

propagation algorithms, and real-time replanning during plan execution.

2.3.2 Coordination of Multiple eehicles

Although the majority of research effort to date has focused on path planning for a
single autonomous vehicle, a recent trend involves planning for collaborative UAV op-
erations in which multiple vehicles jointly perform a particular mission. It should be
noted, however, that before these advanced missions can be carried out to their full po-
tential, it is necessary to first endow the individual vehicles with a reactive behavior
capability.

Chandler et. al. [61] discuss path planning and coordination of multiple UAVs so as
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to jointly reach atarget area while minimizing exposure to radar. Within their scheme,
each vehicle plans its own path in isolation - optimal path planning is performed to
minimize exposure while atiming constraint is imposed. This planning is carried out
as a two-step process: first determining a polygonal path (based on Voronoi diagram
and Dijkstra or A* search) and then refining this coarse path into a flyable (feasible)
trajectory using vehicle maneuverability constraints. Coordination of the timing of the
multiple vehicle’'s arrivalsis done by a higher level coordination agent which computes
a team estimated time of arrival from a sensitivity function calculated and communi-
cated by each of the UAVs. It should be noted that the planner assumes no conflict

between trajectories.

Similar work related to coordinated rendezvous to multiple targets is presented in
McLain [62] which models paths to the target using a physical analogy to a chain to
which links can be either added or subtracted to change the path length. Desirable
paths to the target are obtained by simulating the dynamics of the chain where threats
apply repulsive forces to the chain and forces internal to the chain tend to straighten
it out. This approach results in a set of smooth and flyable paths of equal length for
multiple vehicles and targets that reduces exposure to threats. Time coordination is
handled by making the paths all of equal length regardless of the target locations. This
results in trajectories which include spiraling and |oitering segments which are needed

for closer vehiclesto wait for UAVsto reach goals which are further away.

Brummitt [63] extends the work of Stentz by utilizing D* as a means of generating
reactive plans for a multiple vehicle / multiple goal scenario - variation of the Multiple
Traveling Salesperson Problem (MTSP). Separate D* algorithms were used to find and
maintain optimal paths from each robot to each target location. These paths were pre-
sented to a Mission Planner which then uses a straightforward exhaustive search of all
possible alternatives to solve the MTSP. Further work leading to the development of a
generalized mission planner for unstructured environmentsis presented in [64]. Of par-

ticular note in this latter effort is the fact that the authors include the option of using a
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randomized search based on simulated annealing as an alternative to exhaustive search

once the computational times for these two methods become comparable.

Diasand Stentz [65] propose afree market anal ogy as a mechanism for coordination
of multiple robots. By working in their own self-interests, they show that the overall
team revenues can be maximized. Through a bidding/negotiation process, supply and
demand dictate the development of mutually beneficial teaming relationships between
vehicles with different skill sets and computational capabilities.

Bugajska and Schultz [66] utilize evolutionary computation to co-evolve optimal
sensor suites and reactive strategies for navigation and collision avoidance of micro
air vehicles. Implementation paired a standard genetic algorithm (GENESIS) with a
genetic machine learning system (SAMUEL). This work expands on the evolution of
distributed control by Schultz [67] and Wu et. a. [68] which used the SAMUEL
learning system to evolve rule sets for a team of micro air vehicles conducting large
area surveillance. These rule sets take the form of if-then rules mapping sensor data
to action. By evolving these rules in simulated environments, the hope is to be able to

establish a set of behavior rules which can then be used on actual flight vehicles.

Zhang and Kim [69] propose an evolutionary approach to active learning in the con-
text of soccer playing robots. They describe an evolution-based solution to the routing
of vehicles given a set of source/destination pairs defined by a separate evolutionary al-
gorithm representing atactical planner. Therouting planner utilizesaset of “via’ points
or waypoints, in which the fitness function used is the minimum distance between each
source and destination pair. It should be noted that the optimization process in this
work was cited as taking on the order of a dozen minutes of wall clock time. To make
the approach more amenable to real-time implementation, they explore the possibility
of utilizing a set of tactics which is created off-line, in advance. They use a simulator
to generate and solve a number of different problems, collecting a set of useful tactics
in the process. The particular task they consider is the passing of a ball between an

arbitrary pair of points given a configuration of “obstacles’ (other players). Evolution
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is the mechanism used to search the space of candidate tactics to find those which have
the best fitness values. Measuring fithess of candidate tactics requires invoking the
evolution-based route generator - but since this tactic base generation is done off-line,

the computational expenseis not harmful.

Uchibe et. a. [70] illustrate the emergence of cooperative behaviors of multiple
agents through simultaneous learning resulting from co-evolution. A simplified soc-
cer game with three learning robots is used as the basis for evolving cooperative and
competitive behaviors. At each “frame” of the game, representatives are chosen from
each robot “population” to take part in a game. The behaviors are modeled as a set of
if-then rules which are evolved using function sets based on genetic programming. Evo-
lutionary search over the space defined by the function sets (available options at each
“decision point”) is used to define team strategies for two robotsin isolation, against a
stationary opponent, and an actively learning opponent. Moves such as “give and go”

as well as “shoot off the wall towards the goal” are seen to emerge from this search.

Luke and Spector [71] use genetic programming to produce multi-agent teams, fo-
cusing on issues related to team diversity and breeding strategy as well as coordination
mechanisms (sensing, communication) between agents. They apply different breeding
and communication options to generate a lion “pack” which regularly gets as close as
possible to a gazelle. The key to this domain is that it represents a task which isim-
possible for a single lion to accomplish. Rather, it depends on the formation of team

strategy to surround and capture the gazelle.

Bennett [72] extends genetic programming to the discovery of multi-agent solu-
tions for a central-place foraging problem for an ant colony. He showed that genetic
programming was able to evolve time-efficient solutionsto this problem by distributing
the functions and terminals across successively more agents so as reduce the number
of functions executed per agent. Cooperation among the ants in the colony was seen to

naturally emerge.

Liuet. al. [73], utilize a genetic algorithm to shape the sensory, behavioral, and
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learning characteristics of a group of multiple agents in achieving a task involving the
surrounding of a set of targets. Each robot has a built-in reinforcement learning mecha-
nism and selects behavior based on the probability distribution of its behavioral weight
vector while encountering a given stimulus. The genetic algorithm searches over a
space defined by target motion characteristics, the learning/selection mechanism to be
employed, the vehicle's sensor range, and the target spatial description defining “cap-
ture”.

Patek et. al. use the technique of approximate dynamic programming [74] to plan
the paths of multiple vehicles observing a battle space, including the possibility of de-
struction of vehiclesat random. Wohletz et. al. [ 75] expand on thiswork, using stochas-
tic dynamic programming as the basisfor a*“rollout” algorithm applied to real-time, op-
timal control of joint air operations (JAO) via near optimal mission assignments. This
approximate dynamic programming technique is applied to ascenario including limited
assets, risk and reward dependent on air “ package” composition, basic threat avoidance
routing, and multiple targets - some of which are fleeting and emerging. It is shown
that therollout strategy provides statistically significant performance improvement over
open-loop strategies using the same heuristics. This improvement is attributed to the

learning of near-optimal behaviors which are not modeled in the baseline heuristic.

2.4 Generalized Decision Making - Dealing with Intelligent Adversaries

Schultz and Grefenstette [76], explore the potential for genetic algorithms to improve
tactical plans. They address the problem of evolving (and learning) decision rulesfor a
plane attempting to avoid amissile. The learning method employed relies on a* game”
or competition between the plane and missile and employs genetic algorithmsto search
over the space of decision policies. The result is a set of heuristic rules which evolve
and lead to good performance over anumber of simulated missile encounters. Improved
performance is observed when the GA population isinitialized using (domain-specific)

knowledge, as might be expected.
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Cliff et. al. [77] developed smulated agents undergoing competitive co-evolution
to evolve predator-evader strategies where the agents developed their sensory-motor
mechani sms through morphogenesis.

Reynolds [ 78] used genetic programming to develop agents that undergo competi-
tive co-evolution to play the game of tag.

Haynes and Sen [79] address the evolution of behavioral strategiesin predators and
prey. They utilize genetic programming to evolve strategies for the predator agents,
while evolving the prey population simultaneously. The goal is the generation of pro-
grams for both cooperation of autonomous agents and for handling adversity in the face
of such cooperation. Four predators were tasked to surround and capture a single prey
agent. By adopting a “linear” fleeing strategy, the prey avoids locality of movement,
making the task of the predators al the more difficult. Generally, the evolved predator
strategies out-performed manually constructed strategies. The end result of thisinvesti-
gation is the realization that evolution can provide opportunities which are not obvious
to human designers.

Ficici and Pollack [80] present a formulation of pursuer-evader games that affords
amore rigorous metric of agent behavior than that allowed by other approaches. This
inability to characterize behavior is cited as a major factor in the difficulty noted in
several different coevolutionary attempts at solution. By transforming the classic two-
dimensional spatial game to a single dimension bit string “prediction”, tools from in-
formation theory can be used to quantify agent activity and opens up a view into the

communication component of pursuit and evasion behavior.

2.5 Context of Current Research

In this section, we consider the goals of the current research relative to the body of
existing work which has been described in the preceding section. Recall that the over-
arching aim is the development of technologies which enable individual and teams of

robotic systems (vehicles) to solve problems in real-world situations, involving uncer-
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tainty and dynamics. We now summarize the key limitations and benefits of several of

the methods described previoudly in the literature review.

e Graph Search: Requires discretization of the environment, which, in itself, is
not a problem. The difficulty arisesin that the graphs tend to be spatial in nature,
having no notion of time associated with the paths which are created from them.
Further, “shortest” paths may not be the desired result, particularly in more gen-
eral problem definitionsin which time of arrival requirements must be traded off
with survival probability. In other words, the “minimum threat” route, such as ob-
tained by traversing Voronoi diagrams (e.g. [81]), may not be the desired output.
Finally, higher-level planners based on graph search techniques typically require
the definition of combinatorial optimizersto create trajectories from shortest path

“segments’.

e Probabilistic roadmaps: Although quite useful in situationsinvolving repeated
motion in static domains, these techniques are more difficult to apply in truly dy-
namic environments. What is necessary is to include time in the “configuration”
gpace of the robotic system. Then, the issue is how to “connect” different points
in this dynamic configuration space. Is a simple loca planner, which generates
“straight” path segments between such points, sufficient? Issues arise with regard
to implementing dynamic constraints on the vehicle performance. Of course,
once one builds a roadmap of nodes and edges in the free configuration space,
there isthe issue of updating the roadmap whenever a change in the environment
occurs, invalidating portions of the network. Still, the concept of attempting to
model the connectivity of the free space is a useful one. Thisis similar to the

approach taken by Mazer [48] in the Ariadne’s Clew agorithm.

e Biologically Inspired: These techniques, such as the pheromone-based navi-

gation of Parunak, have the advantage of requiring very little in the sense of
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structure imposed on them. Rather, the structure of cooperation tends to emerge
naturally, through essentially random processes and trial-and-error. A drawback
of these techniques, however, isthat by utilizing random-walk type behavior, they
are almost too random at time, and fail to take advantage of structure in the envi-
ronment to speed discovery of good solutions. Again, thisis both a disadvantage
and an advantage - as the random behavior tends to avoid local minima. Sev-
eral useful properties can be drawn from this and related research (e.g. [40]).
Namely, algorithms should explore the fringes and be short in time (have limited

“memory” of past events).

In general, the aforementioned techniques are quite successful at solving the prob-
lem for which they were originally conceived: namely that of path planning. With the
exception of the biologically inspired approaches, when these techniques are extended
to higher level “mission” planning they tend to fall short. Typically, various patches
and/or pairing with other optimization tools are required to handle the combinatorics
involved. Not that this is necessarily their fault. The combinatorial explosion required
to solve mission-level problems, even for a single vehicle cannot be ignored. These
problems only worsen as one considers the coordination of action amongst multiple
vehicles. What is needed is an efficient mechanism for conducting the search through
the “space” of mission planning. The simplest incarnation of such a mission is the
classic Traveling Salesperson Problem (TSP), minimizing distance of travel through a
set of cities. What is desired is the development of efficient algorithms for effectively
solving generalized Multiple-Traveling Salesperson Problems, in which the “cost” to
be minimized is related to team-based satisfaction of a set of mission goals.

It is toward this end that the current research is aimed - investigating the poten-
tial for evolutionary computation to be applied to the general problem of planning for
autonomous vehicles. We do not, however, begin by attempting to solve the general
problem. Rather, we choose to demonstrate the potential of solving this grand problem

by first applying evolutionary conceptsto the generation of adaptivetrajectories. We are
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not the first to apply evolutionary algorithmic concepts to the path planning problem.
The work presented in this research was originally motivated by the results obtained by
Fogel. Among those who have explored this idea include McDonnell [52], and Xiao
[49]. Again, however, these investigations limited their scope to solving only the path

planning problem.

In contrast, the space we search involves the dynamics of the vehicle directly, as
well as the coupling of the trgjectory with the environment. This concept of the search
gpace naturally allows for integration of time-of-arrival constraints, limits on vehicle
performance, etc. Thus, we are not limited to generating purely spatial paths. Fur-
ther, the combinatorial optimization capabilities of evolutionary algorithms have been
previously acknowledged in application to such problems as the Traveling Salesperson
[50]. We exploit this capability by casting the path planning problem in an equivalent
context, enabling efficient search of the resulting space. For this purpose, we choose
to model the “path” as a sequence of action decisionsin time. In this case, the space
of decisions involve choices regarding the direction and speed of vehicle motion. This
same model, however, can be use to represent a more general decision space, where
the available choices at each decision point are defined at a more abstract level. Thus,
we contend that evolutionary computation holds significant potential for attacking the
more general planning problem which must be addressed before teams of automata can

operate effectively.

It should be noted that solution of problemsthrough evolutionary computation relies
on the generation of alarge number of different trial solutions which are then “tested”
in a ssimulated environment. By its very nature, such a technique is computationally
intensive, as it hinges on evaluating the potential benefit of different courses of action
forward in time. What makes such an approach potentially viable for application to
real-world problemsis the projected growth in computational capabilities[1].
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2.6 Epilogue

Obviously there has been much work in many areas related to autonomy. In particu-
lar, a significant effort has been exerted toward devel oping methods for planning paths
of both manipulators and mobile robots. Over time, one notices a trend in which the
attention has gradually shifted from deterministic graph search methods to more prob-
abilistic technigues such as probabilistic roadmaps and others inspired by biology. Es-
sentialy, two camps exist in terms of realizing autonomy - those which try to force the
structure and interaction through a hierarchical framework, and those which contend
that intelligent behavior can emerge on its own, devel oping structure as necessary along
the way. This latter approach provides the opportunity to discover unexpected, novel
solutions which may be impossible to find through deterministic, structured methods.
Thus, we begin our foray into the viability of evolution-based methods as a means of

determining trgjectoriesin near real-time for autonomous vehicles.
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Chapter 3

EVOLUTIONARY COMPUTATION APPLIED TO
OPTIMIZATION

This chapter describes the mathematical framework of evolutionary computation
and the various components required for its implementation. Included is a discussion
of the properties required of these components such that asymptotic convergence of the

algorithm to a globally optimal solution can be guaranteed.

3.1 Overview

Evolutionary computation (EC) is an approach to optimization which attemptsto mimic
the natural problem solving capability witnessed in nature. 1t accomplishesthisthrough
the creation of successive generations of a population of trial solutionswhich gradually
move their way through the search space, attempting to locate regions of high fitness.
By exploiting the tendency of the population to change as necessary to continually seek
improved fitness, it becomes conceivable that such agorithms can be applied to the
tracking of dynamic extrema, where the optimal solution changesin time.

Motion through the search space is enabled by “changes’ to the population, made
on the basis of interactions between the population and a simulated world, as reflected
through the cost function. Constructive modificationswhichimproveindividuals' chance
for survival are rewarded while destructive modifications which reduce individuals
fitness are penalized, effectively killing off the “weaker” members of the population.
Thus, there is a natural selection pressure which effectively chooses the “stronger” in-

dividuals, allowing them to surviveto reproduce. In essence, evolutionary computation
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can be thought of as a “generate and test” approach in which many different possible
solutions are developed simultaneously. The propagation of different trial solutionsis
moderated by the selection pressure and depends on the distribution of fitness through-
out the population. Over time, this process results in the achievement of a sort of
bal ance between a population and the environment with which it interacts. Of course,
the scales of this balance are never too secure. Introduction of new “data” (such as a
change in the environment) can spark a new cycle of evolutionary adaptation.
Although the surviving trial solutions (or strategies) are developed based on “vir-
tual” experience in asimulated world, it is hoped that this experience is rich enough to

allow a high probability of their being successful when exercised in the real world.

3.2 An Optimization Problem

In applying evolutionary computation, we must first cast the problem to be solved in a
framework amenable to solution by the “ generate and test” process of simulated evolu-
tion. To do so, we assume the existence of a cost function which is capable of measuring
the performance of different trial solutions. Thus, we seek to discover a set of near-
optimal solutions which approach the true optimal value of this cost function. We use
the term near-optimal to reflect the fact that in many practical real-world applications,
it is sufficient to find solutions which are “good enough”, rather than truly optimal in
the strictest sense. The acceptable degree of nearness of a given trial solution to the
true solution is a function of the particular optimization problem being solved.
Mathematically, we denote the entire space of trial solutionsas X', and represent a
particular point in this space through the vector sequence, Z[-] € X. The vector no-
tation, -, implies that each value in the sequence can have multiple components (for
example a 3D position). The square brackets, [-], are used to denote the index into
the sequence (e.g. a particular point in time). Our goal is to find the vector sequence
which optimizes the performance function. Depending on the formulation, this may

require either minimization or maximization. Without loss of generality, we will as-
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sume henceforth that the goal of the search is the minimization of a (scalar) objective

function, f(Z), given by:

z[-]eXx

arg (i 121 ) (3.1)

We denote the optimal cost value as f*, whose argument, X*, is the set of optimal
decision vectors satisfying (3.1). More precisely, we search for the set of solutions, X *,
which satisfy:

Xt ={Zl] e X | f(X") < [f"+€} (32

where e denotes the region or neighborhood of acceptance around the optimal solution,

fr.
3.3 Modeling Population-Based Optimization

The evolutionary algorithms (EASs) we explorein this research each act on a population
of solutions - effectively developing multiple potential solutions of problem (3.1) in

paralel. In general, thesetrial solutions can be represented in several different spaces:

e The input space, or genotype, which represents a genetic “coding”, typicaly in
the form of a sequence of integers or a binary string. Thisis the space in which
the search takes place. We denote this space by P. A population of solutionsis
expressed using bold block type, namely P(n), where n denotes the generation

or iteration of the search process. This population can be thought of as a matrix:

PP P

pl P2 p#
Pn)=| > 2 ’ (3.3)

T
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where each of the columns, P/, j = {1,2,..., u} represents an individual trial
solution to problem (3.1). Here, 1 represents the size of the population, and ¢ is
the number of components contained in each trial solution. The components of
this vector are thus the data (bits, integers, etc.) used to represent the individual

in this space.

e The output space, or phenotype of an individual. This can be interpreted in terms
of avector which is used to establish its score or fitness. This vector is obtained
from the input space through a transformation, I : P/ — 7 [-]. Thistransforma-
tion can be as simple as an identity mapping or might involve complex dynamics.
The implication of thisis that each of the output vectors, 77 [-], corresponding to
aset of input vectors, P(n), may be of adifferent length. Note that length in this
context refers to the number of timesteps contained in each of the paths. Thus, in
general, it is not possible to use a matrix notation for the decision vector space,
X(n). This point will be made more concrete in the examples which follow in

this and subsequent chapters.

Capturing the forces of natural selection algorithmically involves modeling of not only
the population of trial solutions, but the environment in which these solutions must
“act”. The representation used to “encode” the behavior of each candidate istailored to
the specific nature of the optimization problem being considered. The key ingredients

which affect the application of evolutionary computation to any problem domain are:
1. Problem/Population Representation
2. Performance Evaluation
3. Mutation Strategies

Each of these issueswill be discussed in detail relative to the autonomous vehicle plan-

ning problem in Chapter 4. Here, we will briefly describe these concepts in the context
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of atraveling salesperson problem (TSP).

3.31 A Modeling Example

To illustrate the main components of applying evolutionary computation, consider a
traveling salesperson problem (TSP), which involves finding the shortest tour through
aset of N cities. We first consider the population representation, which is necessary to
map the problem of interest into some sort of mathematical form which can be acted on
by the evolutionary process. This corresponds to the design of both the input and output
spaces for a given problem domain. In the case of the TSP, our problem space consists
of different orderings of the cities. Thus, the j* individual in the population can be
modeled as a string of integers of length ¢ = N, where each of the components of the
vector P corresponds to a city index, or integer ¢, k € [1, N]. Thislist correspondsto
the order in which the cities are to be visited.

Once the input parameterization is determined, a suitable output space must be de-
fined. This output space is utilized to evaluate the fitness of a trial solution. In our
example TSP problem, given that we care about the distance traveled in each trial tour,
it makes sense to transl ate the sequence of integersto a vector sequence, 7/ (%], of phys-
ical locations where the index & ranges from {1, 2, ..., N} and corresponds to the city
index, ¢, at location £ in a given trial tour. Each individual in the population could
then be evaluated on the basis of the total straight-line distance which must be traveled

tovisit thecitiesinitslist, given by:

FE) = S @k + 1] - P K] (3.4

where || -||» denotes the Euclidean distance or 2—norm of the vector between two points.
This process associates a single scalar cost to each trial solution in the population at a
given generation.

Having scored each member of the population, one turns to the design of mecha-

nisms to produce “children” or offspring. It is through such mutations that new, alter-
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native trial solutions are continually produced. In this case, each trial solution contains
the entire set of N cities. Thus, the only manipulation possible is the ordering of the
cities. Potential mutation strategies include the exchange of randomly selected citiesin
thelist or thereversal of arandom portion of each list [50]. More detailed discussion of
the properties of the mutation mechanism necessary to ensure convergenceis presented

later in this chapter.

3.4 Evolutionary Algorithm Description

Regardless of the design choices made in mapping the physical problem to a mathe-
matical space, the major functional components of evolutionary computation remain

the same:

1. Generate aninitial population, P(n = 0), of 4 trial solutions (e.g. parents)

2. Assess the fitness of the p trial solutions P(n = 0) by evaluating each solution

relative to a performance function, f(P7)

3. Apply a mutation operator, M (P7), to each of the  trial solutionsin P(n) to
generate a set of \ offspring, (i.e. M : P/ — (7) where, typically ;= A

4. Evaluate the fitness of the \ trial solutions Q(n) by evaluating each solution

relative to a performance function, f(Q?)

5. Choose 1« out of the (i + A) trial solutions {P(n), Q(n)} based on their fitnessto
create a new set of parents, P(n + 1), for the next generation. This can be done

either deterministically or via a probabilistic tournament selection process.

6. Setn = n + 1. Goto step 3 until termination criteriais reached or planning time

expires.

INote: convergence can be accelerated using multiple offspring per parent at the expense of higher
computational costs per generation.
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Several points should be made relative to the basic algorithm presented above. The
initial population, P(0), can either be chosen completely at random (asistypically the
case) or based on domain specific knowledge, in situations where such information is
available. Assigning the initial population approximately uniformly at random in the
possible domain increases the probability of starting “near” a good solution, potentially
reducing the computation time. Evaluation of the performance of each trial solution
might be done in terms of a scalar cost index or might involve a “vector” of costs
which are to be minimized. This (vector) cost function serves to encode the various
constraints, any environment dynamics, and the objectives of the mission. In the context
of path planning, evaluation of the “fitness” of trial solutions thus requires definition of
suitable models of interaction between the automaton and its environment, other team

members, and potential adversaries.

Thefitness valuesfor each trial solution are used as the basisfor determining which
individuals survive to produce future offspring in the next epoch or generation. Thisde-
termination is typically done using some sort of probabilistic selection scheme which
generally allows the best performing individuals to survive while also occasionally
granting lesser fit solutions the chance to further propagate. Such relaxed selection
pressure is a critical factor in reducing the tendency of the population to stagnate pre-
maturely near local minima, as it encourages exploration of the fringes of the search
gpace. “Children” or offspring are created through the application of various mutation
strategies which produce individual s that carry with them some of the features of their
parents as well as some new unique features which may serve to contribute positively
to the child's persistence. These offspring then replace those members of the popula-
tion which “die off” in a given generation. Constraining the population to afinite size
has the effect of promoting competition for the limited number of “sots’. The details
of each of these steps are somewhat dependent on the exact instantiation of evolution-
ary computation employed for a given problem. We now briefly describe two specific

evolutionary algorithms which are prominent playersin the EC literature.
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3.4.1 Genetic Algorithms

The classic Genetic Algorithm (GA), as presented by Holland [82], involves representa-
tion of theinput spacein terms of binary strings. The ;" individual in apopulation, 77,
therefore consists of abinary string containing ¢ bits. The population at any generation,
P(n), ismade up of aset of 1 individuals, each of length ¢, giving a total population
size of B, with B = {0, 1}. The i individuals comprise the columns of the population
matrix, P(n).

The representation of the output space, as determined by the operator I'(P7) —
is problem-dependent. In a real-valued optimization problem, the binary strings may
represent “codings’ of certain physical parameters, for example - where the number of
bits in the string corresponds to the resolution of the binary representation. Of course,
there may be other discrete problems in which the mapping in both input space and
output space isidentical. Such a situation occursin problems such as the maximization
of the number of “ones’ in agiven string or other binary string matching problems.

In general, the cost function f maps the j** output decision vector, 77 to the real
numbers. It is assumed that the objective function is not constant, i.e. the number of
unique values over the set {f(7) : ¥ € X} isat least two and at most 2¢. Note that
the output decision vector need not necessarily be binary. All that is necessary is that
the real valued components of 77 can each be mapped uniquely to binary valuesin the
range [0, 2°].

Generation of offspring typically takes place through the probabilistic application of
two operators: recombination and mutation. Recombination (or cross-over), which can
be thought of as*sexual” reproduction, involvesthe literal “mixing” of genetic material
between different individualsin the population to create an offspring. Asanillustration,
we assume that two parents, denoted by P and P, respectively, have been chosen to
“mate” and reproduce. Although many different recombination schemes have been
proposed ([82], [83]), it suffices here to discuss the concept of multi-point crossover. In

this scheme, ¢ € {1,..., ¢} crossover points are chosen at random as “splice” points,
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and sorted in ascending order, yieldingtheset { k1, ks, . . . , k. }. Notethat each crossover
point may be sampled only once (i.e. none of the k; repeate). Thetwo parent individuals
are then combined to form an offspring by taking the first £, components from parent
13“, the next k; + 1 to k; components from ﬁb, the next k5 + 1 to k3 components from
Pe, and so forth. The last components, k. + 1 to ¢ are taken from P if ¢ isodd and
from P?, otherwise. This process is illustrated pictoraly in Figure 3.1 for ¢ = 2 with
ki =2and ky = 5.

crossover

oints
y generated

offspring

|A1 A2 } A3 | A4 | A5 | A6 | A7 A8| ‘AI‘AZ‘BS‘B4‘BS‘A6‘A7‘AB‘
parents i i <
Bl (B2 | B3 | B4 | B5| B6 | B7 | B8 Bl | B2 | A3 | A4 | A5 | B6 | B7 | B8

Figure 3.1: lllustration of multi-point crossover mechanism for production of offspring.

Note that, as indicated in Figure 3.1, two parents can create two different offspring
depending on which parent isinterpreted as P* in each mating. Typically, this determi-
nation is made probabilistically, with a 50% chance of choosing each parent as the “a”
individual.

Recombination alone, however, is typically not sufficient to move the population
completely throughout the search space. The reason for this is that the “gene pool”
available for generating offspring is effectively limited to that represented in the initial
population. The number of ways in which this population can be uniquely combined
(e.g. thelength of schemas or building blocks) is controlled by the number of crossover
points. In order to introduce “new” genetic material, the concept of mutation is utilized
in which each “bit” in an individual is flipped with a probability, p;, Vi € {1,2,...,(}.

This process can be represented by a mutation operator of the form:
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Qi = (ﬁj + Z(n)) mod 2 (35)
where the vector components of the binary random vector Z(n) are independently and
identically distributed binomial random variables with p = P{Z;(n) = 1} € (0,1).
Thenotation Z(n) isused to reflect thefact that the valuesin the mutation vector change
in each generation. Here, pi represents an intermediate offspring created through re-
combination, and )/ denotes the new individual resulting from the application of the
mutation operator. Typically, the values, p; are taken as small constant values, i.e.
pi=p < 1,Vie{l,2 ... 0} Notethat theform of mutation operator given by equa-
tion (3.5) provides for a non-zero probability of transitioning between any two binary

string states, even in the absence of recombination.

3.4.2 Evolutionary Programming

In 1966, L. Fogel (REF. LJFOGEL) introduced an approach to simulated evolution
which he coined Evolutionary Programming (EP). This approach modelsthe popul ation
directly in terms of its phenotype, or behavior, in output space. Thus, evolution acts
directly on the variables of interest. Thisis in contrast to genetic agorithms (GA),
which evolve individuals based on their genotype, or input space. The action of EP
is thus to modify behavior directly whereas the action of GA is indirect, modifying
genetic material and then observing the corresponding change in behavior triggered by
the modifications.

Because EP acts directly on the variables of interest, it effectively eliminates the
need for any sort of mapping between input and output representations. Typically, the
4t trial solution of the population is expressed in terms of avector of length ¢ in which
the components comprise the variables of interest. For example, in the optimization of
ascalar performance function, f(77), 77 € R*, the ' individual consistsof trial values
for each of the ¢ components, azi k € {1,2,...,¢}. Each component is generally

assumed to liewithin some closed interval, [ay, by|. In the case of ascalar cost function,
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the goal of EP isthus to find values for each component of Z, which tend to optimize
the cost function, f (), as expressed by eguation (3.1).

Asisthe case with other population-based search methods, EP is generally formu-
lated in terms of the evolution of a number of solutions simultaneously. The population
at any given generation, n, is assumed to be comprised of a set of i individuas, each
of length /. Combining these individuals as “column” vectors, we can express the pop-
ulation in terms of amatrix, P(n), of size/ x p.

Thefitnessfunction, f(77), mapsthe ;" trial solution to the real numbers, f : 77/ —
R. In order to model the effects of uncertainty in the instantiation and evaluation of
trial solutions, amodified cost function, ¢(z7, 1) is sometimes used. This“noisy” cost
function value associates a perturbation v/ with the evaluation of each individual to
denote the fact that the true value of the “state”, 77, as well asiits true fitness, f(77),
may not be known exactly.

Unlike GA, which combinesthe genetic material of different individualsin the pop-
ulation in creating offspring, EP relies solely on the effects of mutation to “move”
through the search space. As such, EP can be thought of as a purely “asexual” evolu-
tionary process in which the values of each of the ¢ components of atrial solution are

perturbed via mutation operators of the form [84]:

7" =1 + G0, 0%) (36)

where each component is modified by the addition of a perturbation sampled from a
Gaussian random variable with zero mean and a standard deviation of o. The spread
of the mutation distribution for each parameter, controlled by the standard deviation
ok, k € {1,2,...,¢}, can vary in an arbitrary fashion. For the sake of simplicity,
one can simply assign a constant value to each standard deviation. The actual value
is chosen relative to the possible range of values of each parameter or based on some
understanding of the underlying fitness landscape. We will discuss the impact of such a

decision later in thischapter. It iscommon practice, however, to scale the “tightness’ of
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the distribution according to the relative fitness of solutions - enabling large deviations
when fitness is poor and restricting the search to small neighborhoods once a good

solution is discovered. This can be written as:

o = Bed(Z, 7)) + 2, (3.7)

where (3, isascaling parameter and z;, isincluded to insureaminimal level of “motion”
through the search space between subsequent generations, even in the event that the
fitness evaluates identically to zero. These standard deviations effectively control the
“step size” aong each degree of freedom.

An obvious issue in using such fitness proportional mutation is the determination
of the set of scaling parameters, 3, for each degree of freedom. Typically, this must be
done through extensive experimentation on a particular objective function. Depending
on the domain of interest, such experimentation may be infeasible’. An aternative
option isto treat the standard deviation for each degree of freedom as a separate set of

parameters which are free to evolve:

o™ = o] + G (0,a0]) (3.8)

Thus, the step size for each degree of freedom of each parent (a set of ;¢ additional
parameters over the entire population) is evolved simultaneously with the decision vec-
tors, 77. The only tuning parameter which needs to be specified is the scalar value a.
The adaptation of the step sizes viathis so-called meta-evolutionary programming [84]
will be demonstrated by example later in this chapter.

3.4.3 Tournament Salection

Independent of the instantiation of evolutionary computation chosen for a particular

application, it is necessary to implement a mechanism for selecting from the set of

2Such is the case in terms of path planning, particularly as one moves toward real-time generation of
trgjectories.
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(1 + A) individuals in the population after the creation of A offspring from . parents
at the n'" generation. It is precisely this constraining of the population size to a fixed
value (1) which serves as the force of natural selection. Once the suitability of the
(u + X) potential solutions for “life” in the environment at generation n is assessed
(using the performance function), it is necessary to determine the set of . survivors
which will serve as the basis for the n + 1" generation. For this purpose, we utilize
g-fold binary tournament selection, which is described as follows. For each individual
ie{l,2,...,n+ A}

1. Draw ¢ > 2 individuals from the parents and offspring (excluding individual

1) with uniform probability, Denote these “competitors’ by the indices

S
pHA-1"

11,22, ..., 1.

2. Compareindividual i’ sfitnessagainst each of the competitors, i;, j € {1,2,...,¢}.
Whenever the fitness of individual  is not worse than that of individual j, then

individual ¢ receives a“point”.

Thus, the score for each individual after this “tournament” is an integer in the range
[0, ¢]. After the scores are assigned to all individuals, the 1. with the most points are se-
lected as the parents for the next generation. At first glance, this scheme appears to be
elitist (always keeping the best individual present in the population). Thisis not neces-
sarily the case, however. Consider that a possible set of scorescouldbe(q, ¢, q,...,0) -
an event which could occur with non-zero probability. In thiscase, it ispossible that the
“best” solution at generation n could be “lost” in favor of a different solution with the
same score (despite the fact that this alternative solution was eval uated against different
competitors). To avoid such dlitist failures, the score ¢+ 1 can be givento theindividual
with the best fitness before starting the competition amongst the remaining (1 + A — 1)

members for the other 1 — 1 dots.
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3.5 Behavior of Evolution-Based Search

In order to provide the reader with a better feel for the nature of the evolution-based
search process, we present the application of EAs to a series of straightforward func-
tion optimization problems. Observations regarding the behavior of EAs on these rela-
tively simple problems providesinsight regarding their application to the more complex

domain of path planning for automata which will be discussed in subsequent chapters.

3.5.1 Continuous Function Optimization
A Convex Problem

We begin by considering minimization of the function:

F(@) = |17 = (Z m) (39)

defined on the search space, P = X = {7 € R’ : ||7|| < r}. For this example, we
take the dimension of the search space to be ¢ = 1. Thus the function which we seek
to optimize is a smple quadratic function of a single degree of freedom. The search
domain for the j individual, X', is taken to be —50 < 27 < 50. The objective is the
minimization of the function f(x;). Thus, we search for asolution, X* of the problem
(3.1), where, recall, X* represents the set of solution vectors which evaluate to within
e of agloba minimum, f*. In this case, the global minimum of the simple quadratic
function, f*, takes on the value of zero at X* = 0.

Obviousdly, given the nature of the function f(Z) in this case, evolution-based al-
gorithms are not the method of choice as simple gradient-based methods can find the
optimal solution with significantly less computational effort (e.g. Newton's method
will find the answer in one step). No-Free-Lunch theorems [85, 86] not withstanding,
it is nonetheless insightful to examine the behavior of evolution-based algorithms on

convex problems.
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To begin, we need to represent the population. In this case, it makes sense to alow
the states of the search space, z;,, to directly represent the parameters to be optimized.
We thus set up the problem in the framework of evolutionary programming (EP). We
create an initial population of 1 = 20 parents, P(0) = [z12?...x}], where the initial
values of each parent, 27, are chosen randomly from a uniform distribution over alim-
ited portion of the feasible space, eg. =] ~ U[40,50]. The notation U[a, b] is used
to denote a uniform distribution over the range [a, b]. The population is specifically
restricted to a subset of the search space so as to prevent an initial solution from lying
close to the optimal solution. In this manner, we are able to better illustrate the motion
of the best available individual over a number of generations.

The scoring of each trial solution amounts to evaluating each parent through the
cost function, f(Z), given in equation (3.9). Offspring are generated at each generation

through the mutation operator

e = 2] + G (0,00) (3.10)

where G(0, 0, ) is a sample from a Gaussian normal distribution with zero mean and a
standard deviation of o;. Given a Gaussian distribution, this strategy implies that the
generated point is most likely to be “near” the parent point, with a smaller probability
of being a part of the tails of the distribution. The standard deviation, ¢, can be used
as a step size control over the course of the evolution to control the spread of the main
“mass’ of the distribution. As mentioned in Section 3.4.2, acommon practice isto use
fitness proportiona scaling to reduce the variance of the mutation distribution as the
optimal solution is approached. Initially, however, we take the standard deviation for
the mutation distribution to be o; = 1, a constant. Note that, since the function (%) is
convex and contains only a single global minimum, any non-zero of o; will ultimately
result in the discovery of a solution, X*. The particular value of ; chosen merely
affects the behavior of the search process as this solution is approached.

Results obtained over 10 independent trial s starting from the sameinitial population,
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P(0), are shown in Figure 3.2. Here we show the best cost obtained as a function of

generation over each of thetrials.

-500 -

—1000 -

-Best[n]

-1500 -

120

-2000 generation, n

—-2500 1 1 1 1
0 20 40 60 80 100 120 140

generation, n

Figure 3.2: Cost of the best individual present in a population of ;1 = 20 parentsin
searching for an optimal solution to problem (3.9).

Note that, in this example, the negative best cost (- Best[n]) isshown such that the prob-
lem involves maximization as opposed to minimization. A trial is terminated once the
best available function value discovered falls within e = 0.01 of the optimal solution.
The thick black line in this figure shows the average best available cost computed over
this set of trials. First, it can be noted that the rate of convergence over this set of trials
(to within a certain band of the optimal solution, X * = 0) is approximately exponen-
tial. Zooming in on the region after generation 60, as shown as an inset in Figure 3.2,
several additional observations can be made. Since the standard deviation is relatively
large (o, = 1) compared to the remaining error, the mutation operator tends to produce
points further away from the optimal solution than the current best available solution.
In atruly elitist tournament selection process, the oscillations observed in Figure 3.2

which are triggered by mutation would not be observed. Because we use the basic g-
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fold tournament selection (e.g. without explicitly preserving the best available solution
prior to the tournament), however, the rate of convergence drastically slows once the
function value is near the optimal solution.

In order to get a feel for the effect of different mutation distribution values, o,
consider Figure 3.3. Here the trace obtained for o1 = 2 is shown together with that of
Figure 3.2 in which o; = 1. Inthe large, we see that the larger standard deviation has
the expected effect of accelerating the initial rate of convergence to within aband of the
optimal solution. Observing the zoomed in region, however, we see that the oscillations
in the immediate vicinity of the optimal solution are exacerbated by the larger variance
of the mutation distribution. Thus, the population takes a longer time, on average, to
convergetowithine = 0.01 of the optimal solution under the influence of alarger fixed

standard deviation value.
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—-1000 [~

-Best[n]

-Best[n]
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—-2000

60 80 100 120 140 160 180
generation, n

-2500 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

generation, n

Figure 3.3: Comparison of the rates of convergence for problem 3.9 for different fixed
standard deviations of the underlying mutation distribution.

Recall that meta-evolutionary programming (see Section 3.4.2) involves simulta-

neously evolving the standard deviations of each degree of freedom aong with the
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corresponding parameter values of the trial solution. As an illustration of the utility of
thistechnique, we allow the standard deviation, o1, to vary freely in the closed interval
[0.1, 5] during the evolutionary process. The exact values bounding this interval were
chosen arbitrarily. Initially, the standard deviation value, o, was set to 0.1 for each
individual in the population. The adaptation of the standard deviation parameter cor-
responding to the best available solution in the population at each generation is shown
in Figure 3.4. Also indicated is the average standard deviation value over the entire
population as a function of the stage of the evolutionary process. The progress of the

search under the action of this adapation is shown in Figure 3.5.

o[n]

generation, n

Figure 3.4: Illustration of the adaptive adjustment of o, over the course of solution of
problem (3.9) via the meta-EP formulation.

What one observesisthat the variance of the distribution aternately grows and shrinks
- being particularly small as the population nears the optimal solution. These “swells’
in the step size (mutation distribution) are loosely correlated with the presence of the
different “exponential approach” segments evident in Figure 3.5. Note aso that the

oscillations in the vicinity of the optimal solution observed under the action of fixed
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optimal solution
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0 5 10 15 20 25 30 35 40
generation, n

Figure 3.5: Convergence of the best available solution under the influence of adaptive
variance o4 [n] for problem (3.9).

mutation distributions (see Figure 3.2) have effectively been eliminated in Figure 3.5
by the adaptive step size (see inset).

3.5.2 AProblemwith Multiple Local Minima

As an illustration of the behavior of evolutionary algorithms on a fitness landscape

containing multiple local minima, consider the minimization of the function:

f(@) = — (I _; Asin (v — z) + I _; sin5((zy, — 2)) (3.11)

where the negative sign is used in order to cast the problem in terms of minimization
of the objective function. For this example, we take the parameters A and z to have
the values 2.5 and 7 /6 respectively. The global optimum of this function is found at
x =2m/3fork =1,2,...,¢. Inonedimension, over therange [0 < z; < 37/2], this

function looks like that shown in Figure 3.6.
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Given that we are seek to optimize a continuous function, we again use the evolu-
tionary programming formulation as the basis for solution. We represent trial solutions
in terms of the components of the vector #, where the search space, P = X € R’ is
taken to be the closed interval [0, 37/2] aong each degree of freedom. As before, we
initially investigate the case where the search space consists of determining the optimal
value of asingle parameter, z; (e.g. £ = 1). Note that for this example the population
was again purposely biased so as to force the algorithm to move a large distance over
the search space to find the optimal solution. In this case, each individual in the popula-
tion(j = 1,2,..., ) wasinitialized in the vicinity of the right-most local optimum in
the search space, 2] ~ U[4,4.5] (see Figure 3.6). Each trial solution is moved through
the search space viaamutation operator in the form of equation (3.6), with the standard
deviation of the mutation distribution, o; = 0.3, held constant. This value was sel ected
arbitrarily based on the results of several experimental runs. The nature of the “path”
through the space taken in atypical trial under these conditionsisindicated by the mo-
tion of the circle (depicted by the arrows) between subsequent generations as shown in
Figure 3.6. The progress of the search in each of the 10 trials, as indicated by the best
achieved fitness value at each generation, is shown in Figure 3.7. Here, again, we also
indicate the average performance over the set of 10 trials. Unlike the previous convex
example, however, we see a much greater influence on the evolution of cost imposed
by the undulations of the fitness landscape. This is evident by the different effective
rates of convergence over the different trials - there are times where the best individual

“stalls’ near alocal minimabefore “jumping” to a different (improving) hill.

As done in the previous convex example, we illustrate the impact of different fixed
standard deviations values on the effective convergence behavior of the population in
Figure 3.8. Here we show the average fitness value of the population obtained over 10
separate trials for fixed standard deviation values of o; = {0.3,1.0,5.0}. We observe
similar trends as in the convex case in that the initial rate of convergence generaly

improves with increasing step size. in contrast, however, a point of diminishing returns
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Figure 3.6: Multi-sine function used for demonstrating search principles along with

evolution of best-of-population over a number of generations.

¢ =03
X

Best[n]

2 4 6 8 10 12 14 16 18 20
generation, n

Figure 3.7: Variation in the rate of convergence of the best available solution for the
multi-sine problem. Also shown isthe average cost function value (thick line).
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is evident, as the performance begins to degrade as the standard deviation is increased
above o, = 1. A similar trend is observed with regard to the point at which the average
cost first dips below the convergence threshold - noted by the arrow for each fixed value
of standard deviation. This behavior can be explained due to the fact that asymptotic
performance under the influence of large step sizes nearly reduces to random search in
the vicinity of the global optimum. It should be noted that the fixed value, o, cannot
be chosen arbitrarily as was possible in the convex example. This is due to the fact
that the “features’ in the fitness |andscape (see Figure 3.6) are separated by a minimum
distance. As such, if the fixed step size value, o, is not chosen sufficiently large to
allow “crossing” of these features, it isimpossible for the algorithm to reach the global

optimum from an arbitrary initial condition.

15

J
\]

1

1

1
1
-05rF
1
1
1
1
)

Best[n]

generation, n

Figure 3.8: Variation in the rate of convergence of the best available solution for the
multi-sine problem. Also shown isthe average cost function value (thick line).

The behavior of the best performing individual can be described as a sequence of
“climbs” along the local gradient intermingled with “hops’ to different hills. This pro-
cess continues until an individual happens to land on the highest peak at which point
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the global optimal solutionisfound (f(z) < f*+¢) to the specified accuracy, e = 0.01.
The rational e behind this behavior can be explained through consideration of the under-
lying probability density function (p.d.f) at each generation, asillustrated in Figure 3.9.
Here, the p.d.f. shown isthat of the “left-most” individual in the population (as thisis
the desired direction of motion given the initialization chosen) at the indicated genera-
tions. Also shown is the best individual contained in the population, as marked by the
circle at the specified generations. Obviously the effective probability distribution for
the entire population is the aggregation of the individual p.d.f’sfor each individual.

[2.3]

-1+ p.d.f of "left-most" individual i
at generation [n]

-2 I I I I I
0 0.5 1 15 2 25 3 35 4 45

X, [rad]

Figure 3.9: Mation of the probability distribution for the “left-most” individual over the
course of evolution for the multi-sine problem (1D)

What this picture indicates is that success or failure of a mutation-only EA (such as
EP) isdictated by the degree to which the mutation operator is capable of spanning the
search space. If the mutation operator is not capable of producing alternative solutions

which “cross’ the various crevasses in the search space, the probability of locking onto
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alocally optimal solution approaches unity. In fact, if only the best solutions are kept
each generation, one can see that this probability is guaranteed to be one unless the
initial population is within a standard deviation of the global optimal solution. Thus,
it is necessary to include a mechanism for probabilistically allowing less fit individu-
alsto re-produce. Thisisthe role of tournament selection (see Section 3.4.3). In this
fashion, at least some portion of the population is empowered to investigate portions
of the search space which, at first glance, appear less promising but which might, upon
subsequent mutation, yield improved performance. Of course, the number of repeated
mutations of “less-fit” individuals required, the lower the likelihood of this “fringe ex-

ploration” to succeed.

Given the requirement to effectively “match” the mutation distribution to the spac-
ing of the features of the fitness landscape, it is natural to consider the potential for
adapting the step size over the course of the search process. We again utilize a meta-
EP formulation to illustrate this potential on our multiple local minimaexample. Over
a number of repeated trials, we have experimentally determined that fixed values for
o1 > 0.2 will enable EP to find the optimal solution with a probability of success near
unity. A fixed value of o; = 0.1, however, was repeatedly found to be insufficient to
allow the population to jump across the first “valley” in the fithess landscape - thus the
population stalls indefinitely at the first local minimum. Based on these observations,
we choose to bound the possible value of ¢, to therange [0.1, 1]. These bounds enable
meta-EP to grow the standard deviation as necessary to traverse the featuresin the land-
scape while aso allowing small adjustmentsin the vicinity of the global optimum. The
adaptation of the step size on this problem is shown in Figure 3.10, where the standard
deviation value corresponding to the best scoring individual in the population is shown
as plotted as a function of generation of search. The corresponding fitness of the popu-
lationisgiven in Figure 3.11. Note that significant improvement in the average val ue of
the cost function is effectively triggered by increases in the step size. Also, as expected,

we see the standard deviation shrink to the minimum possible value as the optimum
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value is approached. This effect becomes more evident as the convergence threshold is
further reduced.

1.2
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generation, n

Figure 3.10: Adaptation of the standard deviation, o1, for the 1D multisine problem
using meta-EP.

To further illustrate the dynamics of the evolution-based search, it is useful to con-
sider the same multi-sine function in two-dimensions (¢ = 2) in equation (3.11), shown
in Figure 3.12. We will briefly discuss the distribution of the population amidst the fit-
ness landscape (Figure 3.13(a)-(f)). Asdiscussed, the optimal solution to this problem
isat z; = o = 27/3 = 120° as indicated by the larger (blue) circle in each figure,
where the x- and y-axis values have been converted to degrees.

Since each individua in the population now consists of a vector containing two

components, the population at a given generation can be expressed in the matrix nota-

tion:
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Figure 3.11: Evolution of the best individual and average fitness for the 1D multi-sine
problem using meta-EP and o,,,;,, = 0.1.

f*(xl,xz) =35

Figure 3.12: Fitness landscape for the multi-dimensional sine function with N = 2.
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where the initial population (n = 0) is created by associating with each individual a
pair of component values =7, k = {1,2} selected uniformly at random from the range
[0,0.5]. Again, thisis done so as to purposely force the evolution to explore a large
portion of the domain in order to discover the global minimum.

Mutation of the population at each generation in this case consists of applying ran-

dom perturbations to each component of the ;" individual trial solution, namely:

wl ™ = 2] + G(0,04) (3.13)

where the parameters o, serve to control the effective “step size” or move limits on
each parameter between successive generations. Note that the mutated individuals are
constrained to lie within the search domain [0, 37 /2] - if thisis not done, other peaks
with the same optimal fitness value of 3.5 (due to the periodicity of the sine function)
will be found.

As the search progresses through Figure 3.13(a)-(d), the behavior can be described
assimilar to “ant-like” foraging in the sense that initially asingle rogue individual “dis-
covers’ afruitful region of the search space. This causes the population to generally
follow the “scent” in a cluster-like fashion. Note, however, because the “step size” is
kept constant, although a large percentage of the population clusters around the opti-
mal solution, a significant number of individuals are still “exploring” the fringes of the
domain, looking for possible aternatives. Thus, the constant variance which caused un-
desired oscillations in the simple convex case, represents a potentially desirable feature
for a problem with multiple local minima. Thisisaparticularly attractive feature in sit-
uations involving the tracking of moving extrema. Towards this end, at generation 100,
the parameter z was changed from 7 /6 to 7/3. This caused the landscape to suddenly
change shape, moving the optimal solutionto /3 = 6° asindicated by the new location
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of the blue circle in Figure 3.13(e). The effect of this change in performance function
is that solutions which were previously near-optimal have now degraded considerably.
Now, the”rogue” individualswhich are spread out through various regions of the search
space suddenly increase in value in the vicinity of the new optimum. Because the " step
size” or variance of the underlying mutation distribution has stayed constant, thisallows
the population to gradually congregate around the new location (Figure 3.13(f)).
Alternatively, one might investigate the effect of scaling the standard deviation -
either according to fitness or via the meta-EP formulation. In this case, the population
is seen to group much more tightly around the global optimal solution onceit is discov-
ered, ultimately converging to the point where the entire popul ation effectively contains
the same component values. This scaling of the step size in the vicinity of an optimal
solution, however, can be a double-edged sword, depending on the desired “output” of
the search. If al that is sought is a single solution which is as close as possible to the
global optimum, then scaling of the step size can be effective. On the other hand, if one
is more interested in finding a number of “near-optimal” or “equally-near-optimal” so-
lutions, such scaling can actually be detrimental. In particular, if oneiswilling to accept
a certain reduction in optimality in exchange for speed of solution and the availability
of (possibly very different) alternatives, the fixed (relatively large) standard deviation

value can be desirable.

3.6 Discrete Optimization

The preceding discussion in this chapter has focused on optimization of a continuous
function of the decision variable vector. We now turn to the study of situationsinvolving
the optimization of discrete sequences - in which the output vector consists of a string
of £ numberswhich each take on avalue selected from afinite range of integers, 1,,,;, <
zr < Inasy, K = {1,2,...,¢}. Such arepresentation lends itself quite naturally to a
genetic algorithm (GA)-like framework. Initialy, we assume that the output decision

vectors are binary strings. The discussion is extended to the more genera case of
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integer strings whenever possible. In particular, following closely the development
given by Rudolph [87], we describe the asymptotic convergence behavior of this class
of evolutionary algorithms (EAS).

Recall that the optimization problem considered is the minimization of an objective
function, f(Z), as given by equation (3.1). In this case, the function f maps the binary
(integer) decision vector, 7, to the real numbers. Our goal isto find a discrete sequence,
#, which, when evaluated through the cost function, f(z), yields the global optimal

cost:

X*={FeX: f@=/f} (3.14)

We assume the existence of a real-valued mapping that extracts the best objective
function value known to the evolutionary algorithm in state P(n). This sequence of
valuesis denoted by the random variable, B(n).

In analyzing the question of convergence for an algorithm, it is of interest to deter-

mine:

1. Isaparticular EA able to find a solution of problem (3.1)? More specificaly,
does the random segquence B(n) converge in some mode to the global optimum

f* of the objective function? And, if so:

2. How much time is necessary to discover the solution? In other words, what is
the expectation of the random time, 7. = min{n > 0 : B(n) < f* + €} that is

necessary to solve problem (3.1) with some prescribed accuracy € > 07?

While definitive claims can be made with regard to question (1) in the general case,
theoretical results related to the expected time of convergence (question (2)) are con-
fined to special classes of functions[87]. We now explore the modeling of EAsin order

to assess the conditions under which convergence to optimal solutions can be assured.
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3.6.1 Markov Chain Models of Evolution

As one begins to examine the nature of the process of simulated evolution, it becomes
evident that the state of the population at a given step isafunction only of the state at the
previous step and the operators used to generate offspring - namely mutation and/or re-
combination and the selection process. As such, evolutionary algorithms (EAS) can be
modeled through the use of Markov chains, in which a probabilistic transition operator
maps a population P (n) at discrete time (generation) n > 0 to a population P(n + 1).
The transition operator typically consists of two parts, related to the probabilistic mod-
ification of the population (mutation and recombination) and the subsequent selection

of survivors from the modified population.

Since we model the individuals in the population as a discrete sequence of binary
numbers (integers), each selected from a finite range, the possible number of states
which the individual can take on is finite. Thus, an individual at a given generation,
Z(n), can be written either in terms of its sequence values, or equivalently in terms of
its state index. For a binary string of length ¢, we can enumerate each of the possible
statesuniquely viatheseti € {0,1, ..., 2¢—1}. We can thus define the probability that
the EA will be in each possible state at a given generation, denoted by the row vector
7t[n]. Further, we define a specific transition operator, denoted by the 2¢ x 2¢ one-step
probability transition matrix, 7. The entries of this matrix, 7,;, where ¢ and j range
over al states of the chain, represent the probability of transitioning from state i to j
in asingle step. By convention, 7° = I, the unit matrix. For a given 7[0], the product
7[0]7 yields the probability of being in each state after one transition. In genera, a

recursive relation can be found, namely:
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7] = 70| (3.15)

Thus, the probability of being in each state after n such transitions, having started with
an initial probability distribution of 7[0], is #[0]7 . Note that the i"* row of 7" isthe
conditional probability mass function of Z(n), given that #(0) = 4. Thisimplies that
the matrix 7" is a stochastic matrix satisfying the properties:

3.6.2 Convergence Properties of Binary EAs

A Markov chain is said to irreducible if every state communicates with every other
state. Two states, 7 and j, are said to communicate if there is at least one path in the
transition diagram defining the chain from i — j and vice versa. Note that such a path
may take multiple steps.

Note that the Markov chain defined by a GA acting on binary strings with only
cross-over and selection operators is not irreducible - there exist absorbing states (e.g.
those states that do not communicate with any others). The total number of absorbing
states (e.g. those states in which each bit string isidentical) is 2¢, with ¢ the number of
bits used in the encoding. It can be observed that the density of absorbing states,

2€

2 ot(l-p)
ot = 2 (3.17)

decreases exponentially with the length of the string, while the total number of states

increases exponentially.
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Given these definitions, the time-varying behavior of the Markov chain can be de-

scribed (see, for example Goodman [88], Fogel [84], or Rudolph [87]) in terms of :

1. transition to an absorbing state

2. transition to a state from which there may be a transition to an absorbing state

with some non-zero probability

3. transition to a state where there is no probability of transitioning to an absorbing

state in asingle step.

This process can be formalized by the definition of the state transition matrix, 7,
which satisfies:

I, 0
R Q

where [, isan (a x a) identity matrix describing absorbing states, Risa (¢t xa) transition

(3.18)

submatrix describing states which may transition to an absorbing state, and Q isa (¢ x t)
transition sub-matrix describing stateswhich will transition only to other transient states
and not absorbing states. As the number of transitions tends to infinity, this matrix can

be shown to take the form [88]:

lim 7" =
n—oo

(I —Q)~'R 0

I, 0 ]
(3.19)

where the existence of the inverse (I; — Q)™ is guaranteed [88]. What thisimpliesis
that, given infinite time, the chain will transition with probability of one to an absorbing
state. Note, however, that there is a non-zero probability that the absorbing state may
not be the global best state - unless al absorbing states are globally optimal.
Essentially, the convergence resultsfor EA can be summarized asfollowsfor binary

search spaces (these conditions will be generalized to discrete spaces shortly). Conver-
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gence to a globally optimal state is guaranteed, regardless of the initial distribution,
if:

1. There exists a non-zero probability of transition from any state x € S to a state
ye X*.

2. The selection operator used to determine survivors from one generation to the

next always maintains the best solution found, as expressed in equation (F.3).

This requirements can be summarized by the following theorem:

Theorem 1 ([87], p119) If thetransition matrix of an elitist EA isreducible and the set
of recurrent (e.g. absorbing states) isa subset of X *, then the EA converges completely

and in mean to the global optimum regardless of theinitial distribution.

Note that it is not necessary that each state can be reached in one step. Such a
situation arises when the support of the mutation distribution is restricted to a small
neighborhood of the current position. In this case, it may be possible that the set X *
is not reachable from all statesi € S even for more than one step. Consequently, it is
necessary to impose the following condition on the structure of the transition matrix:
For each i € S there exists a finite constant, n,,, such that the probability of reaching
the set X* from i in n, stepsis non-zero, P(")(i, X*) > 0. What this effectively
means is that the selection operator must be probabilistic - occasionally alowing less
fit individuals to survive to enable multiple mutation steps to transition a state to the
optimal set, X*.

For the case where the decision vector, x, consists of aset of ¢ integers, each in the
range [0, M|, similar convergence resultsto those in Theorem 1 can be stated. The only
requirement is that the mutation operators chosen must enable transition between any
two integer statesin afinite number of steps.

Thus, the limiting behavior of evolutionary algorithms in binary (discrete) search

spaces can be characterized by the properties of only two evolutionary operators, namely
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mutation and selection. Other operators can be shown to have no impact on the limit be-
havior [87]. If mutation of individualsisimplemented by the usual bit-flipping method
then every EA with dlitist selection will converge completely and in mean to the global
optimum for arbitrary initializations. For discrete integer representations, global con-
vergence can be guaranteed assuming that mutation of individualsallowsfor transition-

ing between any two states in the search space in afinite number of steps.

3.7 Chapter Summary

In this chapter we provided an overview of the primary components involved in evo-
lutionary computation and discussed several particular algorithms (GA, EP) in some
detail. The performance of EP was demonstrated on both a simple convex function
and a more complex, multi-modal function with several local minima. Observationsre-
garding this performance led to the obvious conclusion that the design of the mutation
operatorsis critical in determining the convergence of continuous EAs. In this regard,
meta-EP was discussed as a mechanism for adapting the underlying mutation distribu-
tions over the course of evolution. Thisisan alternative to standard fitness-proportional
scaling of the variance of the distribution.

Asymptotic convergence properties of both discrete (binary) and continuous popul ation-
based EAs were summarized using Markov chain analysis. This analysis established
sufficient conditions for the separate variation and selection operators such that their
combination leads to a globally convergent EA in both the discrete and continuous

cases.
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Chapter 4

PATH SPACE

In Chapter 3, we introduced the mechanism of evolutionary computation and illus-
trated its use in solving continuous function optimization problems. As aluded to in
that chapter, a key aspect of applying evolutionary computation to a given problem is
finding a population representation which lends itself well to solution of the problem.
For optimization of a continuous function, we noted that it often suffices to represent
the input search space directly in terms of the vector components of the function’s ar-
gument. We now turn our attention to the problem of describing the space of path plan-
ning. Our goal isto develop a number of different possible representations and assess
their relative strengths and weaknesses. In particular, we will focus on the matching
of mutation strategies to each of these representations and discuss the properties of
each method with regard to convergence. In doing so, we will discuss a relaxation of
convergence requirements to include not just a single globally optimal solution, but a
neighborhood of near-optimal solutions. This latter extension is essential for practical

implementation of evolution-based algorithms to the path planning problem.

4.1 Basic Concepts

For the purposes of this dissertation, we define a trgjectory in space as a sequence of
physical locations of avehicle system, each with a corresponding time. These locations
correspond to sampling of a continuous trajectory at discrete intervals of time. Each
trajectory is assumed to originate from a specified initial condition in which the vehicle
position, speed, and orientation is specified. We denote a point along such atrajectory

using the notation Z[t;|, where t,. represents the time at which the vehicleis at position
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Z. The vector notation corresponds to the individual position coordinates, defined rela-
tive to some assumed fixed, inertial coordinate system, i.e. Z[tx] = [&1 [tx] w2 [te)zs[tr]” -
An entire trgjectory consists of the sequence of locations at discrete times, ¢, for
k = {0,1,..., N}, where N is the total number of points contained in the path. In

genera, theinterval of time between points on the trajectory need not be constant.

Since we will be using evolutionary computation to simultaneously evolve multiple
potential trgjectories for a single vehicle (e.g. within a population), it is necessary to
develop a notation to distinguish among these different trial solutions. Thisis accom-
plished by attaching a superscript to the trajectory corresponding to the ;% individual
in the population, 77 [t;]. Situations involving the coordination of multiple vehicles of-
ten required the use of multiple instantiations of evolutionary algorithms. As such, it
becomes necessary to be able to distinguish between trajectories contained in differ-
ent populations. In these situations, we add an additional superscript to denote the j
trajectory from the i** population, namely 79[t .

Since the path planning problems considered in this research nominally involve tra-

jectories defined in 4D environments (3D position, 1D time), we describe the motion of

the vehicle in terms of its speed at any timeinstant, ulty] = \/u?[ty] + ud[ts] + u2[ts],
its heading, ¢ [tx], and its climb angle, v[tx], asillustrated in Figure 4.1.

The components of velocity at any time instant, ., [¢,], are take relative to a fixed in-
ertial frame. The unit vectors for this frame are defined such that é; points toward
the East, é, is oriented to the North, and é5 corresponds to height above the Earth’'s
surface. For ease of visualization, we generally confine the simulation examples pre-
sented to those involving only two-dimensional motion in time. This might correspond

to constant-altitude navigation, for example.

Because we often search for tragjectoriesin adifferent spacein which we score them,
it is necessary to develop a similar notation to represent the input search space for the
path planning problem. When multiple populations are necessary, we append a super-
script to the matrix input notation discussed in Chapter 3 (Section 3.3). Namely, P(n)
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heading angle

€

Figure 4.1: The convention used in this dissertation for representing the vehicle's 3D
motion statein time.

denotes the i’ population at generation n. We distinguish individualsin these different
populations from one another using the notation, P/, where i reflects the population
index and j isthe individual index within the i*"* population. As an illustration of the
way in which individuals from different populations might be combined to coordinate
action, consider Figure 4.2. Note that the individuals are generally evolved in isolation,
yet evaluated in the same context. In thisfashion, a natural separation of responsibility

is possible as each population tends to develop adistinct “niche” or specialization.

Here we see three separate vehicles, each of which isrunning a separate instance of
an evolutionary algorithm. In evaluating the fitness of individuals within population A,
we see that representatives from populations B and C' are selected and passed into the
environment model and used to define a relative context for the actions of the individ-
uals from population A. Such a framework has been formalized by Potter [89] and is

often referred to as cooperative co-evolution. Note that the individual input representa-
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representatives
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Figure 4.2: Illustration of a mechanism for combining and coordinating the action of a
team of vehicles, each represented by a separate population.
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tions used in the contextual evaluation need not be identical.

When only asingle EA is needed, the population indicator, 7, is dropped - individu-
als are uniquely defined simply by the individual index, 7. Note that the interpretation
of the vector notation in the input space is more general than that of the physical tra-
jectory. The components of the j** individual, P,f are not necessarily associated with
time. Rather, we treat these components merely as sequence markers. Thus, we use

subscripts to denote these componentsin lieu of the square bracket notation.

4.2 Overview of Path Planning

Path planning is ultimately responsible for the generation of atrajectory in space which,
when followed, maximizes the likelihood of the vehicle completing its assigned tasks.
More formally, the types of path planning problems considered in this and subsequent
chapters can be described via the general problem statement:

Given:

e ateamof M vehicles: V;, Vs, ..., Vi, initidly at locations 71[0], #2[0], . . . , #M[0]
respectively, each with capabilities C;,i = 1,2,... M

e a set of Nyt targets to be observed or attacked, {T'}, located at positions

—

Ti[te], i € {1,2,..., Ny} each with an associated value, ¢;[tx],

e aset of Nyt obstacles, {O}, at locations G;[t,],i = {1,2,...,No} to be
avoided,

e aset of Ny[t;] threats, {H}, at locations H,|t,,],i = {1,2,..., Ny},

e asetof N[t baseor goal locations, { G}, at locations G;[t],i € {1,2,..., Ng}

which the vehicles must reach in order to complete their mission, and

e amodel of the terrain/environment, E(Z, ty)
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Find: aset of trajectories for each of the M vehicles, #[t;],i = {1,2,..., M} de-
fined at timesk = (0,1, ..., N), through the set of observation or attack regions, {7},
which tends to optimize a performance function, J(z!, 72, ..., #), subject to a set of

congtraints, g(#*, 72, ..., 77 t;) = 0.

In this problem statement, we denote the size of a set A (e.g. number of elements)
asits cardinality, or card(A). Note in particular that we distinguish between en-route
target locations and the final destination, or goal points. We also distinguish between
threats and obstacles. Threats represent features in the environment which impose a
probabilistic penalty to avehicle traveling in their vicinity and thus can be approached
at the vehicle’'s own risk. Obstacles, on the other hand, represent physical constraints
which cannot be penetrated at any cost. Detailed discussion of the formulation of threats
and obstacles for the purposes of evaluating trial pathsis deferred until Chapter 5. For
now, it is sufficient to note that obstacles are appended to the cost function in the form
of a penalty term whose size is related to the degree with which atrial solution violates
the constaints imposed by their location and size.

Note that all computations are done in discrete time, where the interval At is cho-
sen based on the estimate of a characteristic length and time scale of the environment of
interest relative to the vehicle speed and maneuverability envelope. This can be thought
of in terms of a Nyquist frequency in the context of discrete-time control: if the sam-
pling time is not sufficiently higher than the dynamics of interest, aliasing will occur
introducing errorsin the environment representation.

We define a scenario as a particular instance of a path planning problem. In gen-
eral, a scenario need not be a static entity. Rather, the state, number, and location(s)
of each of the problem descriptors (threats, obstacles, targets, goals) can vary over the
course of a given scenario. The vehicle capabilities, C, target regions {T}, threat
regions { H }, and terminal locations, {G'}, are al in genera time varying and/or spa-
tially varying. For example, athreat may switch between an active and passive state or

the vehicle fuel/power levels decrease at different rates depending on the nature of the
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trajectory. This variability includes appearance and disappearance of targets, threats,
and/or obstacles. The constraints, ¢(-, ), are used to define unreachable, infeasible,
or undesirable portions of the search space. These include hard obstacles which can-
not be penetrated, vehicle performance limitations such as bounds on a vehicle's turn
rate and/or acceleration, or prescribed minimum bounds on vehicle survivability.In gen-
eral, these constraints apply both to each individual trajectory as well as the interaction
between trajectories in situations involving multiple vehicles.

Finaly, note that the performance measure, J(-), can, in general, be a complex
function over the trgjectories of all M vehicles. This reflects the fact that, depending
on the nature of the mission objectives, an individual’s performance may be evaluated
in the context of other vehicles and their corresponding trajectories in space and time.
Generally, in order to facilitate evaluation of the i** path’s fitness with regard to the
performance function, including the extent to which it satisfies the constraints, it is nec-
essary to express the trgjectory in the form of a sequence of physical locationsin time.
This may not, however, be the best or most efficient space in which to search for tra-
jectories. Rather, it may be more desirable to search in more abstract spaces, where the
actual physical path resulting from a particular representation is then found through a
series of mathematical transformations. In what follows we discuss a number of differ-
ent ways in which the search space for the path planning problem can be represented
and highlight the relative strengths and weaknesses of each approach. It isillustrated
that the effectiveness of the different approaches depends on the degree to which agiven

representation matches the requirements of the path planning problem being solved.

4.3 Path Representations

In using evolutionary programming to solve a particular planning problem, one must
first determine the way in which individuals of the population of trial solutions are to
be represented. In other words, we need to define the search space, P, consisting of

the parameters to be modified by the search process. For the purposes of path planning
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for a single vehicle, it makes sense that a trial solution consists of a candidate path,
parameterized in some fashion to reflect variations in space, time, or both. Among the
population representations explored in this research are, in increasing order of abstrac-

tion:

waypoint formulation (knots)

speed/heading sequencesin time

maneuvers and transitionsin time

high-level abstract task level

These approaches can be roughly grouped into two categories: (1) a RubberBand path
description in which each trial solution by default containsthe goal state and the “body”
of the path is stretched and pulled as necessary to meet the remaining objectives; and
(2) aFindGoal class of representations in which each trial path grows outward to try
and capture the goal. These two approaches are illustrated in Figures 4.3 and 4.4,
respectively. Stretching of the band connecting the start and goal points, as indicated
in Figure 4.3, involves the creation of intermediate points along the nominal band at
various points and moving these points about the free space until finding a collision-
free path. The latter FindGoal approach (Figure 4.4) requires a termination criteria,
stopping once the end point of the evolved path has reached within a certain ball of the

goal location.

4.4 Waypoint Formulation

A natural mechanism for describing a vehicle's trajectory is through a series of way-
points. These waypoints act as a set of beacons or intermediate targets which are to be

traversed in succession. As the vehicle approaches waypoint £, the next waypoint in
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initial location
(spawn point)

\ o

waypoints

Figure 4.3: Depiction of the RubberBand class of search algorithms which attempt to
stretch and pull the connecting “string” around obstacles in the environment.

termination
radius

initial location
(spawn point)

Figure 4.4: Illustration of the FindGoal class of representations in which the search
triesto discover a path to the goal by extending various branches outward.
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the sequence, k + 1, istriggered as the active target. This process repeats until the goal
point (final waypoint) is reached.

4.4.1 Déefining the Individual

Each pair of waypoints has implicitly associated with it a track segment, which is the
nominal straight-line path connecting the points. Given thissimplemodel of navigation,
the vehicle' s trgjectory in time can be suitably represented as a sequence of waypoints
and traversal speeds along each track segment. The &' point along the j* trajectory
can be expressed as:

Pl g, u for k=1,2,...,¢; (4.2

An entire individual consists of the vector concatenation of ¢, such points, namely:
T1,1

x1,2

x1,3

. U1
pi = (4.2)

T21

Te; 3

Uy,

where the ;. ,,, are the components of the position vector z;, in either 2D or 3D space

denoting the position of the k" waypoint, and u;, denotes the speed of the vehicle asiit
begins motion along the k" segment. Note that time is implicit in this representation.
Thisis emphasized by the use of subscript as opposed to square bracket notation on the
variables.

Based on this model, the degrees of freedom which an evolutionary algorithm can

adjust correspond to (1) the number of waypoints, (2) the physical location of the com-



83

ponent values, zx ,,,, (3) the ordering of the waypoints, and (4) the commanded speed
along each segment. Note that the minimum number of waypoints in any given path
is 2, denoted by the set {#}°, which represents the initial and goal locations of the ve-
hicle. In scenarios involving a set of observation/attack targets, {7'}, a minimum set
of additional “target” waypoints is defined such that each trial path contains at least
the target locations, {Z}7 = {# : & = Ti[tx]}. If the presence of threats, obstacles,
or other features in the environment precludes the use of straight-line paths between
targets to the goal, a set of detour waypoints, {7} 2, can be created. Thus the total
sequence of waypoints for an entire path, {Z}*, is made up of the union of the sets of
al types of waypoints, {7}” = {2} U {27} U {#P}. Note that the actual ordering of
the waypointsin the set {7} is arbitrary except for theinitial and goal positionswhich
are constrained to occur first and last in the sequence, respectively. The evolutionary
process attempts to discover optimal orderings with respect to a given set of mission
objectives.

In general, the speed might be allowed to vary somewhat continuously along each
track segment, although for most purposesit is sufficient to consider the traversal speed
constant along any given segment. Of course, variation of the speed along trajectory
segments must be constrained to lie within the acceleration capabilities of the vehi-
cle. The vehicle speed itself must be kept within reasonable bounds as dictated by the

vehicle's performance envel ope (e.g. to avoid low-speed stall in the case of an aircraft):

Qmin S K;L S Amaz (43)

Umin S Uk S Umax (44)

Of course, in transitioning between two track segments, the rate of turnislimited by
the maneuverability of the vehicle and the bandwidth of the navigational control loop.
In situations where the distance between waypoints is large relative to the vehicle's

effective turning radius, these effects are negligible - and a smple point mass model
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which tracks the position of the vehicle center of massis sufficient to model the vehicle
behavior inthe environment. In general, however, depending on the spatial resolution of
the waypoints relative to the vehicle’ s turning capabilities, it may be necessary to use a
more detailed dynamic model for the purpose of evaluating a given waypoint sequence,
where the model dynamics map the straight-line path defined by the waypoints into a
more detailed, approximate actual trajectory. By including an appropriate approxima-
tion of the inner and outer-loop tracking behavior of the vehicle, candidate paths can
be evaluated to ensure that they do not violate hard constraints due to drift off of the
straight-line tracks due to maneuvering bandwidth or turn rate limitations. An example

of thisisillustrated below in Figure 4.5.
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Figure 4.5: Depiction of the interaction between the navigational control loops and the
waypoint path definition.

In this example, we utilize a 2D kinematic model in conjunction with a nominal (non-
linear) tracking control law which attempts to minimize cross-track errors. Asthe vehi-
cletransitions between the two flight path segments, it can be observed that a significant

tracking error results due to the sudden change in heading required. This effect is ex-
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acerbated in this case by the fact that the “active” track is not switched until after the
vehicle crosses the waypoint or “knot” point above the obstacle. More sophisticated
controller schemes may be able to better anticipate transitions between segments to
minimize transient path errors. This is similar to terrain following control, in which
look-ahead sensors are used to effectively provide “lead”, minimizing the amount of

“ballooning” over the tops of ridges[90].

4.4.2 Mutation of Waypoint Sequences

For the waypoint formulation, in which individuals are comprised of a series of way-
points and track speeds, mutation involves random perturbations applied to both the
waypoints themselves and the traversal speeds. Mutation of the j** trial solution in-
volves randomly perturbing the physical location of various points in the waypoint se-

quence:

att =2l +G(0,07) fork={1,2,...,¢} (4.5)

where G(0, o?,) represents a Gaussian random variable with zero mean and standard
deviation of ¢ . This perturbation is applied only to ¢ waypoints chosen at random,
wherec € {0,1,...,¢;}. Notethat the standard deviation for each individual and along
each component direction is, in general, independent.

Other options explored for mutation include the re-ordering of waypoints and the
selective addition/del etion of waypoints. Ignoring theinitial and goal locations (which
arethe samein every candidate solution), the ;" trajectory is given by the ordered set or
list of points, 7, k € {{#}"” U {#}" }. Reordering of this set of pointsis done through
the selected reversal of portions of thislist of points. For example, [1-2-3-4-5] —
[1-4-3-2-5].

Exercising this formulation, and observing the nature of the best-available trajec-
tory over time, one sees that after only a small number of generations, the modification

and re-ordering of waypointsis capable of quickly discovering collision-free path that
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connects all the target points. The optimality (e.g. length of path, mission duration,
etc.) of these early paths, however, istypically quite poor. As the evolution proceeds,
the algorithm continues to discover increasingly optimal positions and orderings of the
waypoints. Depending on the [ocation and extent of obstaclesin the environment, how-
ever, the differences in paths between simply collision-free and near-optimal trajec-
tories can be drastic. Continuous small “motion” of various waypoints may not be
sufficient. Rather, large scale changes in individuals may be necessary. This behavior
must be considered when attempting to utilize the waypoint formulation for real-time
applications. One must only re-order and adjust waypoints which do not include the
current segment and allow the algorithm sufficient time to “ settle”. If not, large motion
or drastic reordering of the waypoints - although resulting in path which is more opti-
mal than the one currently being followed - will necessitate large course correctionsin

order for the vehicle to transition to the new active waypoint in the sequence.

In general, the assignment of the standard deviation to each positional degree of
freedom is a major difficulty in applying this representation to different problems. At
one extreme, one can choose a large value for o7, which will allow the waypoints to
“hop” randomly around the domain. This will lead to feasible solutions, but not one
that is likely to be near-optimal. On the other hand, if one chooses too small of afixed
variance, the “motion” of waypoints through the space due to mutation may not be
sufficient to discover collision-free straight-line trgjectories. Really what is necessary
is a means to scale the standard deviation in each direction relative to the fitness. As
discussed in Chapter 3, however, this can be difficult given the uncertainty of the range
of values the fitness of paths may take on over the course of evolution. An alternative
approach would be to use the meta-EP formulation in which the standard deviations

along each dimension are allowed to evolve simultaneously with the decision vectors.
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4.5 Instruction List Concept

Although the waypoint specification of a trgjectory is efficient in terms of the size of
each individual (only requiring a minimum number of “knots” such that straight-line
travel is collision-free), it has the drawback of requiring a relatively detailed dynamic
model to ensure that candidate straight-line paths - when actually flown - do not lose
their utility. An aternative formulation is to specifically include the vehicle dynamic
constraints in the generation of trial solutions in the first place. In doing so, we can
guarantee that all candidate solutionslie within the feasible, reachable trajectory space.
Of course, this guarantee only holds when the assumed envel ope limiting parameters,
such as maximum turn rate, correspond to that of the actual vehicle. If this is not
the case, as might occur in the event of some sort of damage or failure within the
vehicle system, then some sort of feedback loop is necessary between the path planning
algorithm and the navigational control lawsin order to adjust the parameters according

to the actual vehicle capability.

In considering the waypoint formulation in the previous section, it becomes clear
that this waypoint sequence really serves to define a schedule of speeds and headings
(via the orientation of each track segment) in time. Transitions under this schedule
occur spatially whenever the vehicle crosses a waypoint. Generalizing this representa-
tion, one can consider modeling the vehicle trgjectory instead as a sequence of speed
and heading transitions at discrete times, ¢,k = {0,1,..., N}. We call this schedule
of transitionsan instruction list and represent it through the notation, 7[t]. In situations
where the sample interval, ¢, — t;, iS constant, we can use the index notation, I[k]
to denote the instruction at a given discrete time. Starting from an initial speed and
orientation, this instruction list can be used to construct the time-varying nature of the

vehicle speed and heading over the course of the ;" trgjectory.

Thus, we can express the j* individual of a population in terms of a sequence of

instructions which describe the nature of the change in the motion state to be initiated
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Table 4.1: Enumeration of the possible instructions which result in a change in motion
state when applied at each timeinterval, .

Index | Speed | Heading | Climb Angle
1 hold hold hold
2 change | hold hold
3 hold | change hold
4 change | change hold
5 hold hold change
6 hold | change change
7 change | hold change
8 change | change change

at the k™ time instant:
_ : -
[
I

(4.6)

where the instruction parameters, I, in general indicate the type of change to be initi-

ated at the k" samplinginterval. In very broad terms, the set of “instructions’ (possible
transitions) islisted in Table 4.1.

where each “change” is assumed to be implemented over a single interval. Note that

at this point, nothing has been said regarding how the speed and/or angles are to be

modified - this will be discussed in more detail in the following sections. As a means

of previewing the general concept, however, it suffices to associates an integer value in

the range [1, 8] to each of the possible transitions. Then, some additional perturbation

function is used to map the integer values to a corresponding change in the real -valued

speed and/or path angles.
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Given a sequence of such transitions and defining the vehicle motion state at any
time, ¢, as qlty] = {ults], ¥[te], Y[te]}}, wWe can express the sequence of vehicle state

transformations mathematically as:

It It It It
dlto] ™ qlt] = dlta] - e (A7)

Note that the value of the components of the motion state between sampling intervals
is, in general, not constant. Rather, the speed and heading change over each interval as
defined by the effective acceleration and turn rates initiated at the start of each interval,
as defined by theinstruction. In essence, these instructions can be thought of as defining
a commanded time rate of change of the motion state, i.e. I, < §,. Recall, the only
requirement is that the vehicle motion state reaches its final value by the end of each
sampleinterval. Also, notethat thelength of theinstruction list and motion sequencesis
not necessarily the same. The motion state sequence will consist of at least ¢ samples.
However, depending on the fidelity (time resolution) utilized in the implementation
of each transition, the motion state sequence may contain additional samples between
those corresponding to the transition times.

Given asequence of speeds and headingsin time, as defined by an instruction list, it
isthen necessary to generate a corresponding physical trgjectory in space. Thisphysical
trajectory is typically required for evaluation of the performance of a trial solution.
Depending on the relative size of the environment relative to the speed of the vehicle
and the time interval used in sampling the trajectory, the mapping used to transform
speeds and headings to physical paths can vary. For our purposes, it has generally
sufficed to assume that the action of the instruction list operators is to define constant
acceleration and turn rates over each sampling interval. In two dimensions, given a
constant acceleration, a[t),] and turn rate, 1[t;] as defined by the transition rules above

(Table 4.1), the motion of the vehicle over an interval At = ¢, — 1, iSgiven by the

1From this point on, we will drop the climb angle, ~[t ] from the discussion proper, with the under-
standing that the operations applied to the heading angle apply to the climb angle as well.
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equations:

olten] = zfty]

] <sin <1/)[tk.] n 1/}[tk]At> _ sin (w[tk])) (4.8)
&[tk]At
p[t]
afte]
V2 [ty]

sin (M%] +¢ [tk]At>

(cos (wits] + vlti]at) = cos (wlte]))

Ylter] = ylt
utk]

|
ﬁ (cos (6] + DltJAL) — cos (vfu])) (4.9
% cos <¢ k] + TMtkz]At)
+% (sin (wfte] + Dltlar) - sin (6

These expressions give the exact change in the location of a point mass over the in-

terval At. A caveat, however, must be given that the effective sampling time must be
sufficiently fast such that the vehicle is not alowed to pass “through” obstacles (e.g.
sample k puts the vehicle on one side of an obstacle and sample k£ + 1 puts the vehicle
on the other side). Under the assumptions that (1) the speed and heading sequences
are adequately bounded with respect to the physical performance limits of the vehicle
and (2) the vehicle control loops have sufficient bandwidth to track the specified speed
and heading reference trgjectories, the paths generated from this integration should be
“flyable” or “drivable” (consistent with vehicle dynamics).

In situations where vehicle acceleration and turn rate capabilities are “fast” relative
to the sampling interval, asimpler kinematic model can be used. Such amodel assumes
that changes in speed and heading occur instantly relative to the sample time of the

simulation:
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wltppr] = xftr] + uess[tr] cos(y[tr]) cos(y[te])
Yltks1] = ylte] + wesste] cos(y[tx]) sin(e[tk]) (4.10)
2ltir] = z[te] + uepplte] sin(y[tx])

where, u.;[t);] denotesthe effectiveinertial speed of the vehiclewhich may be different
from itscommanded speed due to interaction with the environment. Again, therationale
for using this simple kinematic model is the assumption of the existence of inner and
outer loop navigation control laws which enable the vehicle to track a trajectory so
long as the changes in speed and heading are constrained to lie within the vehicle's
performance limits, defined by its capabilities vector C.

We now focus our attention on defining the nature of the change in speed and head-
ing which is called for by the instruction operators, I[t,]. In other words, we wish to
develop several mechanisms for quantifying the “how much” and “when” correspond-

ing to an instruction list.

45.1 Sochastic Speed/Heading Changes

We begin by reviewing and extending the basic ideas presented by Fogel in [51], in
which evolutionary programming (EP) is applied to the routing of autonomous under-
water vehicles. In thiswork, a set of stochastic operatorsis defined to realize changesin
commanded speed and heading between intervals as dictated by the instructions. Note
that Fogel did not consider acceleration of the vehicle. Rather, the vehicle's speed and
heading was assumed to change instantaneously between sampling intervals. Further,
Fogel considered only fixed-length instruction lists, where the length of each list was de-
termined a priori and held constant throughout the evolutionary process. We relax these
assumptions by (a) considering the more general case in which constant acceleration
and turn rates are specified over sampling intervals and (b) alowing the algorithm to

adjust the number of active instructions. The discussion presented hereinislimited to a
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2D spatial dimension, such that the vehicle s orientation is specified uniquely through a
single heading angle. The ideas presented, however, can be readily extended to include

general 3D motion of a point massin space.

Defining the Individual

Each individual consists of avector or list of instructions of length ¢, where this length
is chosen based on consideration of the worst-case path anticipated through an environ-
ment in conjunction with the sampling time of the trgjectory and alower bound on the
vehicle speed. In order to define trajectories corresponding to the instruction listswithin
a population, we begin with the initial vehicle position (Z[to]) and motion state (glto]),
assumed to be known. Each trajectory created from a given population includes this
initial state. The physical trajectory for each individual is then constructed by stepping
sequentialy through the list of instructions and applying a stochastic perturbation to
speed and/or heading as defined by the instruction at each interval. For this purpose, we
represent the vehicle' s heading angle as a continuous variable, capable of taking on any
value in the range [0, 27]. Turn rate commands at each time interval are implemented
through the addition of a Gaussian random perturbation with zero mean and adjustable

standard deviation, o

Aw [tk] = G (0, O'w) (411)

where A, [t;] reflects the change in heading required over the interval from ¢, to ¢, .
Thus, the commanded heading at time step £ + 1 is likely to be “close” to that at
time & due to the normal distribution. The variance, aj, nominally defines the spread
of possible heading turn rates. Note that the heading change requested over a given
interval (as sampled from the normal distribution) must be bounded by the maximum
vehicle turn rate, &m%, to insure that the generated reference sequences are within the

vehicle's performance and tracking capability:
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Dlte] = P[] + max (_%ax, min (%ax, A, [k])) (s — 1) (4.12)

Speed changes could be handled in a similar manner, by adding a normally dis-
tributed perturbation to the speed over each interval. Instead, however, we treat the
vehicle speed as a discrete variable in the range [w,,in < ulk] < Upae), With @ con-
stant acceleration capability of ay. As suggested by Fogel [91], commanded accelera-
tion/decel eration of the vehicleishandled through the probabilistic addition/subtraction

of aspeed increment (A, ) according to:

Ay = ao (“‘705) (ot — 1) (4.13)

where v ~ UJ0, 1] denotes a sample of a uniformly distributed random variable in
the range [0, 1]. Under this scheme, there is a 50/50 chance of increasing/decreasing
the speed in response to a “change speed” instruction. Like the commanded heading

change, the commanded speed over each interval is bounded from above and below:

ulk 4+ 1] = max (Uin, Min (Upae, ulk] + Ay)) (4.14)

such that the generated reference sequence does not exceed the vehicle's performance

envelope (e.g. low-speed stall or high-speed structural limitations).
Note that since the operators defined for the propagation of speed and heading (un-

der the direction of the instruction list) are stochastic in nature, a given sequence of in-
structions can result in the generation of an arbitrary number of different paths. In other
words, the mapping from instruction list to physical trgjectory is thus one-to-many, as
illustrated in Figure 4.6. The significance of this characteristic will be discussed further
in Chapter 5 (Section 5.5.1).
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Figure4.6: An example of the one-to-many nature of the stochastic operatorson asingle
instruction list. Each of the paths shown was generated by the application of equations
(4.11) and (4.13) in response to the sequence of instructions [1,3,4,2,2,4,1,2,4, 3]

Mutation via Stochastic Changes

For the continuous speed/heading formulation, we use the same operators (egquations
(4.11)-(4.13)) to mutate paths as we do to create them in the first place. For the pur-
poses of mutation, however, rather than being applied at every time step, these operators
are only applied to a subset of time steps chosen at random over the length of an indi-
vidual. Mutation of a path takes place in two phases: First, theinstruction list of the ;™"
individual in the population is modified by selecting £ instructions at random, where
k can take on any integer valuein [1,2,. .., ¢]. These k instructions are then replaced
with a new instruction chosen uniformly at random from the space of al possible in-
structions. Each instruction which is replaced triggers the re-evaluation of the motion
state surrounding the k" time step. These changes in the motion state are propagated
down the length of the path (in time).

Therelative change in behavior resulting from this mutation strategy hinges both on
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the number of mutations per parent and the size of the mutations. The*“size” of mutation
iseffectively dictated by the variance defined on the distribution governing commanded
turn rates, upper bounded by the maximum vehicle turn rate, ¢,,,... Thus, significant
change in behavior or large “motion” in the path space requires the chaining together
of multiple heading variations. In some instances, perhaps the “shape” of the trajec-
tory is correct, but the time of arrival is off. In other cases, the population may have
stagnated, being distributed in a small region near alocal minima. Such circumstances
lead one to consider behavior-specific mutations, effectively biasing the introduction
of new instructions toward changes in particular features of the population’s behavior.
Generally, it is desired to allow large motions when fitness is low and then to slowly
reduce the “step size” and/or number of mutations as the population nears an optimal
solution. This allows the search to quickly scan the space in a loose fashion and then

narrow in to focus on areas with the highest potential payoff relative to fitness.

Given the aforementioned structure, our population then consists of an array of
individual instruction lists, each with a corresponding sequence of speeds and headings
and a physical trajectory in space. The question now becomes whether the mutation
operators defined in terms of heading angle and vehicle speed are sufficient to solve
arbitrary path problems. A major limitation of the framework discussed so far isthat it
relies on a fixed number of instructions (e.g. each individual in the population consists
of astring of ¢ integer values). A more genera population representation thus includes
the probabilistic addition and deletion of instructions. This can be accomplished in one

of several fashions:

1. One can consider literally changing the length of the instruction strings for each
individual, requiring the definition of an individual-specific notation, ¢/, to keep
track of the number of instructions contained in the j** individual. In this case,
addition of instructions is allowed up to some maximum number, /,,.., while

deletion is allowed until the instruction list becomes empty.
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2. An dternative approach is to instead define the baseline length of instruction list
for each individual in the population to an identical value, ¢, representing the
maximum allowable length. Then, a NOO P instruction can be added to the list
of available instruction integers which, when present, corresponds to a skipped
instruction. This allows a variable length instruction list to be represented as
a fixed length string. The number of non-zero (or active) instructions can be
denoted by ¢7.

In either case, the instruction list is given the freedom to grow and shrink as necessary
as dictated by the problem scenario.

As an example of the effect of the mutations utilized for the continuous, stochastic
speed/heading change formulation, consider the example shown in Figure 4.7 which

was constructed using 3 mutations per parent, with A, = 1 and o, = 30°. Here we

50
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/ mutation

y position
1%}
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after
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—10F

X position

Figure 4.7: lllustration of the effect of mutation operators for the baseline
speed/heading formulation

see severa tentacles emanating from a spawn point which might represent the current
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vehicle position. The parents are indicated by the closed dots while the corresponding
offspring paths contain open circles. For this set of mutation parameters we see that
it is quite easy to discern which offspring are created from which parents, as “like
begets like”. The “features’ or quirks of a parent are preserved through the mutation
transformation while enabling the offspring to gradually explore different portions of

the search space.

4.5.2 Deterministic Speed/Heading Changes

The individual formulation in the previous section utilized stochastic operators to pro-
duce random changes in the vehicle's motion state in response to the action of instruc-
tions. In this section, we present an alternative formulation which realizes deterministic
changes - resulting in a one-to-one mapping between instruction lists and physical tra-

jectories.

Definining the Individual

Rather than representing the vehicle’'s heading at any point in time by a continuous
variable, we instead discretize the set of possible heading changes to multiples of a
fixed turn rate:

Wk + 1] = Y[k] + N%%”At for r=—Ny,...,0,...,N, (4.15)

Similarly, the possible speed variations can be expressed as:

ulk + 1] = ulk] + NLaoAt for r=—N,,...,0,...,N, (4.16)

This restriction has the effect of drastically reducing the size of the search space. At a
given point in time, the number of possible transitionsis givenby (2N, + 1)(2N, + 1)

Over an entire sequence of instructions of length 7, thisimplies a search space of size:
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¢
card(S Z (2N, +1)(2N, + 1)) (4.17)

=1
In particular, we investigate in detail the case where N, = N,, = 1. Thusal turns

are done at the maximum possible turn rate, ¢mm and all accelerations/decelerations
are done at the maximum value of a,. This corresponds to aggressive maneuvering of
the vehicle. Under this restriction, the mapping from instruction list to path becomes
one-to-one, a trgjectory being uniquely defined by its instruction list. The possible
transitions, assumed to be triggered at the start of each ¢,k = 0,1,..., N interval in

time are thus one of:

Instruction I ndex

Paameter | 1| 2| 3|4 |5|6|7|8|9

Au |+ |=]0|=|0|+]0]|+]-
Ay = —|=]olojo|+|+]+

Table 4.2: Coding of motion instructions

Note that the ordering of the transitions in Table 4.2 is arbitrary. An instruction list
of length ¢ is thus composed of a sequence of integers, each chosen from the range
[1, M]. Inorder to providefor the construction of variable length paths from afixed size
instruction list, we include a NOO P instruction with an index of 0. Such instructions
are simply skipped over in the generation of paths. Thus, the size of the search space
for an instruction list of length ¢ is (M + 1).

As an illustration of the extent to which this representation limits the reachable
gpace of the vehicle, consider the case where either speed or heading can change at
a given point, but not both, reducing the search space to instructions (3-7) of Table
4.2. Including the NOO P instruction, this implies a search space of size 6° for ¢ steps

forward in time. For this example, we choose ¢ = 6 resulting in 46656 possible unique
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instruction lists. It should be noted, however, that the number of unique paths which
can be generated from an instruction list of length ¢ = 6 is less than thisvalue, and is

given by:

l
card(P)(() =1+ M’ (4.18)
=0

which counts all paths generated from (1,2, . .., ¢ decisions (in this case, 19530). This
non-uniqueness of instruction listsresults due to the presence of the NOO P instruction
(i.e thelists[3-0-4-3-3-5]and[0-3-4-3-3-5] are equivalent). Figure 4.8 shows
the reachable path space for ¢ = 5 (to keep the figure size reasonable) and the limited
instruction set (3-7). Here, the vehicle starts with at position (0,0) with a speed of
u[0] = 2 and heading ¢/[0] = 0. For this example, the fixed turn rate and accelerations
are given the values ,,,., = 30deg/s and ay = 1m/ s, respectively. The vehicle speed

is constrained to lie in the range [1, 3]. Note that evaluation of the instruction listsin

10
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Figure 4.8: Enumeration of all possible paths for the limited instruction list (3-7) and
¢ = 5 for avehicle starting at (0,0) with speed «[0] = 2 and ¢[0] = 0.

Figure 4.8 was done using equations (4.8)-(4.9), assuming At = 1s and an integration
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step size of At/2 (to smooth the paths somewhat). What one concludes from Figure
4.8 is that yes, indeed, the reachable space has been reduced from the genera case
in which heading is allowed to be a continuous variable. Nonetheless, the number of
unique reachable pointsis quite large and useful for alarge number of different prob-
lem instances. Of course, the reachable space continuesto grow (spatially) and become
more dense as the number of instructions, ¢, increases. This includes the generation
of “spiral” trajectories. Generally, the fixed length of the instruction lists is conserva-
tively estimated to be on the order of the anticipated worst-case path through the space

assuming the slowest vehicle speed over each timeinterval.

Mutation Operators

As a means of increasing the diversity of the population over time and to allow more
extensive searching of the instruction space, we extend the mutation strategies given in
Section 4.5.1 to allow more exotic manipulation of a parent in generating its offspring.
To do so, we treat the elements of each instruction list ssmply as discrete items, with no
particular relationship to one another. We then adopt a number of simple list operators,
including swap(), reverse() and shift() which are each applied with a certain probability
to each individual. The action of these operatorsisillustrated in Figure 4.9. Currently
the application probabilities for the various operators are set to constant values, set on
the basis of experimentation, namely p..p() = Pshifr) = 0-25, Preverse = 0.5. Itis
possible that improvements could be made by adapting the probability of application of
each operator in proportion to its effectiveness at improving solutions over time (similar
to [49]). Swap() involves the literal exchange of two instructions chosen at random in
alist. Reverse() actsto flip a portion of the list “string”, whose endpoints are chosen
at random, reversing the ordering of a subset of instructions. Shift() is used to push the
itemsin the list in a clockwise manner, wrapping in the sense of a circular buffer. We
maintain the option of adding/deleting items to/from the end of the list as a means of

introducing new instructions. Each new instructionis“mixed” inwith the other existing
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Figure 4.9: Illustration of the effect of a number of discrete list operators.

items through the application of the various operators. As an illustration of the effect
of these operators, consider the representative parents and children shown in Figure
4.10. Note that it is much less obvious (as compared with Figure 4.7) which offspring
corresponds to which parent. In this case, since the biological relationships have been
noted (eg. A~ — AT) itisclear to see how features of the parent paths are “shifted”
and modified in producing offspring. Further, the relative coverage (or “step size”)
through the search space is much larger in this case than in Figure 4.7. This expanded
coverage is quite powerful in maintaining diversity of the population, thus providing

resistance to stagnation.

We have also explored the use of typical genetic algorithm (GA) operators such as
multi-point crossover and mutation (see Section 3.4.1) for the purposes of generating
offspring. Anillustration of the effect of thistype of variation operator isgivenin Figure
4.11. Here, we see the original parent (as indicated by the closed dots) along with two
offspring created through one-point crossover. The offspring are shown both before

(-)~ and after (-)* mutation. Note that in the case of of fspring;, the crossover effect
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Figure 4.10: Illustration of the “motion” through path space enabled by the discrete list
mutations of swap(), reverse(), and shift().

is small compared with that of mutation. The opposite trend is true of of fsprings.
The point is that this variation scheme is in genera capable of both small and large
motion through the search space. Thisis desirable from the point of view of covering
the search space to roughly identify regions of potential benefit and then providing

localized changes in the vicinity of valuable trial solutions.

4.6 Maneuver Sequences

Asageneralization of theinstruction list concept, we consider representing thevehicle's

path in terms of a sequence of maneuvers.

4.6.1 Defining the Individual

We presuppose the existence of a finite set of maneuver primitives, denoted by the set

M, defined for agiven class of vehicles. A tragjectory isthen modeled as a sequence of
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Figure 4.11: The effect of typical 1-point cross-over and mutation on trgjectories. Here
(%)~ denotes path after cross-over and prior to mutation while (x)* indicates the influ-
ence of mutation with probability p = 0.1.

trgjectory primitives selected from this set, n, € M, for k = {1,2,...,¢}. The set of
possible maneuvers consists of behaviors such as climb, turn right, speed up, etc. each
with an associated time interval, At,, that represents the duration of each maneuver.

The ;" individual in a population can thus be written in the vector form:

T
Aty

T2
Pl = Aty (4.19)

e
At,

By piecing together primitives and adjusting the application intervals, one can construct
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trajectories of arbitrary complexity. For example, specifying a constant turn rate can
result in a continuum of behavior ranging from a gradual change in course for small
durations to a sustained spiral motion for large time intervals. Similar to theinstruction
list formulation described previously, we assume a finite, numbered set of primitives -
which can be reference uniquely by an integer in the range [7,in, maz]. FOr avehicle
operating in two dimensions, atypical maneuver set might look like that shownin Table

4.3, where n,,;, = 1 and 00 = 7.

Table 4.3: Enumeration of a maneuver set for path planning in two spatial dimensions.

Index Maneuver Description

1 hold present course and heading

speed up

sow down

turn right quickly

turn left quickly

turn right slowly

N[ oo |Ww|N

turn left Slowly

The application interval for each maneuver in the sequence is bounded from above, 0 <
At < Atpae, Where the maximum bound is either chosen arbitrarily or determined
based on experience. In some cases, for example, if spiraling motion of the vehicle
may be necessary, then the maximum bound should be chosen so as to enable such a
trajectory to be easily discovered by the algorithm.

Evolution is carried out at the maneuver level, adjusting or reordering the primi-
tives and perturbing the associated time intervals. A particular maneuver can be effec-
tively removed by pulling its associated time interval to zero duration or by including
a NOO P maneuver in the set M as was done in the previous section. Of course, in

order to evaluate the fitness of a given sequence of maneuvers, an integration must be
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performed which translates the maneuver sequence into a trgjectory in time. Given the
nature of the simple motion primitives involved, however, this integration can be done
quite efficiently. In fact, equations (4.8)-(4.9) can be used, setting the time interval to
Aty. As before, the only necessary feature required of the integration routines is that
they provide enough spatial and temporal resolution of the resulting trajectory to allow

conservative estimates of potential collisions or constraint violations to be computed.

4.6.2 Mutation Operators

The mutation operators applied to a given individual include:

¢ Replacing the maneuver at a given index with another selected at random from
M

Swapping two maneuvers at arbitrary indicesin therange 1, /]

Application of aperturbation to thetimeinterval for agiven maneuver (e.g. Gaus-
sian, Poisson, etc.)
A = At + G(0, ) (4.20)

Shifting of the maneuver sequence by ¢ units, treating the sequence like acircular

buffer, wrapping as necessary

Reversing a sub-section of the maneuver chain, where the end points of the sec-

tion to be modified are chosen at random.

Asanillustration of the effect of this set of variation operators, consider Figure 4.12
which showstwo examples of mutated tragjectories. A key point isthat complex changes
in behavior can be enabled by the change of the maneuver index at asingletime step (or
alternatively by an increase or decrease in the time interval applied to a given maneu-

ver). Thisisin contrast to the complex variation of neighboring instructions required
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Figure 4.12: Frames (a) and (b) show two different examples of the types of variation
possible through minor changes in the maneuver sequence and the corresponding At .

to achieve the same change in behavior using the discrete instruction formulation. Of
course, the drastic changes in behavior enabled by the maneuver formulation, while
useful for quick and dirty partitioning of the search space, can tend to slow conver-
gence as a near-optimal solution is approached. The reason for thisis precisely the fact
that subtle changesin trgjectories are quite rare using the operators defined. 1n actuality,
it is necessary to “tame” the mutation operators once in the vicinity of an optimum so

asto allow more gradual variation or fine-tuning of the trajectory.

4.7 Abstract Task Level

An even higher level of abstraction ispossibleif onethinks of the vehicle motion planin
terms of asequence of |ocationswhich are to be observed or at which must be performed

some action.

80
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4.7.1 Defining the Individual

In this case, the individual is represented by trial orderings of the various locations
and evolution takes place through perturbations on the ordering and perhaps the time
alotted to traversal between locations. At this level, one can also think in terms of
resource allocation to different tasks and make decisions about potential courses of
action based on resource depletion. Evaluation of potential action sequences in this
case involves the creation of routes through the environment, incorporating one of the
popul ation representations described previously.

We make the assumption that the highest-level mission objective has been translated
into a set of subtasks, {2}, which are to be completed. The ordering of this tasks,
however, may not necessarily be completely defined. In general, the definition of a

particular subtask, s; € 2 will require the following:

1. dependencies

s; — s forsomek € () (4.21)
s; + s, forsomel € 2 (4.22)
(4.23)

where the notation () — () and () < () ismeant to imply forward and backward
dependencies, respectively. In other words, the i*" subtask may require a certain
subset of €2 to be completed prior to and after its execution. These pre/post-

requisities impose partial ordering constraints on the optimization process.

2. relative priority: denoted by p;, to be used for resolving conflicts or deleting
excessively difficult to reach/accomplish objectives. For this purpose, we assume

that the priorities for each sub-task in a chain sum to unity, > p; = 1.0.

3. time constraints: on arrival at a given subtask, in general expressed in terms of
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an upper and lower bound (time window) in which arrival is acceptable:

t < thisir <t (4.24)
where, in the two extremes, if there is no time constraint, t; — 0,¢; — inf and
if there is a single point time constraint (e.g. for coordinated arrival at a given

location), thent; — ¢, ¢, — t.

time duration: required to accomplish agiven subtask. We expressthisasanom-
inal value plus a perturbation which may either be random or driven/correlated

by environment or vehicle state:

Ai - Anominal + €a (425)

resource drain/utilization: required to accomplish a given. Again, we model as

an expected nominal drain and random deviation:

reo=r +A +e (4.26)

Tnominal

for each of the resources, ry, assigned to this subtask, where the ()* and ()~

reflect the predicted resource level prior to and after completion of the task.

In constructing a plan or strategy for accomplishing a given high-level mission objec-

tive, we have at our disposal a set of resources, denoted by r;. Such resources might

include:

o fuel

e battery/power

e memory

e communication bandwidth
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e camera/sensors

e weapons (offensive/defensive)

e radar/proximity sensors

Note that the resource expenditure is typically a function of the nature of the tasks
and may depend on the order in which tasks are completed or the state of the vehi-
cle/environment when the task isinitiated. For example, battery power usage isrelated
to the number and type of devices and the duration of activity. Communication re-
quirements might draw on internal resources such as power aswell as “external” shared
resources including bandwidth. Even still, line-of-sight restrictions may force path de-

viations to conform to visibility and range requirements for reliable data transfer.

4.7.2 Mutation Operators

Operators similar to those devel oped for the maneuver sequence could be applied to the

abstract task-level representation as well.

4.8 Comparison Between Different Representations

This section describes the various mutation operators which are applied to the parents of
the different representations in order to create offspring. The necessary feature of both
the population representation and the mutation strategies is that they are chosen such
that they can encode any possible configuration in the associated search space. Further,
it must be possible to move from a given configuration to any other configuration in
a finite number of mutations (see Chapter 3). In other words, to avoid being trapped
in local minima, the mutation operators must be sufficiently rich to move relatively
“large’ distancesin the state space. In situations where the solution is close to optimal,
the offspring should be quite similar to the parents, exhibiting only minor variations. On

the other hand, if agiven parent isfar from optimal, then alarger perturbation should be
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applied. Thisistheidea behind fitness proportional adaptation of the distributions used
for mutation. Of course, care must be taken such that the search does not prematurely
lock on to alocal minima which fails to satisfy the primary mission objectives. The

alleviation of such phenomenawill be discussed in more detail in Chapter 5.

4.9 Summary

In this chapter, we detailed severa different ways in which the “input” space of path
planning can be represented. The waypoint formulation, in which the algorithm searches
for a collision-free straight-line path connecting the start point through any targets to
the goal is useful for providing a general feel of the “free” space in the environment.
The shortcoming of this approach stems from the difficulty in setting appropriate stan-
dard deviationsfor the mutation distributions of each degree of freedom, particularly as
the distribution of threats or obstacles in the environment changes in time. Further, al-
though creation of intermediate “detour” points potentially gives this approach a bit of
flexibility in routing the vehicle, thisformulation is generally limited to finding straight
paths between each “knot’ point. Nonethel ess, this technique can prove useful in situa-
tions where the detail of travel between waypoints can be left to a reactive navigator.
We then presented a FindGoal class of agorithms, including a continuous (stochas-
tic) and discrete instruction list concept. The continuous representation is the most
genera as it allows the heading (and turn rates) to vary continuously over the valid
range. However, as pointed out, the stochastic nature of the operators used to realize
this representation make the mapping from instruction list to trajectory one-to-many.
Although we will discuss the impact of this further in the next chapter, it suffices for
now to mention that this non-uniqueness makes it difficult to associate changes in the
instruction list with corresponding changes in the trgjectories. As an aternative, we
thus present a discrete version in which the changes in speed and heading are fixed at
constant values. In this manner, the mapping from instruction list becomes one-to-one.

Thus, changesin theinstruction list have adirect impact and relation to the correspond-
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ing physical trgjectory.

Finally, we described a generalization of the instruction list concept in which each
trial trgjectory isgenerated by the piecing together of trajectory primitives, chosen from
a finite set of available maneuvers. It was demonstrated that this representation has
the desirable property that complex changes in trgjectory can be introduced by very
localized changes in the maneuver sequence. Thus, one does not need to rely on the
simultaneously mutation of many sequential instructionsin order to introduce dramatic
changes in behavior. As expected, however, this quality comes at the expense of the
ability to introduce minor alterations and to fine-tune solutions as one approaches near-
optimality. Thus, it may be desirable to consider changing the nature of the mutation
operators depending on the progress of the search. For example, once within a ball of
a given radius from the desired state, perhaps mutations should consist only of time
perturbations as opposed to variationsin manuever indices over the length of each trial
solution.

Alternatively, one could conceivably utilize a hybridindividual representation, wherein
the interpretation of the values in the input vector changes in time according to the
progress of the search and the state of the environment. Early on in the search, the val-
ues might denote the location of waypoints, roughing out the free space connectivity.
Then, perhaps the waypoints might be connected to the extent possible given the dis-
tribution of obstacles using a maneuver sequence formulation. Finally, minor tweaks
and adjustments could be done by selectively modeling trajectories at different pointsin
space and time using the discrete or stochastic instruction list formulation. Taking this
idea a step further, the actual values contained in the input vectors could even vary over
the length of a given individual as well as between individuals. Dynamically adapting
the form of the input vector over the course of the evolutionary search would allow
small, detailed changes in “tight” areas of the search space and larger changes in the
more unconstrained regions. Thiswould likely improve the efficiency during the latter

portions of the search.
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Chapter 5

EVALUATION OF PERFORMANCE

In Chapter 4, we enumerated severa different techniques for representing the in-
put space of trajectories and the ways in which these representations can be evolved.
In this chapter, we address the problem of assigning a score or fitness to each of the
candidate solutions in a population, given that they have been transformed based on
the vehicle dynamics to physical trgjectories. This score is the basis for the selection
process at the root of simulated evolution. We also discuss the uniqueness of solutions
to path planning (or lack thereof) and introduce the notion of optimalizing as a desired
characteristic. Finally, we describe a common problem in optimization, namely that
of local minima. We illustrate when and why such phenomena arise in the context of
path planning and explore some mechanisms for avoiding being trapped by these local

minima.

5.1 Overview

Ultimately, the fitness of individuals within a population must be determined as the
basis of the natural selection process (see Section 3.4.3). Recall that we wish to cast
the path planning problem as an equivalent minimization problem. This requires the
definition of an objective function which reflects the suitability of agiven trial solution
for survival within a particular environment. Thisincludes specification of performance
measures not only related to satisfaction of mission objectives (e.g. positive reinforce-
ment) but measures related to the extent to which a given tria path violates certain
constraints. Such constraints may be imposed by the mission specification, the environ-

ment, or the vehicle itself. As such, the objective function must capture all the forces
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which conspire to derail the intentions of the vehicle. For example, atypica environ-
ment may consist of forces which directly affect the motion of the vehicle (e.g. wind or
terrain variations), fixed or moving obstacles which must be avoided, active adversaries
which are trying to hide, etc.

In general, the performance measure can range from a simple scalar value to a
complex, multi-objective vector evaluation. Its complexity can range from a closed-
form algebraic solution to a full-blown non-linear ssimulation of the vehicle interacting
with its environment, depending on the fidelity requirements and the features of the
environment with which the vehicle is interacting. For the purposes of evolution-based
path planning, it isimportant to devel op an efficient computational scheme to determine
the extent to which an arbitrary solution (a) satisfies constraints and (b) meetsthe stated
objectives. Efficiency is critical due to the “generate and test” nature of evolution-
based search in which the cost function is evaluated a large number of times. In fact,
typically, the cost function evaluation takes up a significant percentage of the overall

computational loading associated with the application of simulated evolution.

5.2 Cost Function Definition

Independent of the representation used to model individualsin the population, evalua-
tion of individuals requires a mapping from the input space of decision vectors to the
output space of performance. For the path planning problem considered here, trans-
formation from the input space (the space within which evolution occurs) to the per-
formance space (the fitness of a path) involves representation of each individual in the
population in terms of its corresponding physical trgjectory. Thus, prior to evaluating
the cost of a given path, we first transform its representation to an equivalent form con-
sisting of a sequence of positionsin time, Z[t,|, where, the time index is assumed to
take onvaluesintherangek = 0,1, ..., N/. Here, N’ represents the number of points
in the j** physical trajectory resulting from the integration of the input representation

(of length ¢) forward in time. In general, the number of points in the physical path,
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N7, isgreater than or equal to the number of active components of the input vector, ¢/,
depending on the temporal resolution of the output path relative to the input vector. For
example, the discrete instruction list formulation will produce paths of length N7 > ¢4,
where ¢/ isthe number of non-zero instructionsin the ;" trial instruction list.

Once a path has been created, it remains to evaluate the physical trgjectory in the
context of the various components of cost. Thus, the entire mapping from input space

to output space can be expressed as.

(P7)

ﬁj F_) fj[tk] J(fj_[fk]) 7

1’ (5.0
where P(]3J' ) represents the intermediate mapping from the input space to the physical
trajectory space. This trajectory represents a sampled version of a continuous trajec-
tory, where the sample pointsin time are defined by the ¢;, for £ = {0,1,..., N7}. As
mentioned in Chapter 4, this intermediate mapping may not be one-to-one, depending
on the popul ation representation used. The performance function, .J| (#[tx]), in general,
can consist of an arbitrary number of components corresponding to different objectives.
In situationsinvolving the coordination of action amongst multiple vehicles, the perfor-
mance components may require the evaluation of multiple paths simultaneously. Thus,
given atotal of M vehicles, represented by the set V, each individual in the i** popu-
lation, 7%/ must be evaluated in the context of representatives selected from the other
M — 1 populations, 7*" for s € {V | s # i}. The representatives, denoted by the
individual index, r, are chosen based on some measure - generally the best performing

individual availablein each population.

5.3 A Scalar Cost Function

The simplest form for the mapping from physical trajectory to performance space is
through a scalar cost index, J(##) — f7. To include the effect of multiple objectives, a
penalty function approach is used in which the cost of a path is equal to the weighted

sum of the various cost components:
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P, &) = wiy() (52)

where i € R isthe vector of weights applied to each component of cost and F isthe
total number of different components. This formulation requires each objective to be
cast in the form of a “penalty” to be minimized. The basic performance components

which we consider in this research include:

1. Distance from the terminal point on a path for the i** vehicle to its goal location,
Giltni] © RangeGoal. The termination time at the goal location, ¢, may be

either be explicitly specified (ty; = t) or |eft as afree parameter.

2. Distance of closest approach between a path and any targets associated with that
path : RangeTargets. Agan, time-of-arrival constraints can be introducing by
computing the distance of approach at specified times, ¢, for any of the s <
Nrlt;] targets.

3. A measure of the degree to which a given trial path penetrates the set of No|[t]

known obstacles : Obstacle Penetrate

4. The energy (power and/or fuel) utilization along a given trajectory (including

minimum acceptable reserve values) : EnergyUsed

5. The reduction in the probability that a vehicle will survive to a given instant of
time as a consequence of interaction with threats (including a minimum accept-

able survival value): Survival Probability
6. The cumulative change in angle over the length of the path : PathAngle

7. The cumulative length of each path : PathLength
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Thefirst three of these performance measures can be directly expressed as penalty terms
as their ideal value is zero in each case. The latter components, however, can require

greater creativity in order for them to have the desired effect on the evolution of paths.

5.3.1 Computation of Cost Components

In reading through the sections which follow, it is useful to refer to a visual example of
the nature of several of the predominant contributors to the performance of atrial path.

Shown in Figure 5.1 are RangeGoal, ObstaclePenetrate, and RangeTargets.

obstacles

ObstaclePenetrate()

RangeGoal(P,)

GOAL

Figure 5.1: Overview of cost computation.

Now, each of the cost components will be described in more detail.

RangeGoal and RangeTargets

The computation of the RangeGoal and RangeT argets components of cost is rela-
tively straightforward. We define the function R(u, v) as the Euclidean distance be-

tween two pointsin @, v € R”, where D represents the number of components needed
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to specify positionsinthe domain of interest. Thus, RangeGoal issimply the Euclidean

distance measured between the final point on a given trgjectory and the goal location:
RangeGoal = R (f” tni], G [th]> (5.3

The RangeTargets cost is computed by finding the minimum Euclidean distance be-
tween the ;" path (evaluated at each point 77[t,], ¢ = {1,2,..., N’}) and the set of
targets, {T'}¢, associated with the i’ vehicle:

RangeTargets = Z min R(7[t,], fs) (5.4)
se{T}:

ObstaclePenetrate

For the purposes of this research, it is assumed that obstacles in the environment can
be suitably approximated by circular (in 2D) or spherical (in 3D) regions. Thus, ob-
stacles are defined by their time-varying center position, O; [tr], and diameter, D;[tx],
fori € {1,2,..., Noltx|}. Obstacle penetration is computed using the concept of the
minimally enclosing rectangle (MER), asillustrated in Figure 5.2 below.

At a zero-th order of accuracy, the vehicle position at time ¢, can be compared with
that of each of the other vehicles and obstacles present in the scenario. Assuming that
the vehicle and obstacles can be suitably approximated by a set of rectangular bounding
boxes (oriented with the coordinate axes), relatively efficient collision detection can be
done by computing the overlap between any two rectangles at each time step. The
penetration penalty over the entire length of the % path can then be expressed as the
summation of the (possibly scaled) overlap areas computed for each time step ¢, k =
{0,1,..., N7}. Depending on the vehicle speed relative to the size of the obstaclesin
the environment and the sampling time used to represent trial solutions, however, this
brute force technique can “miss’ collisions. Such a case is depicted in Figure 5.2.

A dlight improvement can be made by modeling the vehicle as a disk (sphere) of

radius, R,cnice, and considering its motion along a particular path segment from time
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Figure 5.2: Illustration of basic collision detection based on the intersection of mini-
mally enclosing rectangles

ty tot;41, asshown in Figure 5.3.

We approximate the area (volume) swept out by the vehicle over this time interval
by the rectangle shown. An assumption is made that the obstacle rate of motion is slow
relative to that of the vehicle such that it cannot “jump” over the vehicle MER in the
timeinterval ¢, ., — tx. Rather, in order to pass to the other side of the vehicle MER,
the obstacle MER must overlap that of the vehicle. In this fashion, we not only check
for collisions at the end points of the segment but also along the length of the segment.

A more exact collision detection model scheme would model the motion of both
the vehicles and obstacles using bounding rectangles to capture their movement over
each sample interval. Collision detection would then involve checking for the inter-
section of each possible pair of rectangles (each at potentially arbitrary orientations).
Such a detailed computation is outside the scope of the current research. Other gen-
eralized collision detection algorithms are available in the literature for this purpose,

many with their origin in computation of penetration of surfaces in haptic rendering
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Figure 5.3: Illustration of collision detection assuming that obstacle motion isinsignif-
icant between sampling instants

of virtual environments [92]. Many of these algorithms involve the tracking of “clos-
est features’ between each pair of objects (e.g. [93], where each object is modeled
as a convex polyhedron. Work by Kim [94] models each object as spheres. Other
approaches include I-Collide [95], which exploits coherence (in time and space) be-
tween subsequent action frames as well as various hierarchical bounding-box tech-
niques (e.g. [96]). A detailed summary of the various algorithms availableis provided

athttp://www.stanford.edu/ jgao/collision-detection.html.

EnergyUsed

In the smplest case, we model the energy utilization as proportional to the square of
the vehicle speed at any instant - thus the total energy expenditure over a path is given
by:

NI -1

AE=Ey—E;=c Y ulk] (5.5)

k=0
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which effectively penalizes the vehicle for generating tragjectories with higher speeds.
To better reflect the fact that fuel efficiency can vary as a function of speed, a slightly
different model can be used:

Ni—1

AE =Y (AEum + c (ulk] — top)?) (5.6)

k=0

which has the effect of encouraging the vehicle to generate paths where the speed hov-
ers around the fuel-optimal speed, u,,;. This optimal speed can vary as a function of
the vehicle’'s location in the environment (e.g. due to effects such as terrain variations,
winds, or altitude). The model for energy utilization can be made as detailed and ac-
curate as needed, depending on the requirements of the mission being planned. For
example, it may be necessary to develop a high fidelity model of the vehicle enginein
cases where fuel flow varies as a complex function of the vehicle state, particularly in

cases where range or endurance-optimal flight is desired.

In situations where a minimum reserve is required at the end of the mission, an
additional penalty related to the extent to which any path violates thisreserve value can
be added. One way in which such a consideration can be built into the cost function is

through an expression of the form:

AJ = Efv'equiv'ed - E} (57)

where Ey, ... FePresents the minimum acceptable reserve value. Thus, trial solutions
with final reserve values which exceed this minimum threshold contribute a negative
cost increment and are thus encouraged. Note that in evaluating a given trial solution,
the vehicle is effectively “stopped” at the location and point in time at which it exceeds
the reserve threshold. Thus, any instructions which take place after the vehicle “runs
out of gas’ are ignored and all calculationsinvolving range to various targets and goal

locations are done using this “out of gas’ location.
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Survival Probability

While obstacles are treated as hard constraints, threats are considered as entities which
have associated with them a certain degradation of survival probability. The model of
threat interaction is related to both “how close” a vehicle gets to a given threat as well
as the duration of time the vehicle spends in its vicinity. Thus, threats can be inter-
preted in the context of “radar” sites which might guide, for example, the deployment
of anti-aircraft weaponry. For our purposes, we equate detection to the probability of
the vehicle being “killed” or otherwise decapacitated. Mathematically, thisis expressed
in terms of a probability of detection at any instant of time, P,[tx], given by:

1

Falt] = -
Sy L+ altel R (1], 1]

(5.8)

which is parameterized by a time-varying lethality parameter, a[t;]. When a threat is
active, this parameter takes on avalue oo > aft;] > 0. Aninactive threat is modeled
by letting this parameter take on the value a[t;,| — oo which effectively sets the proba-
bility of detection to zero. Of course, this detection model can be made more complex
by including an effective maximum range of detection aswell asincorporating a depen-
dence on vehicle velocity and/or orientation relative to the radar site. The probability
of survival at any given instant, ¢, is equa to the probability of survival at time ¢;_;

times the probability of not being detected at ¢,

Pylty] = (1 — Pylty]) Ps[tr—i] (5.9)

Although in the research presented here we have restricted our attention to the simple
model above, in general, the vehicle's survival can depend on other factorsincluding a
more complex model of probabilistic battle damage resulting from interaction with both
stationary and active threats in the environment. Thisleads one to the consideration of
“battle dynamics’” models such as that presented in [97].
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PathLength and PathAngle

As one considers ways to guide the planner toward the discovery of shorter paths, the
first and most obvious choice isto try and limit the number of pointsin the path. More
specificaly, one can try to minimize the PathLength, which can be expressed mathe-
matically as:

Ni-1

PathLength = uy (te — t) (5.10)

k=0

It thus would seem natural to include a term proportional to PathLength in the scalar
cost function. Depending on the relative weighting applied to thisterm, however, often
timesthe algorithm determinesthat the best solutionisfor the vehicleto not moveat all,
PathLength — 0. Obvioudly thisis not the desired behavior. Thisis aso a problem
in general whenever the path must grow in order to reach the target. Depending on
the relative reduction in RangeGoal, for example, as compared with the increase in
PathLength, the extension of a path may actually be discouraged - even though it puts
the endpoint closer to the goal. Thus, care must be taken in establishing the weights of
the various terms contributing to the cost.

Anaternativeformulationisto refer to the adage that the * shortest distance between

two pointsisastraight line”, introducing a term proportional to the PathAngle,

Ni—1

PathAngle = > ([k + 1] — [k]) (5.11)

k=0
to the cost function. In this fashion, shorter paths are generally preferred. The effect
of such a penalty on the evolved trajectory is shown in Figure 5.4. Here, the left-
most trajectory (Figure 5.4(a)) is obtained with the weight on PathAngle set to zero.
Although the path reaches the goal location, it exhibits considerable zig-zags along
its length. When this weight is given a small positive value (0.1), the considerably
straighter tragjectory shown in Figure 5.4 is obtained.

Obviously a performance component conflict, similar to that described in the discussion
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Figure 5.4: Simple A to B planning example (@) with no path angle penalty and (b) with
additional penalty on path angle deviations.

of PathLength, can occur in situations where the vehicle must turn from its current
course in order to reach the goal. Again, such conflicts arise due to the fact that as one
cost is decreasing, others can be increasing. The net change in cost resulting from the
change in heading in conjunction with reduction in distance to the goal must be negative
in order for such a mutation to be promoted to survival. If the population happens to
consist of the set of all paths which reach the goal, then it is a smple matter to select
the one (based on its cost component value, PathAngle) which is“straightest”. More
typically, however, it will be necessary for the EA to generate (via mutation) a path
which is straighter and reaches the goal. The likelihood of such an event can vary

depending on the other constraints (e.g. distribution of obstacles) in the environment.

5.3.2 Combining Cost Components

Having defined the various cost components, we now focus on the effect of summing
these together to produce a single scalar cost function in the form of equation (5.2). To

do so, wewalk through asimple exampleinvolving asinglevehiclein which all possible
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input vectorsin the search space, P, are assumed present in the population. Essentially
we are modeling the scoring of the entire population, P over a single generation. This

isobviously a contrived case, but is useful for the purposes of illustration.

We enumerate this set of paths through an exhaustive search of the path space. For
the purposes of thisillustration, we assume that the input vectors take the form of dis-
crete instruction lists and use the deterministic speed/heading change formulation to
construct the corresponding physical trajectories. We take the available instructions at
each decision step to be those labeled (3-7) in Table 4.2. Thus the instruction at any
time step can take on six unique values, including the ‘0’ or NOOP instruction. Asa
reminder, this subset of instructions represents changes in speed or heading at a given
time step, but not both. Our objectiveisto find a path consisting of at most ¢ = 6 future
decisions which reaches from the starting location Z[ty] = (0,0) to the goal location
G = (10,0). Recall that the total size of this space is card(P) = (6)¢ = 46656.
However, because of the availability of the NOOP instruction, the actua number
of unique paths which can be generated from this set of instruction lists is given by
card(P*) = S¢_,(6)" = 19531. We will consider only this set of unique pathsin the
subsequent discussion.

The vehicleis assumed to beinitially located at the starting point Z[0] = (0, 0) with
aspeed, u[ty] = 2 and aheading of ¢ [t,] = 0. Speed changes are limitedto A, = +1
with the vehicle speed constrained to be an integer in the range [1, 3]. Heading changes
are limited to A, = £30°. The environment through which the vehicle must navigate
consists of four obstacles, No = 4, located at the positions indicated in Figure 5.5.
The location of these obstacles is assumed constant. Two of these obstacles are aso
modeled as threats in the form of active radar sites. The probability of radar detecting
(and thus potentially killing) the vehicle is modeled by equation (5.8) with the threat
lethality parameter, a[t;] = 50, aconstant. Our intention in this exampleisto illustrate
the way in which the various cost function components effectively “filter out” different

portions of the population.
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At a minimum, we require the search algorithm to yield feasible paths - i.e. those
which at |east satisfy the constraints. Thisimpliesthat the paths delivered by the planner
do not penetrate the set of obstacles. Thus, the first component of cost we consider can

be written:

Ji (#7) = w;Obstacle Penetrate(i, {O}) (5.12)

where we take the scaling parameter, w, to have the value w; = 1000. Since we really
are only interested in solutions which have J; = 0, this scaling is strictly not necessary
- asimple binary value would suffice. However, recall that in general, this will not be
the only component of cost. Because we scale the Obstacle Penetrate vaue based on
the area of overlap between the trgjectory and the obstacles, this scaling factor prevents
the algorithm from accepting solutions which partially penetrate obstacles yet reach
close to the goal in situations where RangeGoal is included in the cost formulation.
Applying this cost function to the space, P, and throwing out any paths which return a
non-zero value for J;, we are left with the set P°~ C P, as depicted in Figure 5.5.
Recall that the speed/heading formulation falls into the FindGoal (see Chapter 4)
class of search methods in that the goal is not explicitly included in each trial path
by default. Rather, the search over sequences of motion decisions is aimed first and
foremost at “discovering” the subset of trajectories which are collision-free and that
connect the vehicle initial location to the goal location. Thus we wish to search the
space of collision-free paths, ¢, to find the set of paths which reach closeto the goal.
The simplest cost function to be used is thus concerned with minimizing the distance

between the end point of the ;" trial solution and the goal, which can be expressed as:

Jo(#7) = J1 () + wyRangeGoal (fj [tni], C_j[th]) (5.13)

where the function RangeGoal denotes the range or distance between the end point of
the path and the goal location. Recall that we assume the path 7/[t;| corresponding to

the instruction list, 17 is of length N7 > ¢4, with ¢/ representing the number of active
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Figure 5.5: Display of the subset of paths, P, which are collision-free. Note that
the number of unique instruction lists represented in this set is 7177 or 37% of the
“population”.

instructions. Obviously the ideal value of this cost function is J,(-) = 0. For our
purposes, however, we define a path to be “close enough” if its endpoint falls within a
ball of unit radius, resultingin J»(-) < 1. The distribution of range error over the set of
collision-free paths is shown in Figure 5.6(a), for the original ordering of paths (from
the exhaustive search) and in Figure 5.6(b) where the paths have been sorted in order of

increasing RangeGoal values.

Applying this condition to the subset of collision-free paths results in the discovery
of the set of paths which are collision-free and extend to within a ball of unit radius
of the goal location, denoted by P¢“~ C PO~ C P. For this example, this set is of
size card(PY9~) = 28, and is shown in Figure 5.7. Note that the number of visibly
distinct paths appears fewer since the end points of the “shorter” paths penetrating the
goal region are overlapped by the longer paths.

At this point, we have identified the set of collision-free paths which meet the ter-
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Figure 5.6: Variation in RangeGoal over the set P~ of collision-free paths over the
origina indices, i and those sorted on the basis of increasing RangeGoal, i*.
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Figure 5.7: Display of the subset of paths, P¢°~, which are collision-free and extend
to within aball of unit radius of the goal location. Note that the number of instruction
lists represented in this set is 28 or 0.14% of the total “population”.
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mination criteria. It is conceivable that one might wish, in addition, to maximize the
vehicle's probability of survival upon reaching the goal location. Thus, we desire to
discover a route within the subset of collision-free and goal-reaching paths which has
associated with it alarge probability of survival. If we were actually searching for such
aroute, as would typically the case outside of this contrived example, we could add a
term to the cost function to encourage discovery of such routes. Since we are trying to
minimize the scalar cost index, however, we must add this term either in an “inverse”

fashion, such as:

) = Jo(#) + 5.14
J3($ ) ‘]2(‘r )+ Ps[tNJ] ( . )

or aternatively, in the form:
JS(fj) = J2(fj) + w3 (Psv'equiv'ed - Ps[th]) (515)

which has a similar effect of encouraging survival probabilities that are greater than or
equal to the minimum acceptable survival level. For this example, we utilize equation
(5.14) and take the weighting parameter, w3, to have the value w3 = 100. We can plot
the distribution of the function J;(-) over the unique path space, P*, as shownin Figure
5.8.

Here we have used alog,, scale on the vertical axis to allow the different cost compo-
nents to be identified. Thisisthe cost function that the EA would “see” asit carried out
an actual search. Note in particular that the Obstacle Penetrate component, due to the
scaling w;, = 1000, dominates the cost over the set of colliding paths, P*. At the left
of the figure, we see that the Survival Probability and RangeGoal dominate the cost
over the collision-free set, P°—, aswould be expected. Thus, it isrelatively easy for the
EA to quickly find feasible (collision-free) solutions. It isthe focused search within this
collision-free subset required to satisfy additional constraints and/or objectives which

can be difficult depending on the particular problem of interest.
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Figure 5.8: Distribution of the cost function J3(77) over al paths j € P* (the unique
path set).

Confining our attentionto only the set P“°~, we have the distribution of Survival Probability
given in Figure 5.9 along with the unsorted RangeGoal values.
From this figure one can observe different “ pockets’ of paths with essentially the same
Survival Probability. Thus, for a given approximate value of survival, alarge number
of different paths, each satisfying RangeGoal(-) < 1 could be chosen. Paths having
the highest and lowest survival probability are indicated in Figure 5.7.

5.4 Paths, Not Necessarily Unique

As indicated by the various plots in the previous section, there are often times where
many paths can be generated with essentially the same fitness values. Thus, one is
left with making some sort of value judgement to pick a particular solution over others
which are “close” in terms of cost. Often times, however, solutions which are similar

in cost are actually quite “far” in terms of their potential for ultimately meeting the
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objectives of the mission. This is particularly true as one is assessing trial solutions
over a limited planning horizon - one that does not necessarily stretch (in space and
time) all the way to the terminal state.

When performing search in an arbitrary space, which in general may consist of may
degrees of freedom with varying levels of coupling between them, there are a set of
“principles’ or properties which must be exhibited by the search algorithm in order to
maximize its probability of success. We will show how these features can be used to
define requirements on the various aspects of evolutionary computation - particularly

the popul ation representation and mutation strategies.

5.4.1 Multi-Modal Search Behavior

In applying evol ution-based techniques to the path planning problem, what is necessary
is a balance between focused search in the vicinity of regions which appear promis-

ing and further exploration of other regions of the space which might appear to be less
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promising. A common issue in evolutionary computation is the tendency for the popu-
lation to form a*“niche” or become specialized toward a particular solution. Thisoccurs
when a given trial solution consistently out-performs the remainder of the population
and thus beginsto dominate reproduction. Before long, the entire popul ation essentially
isfilled up by thissingle solution. In one sense, thisis desirable in that subsequent mu-
tations will tend to fine-tune this solution. If this solution happens to be in the vicinity
of the global optimal solution, then further refinement of the trial solution will tend to
drive the population closer and closer to this global optimum. Typically, however, this
is not the case. Rather, what can occur is that the population may prematurely reach a
local minima and subsequently fail to continue to explore the space. This phenomena
is sometimes referred to as alocal minima“trap”. The reason for this phenomena can

be demonstrated through a simpleillustration.

Consider the path planning problem in Figure 5.10. Here, a vehicle is trying to
find a route through an obstacle field where the location and extent of each obstacleis
assumed known. The objective function used for this example is taken to be the Eu-
clidean distance between the end point of each tria solution and the goal location, e.g.
RangeGoal. By finding a collision-free path (ObstaclePenetrate = 0) which minimizes

this distance, the vehicle can reach the goal.

Asthe search progresses, it discoversthat the best route (shortest, for example) isto try
and pass through the gap between the two sets of obstacles. Over time, the population
of trial solutionsisthus contained within aregion in the vicinity of the passage, asindi-
cated by the greyed region in Figure 5.10. At some point, however, suppose the vehicle
senses the presence of an unmodeled obstacle, as depicted in Figure 5.11. Because the
population has previously identified the gap passage as the most promising route, it will
tend to stagnate at this point, failing to continue to grow and reach the goal location.
This despite the fact that the initial path to the goal ceases to exist! The reason for this
behavior can be understood by considering the nature of the cost function used for the

purpose of scoring trial solutions.
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Figure 5.10: Snapshot of state of search during growth of trial solutions to solve a
simple planning problem.
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Figure 5.11: Detection of an unmodeled obstacle causes population to stagnate, unable
to grow “around” the obstacle field.
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Asindicated in Figure5.11, the best performing members of the population have achieved
adistance fromthe goal givenby R,,;,. Giventhe distribution of obstacles, it is obvious
that it isimpossible to reach around the outside of the obstacle field without allowing
the performance score (e.g. the RangeGoal component) to degrade. Thus, the per-
formance of trial solutions must be allowed to get worse such that they can ultimately
improve. Thisisan instance of delayed reward. Essentially this amountsto the problem
of credit apportionment to individual decisions in a sequence and is commonplace in
applications of reinforcement learning, for example. In the context of evolution, what
this implies is that a trial solution must be generated which simultaneously reaches
around the obstacle field and then penetrates the disk of radius R,,,;,,. Depending on the
nature of the problem representation and the mutation strategies employed, the prob-
ability of this occurring can be quite low. In reality, what is needed is a change in
effective “behavior” of the search algorithm. Rather than continuing to search for mu-
tations which improve the current cost function, it is more fruitful to consider adding a
separate “mode” to the search process. In addition to Goal Attraction, the search must
also exhibit an Explore behavior. This Explore behavior should seek to investigate the
fringes of the space without necessarily considering their immediate “value” relative to

the Goal Attraction function. Such a situation is depicted below in Figure 5.12.

Here, by encouraging trial solutions to reach as far away as possible from the current
vehicle location, tentacles begin to extend and fill different regions of the search space.
Now when the Goal Attraction behavior ensuesfrom trial solutionsgenerated from these
new “spawn”” points, the probability of finding paths which do penetrate the R,,,;,, disk
is greatly improved.

To make this problem more concrete, we return to our previous task of “filtering”
the search space resulting from exhaustive enumeration. Consider Figure 5.13 which
shows the subset of this search space, P* (see Section 5.3.2), which is collision-free

and which isat adistance of RangeGoal > 3.5 from the goal.

Toillustrate the potential for becoming “trapped” in alocal minima, assumethat the
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Figure 5.12: Potential solution which allows planner to “see” around the obstacle field
involves exploration.
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Figure 5.13: Illustration of the set of collision-free paths with R(-) > 3.5 (asindicated
by the red circle).

EA hasfound a solution within the subset of pathswhich terminate“inside” the concave
portion on the left side of the obstacle field. Given that we have al the paths at our
disposal, in this case we can identify the gain set of pathswith R(-) < 3.5, asindicated
in Figure 5.14. By gain set, we imply those solutions which reduce (improved) the
aggregate scalar cost function value given by equation (5.2).

What we see here is that the set of improving paths consists of two different types of
paths: those which remain within the concave part of the obstaclefield, and those which
reach around the obstacles and are left with a clear path to the goal. Now one can see
the reason why the mutation operators must be designed so as to allow “large” motion
through the path space. If thisis not the case, the EA will aimost assuredly spend many,
many generations continuing to probe down a dead end road. It will continually “re-
discover” the set of “trapped” solutions, simply because these are easy to create through
small numbers of changesto theinstructionlist. Thisisin contrast to the fairly complex
transitions (and thus low probability) required to generate offspring from a parent stuck

in thelocal minimawell which reaches around the obstacle field.
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Figure 5.14: Illustration of theimproving or gain set of collision-free pathswith R(-) <
3.5 (asindicated by thered circle).

5.5 Suppressing Stagnation and More

As discussed in the previous section, situations can occur in which the population has
atendency to converge to a single dominant solution. We discuss two mechanisms for

reducing this tendency, both of which involve the assessment of fitness.

5.5.1 Fitness Sharing

One way of counteracting the attraction toward local minimais to develop a means to
reduce the “reward” given to individualsif they lock on to a solution which is already
represented in the population. This concept is referred to as fitness sharing [98], and
implies a penalty on duplication of effort. The concept isto literally divide the reward
given for a certain solution equally among all members of the population which exhibit
this solution. In general, a*“distance” metric of sortsis used to gauge the “closeness’ of
solutions to one another. For example in a binary string matching example, the number

of bitswhich arein error can be used.
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The sharing of fitness is based on the niche count, n;, avalue assigned to each indi-
vidual that provides a measure of the population density in the region surrounding the
4" individual in the search space. In the ideal case, the niche count for each individual
would be unity implying that each solution explores a different portion of the search
space. Note that, in general, the niche count can be defined either in the “input” space
(e.g. the genotype) or in the performance (phenotype) space. The niche count effec-
tively scales the fitness of the individualsin the population. Assuming minimization of

the cost function, .J(77), the shared cost value is written:

ghared =n; fj (516)

thus increasing the fitness value assigned to the j* individual when the niche count,

n; > 1. The niche count istypically defined by:

(u+X)

nj= ) sh(dy) (5.17)

q=1
where d;, is the “distance” between the ;% solution and each of the (x + ) members

of the population. The “sharing” function is often taken as:

djq s
sh(dyy) = 1— (R—> for 0 < d;, < R (5.18)
0 ford;, > R,

where R, represents the sharing radius and defines the extent within which the fitness
must be shared. The parameter o is used to tailor the effective shape of the sharing
function, alowing the fithess degradation to occur either faster or slower with “dis-
tance” in either input or performance space.

Now one sees again the importance of having a one-to-one correspondence between
the genotype (i.e. theinstruction list or maneuver sequence) and the phenotype (i.e. the
physical trgjectory or score) as aluded to in Chapter 4. This allows fitness sharing

to be carried out in the space of instruction lists. Thus the “distance” between two
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instruction sequences is given by the sum of the differences between the sequences
over their entire length. Of course, in the case of the continous/stochastic mutations,
fitness sharing could still be used. Thiswould involve computing the niche count based

on the performance values derived in the space of physical trajectories.

Weillustrate the effect of fitness sharing on a common situation which an automaton
might encounter. Namely, the vehicle must navigate around a wall to reach a goal
just on the other side. This problem quite naturally admits a local minima as the goal
is actually located very close to the initial vehicle location (just on the other side of
the wall). The wall-free solution, however, requires the vehicle to traverse along the
length of thewall, moving further away from the goal than when it started, before it can
proceed unhindered to the goal location. Under the influence of RangeGoal aone, one
can imagine that the natural selection processwill generally fail to discover such apath,
since it tends to favor solutions which improve (i.e. reduce) fitness. Typical behavior,
under the continuous speed/heading formulation is shown in Figure 5.15 where, indeed,

the population is seen to converge to alocal minima on the left side of the wall.

Range to targets: 0 ! ! ol mode: 0 Range to targets: 0 mode: 0
Range to goal o ! 4 gen: 0 Range to goal 10.7854 gen: 50

Energy value: Energy value:

GoAl
il GOAL

~20 L L L L L L L Il —20 L L L L L L L )
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20

@ (b)

Figure 5.15: Initial state (a) and converged (b) population distribution after being
trapped within alocal minimasituation at a vertical wall surface.




139

We now investigate the utilization of fitness sharing as a means of counteracting
the attraction of the EA to this local minima state. It should be noted that we utilize
deterministic speed/heading formulation for this purpose, as its one-to-one mapping
from instruction list to physical trajectory allows fitness sharing to be conducted in the
“input” space of instructions. The effect of the fitness sharing is to increase the fitness
value of individualswho do not contribute a“new” solution to the problem. This makes
room for individuals who might be “further away” in their RangeGoal() contribution,
but who have higher potential of “reaching around” a concave obstacle. Applying this
strategy to the vertical wall problem results in the solution shown in Figure 5.16(b).
Here we see that, indeed, the discrete speed/heading formulation in conjunction with
the fitness sharing allows the planner to find a route around the vertical wall. Also
shown (Figure 5.16(a)) is the initial population as an indication that the EA did not

start with an unusually good guess. Performance of this EA is further improved by

gen: 295 elapsed time: 112.692 distance to goal: 0.34725
’

GOAL 2

_ L L L L L L~ L Il . L L L L L L L )
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20

Figure 5.16: Initial state (a) and converged (b) population distribution after escaping
from alocal minima situation at a vertical wall surface. Escape enabled by aternative
formulation in conjunction with fitness sharing.

modifying the mutation operators to enable the probabilistic addition and deletion of
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multipleitemsto/from each instructionlist. Asillustrated in Figure5.17, thiseffectively
allows tentacles to “probe” and reach around the obstacle faster than when only single
instructions are added or deleted. In this case, the time required to discover a collision-
free solution satisfying the termination criteria was cut in approximately one-third of

that presented in Figure 5.16.

gen: 102 elapsed time: 42.502 distance to goal: 0.12436

20

151

10

KGOAL = 1 KANGLE = 0.1
o

—10+

151

20 I I I I I I I ]
-20 -15 -10 -5 0 5 10 15 20

Figure 5.17: Effect of fitness sharing and modified population representation on reduc-
ing stagnation tendency at local minima.

5.5.2 Repulsion and Misibility

When one considers problems like that shown in Figures 5.13 and 5.15, oneis struck by
the answer that the primary reason for the existence of thelocal minimaisthe definition
of the cost function in thefirst place! Recall that the behavior of the best-performing in-
dividual in the population (Chapter 3) can be described as a sequence of “jumps’ around
the search space followed by “climbs’ of the implicit gradient of the fitness |andscape.
As discussed in Chapter 3, the size of the “jumps’ (e.g. design of mutation strategies)

must be such as to alow the population to move over the various local minima present
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in the search space. If this condition holds, the algorithm will eventually generate an
offspring which can jump out of local minimaand sample sufficiently close to a global
optimum. The time required for this to occur, however, might be undesirably long.

As a mechanism for speeding this occurrence, and reducing the probability of be-
coming stuck behind “single-layer” concave obstacles such asin Figures 5.13 and 5.15,
arepulsion term isadded to the cost function. We will denote thisterm as RangeStart.
This term effectively penalizes paths which terminate in the immediate vicinity of the
spawn point - the point at which the search tentacles originate. We denote such a point

as 5. Thus, we utilize a cost function of the form:

Wy
R (fj [th]> §(7]>
where the repulsion terms is added in the “inverse” fashion consistent with the desire

Ji(77) = J5(27) + (5.19)

to maximize the extent to which the tentacles reach out into free space from the spawn
point.

Thereisan obvious coupling, however, between the repulsion term and the RangeGoal
term. Depending on their relative weights, the attraction “force” of the goal may con-
flict with the desire to move away from the start point. For example, assume that at a
given point in the search, the best available path in a population has cost components
RangeStart = 5 and RangeGoal = 3, respectively. We assume that the weight on
RangeGoal isunity. Thusthe total cost of this path would be:

) Wy
= R Goal + —————
/ angeGroat + RangeStart

Wy

= 342

+ 5

(5.20)

Aswe generate offspring, wefind apotential pathwith RangeStart = 10 and RangeGoal =
4. Isthis new path accepted? It depends on the weight value, w4. For example, if
w, = 10, then the two paths have identical scores (f7 = f/*# = 5) and the likelihood
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of the new path being chosen depends on the nature of the tournament sel ection process
used and whether or not it is truly elitist. In this casg, it is necessary that w, > 10 for

the offspring to be guaranteed to survive to the next generation.

Let us assume, however, that the new offspring generated in the previous example
could “see’ the goal from the endpoint of its path - i.e. a collision-free, straight-line
path exists. In this case, it seems natural to bias the selection so as to guarantee that
the offspring is chosen as an improving solution. We generalize this notion to define
a GoalObstruction cost component. This involves the computation of the obstacle
penetration of avirtual path (straight-line) drawn between the end of each trial solution
in the population and the goal point. If thispathiscollisionfree, then GoalObstruction
takes on a zero value. If not, the value of GoalObstruction is set equal to the area of

overlap of the minimally enclosing rectangles of thevirtual path and the set of obstacles.

The GoalObstruction term thus alows the EA to assess the ability of each trial
solution to “see”’ the goal from its endpoint. To solve the genera class of “single-
layer” concave problems, one can thus modulate the application of the RangeStart
repulsion term and the RangeGoal attraction terms. In situations where the goal is not
visible, RangeStart can be the dominant contributor to cost. Conversely, when the
goal isvisible, the RangeGoal term isused to alow the vehicle to focusin on the goa

location.

Although we have developed this repulsion concept specifically for what we term
“single-layer” concave surfaces, it can be extended to situationswhere multiple concave
layers exist. Consider the situation depicted in Figure 5.18. Here we have drawn the
path which is presumed to evolve under the action of certain operators. In the course
of its development, four spawn points (s1, .. ., s4), in addition to the initial start point
(so) are assumed to have been created. We now investigate the features necessary for
the search process and cost evaluation for such a path to exist. Starting from s, it is
clear that we could use the basic repulsion concept developed in this section to avoid

being trapped in the local minima of the left-most (black) obstacle. Under the action
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goal

Figure 5.18: Illustration of multiple spawn points and the generalization of the repulsion
concept.

of this cost function on a limited length path, it is conceivable that the endpoint of
this path might terminate in the vicinity of s;. Continuing the repulsion from the start
point, the search might then generate several branches - one attempting to reach up
around the top of the environment and the other diving into the depression in the white
obstacle and terminating at s,. Obviously the upper route isadead end since the vehicle
cannot squeeze past between the wall and the obstacle. Having reached s,, however,
the question now becomes whether under the current “repulse from s,” cost function
will alow any further progress toward the goal. The answer to this question is no.
Clearly, due to the concave shape of the white obstacle, the vehicle must first travel
closer to s, from its current position before being able to continue progress toward the
goal. If we were to change the cost function to be instead “repulse from s; OR repulse
from s,”, however, the blue dashed trajectory could be generated. Thus, by chaining

together segments and continually shifting the point of repul sion each time anew spawn
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point is developed, the vehicle will be able to keep moving and ultimately reach the
goal location. In order to avoid undesirable “looping” mation, in which the path could
conceivably loop back to terminate near alocation previoudly visited (s3; back to s, for
example), it might be possible to consider adding the forces of repulsion over the set
of recently visited points in some fashion. Of course, the repulsion “force” from each
point should decay in some manner over time. This is necessary to allow navigation
through changing environmentsin which “doors’ which may be initially blocked when

first approached may later represent the only way out of an environment.

5.6 Optim(al)ization Concept

Given the types of planning problems we are considering - namely those involving dy-
namically changing environments wrought with uncertainty - we assume that a true
optimal solution is essentially unreachable. Even if one knew that a unique optimal so-
lution existed at a particular instant of time, the likelihood of conditions being the same
at any later timeis quite small. Thus, we tend to search for what are sometimes termed
satisficing solutions. This description implies solutions which achieve satisfactory but
less than optimal performance on a given problem. As an illustration of the typical
progress of search, as given by the change in the best achieved cost as a function of
time, consider Figure 5.19. Here we show the general rate of convergence to the global
optimum (shown as ared dashed line) to be approximately exponential.

What thisimpliesisthat significant reduction in cost is made early on in the search
process with a dramatic decrease in rate of reduction as the search continues in time.
This is consistent with observations made by Ho [86] in which, paraphrasing, 90% of
the effort is spent trying to eke out the last 10% of optimality. Thus, rather than try-
ing to guarantee discovery of true optimal solutions (with probability of 1), we should
be instead focusing our attention on developing algorithms that are capable of finding
solutions which are “good enough” with high probability. Thisimplies that we should
be satisfied if we can find a solution such as that indicated by the dotted line in Figure
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Figure 5.19: Typical exponential-type progress of search under the action of simulated

evolution. The dashed line shows the optimal cost and the dotted line shows a sub-
optimal solution.

5.19, which satisfies the constraints (i.e. below a minimum feasibility threshold), yet
is sub-optimal. This requires definition of the cost components in such a fashion as to
make infeasi ble solutions obviously apparent to the search algorithm. In addition, there
isan inherent trade off involved in such an approach, sacrificing optimality in exchange
for reduced time-to-discovery of usable solutions. The degree to which we are willing
to accept such solutions depends on the time available for planning and the particulars

of the problem being solved.

We extend this notion to define the term “optimalizing”, by which we mean that
solutions are found which are not only satisfactory (with respect to the constraints) but
continue to approach true optimal solutions so long as the problem conditions under

which the optimal solution exists persist.

In the context of path planning, this transates to the desire for the algorithm to
quickly deliver viable solutions which can be used to provide initial guidance to the

vehicle. These initial solutions can then continue to be tuned with whatever time and
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processing capability is available to continue to push the corresponding cost closer to

the optimal value.

5.7 Multi-Objective Cost Evaluation

Inevitably, search over the space of paths to discover near-optimal, or optimalizing
routings involves tradeoffs between the various cost components. These tradeoffsillus-
trate the high sensitivity of EA performance to the relative value of the scalar payoff
function weights. This was evident in the examples described in which *component
conflicts” occur when one cost value increases while another is decreasing - leading to
a deadlock situation. Even with the simple scalar weighted penalty formulation used
throughout this chapter, there are situations where the effective “gains’ corresponding
to each penalty term need to be changed to achieve the system goals. This corresponds
to modificationsin the overall priority of the various objectives and suggests an adaptive
scheme employing a progress monitor. This monitor could assess the convergence rate
of the optimization and, in the case where a minimum is reached which fails to satisfy
the mission objectives, could affect changes to the penalty gains to allow behavior-
specific mutations to search for alternative solutions.

Given the variety of different forces influencing the search for paths (e.g. collision
avoidance, goal attraction, minimizing threat exposure, maximizing data value, min-
imizing fuel, time-of-arrival constraints, etc.), it seems that one might benefit from a
formulation which explicitly accounts for the existence of multiple objectives. In this
case, the cost components are not combined into a scalar value, but rather are kept as
components of acost function vector, f(z/) € RY, where F isthe number of individual
cost functions.

The various tradeoffs invol ved between the different components of the cost can be
formalized by the notion of a Pareto optimal surface. This surface is defined such that
improvements along any given direction can only result at the expense of reduction in

value along at least one other direction. Essentially, one can think of multi-objective



147

evolutionary algorithms (MOEA) as a parallel search to discover this Pareto optimal
surface - or at least sample a sufficiently large number of points along it. Once this
surface is approximately known, one can choose the direction along which to move on
the basis of priority of the various objectives. For example, given the set of all paths
minimizing the distance to the goal, one can select from those along the Pareto surface
which have the highest probability of survival. The concept of Pareto-dominance is
illustrated in Figure 5.20(a)-(b).

Pareto optimal

/ tradeoff surface Pareto optimal
A A tradeoff surface
| 5 |
r> C\ 2 G_ ____________
q 3 1
f2(%) D2 ()
% g€,
/) 1 Ol
\\_ ﬁ_’//
f,() f,(%)
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Figure 5.20: Illustration of the concept of Pareto dominance for (a) the minimization of
f1 and f, and (b) the maximization of f; and the minimization of f,.

The numbers near the pointsin the (f1, fo) space reflect the Pareto-rank of each of the
solutions. Thisrank valueisequal to one plus the number of solutions which dominate
agiven point. A vector, f¢ is said to dominate another vector, f?, denoted by f@ < f?,
ifandonly if f7, < fbvm e {1,2,...,F}and f¢ < fiforsomeq € {1,2,..., F}.
Tan [99] develops a novel two-stage Pareto-ranking scheme that is capable of in-
cluding goals for each objective and the assignment of relative priorities. This scheme
has been embedded within a multi-objective evolutionary agorithm (MOEA) toolbox.

We applied this toolbox to the solution of the path planning problem presented in Sec-
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tion 5.3.2. Recal that previousy we had “filtered” the entire search space (found
through exhaustive enumeration) by layering successive requirements on the solution.
Now, we apply the MOEA toolbox to search this space based on afinite population con-
sisting of ;1 = 20 individuals. Rather than combining the cost components into a scalar
cost function, we instead treat the cost function explicitly as a vector of independent

factors, namely:

RangeGoal

fi= 10000bstacle Penetrate (5.21)
10(0.6 — Survival Probability)

We present results obtained for two different prioritization schemes, summarized in

Table 5.1. The goal, or desired value for each cost component was set to zero. The

Table5.1: Priority assignmentsfor MOEA simulations.

priority
cost component | Example 1l | Example 2
RangeGoal 2 3
ObstaclePenetrate 1 1
Survival Probability 3 2

trajectories obtained for the Example 1 set of priorities is shown in Figure 5.21. One
first observes that the MOEA formulation is capable of finding trajectories which are
collision-free and reach the goal region. In fact, the trajectories discovered are essen-
tially the same as those which we discovered “ by hand” in applying different conditions
to the entire search space. In this case, however, we were capable of identifying these
solutions with only a finite population and with no initia information with regard to
the location of the optimal solution. For the Example 1 priorities, the survival proba-

bility of the trgjectories identified by the MOEA falls within a small range as noted in
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the figure. We examine the effect of swapping the relative importance of RangeGoal

after 100 generations with population size p = 20

s
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Figure 5.21: Trajectories obtained using Example 1 priority values after 100 MOEA
generations.

and Survival Probability in Figure 5.22. Here, we find the corresponding change in
behavior to be consistent as, under the Example 2 priorities, the best solution found
has a higher survival probability than that found with the Example 1 priorities. Yet the
popul ation as awhole exhibitsgreater variation in terms of survival probability. Finally,
one might wonder how the nature of the solution would change if Survival Probability
was given apriority of “don’t care”’. The corresponding trajectoriesfound using MOEA
under this case (with the priorities of the remaining objectives the same as Example 2)
are shown in Figure 5.23. Here one sees that the solutions still satisfy the collision-
free requirements and terminate at the goal. Their probability of survival, however, is
notable lower than that obtained in the previous cases.

Note, in presenting these MOEA results, we are not making the claim that a scalar
cost formulation could not discover similar trajectories. Rather, the main point is that

MOEA offers a desirable aternative to dealing with the sensitivity of the scalar cost
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Figure 5.22: Trajectories obtained using Example 2 priority values after 100 MOEA

generations.
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Figure 5.23: Trajectories obtained when Survival Probability is given a“don’t care”
priority with the remaining objectives keeping their Example 2 priorities.
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formulation to the value of the weighting parameters.

5.8 Summary

This chapter has described the various cost components which are commonly used in
the context of path planning problems. In doing so, several issues with regard to the
non-uniqueness of the solution to most path planning problems were addressed, includ-
ing severa strategies for avoiding local minima. It was shown that a combination of
fitness sharing and the addition of “repulsion” and “goal visibility” measuresto the cost
function can reduce the tendency of the EA to get stuck in local minimaover aclass of
single-layer concave problems.

The notion of optimalization wasintroduced to formalize the fact that, in most cases,
it is more important to find “good enough” solutions as opposed to truly optimal solu-
tions. Thisis particularly the case when the planner must deliver updated trajectoriesto
the vehicle control system on atimely basis.

Finally, we briefly described the concept of amulti-objective evolutionary algorithm
which alowsfor the explicit assignment of prioritiesto the various components of cost.
In this fashion, the EA can make informed decisions as it chooses directions to move

along the approximate Pareto optimal surface asit is discovered.
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Chapter 6

PATH PLANNING IN STATIC ENVIRONMENTS

In the previous chapter we detailed various issues related to the scoring of trial solu-
tionswhich are generated through the evol utionary process. In thischapter, we present a
series of simulation results which demonstrate the application of evolution-based tech-
niques to a number of different static path planning scenarios. As a means of assessing
the computational expense of evolution-based planning, we provide a numerical com-
parison against a graph search algorithm and another stochastic global optimization
algorithm when applied to this test suite of problems.

6.1 More than Shortest Paths

Thetypical path planning problem addressed in the literature isto find a* shortest” path
from a given initial state to some specified final state, where “shortest” refers to some
guantity such as distance, fuel, time, risk, or some combination thereof. Many of the
solutions obtained rely on some sort of graph/network representation of the problem
and find purely geometric solutions, often assuming some sort of nominal speed of the
vehicle between each node of the network (e.g. [55, 57]). When the mission objective
can be expressed in terms of an equivalent “shortest” path problem, these techniques
do indeed find optimal solutions. More general mission objectives, however, typically
require pairing the graph search with some sort of additional constraint and/or com-
binatorial optimizer (as donein [63]). For example, something as simple as requiring
the vehicle to arrive at a given location at a specified time (or, more generally within a
specified time window) requires a speed scheduler to try and find a way to manage the
vehicle speed along the shortest path such that it intersects the target point at the correct
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time. Depending on the capabilities of the vehicle, such a solution may not exist, for
it may require the vehicle to stop or otherwise assume a speed outside of its “stable’
or usable range. An obvious example of thisis an aircraft which will stall at a certain
minimum speed. Thus, shortest paths are not always the appropriate place to begin
searching for a solution to an arbitrary path planning problem.

Herein lies the strength of a population-based technique such as evolutionary pro-
gramming. Based on a “generate and test” paradigm, these approaches can generate
trial solutions whose dynamics are defined to be consistent with the maneuverability
constraints of the vehiclet. Further, the vehicle speed can be explicitly represented as a
tunable parameter of the population representation, eliminating the need for additional
speed scheduling in order to meet atime-of-arrival constraint. Because the individuals
in the population can represent complete paths, decisions regarding the fitness of indi-
viduals can be made based on much more complicated and general objective functions
than is possible with approaches which make decisions at each timeinstant. Essentially,
this allows a“delayed reward” feature in that intermediate decisions can be changed in
order to modify downstream performance. By allowing the point at which mutations
occur to vary over the length of an individual path, local modifications can be made to
compensate for sensed discrepancies or other unanticipated features of the environment.

Having discussed briefly the rationale for choosing evolution as an approach to path
planning, we now demonstrate its viability through a number of static environments.
We compare its performance relative to a graph search technique and an alternative

stochastic global optimization method.

6.2 Description of Numerical Experiments

In order to get afeel for the computational burden associated with evolution-based path

planning, we exercise it on a series of simple static test problems, which we will refer

IWewill defer discussion of situationsin which themaneuverability constraints arein error to Chapter
7
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to as P, — P, in the discussion that follows. It is noted that these simulations involve
navigation through “worlds’ that are assumed to have unitless measures of distance.
These problems take place in static two-dimensional domains of size 50 units in each
direction. By static, it isimplied that the location and size of obstacles present in the
environment is known and remains constant over the course of the search.

In each of the scenarios, the vehicle is initially located at the far left side of the
domain and the goal location is placed at the far right. The scenarios differ in the num-
ber and distribution of obstacles between the start and goal locations. These problems
were defined so asto represent problems of increasing difficulty for the evolution-based
planner in that they tend to increase the number of local basins of attraction which could
trap the planner prematurely prior to finding the goal location.

We will compare the performance of the EA planner against both a graph search
technique (A*) and an approximation to uniform random search called Improved Hit
and Run (IHR) [100]. Each of the algorithms was coded as an m-file in MATLAB so
that reasonable comparisons could be made regarding relative computational expense,
counted in floating point operations (flops). Due to the fact that MATLAB effectively
does run-time compiling in terms of memory alocation, etc. the times reported in the
following sections should not be taken as representative of real-time performance which
would be exhibited if the various algorithms were coded in a compiled language such

asC or C++.

Graph Search Problem Satement

In the case of the graph search algorithm (A*), the vehicle is constrained to move be-
tween the vertices of a graph, denoted by G(V, E), consisting of a set of vertices, V,
and edges, . The vertices represent the possible states of the vehicle, and the edges
represent the paths for transitioning between any two states on the graph. For the pur-
poses of these experiments, the domain was discretized at various resolutions in each

component direction (e.g. V,, IV, = 10, 20, 30, 40, or 50 grid points along each axis).
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Thus, we model the graph G as the physical location of the vehicle - the nodes rep-
resenting possible locations and the edges representing the set of possible paths. This
implies that the vehicle heading along any path through the graph network is defined
by the physical arrangement of nodes. The vehicleisinitially located at (0, N, /2) and
the goal location is specified as (N,,, N, /2). Obstacle locations and sizes are scaled
such that they cover the same relative proportion of the free space regardless of the grid
resolution.

The problem thus consists of finding the shortest collision-free path contained in the
graph which connect the start and the goal nodes. For these examples, we assume that
each grid point is connected to all eight of its possible neighbors. These connections
represent the possible pathways for transitioning the vehicle between adjacent nodes
of the graph. Associated with each edge in the graph is a value, ¢(i, j), which is the
cost of traversing from node 7 to node j along their connecting arc. For the purposes
of these experiments, we model these coststo be the physical distance, d(i, j), between
any two nodes. Obstacles are represented by adding a value of OBST ACLE (where
OBSTACLE > d(i, j)) to each arc which penetrates an obstruction.

Note that the solution obtained via search over the graph is purely spatial - thereis

no no speed or time considered.

Stochastic Search Problem Satement

The path planning problem, asformulated viathe instruction list or maneuver sequence,
consists of finding sequences of “decisions’ at instantsof timety, for k = {0, 1, ..., ¢},
which meet the requirements of agiven problem. Inthis case, we are searching for paths
which avoid all known obstacles in the environment and terminate within a unit radius
of the goal location.

The “space” in which we search consists of integers. The intervals for each de-
gree of freedom corresponding to the instruction list and maneuver sequence span from

[(Lmins Imaz] @A [Dmins Mmae], respectively. The vaues of 1,,,;, and 7,,;, are both zero,
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corresponding to the NOO P instruction. Recall that the NOO P instructionisincluded
to allow variable length paths to be represented by fixed length input vectors. The re-
maining instruction indices are defined in Table 4.2. The maneuver set considered in
these problemsis given by the first five rows of Table 4.3. For the maneuver sequence
representation, the application interval space for each maneuver primitive was taken to
consist of integersin therange [At,in Atmas| = [0, 5]. Theseintervals define the search
space, P, for each formulation.

Asin the graph search problem statement, we assume that the initial and goal loca-
tions of the vehicle aswell asthe position and extent of all obstaclesin the environment
are known and remain fixed over the course of the search. For the purposes of these
example problems, the sample time for evaluation of input sequencesis At = 1 for al
tr, €{0,1,...,¢.}. Recdl that ¢, represents the number of non-zero or active valuesin
agiven input vector. Changes in vehicle heading are limited to maximum vehicle turn
rate, Vmae = 30°/sec, i.e.

w[tk’-i-l] = w[tkz] + ¢ma:cAtk (61)

The vehicle speed is constrained in a similar fashion, restricted at each sample instant
to take on an integer value in the range [1, 3] units per time step. In these numerical ex-
periments, changes in speed over agiven interval are fixed at Au = 1, with the sign of
the modification determined by the instruction or maneuver index. These perturbation
limits essentially define the vehicle's performance bounds, limiting the extent and rate
at which the vehicle can change speed and direction. In particular, since the minimum
vehicle speed is constrained to be greater than zero, the vehicle cannot stop for an arbi-
trarily long time and/or instantaneously change its orientation. Note that the maximum
number of instructions and maneuvers, /, is fixed prior to the start of the optimization
process. For the simulations shown, we choose a maximum of ¢ = 40 parametersin
each case. Thiscorrespondsto amaximum of 40 instructions and a maximum of 20 ma-

neuvers (with 20 application intervals). Generally, ¢ is chosen to be sufficiently larger
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than that required if the lowest velocity is selected over a characteristic length of the
problem space. This gives the optimization process room to use larger velocities and
minimize the number of active instructions or maneuvers, /., required to reach the goal
location.

For the stochastic algorithms, a scalar performance function in the form of 5.2 was

used with the cost components specified in Table 6.1.

Table 6.1: Description of cost components for IHR (and EA)

Cost Component Description Weight
J1 RangeGoal 1.0
Jo m 100.0
Js ObstaclePenetrate | 1000.0

6.3 Description of Algorithms

This section briefly describes the operation of each of the algorithms represented in the

numerical study.

6.3.1 Graph Search Algorithm

The graph search algorithm used for these studiesis A* [101], a best-first technique for
finding shortest paths through a network. We model the domain as a graph, G(V, E),
comprised of a set of vertices, V' and edges, E£. Briefly, A* works by searching in a
wave-like manner, starting from theinitial location, spanning outwards, and terminating
once the GO AL node has been reached?. Decisions regarding which direction to move

from a given node are made on the basis of the function:

2Note: A* can be equivalently formulated as a wave searching backward in time from the GOAL,
terminating upon reaching the ST ART node
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fIn] = gln] + hln] (6.2)

where g[n] is the accumulated cost of reaching node » from the start node and h[n]
represents a heuristic estimate of the cost of traversing from node n to the GOAL. The
detailed operation of the A* algorithmis presented in Appendix B. At eachiteration, the
node with thelowest cost, f[n], ischosen as the next node to expand. In thismanner, A*
isguaranteed to find the lowest cost (e.g. “shortest” obstacle-free) path between the start
point and the GOAL. This guarantee is subject to certain admissability requirements
on the heuristic estimates, h[n] (See Appendix B for details). Due to the finite size of
the search graph, the worst-case run-time of the algorithm can be determined (as this
would entail looking at each nodein the graph prior to looking at the GO AL). Notethat
the implementation used in these experiments pre-computes the arc costs and heuristic
values for each node in the grid prior to carrying out the search. The time required for
this computation is thus added to that required for the actual search over the graph for

the purposes of comparison with the other algorithms.

6.3.2 Sochastic Global Optimization Algorithm

The global optimization algorithm utilized for these numerical studiesisthe Improved
Hit and Run algorithm [100]. This algorithm represents one of a number of implemen-
tations of pure adaptive search, which attempt to approximate a uniform distribution
of the sampled space. Theoretical performance analysis of this agorithm has shown
that it can accomplish thisin O(n°/?) operations/time [100] on elliptical (convex) pro-
grams. Although the path planning problem considered in this numerical comparison
isnot strictly convex, this order of computation is useful for establishing the maximum
number of iterationsin which we might expect to find a solution.

IHR is presented here assuming maximization of the objective function, f. Mini-
mization is achieved by maximizing — f. Unlike EAs, which typically evolve an entire

population of solutions simultaneously at each generation, IHR propagates only a sin-
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gle solution at each iteration. We will denote this individual using a notation similar
to that for the EA, namely ﬁ(n), where we have dropped all superscripts and instead
have added an iteration counter, n. For the path planning problems considered here,
we model this individual solution using both the (&) instruction and (b) the maneuver
sequence formulations.

The assumption for IHR is that each of the ¢ dimensions in the search space can
be discretized over a finite interval. We utilize deterministic speed/heading change
operators (see Section 4.5.2) to produce the paths corresponding to both instruction list
and maneuver sequence input vectors. Essentially, one can think of the action of IHR as
akind of mutation mechanism, providing an alternative means of manipulating the input
vector of the individual to try and discover trajectories which meet the requirements of
the problem.

We now describe in some detail the action of the IHR algorithm. To begin, aninitial
feasible point in this space, ]3(0) € P isspecified. The agorithm then proceeds through
the following steps:

1. Evaluate the objective function value at the point P(n). Denote this value by
F(P(n)). (initialy, n = 0)

2. Choose arandom unit direction on a hypersphere of dimension ¢, described by d.

3. Move aong the line d arandom distance (staying within the feasible space, P)
from the point P(n) to the point Q ()

4. Evaluate the objective function value at the point (J(n), generating f(Q(n))

5. Use simulated annealing to update the best achieved cost value according to the
equation, v ~ U[0,1] < a(Q(n)), the acceptance value. Upon acceptance of
apoint Q(n) which improves the function value (e.g. f(Q(n)) > f(P(n)), the

temperature, 7', is updated according to a cooling schedule (see Appendix A).
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6. If accepted, set P(n + 1) = Q(n), otherwise P(n + 1) = P(n). Letn = n + 1.

Goto Step 1 unless the maximum number of iterations has been exceeded.

The process of moving through the search space, described in Steps 2-3 above, is il-
lustrated graphically in Figure 6.1 which shows a two-dimensional problem space. The
initial point is noted, asisthe direction line generated in Step 2. As shown, the random
distance computed in Step 3 initially placesthe next point outside of the feasible region.
Note that there are several options available to deal with such a situation. One optionis
simply to discard any pointswhich fall outside of 7P and select anew random distance to
move along the line defined by the direction vector d € RY. Analternative approach is
to extend the boundaries of the space and use a“reflection” operator to reflect infeasible
points discovered through the move along the line d back into the feasible space. This

concept isillustrated in Figure 6.1. Note, in particular, that the reflected point is shifted

extended feasible region

feasible region

<« direction line

X2 reflected
point 04_

initial point

v

X1

Figure 6.1: lllustration of the Improving Hit-and-Run operation (with reflection) in two
dimensions.
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(either via a ceil or floor operation so as to align with the discretization of the space.

Other options for handling the reflection and discretization are described in [100].

6.3.3 Evolutionary Algorithm

The evolutionary algorithm used for these comparison studies consists of a population
of size ;x = 20 parents. The maximum number of input parameters, /, is selected to
match that used by IHR (¢ = 40). Again, this corresponds to a maximum of 40 decision
points for the instruction list representation and a maximum of 20 maneuvers (with 20
associated application intervals). The population representations used are identical to
those used by IHR: (@) the instruction list and (b) the maneuver sequence. In both cases,
changes in speed and heading triggered by values in the input string are deterministic.
Creation of offspring involves the GA-like operations of crossover and mutation (with
p = 0.1) as described in Section 3.4.1. Since we use an “integer” string as opposed
to a“hit” string representation, flipping of a bit corresponds to the replacement of an
instruction at a given string location with another selected uniformly at random from
the set of possible instructions. Finally, we use a cost function identical to that used by
IHR.

6.4 Presentation of Results

Each of the algorithms was run for 20 trials on each of the test problems. Since the
stochastic algorithms are utilizing a FindGoal class of search, they require the defi-
nition of a stopping criteria. In this case, we deem the search to be successful once a
path has been discovered whose last point is within aball of unit radius from the goal
location. In trials where this condition is not met, the stochastic algorithms are termi-
nated once a maximum of 10000 function evaluations has been exceeded. Thisvalueis
based loosely on the expected order of computation required for IHR to find the global
optimum, given the number of degrees of freedom considered in this problem (¢ = 40).

Note that A* needs no such stopping criteria as its worst-case behavior is deterministic,
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involving the expansion of each node in the graph G(V, E) until finding the GOAL
node. The results for each algorithm will be presented separately and then summarized
at the end of this chapter as a means of demonstrating relative performance.

The following values are recorded upon termination of each trial:

e Approximate number of floating point operations (flops)
e Elapsed computation time
e Number of function evaluations

¢ Relative percentage of “obstacle detection” flopsto total flops

Results for the stochastic search algorithms (EA and IHR) on each of the test prob-
lems include the distribution of paths and the distribution of cost obtained over each
of the trials at each iteration of search. The paths illustrate the different routings dis-
covered at the termination of each of the 20 trials, with the best (shortest) and worst
(longest) noted in each case. The cost distribution over the set of trialsis slightly more
complex. It isrepresented at each iteration by four values: the minimum, maximum,
mean, and median cost value at each iteration. The minimum cost trace is marked by
a line through open circles, while the maximum cost trace is always the upper-most
linein each figure. The mean trace in each case consists of closed diamonds, while the
median trace is represented by a solid (red) line. Note that the calculation of these val-
uesincludesall 20 trials, including those which have aready exceeded the convergence
threshold. For the purposes of computing the mean and median, trials which have al-
ready converged at a given iteration are assigned a cost value of zero. The minimum
and maximum values effectively denote the “envelope” or extremes of cost value at
each iteration, while the mean and median values are useful for determining the “aver-
age” performance. Note that once asingletria has converged, the minimum cost bound
remains at zero. Thisis due to the fact that we include all trials in the computation of

the average performance.
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6.4.1 Graph Search Results

The paths obtained using A* for each of the problem instances are shown below in Fig-
ure 6.2 (sguare obstacles) and Figure 6.3 (circular obstacles), indicated by the trails of
dark circles connecting the start and goal nodes. The extent of obstaclesis marked with
an ‘x’ through the corresponding vertices. Note that the path obtained in each test prob-
lem depends on the shape and spatial extent of the obstacles, as would be expected. In
particular, alleys between obstacles which exist in the circular representation disappear
when the obstacles are modeled as square, forcing the planner to find a solution around
the obstacle field. Given the discretization of the domain in each case, the paths indi-
cated represent the shortest distance paths connecting the start and goal vertices. This
is true, even in cases (such as Figure 6.3(b) or (d)) when the path appears to oscillate
dlightly. This effect, termed digitization bias, is described in more detail in Appendix
B, and results from the fact that only a finite number of angles is representable on the
discrete grid. In this case, because of the 8-connected structure of the graph, the vehicle
heading deviations are limited to multiples of 45 degrees. For the remainder of this
discussion we will restrict our attention to the “circular” obstacle representation as this
is the model assumed in the problem setups of the other algorithms.

Note that the computation complexity and number of function evaluationsfor A* is
largely determined by the size of the grid and the relative proximity of the GO AL to the
initial vehicle location. This dependency is detailed in Appendix E. Generadly, these
factorsincrease with the square of the number of grid pointsin each direction. Thedis-
tribution of obstacles has relatively little effect on the overall cost of solution. It should
be noted that the “ obstacle detection” used in the A* solution was done by simply iden-
tifying the grid points which lie within any of the defined obstacles and assigning the
OBSTACLE cost to the value of traversing to such anode. Thisis asimple computa-
tion which isafunction only of the number of obstacles, not their distribution. In order
to make a “fair” comparison with the other algorithms, it is necessary to approximate

the cost (in flops) of computing the intersection of a single path segment (between two
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nodes in the search graph) and a set of Ny obstacles. Thisis done using the rectint()
function in MATLAB, which computes the intersection area between two rectangles -
in a manner identical to that shown in Figure 5.3. Results obtained in estimating the
computational load required as a function of path length and number of obstacles are
summarized in Table 6.2.

Table 6.2: Variation in “obstacle detection” flops required as a function of the number
of obstacles

Number of Path Segments Number of Obstacles
1 2|13 |... No
1 35 38 | 48 38 4+ 10(Np — 2)
2 39 47 | 62 A7 +15(Nop — 2)
3 49 61 | 80 61+ 19(No — 2)
N 49 +11(N —4)

Since A* involves checking only a single path segment at a time, we are only con-
cerned with the top row of Table 6.2. Multiplying the computational effort correspond-
ing to the number of obstacles present in a given problem by the number of function
evaluations (e.g. nodes expanded) gives a flop count which can be compared with that

obtained through the other algorithms.

6.4.2 Improved Hit-and-Run Results

Each experiment involved twenty independent trials of the IHR algorithm starting from
an identical initial “state”, P(0), whose length was fixed at ¢ = 40 as described previ-
oudly. In the case of the instruction list formulation, each “decision” intime, I[t], for
tr = {0,1,..., N} wasinitially set to zero (the NOOP instruction). Thus, the initial
motion plan in each trial corresponds to “doing nothing” or, equivalently, staying put
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at the initial location. A similar initia state was defined for the maneuver formulation,
with the initial sequence of maneuvers consists of only a single “go straight” maneuver
of duration 2 seconds. Thus, the algorithm is given no initial bias toward any particular
solution.

For brevity, in this section we present only the distribution of the best paths and
a measure of the rate of convergence achieved over each of the twenty trials on the
test problems, P, — P,. Other data describing the set of experiments in more detail
is contained in Appendix E in Figures E.4 - E.11 which highlight the variation in:
(&) the elapsed computation time, (b) the best RangeGoal achieved, (c) the number
of function evaluations, (d) the number of flops, (€) the shape of the path found, and
(f) the dynamics or rate of convergence of the best solution obtained over the set of
20 trials on each problem. These sample data are included in the appendix in lieu of
noting standard deviationsin the tabulation of results which follow in this chapter. The
rationale for this presentation being that the number of trials and the variation in these
quantities observed over this set of trials was not felt to be adequately described by a
normal distribution. Thus, the reader is referred to these plots and the discussion in

Appendix E for further detail.

IHR - Instruction List Results

Figure 6.4(a)-(d) show the different paths found by IHR over the series of 20 trials on
each of the test problems P, — P,, respectively. These paths were obtained using the
instruction list formulation based on deterministic speed/heading changes. The longest
(black) and shortest (red) pathsfound in each case are denoted by the thick linesin each
figure. Obvioudly, IHR issuccessful in discovering many different pathsto the goal over
the course of the 20 trials. Note that the paths discovered generally are not the minimum
length paths, but rather exhibit considerable wandering. This behavior is acceptablein
this case since no explicit penalty was placed on PathLength or PathAngle.

In order to get a feel for the extent of computation to achieve the paths shown
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length instruction lists.
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in Figure 6.4, we examine the nature of the cost achieved by IHR at each iteration
over the series of trials. We do so by examining the minimum, maximum, mean, and
median values occurring at each iteration computed over all 20 trials. Each of these cost
“descriptors’ is overlaid on top of one another in Figure 6.5. The bottom line in each
figure is the minimum value while the top trace corresponds to the maximum value.
Note that we present the results in terms of the log,, of both the generation and cost
achieved in order to allow both large and small cost values to be distinguished on the

same plot.

The main point to be drawn from this figure is that IHR does indeed generate so-
lutions which penetrate obstacles - i.e. infeasible solutions. This is evident from the
points which lie in the range of 10° and is particularly noticeable in Figure 6.5(c),
where several trials continue to generate infeasible solutions until the final iteration.
Note also that the points at which the lowest black line crosses the (dashed) conver-
gence threshold correspond to the generation at which one of the experimental trials
first discovers a collision-free path to the goal. Thisis one measure which can be used
to gauge the relative difficulty of the different test problems. Another measure consists
of the average performance over the set of trials, as indicated by the mean (blue) and
median (red) traces in each of the sub-figures. Based on the point of first crossing,
it appears as though problem P; is the easiest (crossing around generation 50) while
problem P; isthe most difficult (not crossing until generation 1600 or so). In compar-
ing the average performance, we reach a similar conclusion, as the P; traces cross the
convergence threshold at the latest generation relative to the other problems. In fact, it
appears as if the mean and median costs over the set of al trials on problem P; never
reach zero - which implies that at least one trial failed to terminate prior to the end of
10000 iterations.

In order to gain further insight into the relative performance of IHR over this set
of problems, it is of interest to directly compare some average measure of performance

over the set of 20 trials. For this purpose, we overlay each of the median traces con-
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tained in the sub-plots of Figure 6.5 on a single set of axes. Seen in this form, the
relative difficulty of the different test problems is immediately apparent, at least in
terms of the median cost. Here, we see that P, is clearly the easiest of the problems
as would be anticipated given that there are no obstacles in the way. The differences
between the performance on the other 3 problems, however, are much more subtle,
particularly between P, and P,. Nonetheless, this measure confirms our earlier specu-
lation that problem P; was the most difficult for IHR to solve using the instruction list

formulation.

60

IHR Instruction List

Median Value of Cost

0 1 1 1 1 1 By
0 0.5 1 15 2 25 3 35 4

Iogm(Number of Function Evaluations)

Figure 6.6: Median cost over problems P, — P, for IHR instruction formulation.

IHR - Maneuver Sequence Results

Figures 6.7(a)-(d) show the different paths found by IHR over the series of 20 trials
on each of the test problems P, — P, respectively. These paths were obtained using
the maneuver sequence formul ation based on deterministic speed/heading changes. The
longest (black) and shortest (red) paths found in each case are denoted by the thick lines
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ineach figure. Aswasthe caseintheinstruction list results, IHR is successful in discov-
ering many different maneuver-based paths to the goal over the course of the trial set.
By comparison, however, the trgjectories shown in Figure 6.7 exhibit much greater vari-
ation than those obtained using the instruction list input vector. This corresponds to the
fact that the maneuver-based formulation admits drastic changes in behavior based on
minor changes in the input vector. Again, these paths are by no means close to the “op-
timal” trgjectories, for the most part, as no explicit penalty was placed on PathLength
or PathAngle. Such a penalty would have the effect of shortening the average length
of the path obtained and reducing their variation across different trials. Nonetheless, in
looking at the trajectories noted in red in Figures 6.7(b)-(d), one sees that at |east one of
the paths obtained over the 20 trials on problems P, — P, is nearly optimal. Of course,
one aso finds that the longest path (noted in black) is far from optimal, being rather

convoluted in nature.

Figure 6.8 shows the variation in the minimum, maximum, mean, and median cost
computed over the set of 20 trialson each of the four problem instances. Here, again, the
tendency of IHR to generate (and accept) solutionswhich penetrate obstacle constraints
isevident. Based on the points at which the minimum cost drops below the convergence
threshold in each sub-plot, it again appears that problem P5; was dlightly more difficult
than the others when using IHR and the maneuver sequence input representation. Note,
however, that unlike in the instruction list case, the mean and median cost traces do in-
deed cross the convergence threshold prior to the termination of the maximum number
of iterations. Thisimplies that, for the maneuver sequence, each of the 20 trials was
able to discover a collision-free trgjectory satisfying the RangeGoal < 1 requirement.
Note also that the point at which the mean and median traces cross the convergence
threshold is nearly identical for problems P, — P,. As ameans of assessing the rela-
tive difficulty IHR experienced in solving the different test problems via the maneuver
formulation, consider Figure 6.9, which again overlays the median cost traces obtained

over each test problem. Based on this measure, one finds that again, problem P; is by
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far the easiest scenario. Further, one observes that the average (median) convergence
rate over the set of trials on problem P, is significantly better in the region between
generations 10 and 300 or so. Despite this early advantage, however, the convergence
rate of P, is seen to match that of problem P, from approximately generation 300 and
onward. The corresponding trace for problem P; is seen to lag behind just slightly,
again confirming that it was, on average, the most difficult of the problem scenarios.

One can also compare the relative difficulty of solving the various problem instances

60

IHR Maneuver Sequence

Median Value of Cost

Ll
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Iogm(Number of Function Evaluations)

Figure 6.9: Median cost over problems P, — P, for IHR maneuver formulation.

with the instruction list as opposed to the maneuver sequence formulation. Such acom-
parison is made in Figure 6.10, which gives the variation in the median cost over the set
of 20 trialsasafunction of iteration for each input specification. Note that the cost axis
in thisfigure consists of the actual value, not the log asin earlier plots. In each of these
figures, the solid line corresponds to the maneuver formulation while the dot-dashed
line represents the median cost using the instruction list. The relative performance of

the two technigues seems to depend on the nature of the obstacle distribution in each
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problem. On problem P;, in which no obstacles are present, the performance of the two
input representations is nearly identical. Early on the instruction list shows better per-
formance, yielding to dlightly better latter convergence of the maneuver sequence. In
comparing the instruction list trace across the various problems, one finds that it has a
tendency to initially “stick” at apoor value of cost (it evenincrease in (b)), and then ex-
hibit a series of relatively sharp jumpsin improvement. Thisisin contrast to the nature
of the maneuver sequence performance which tends to be sightly more regular in its
average convergence rate. Based on these plots, one concludes that the IHR instruction
list formulation generally resulted in faster convergence early in the search. Over al
problems, however, the IHR maneuver sequence outperforms the IHR instruction list
in that the entire set of trials converges earlier (in terms of generation). We now turn to

see how EA performed over these same test scenarios.

6.4.3 Evolutionary Algorithm Results

Equivalent results to those presented for IHR in the previous section are depicted here

for the case of the evolutionary algorithm (EA).

EA - Instruction List Results

The variation in the types of paths found by EA using the instruction list input rep-
resentation is illustrated in Figure 6.11(a)-(d) for problems P, — P,, respectively. As
compared with the IHR results in Figure 6.4, one sees that the spatial distribution of
paths using EA is considerably smaller. In particular, amajority of the paths discovered
over the set of trialstend to liein the vicinity of the “shortest” path in Figures 6.11(b)-
(c), with areasonably equal split around the obstacle pattern in Figure 6.11(d). Aswas
donein the IHR case, we illustrate the variation in the best cost function value present
in the population at each generation of the EA (Figure 6.12. A glaring difference as
compared with the results with IHR is that EA does not accept a single infeasible so-

[ution which penetrates the obstacles. Thus, the maximum and minimum cost in each
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figure provide relatively smooth bounds surrounding the distribution of costs over the
set of trials. Another key difference is that in none of the problem instances was the
maximum number of generations exceeded - the mean and median traces cross the con-
vergence threshold in each sub-plot. As before, it appears as if problem P; was the
most difficult, requiring more generations on average before the convergence threshold
was exceeded. Note, however that this distinction is not as sharp as it was in the IHR
results. The relative difficulty of the four problemsin the context of the EA instruction
list formulation is given in Figure 6.13, where the median cost traces have again been
overlaid on the same axes. Here, the relative difficulty of the four problems s readily
apparent. In fact, thisplot verifiesour initial design objective, which wasto present four
problems of generaly increasing difficulty to the EA planner. Note, however, that we
again obtain the result that P is slightly more difficult than the other test scenarios - as
indicated by the fact that its median trace is the last to reach the convergence threshold.

EA - Maneuver Sequence Results

In order to assess the rel ative performance of the maneuver sequence as compared with
theinstruction list, we repeat the above experiments using EA to manipulate the maneu-
ver indices and application intervals for the same problems P, — P,. The trgectories
discovered over each of the 20 trials on these problems is shown in Figure 6.14. As
compared with the corresponding plots in 6.7, one finds that the best (shortest) tra-
jectories discovered by the EA formulation are nearly optimal over all of the problem
instances. In particular, EA finds the straight path in problem P; in 75% of the trials.
Again, the distribution of tragjectories in path space is much smaller than that found
using IHR - the mgjority of the EA trgjectories lie within a small neighborhood of the
optimal solution. We also illustrate the variation of cost descriptors for the maneuver
formulation, as illustrated in Figure 6.15. As compared with the EA instruction list

results, the traces in this figure exhibit much more drastic variation over the suite of test



180

151

log, (cost desriptors)
-
T

)
@
T

convergence threshold

L L
05 1

L ey L
25 3 35 4

15 2
log, (number of function evaluations)

@

151

-
T

)
@
T

log, (cost desriptors)

convergence threshold

L L
05 1

L L L L n
15 2 25 3 35 4

log, (number of function evaluations)

(©)

\ogw(cosl desriptors)

\ogw(cosl desriptors)

-
T

o
@

-
T

o
@

convergence threshold

L L
0 0.5 1

. . .
15 2 25 3 35 4
log, j(number of function evaluations)

(b)

convergence threshold

__________________________

L L
0 0.5 1

. . . . .
15 2 25 3 35 4
log, j(number of function evaluations)

(d)

Figure 6.12: Variation of best cost values (min, max, mean, and median) attained over
20 independent trials by EA as afunction of iterations for problems P, — P,. Based on
instruction list formulation with ¢ = 40 maximum possible number of active instruc-

tions.
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Figure 6.13: Median cost over problems P, — P, for EA instruction list formulation
with ¢ = 40 maximum number of instructions.

problems, particularly on problems P; and P,. This corresponds to the difficulty posed
by these latter problems, asindicated by the fact that the crossing point at which thefirst
trial exceeds the minimum convergence threshold generally moves to the right as one
examines Figures 6.15(a)-(d). Focusing on the mean and median traces for these |atter
problems, one sees that theinitial rate of convergence isgenerally slower than that seen
in problems P; and P, athough it exhibits the same general features stretched in time
(generation). We note in particular the difference in the mean and median cost tracesin
problems P; and P;. Notice that the median trace (shown in red) doesindeed cross the
convergence threshold, while the crossing of the mean trace (blue dots) iseither delayed
(Figure 6.15(c)) or does not occur at all (Figure 6.15(d)). This latter result implies that
at least one trial for the EA maneuver sequence did not converge on problem P, prior
to the 10000 function evaluation limit.

The relative difficulty of the four problemsin the context of the EA maneuver for-

mulation is given in Figure 6.16. Here, the relative difficulty of the four problems is
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readily apparent. Note that the slope of the tracesin this case, particularly for problems
P3; — P4, ismuch steeper than that obtained using the instruction list formulation. This
corresponds to the fact that the instruction list formulation tends to exhibit gradual, but
continual improvement in fitness. In contrast, the progress of the maneuver sequence
tends to be much more discontinuousin nature, marked by an initial period of sustained

stagnation punctuated by sudden improvement.
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Figure 6.16: Comparison of rate of convergence of median cost for problems P, — P,
using the EA maneuver formulation. Mutation only with p.,,aneuver = 0.1, Prime = 0.1.

As ameans of assessing the relative performance of the maneuver and instruction
list formulations, consider Figure 6.17, which shows the mean cost traces obtained over
each problem using both input representations. Note that we have included the results
obtained using crossover in addition to mutation for the maneuver sequence formula-
tion. For problem P;, we see that the maneuver sequenceis slightly more effective, with
the effect of crossover being minimal. The performance of the different input represen-
tations on problem P, isnearly indistinguishable. Thisisin contrast to problems P3 and

P,, where we find that the discrete instruction list formulation exhibits a notably faster



185

rate of convergence over the set of trials. Focusing on the instruction list trace in Figure
6.17(d), we see evidence of several of the trials stagnating near a cost value 35, corre-
sponding to the local minimatrap present in the obstacle definition for P,. Despite this
stagnation, the rate of convergence of the instruction list formulation is matched only
by the mutation + crossover resultsin P, where we have modified the mutation rates
to be prancuver = 0.4 and pyne, respectively. Note, however, that the mean value for
the instruction list trace goes to zero (indicating all trials having converged) faster for

both problems P; and P;.
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6.4.4 Relative Performance Comparison

In this section we summarize the results of the numerical experiments carried out in
tabular form. For the stochastic algorithms (IHR and EA), we present the maximum,
minimum, and average values for each metric obtained over the series of trials on each
problem. Since A* isadeterministic agorithm, wereport only the mean values obtained
on each problem on a 50 x 50 grid. This averaging is done to wash out the minor
variations in computation time observed - it has no effect on the number of flops or
nodes expanded as thisis determined solely by the algorithm and problem definition.
The reader is referred to Appendix E to get a better feel for the actual variation in
the different metrics over the set of trials. As mentioned previously, we do not give a
standard deviation value since the data collected are not well represented by a normal
distribution. This is due to the fact that often times the stochastic algorithms would
run to the maximum allotted number of function evaluations in situations where the
termination criteriawas not reached. As such, the data often consists of several “bands”
of points - distinguishing between the subset of trials in which the algorithm was able
to reach the termination criterion and those in which it could not. A more detailed
comparison would thus consist of comparing the algorithmsonly over thissuccessful set
of trial. For the purposes here, however, we did not wish to throw out the casesin which

the algorithm failed to find a solution in the number of allotted function eval uations.

Instruction List Formulation

Tables 6.3-6.6 describe the performance of the various algorithms on the four test prob-
lems, P, — P,. Thisdata correspondsto theinstruction list formulation for the stochastic
search algorithms (EA and IHR).
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Table 6.3: Summary of results for problem P, where ¢ = 40 for EA and IHR - using
instruction list representation.

Ax IHR EA
mean | min | max | mean | min | max | mean
Num. Evals 245 | 71 | 6707 | 2582 | 240 | 2560 | 835
Comput. Effort (Mflops) | 0.024 | 0.12 | 126 | 505 |.068 | 1.05 | 0.32
Elapsed Time (secs) 0.68 | 1.35 | 15941 | 63.59 | 2.03 | 26.94 | 8.40

Table 6.4: Summary of results for problem P, for ¢ = 40 for EA and IHR - using
instruction list representation.

Ax IHR EA

mean | min | max mean | min | max | mean
Num. Evals 1470 | 299 | 10000 | 4807 | 520 | 2300 | 1242
Compuit. Effort (Flops) | .041 | 059 | 21.11 | 995 |0.31 | 1.95 | 0.99
Elapsed Time (secs) 14.22 | 9.68 | 364.31 | 173.72 | 6.97 | 34.59 | 18.25

Table 6.5: Summary of resultsfor problem P; with ¢ = 40 instructionsfor IHR and EA
- using instruction list representation.

Ax IHR EA

mean | min max | mean | min | max | mean
Num. Evals 2257 | 1642 | 10000 | 7850 | 960 | 4920 | 2681
Comput. Effort (Mflops) | .051 | 3.33 | 21.83 | 1653 | 0.86 | 555 | 2.83
Elapsed Time (secs) 3451 | 56.72 | 413.31 | 291.01 | 13.99 | 74.04 | 40.98
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Table 6.6: Summary of resultsfor problem P, with ¢ = 40 instructionsfor EA and IHR
- using instruction list representation.

Ax IHR EA
mean | min max | mean | min | max | mean
Num. Evals 2453 | 514 | 10000 | 5672 | 1020 | 2460 | 1696
Comput. Effort (Mflops) | 0.054 | 1.09 | 21.92 | 12.02 | 0.99 | 2.86 | 1.78
Elapsed Time (secs) 41.29 | 19.52 | 389.65 | 212.59 | 15.15 | 38.64 | 25.75

Maneuver Sequence Results

In this section, we summarize the performance of the various algorithms on the four

test problems P, — P, when the input representation for the stochastic algorithmsis

formulated as a maneuver sequence. The results for A* are simply copied from those

obtained in the previous section for purposes of comparison.

Table 6.7: Summary of results for problem P; where ¢ = 40 for EA and IHR - us-
ing maneuver sequence representation. Note: Mutation operator for EA consists of
mutation only With p,,04e = Prime = 0.1.

Ax IHR EA

mean | min | max | mean | min | max | mean
Num. Evals 245 | 22 5574 | 1297 | 140 | 460 | 243
Compuit. Effort (Mflops) | 0.024 | .087 | 26.29 | 5.16 | 0.10 | 0.49 | 0.23
Elapsed Time (secs) 0.68 | 571 | 173.72 | 34.44 | 1.29 | 5.94 | 2.76
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Table 6.8: Summary of results for problem P, where ¢ = 40 for EA and IHR - us-
ing maneuver sequence representation. Note: Mutation operator for EA consists of
mutation only with p,,.04e = Ptime = 0.1.

Ax IHR EA
mean | min max | mean | min | max | mean
Num. Evals 1470 | 338 | 10000 | 3181 | 360 | 1160 | 769
Comput. Effort (Mflops) | 0.041 | 1.33 | 37.56 | 1246 | 0.50 | 242 | 1.38
Elapsed Time (secs) 1422 | 11.11 | 303.05 | 102.75 | 7.912 | 30.21 | 18.87

Table 6.9: Summary of results for problem P; where ¢ = 40 for EA and IHR - us-
ing maneuver sequence representation. Note: Mutation operator for EA consists of
mutation only with p,,,04e = Ptime = 0.1.

Ax IHR EA
mean | min max | mean | min max | mean
Num. Evals 2257 | 689 | 10000 | 4304 | 920 | 9980 | 3254
Comp. Effort (Mflops) | 0.051 | 2.74 | 4348 | 16.09 | 1.69 | 27.56 | 6.47
Elapsed Time (secs) 34.51 | 22.69 | 427.70 | 140.61 | 22.26 | 249.12 | 81.63

Table 6.10: Summary of results for problem P, where ¢ = 40 for EA and IHR - us-
ing maneuver segquence representation. Note: Mutation operator for EA consists of
mutation only With p,,,0qc = Prime = 0.1.

Ax IHR EA

mean | min | max | mean min max | mean
Num. Evals 2453 | 322 | 7350 | 2407 | 1880 | 9980 | 4086
Comp. Effort (Mflops) | 0.054 | 0.77 | 32.98 | 9.88 262 | 1941 | 6.60
Elapsed Time(secs) | 41.29 | 8.43 | 323.54 | 102.54 | 45.105 | 250.33 | 97.11
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Table 6.11: Comparison of resultsfor problem P; where ¢ = 40 for EA using maneuver
sequence representation to examine the effect of crossover on average performance.
Note: mutation probabilities set to P, ancuver = Prime = 0.1.

EA mean values

(mutation only) | (mutation + crossover)

Num. Evals 243 256
Comput. Effort (Mflops) 0.23 0.28
Elapsed Time (secs) 2.76 3.36

Table 6.12: Comparison of resultsfor problem P, where ¢ = 40 for EA using maneuver
sequence representation to see the effect of crossover. Note: mutation probabilities set

to Pmaneuver = Ptime = 0.1.

EA mean values

(mutation only) | (mutation + crossover)

Num. Evals 769 1066
Comput. Effort (Mflops) 1.38 221
Elapsed Time (secs) 18.87 28.78

Table 6.13: Comparison of resultsfor problem P; where ¢ = 40 for EA using maneuver
sequence representation to see the effect of crossover. Note: mutation probabilities set

to Pmaneuver = DPtime — 0.1.

EA mean values

(mutation only) | (mutation + crossover)

Num. Evals 3254 2488
Comput. Effort (Mflops) 6.47 4.97
Elapsed Time (secs) 81.63 65.21
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Table 6.14: Comparison of resultsfor problem P, where ¢ = 40 for EA using maneuver
seguence representation to see the effect of crossover. Note: mutation probabilities to
values indicated.

EA mean values

mutate only mutation + crossover
pman:()-l pman:0-4 pman:()-l pman:0-4
ptimezO-l ptime:0-2 ptimezO-l ptime:0-2
Num. Evals 4086 3544 2587 4411
Comput. Effort (Mflops) 6.60 12.07 4.98 16.24
Elapsed Time (secs) 97.11 107.89 66.93 143.62

6.5 Summary of Findings

We first make several general comment regarding the relative difficulty of the four test
problems observed through these experiments. Recall that we originally intended for
the four problemsto increase in difficulty - with problem P, posing the most challenge
due to the presence of an obvious potential minimatrap. Based on the experimental re-
sults, however, we found that this was generally not the case. Instead, problem P; was
seen to cause the algorithms the most fits. This result can be rationalized, however, by
considering the nature of the paths which the algorithmstended to discover. Because of
the inclusion of the repulsion term (inversely proportional to RangeStart) in the cost
function, thelocal minimatrap was generally avoided, causing partial pathsto naturally
end up to the “outside” of the obstacles in problem P,. At this point, with the goal es-
sentially in clear view, it was arelatively easy task to connect the free ends of these paths
to the goal location. On the other hand, problem P; has a considerably smaller propor-
tion of “goal visibility” as compared with the other test scenarios. Also, the spacing of
the obstacles and the gaps in between them are such that small changes are typically
necessary for atrajectory to squeeze through. This explainswhy the instruction list for-
mulation outperformed the maneuver sequence, as changes in an instruction have very

localized effects in terms of the shape of the trgjectory. By comparison, changesin a
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maneuver index can cause much more dramatic changes in the trgjectory. In fact, this
relative degree of motion through the space exhibited by the maneuver sequence and
instruction list formulations suggests a hybrid scheme in which the population initially
consists of amaneuver sequence and then transitionsto an instruction list representation
for the purposes of fine-tuning the tragjectory.

In assessing the performance of the various algorithms, we take the deterministic
results of A* as abaseline and comment on the mean val ues obtained with IHR and EA
using both the instruction list (Tables 6.3 - 6.6) and the maneuver segeuence (Tables 6.7
- 6.10) input definitions. On the simplest problem, P;, in which there are no obstacles
present, A* is seen to have a clear advantage in terms of average performance across
all metrics. As might be expected, however, due to the stochastic nature of the IHR and
EA algorithms there are instances when the lowest values obtained on a given trial are
competitive with those of A*. Again, however, this“luck of the draw” cannot be relied
onin genera - it isthe average performance of the stochastic algorithms over a number
of trialswhich isimportant.

As one moves through the different problem instances, several trends appear:

e EA generally outperforms IHR over al metrics as the problem complexity in-
creases. This holds for both the instruction list and maneuver sequence input

definitions.

e The elapsed computation time for A* catches up and even exceeds that required
by EA (mean value - using the instruction list input definition).

This first trend is not too unexpected in that the purpose of a global optimization
algorithm such as IHR is not necessarily to find an answer fast - but smply to find the
global optimum through an increasing uniform sampling of the search space over time.
Thisimpliesthat IHR isless likely to be stuck in local minimatraps as compared with

EA whose sampling is biased by the forces of natural selection.
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Admittedly, the second trend listed aboveis duein large part to the run-time compil-
ing of MATLAB and its associated inefficiency in executing for loops. Given that the
evolutionary process is a “generate and test” procedure involving excessive for loops
as well (not to mention the generation and evaluation of paths), this disadvantage is
shared by all the algorithms presented. A caveat in generalizing this result, however, is
that the number of floating point operations for A* does not grow in a similar fashion.
The performance of these algorithmsin C/C++ can not necessarily be inferred by these
results. Nonetheless, given the use of A* inreal-world applicationsin the literature (see
Chapter 2), these results are encouraging in that EA might be at least viable for the
purpose of path planning in near real-time. Note that this second trend does not hold in
the maneuver sequence formulation, where the mean value of computation time for EA
is seen to be greater than two times that of A* on the most difficult problem instances
(Ps — Py).

In examining the effects of crossover on the performance of the EA maneuver se-
guence in solving problems P, — P, (Tables 6.11 - 6.14), we note an interesting trend.
Initially, we hold the mutation probabilities on the application time and maneuver se-
lection at the values piime = Pmancuwver = 0.1. On the “easier” problems (P, — P),
crossover evidently slightly degrades the average convergence time. On the other hand,
crossover is seen to provide a significant improvement in terms of reducing the conver-
gence time on the more “difficult” problems (P; — P;) - even though the computational
effort involved in implementing crossover actually increases. From this result, one can
infer that the relative benefit of crossover istied to the twists and turns required of the
solution trajectory. Inloosely constrained environments, the added computational com-
plexity and increased variation in trajectories provides no appreciable value. On the
other hand, as the percentage of free space becomes smaller, the additional “curiosity”
caused by crossover of individuals provides an advantage over mutation alone. Note,
however, that despite this improvement in average convergence time, the performance

of the (mutation + crossover) maneuver sequence still does not match that obtained
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using the instruction list formulation.

Also included in Table 6.14 are the average measures obtained for the case when
the mutation probabilities for time and maneuver were increased to p4;,,. = 0.2 and
Pmanewver = 0.4, respectively. Here we see that the increased mutation rate has a no-
ticeabl e negative impact on performance when measured in terms of the average “time
to convergence”’. This tendency is confirmed in looking closely at the corresponding
trace in Figure 6.17(d), which, although having a reasonable good initial rate of con-
vergence, exhibits considerable flattening over the latter iterations. We highlight the
effect of increased mutation probability in Figures 6.18 - 6.19 both with and without
crossover, respectively. Here we see that the effect of crossover isto increase the early
rate of convergence while slowing the later fine tuning of the trgjectory in the vicinity
of the optimal solution. This is indicated by the crossing of the two traces in these
figures. Indeed, the mean value for mutation only goes to zero faster than that when
crossover isincluded in the generation of offspring. Thisis consistent with the fact that
“smaller” mutations are desired once the search has focused near an optimal solution.
Such aresult suggests an adaptive offspring production mechanism which utilizeslarge
rates when the solution is “far” from optimal and then gradually reduces the mutation

probabilities as the optimal solution is approached.

Note that the static environments considered in this chapter represent the bare min-
imum in terms of capabilitiesrequired by a path planning algorithm for an autonomous
vehicle. We have not included any additional targets for the vehicle to observe, nor
have we modeled any time-of-arrival constraints. In fact, implementation of A* in such
situations, although possible, leads to a dramatic increase in computational effort - a
problem which is only amplified as one begins considering coordinated planning for
multiple vehicles. In this case, one needs to introduce a separate combinatorial op-
timizer (smilar to [64]). It may not even be feasible to cast realistic path planning
problems in a framework consistent with a graph search formulation. In such situa-

tions, stochastic algorithms such as EA have a distinct advantage in that, as long as the
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problem can be modeled via population and expressed in terms of some sort of (vector)
cost function, solutions can be evolved. Thus, athough EA is not the path planner of

choice in every situation, it holds significant potential for solving an array of problems

which are out of reach of other path planning techniques.
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Chapter 7

PATH PLANNING IN DYNAMIC ENVIRONMENTS

In this chapter, we extend earlier results by treating dynamic scenarios involving
“annoying” environments. These environments range from the sudden appearance of
“pop-up” obstacles to the tracking a non-stationary target through a moving obstacle
field. By treating such scenarios, we illustrate the ease with which complex problems
can be handled by EA through minor changes in the definition of the environment (e.g.
the cost function) used to shape solutions. What distinguishes this class of problems
from the static problemstreated in the previous chapter is the need for the evolutionary
algorithm to search through both space and time simultaneously. We refer to these
environments as annoying rather than adversarial because we assume that the obstacles
and targets follow pre-determined trajectories which do not change in reaction to the
vehicle’'s motion. Instead, their motion is intended only to disturb the planner, making

its task more complicated.

7.1 Overview

Inevitably, planning involves searching forward in time, approximating the future inter-
action of the vehicle with the environment and the effects of itsactions. In a static, pas-
sive environment, this involves construction of spatial tragjectories which are collision-
free and satisfy the mission objectives. Time enters explicitly only in situations in-
volving time-of-arrival constraints, or threats whose potential lethality changesin time
or with duration/proximity of exposure. When a vehicle must dodge moving obsta-
clesto intercept moving targets, however, the space which must be searched inherently

includes both spatial and temporal dimensions. Not only must the vehicle's state be
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propagated forward in time, but so must that of the targets and threats. Either exact
knowledge or an estimate of the target and threat motion must be utilized in order to
maximize the probability that the vehicle can reach the target(s) while simultaneously
avoiding the moving obstacles. This problem is further complicated when the vehi-
cle must navigate through regions of the environment where the effective “terrain” can
change over time. For example, assuming that passage through a particular region gives
the vehicle a tactical or otherwise advantage, it might behoove the vehicle to “stall”,
waiting for strong headwinds to subside rather than taking an alternative route.

For simplicity, we limit our focus to robotic vehicles which can be modeled as a
single rigid body, parameterized by a characteristic length. For purposes of collision
detection, we model the vehicle as a circle (2D) or sphere (3D) with a fixed radius. In
general, motion planning for an articulated body connected by various joints could be
handled through straightforward extension of the discussion presented here.

It is reiterated that the approach taken in this thesis is that we do not seek to find
a unique, globally optimal solution to each planning problem. Due to the dynamic
nature of the various entities involved (environment, mission, vehicle), as well as the
need for time-constrained delivery of trajectories in near real-time, we instead search
for solutions which are “good enough”. We thus adopt an algorithmic approach which
continually probes the environment, repeatedly solving a series of different planning
problemsin rapid succession. We argue that the notion of a problem yielding a single
optimal solution is meaningless in the presence of uncertainty - any supposedly “ opti-

mal” path islikely to become obsolete at a moment’s notice.

7.2 Planning Amidst a Changing (but Non-Moving) Environment

In this example we use the baseline continuous speed/heading formulation (see Sec-
tion 4.5) applied to a single vehicle routing problem through a changing obstacle field.
Under this framework, we treat the vehicle speed as a discrete integer in the range

ulk] € {1,2,3} and the vehicle heading as a continuous real-valued number in the
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range ¢ [k| € [0, 2x|. Changesin heading and speed are triggered based on valuesin the
instruction list and implemented using the stochastic perturbations (see Section 4.5.1),
in which perturbations are limited to A,,,, = &1 and A,,,, = £30° over any given
interval.

A scalar cost function is used in this simulation, containing the cost components:

f(#7) = RangeGoal (fj) + 100000bstacle Penetrate (fj) (7.0

The size of the population istaken to consist of ;. = 20 individuals, where the length of
each individua is allowed to vary from zero to a maximum of 100 instructions. Gen-
eration of offspring consists of randomly modifying a maximum of 5 instructions per
parent, as well as adding or deleting an instruction from the end of each parent’slist as
described in Section 4.5.1. Note that every 10 generations, we replace the 5 worst per-
forming individualsin the population with 5 new parents, initialized at random. Thisis
done so asto provide the EA with the opportunity to utilize these new individualswhich
have yet to be biased by previous experience in the environment. The tournament se-
lection used in thisand all other simulated results reported consists of the g-fold binary
tournament as described in Section 3.4.3. Here, we define the number of competitions
in each tournament to be equal to 1./2 = 10.

We show the results of atypical ssmulation under these conditions in terms of sev-
eral “snapshots’ taken over the course of the experimental run, presented in Figure 7.1.
Note that these results were obtained through an interactive ssmulation in which the
obstacles were placed “ dynamically” by the author while the simulation istaking place.
The snapshots below capture the state of the evolution at a number of such points. In
each sub-figure, the solid line corresponds to the best available solution at a given gen-
eration whereas the dashed lines show a portion of the remaining population. Thislatter
group of individualsis included in order to illustrate the distribution of the population
relative to the best available solution and how this distribution changes over time.

In Figure 7.1(a), we see that the population has branched out into three viable
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routes through the obstacle field, with the most direct route currently providing the
most promising solution (as indicated by the solid line). Upon the detection of an unan-
ticipated obstacle (labeled as 12) blocking this path (Figure 7.1(b)), the population is
seen to evolve to abandon the direct route and occupy the two alternatives around the
left side of the obstacle field. In Figure 7.1(c), the vehicle is given “intelligence” in-
formation regarding the location of an observation target at point A. Here we see the
population again adjust to isolate two primary routes, with the faster route around the
outside of the field identified as the preferred path. Figure 7.1(d) shows the converged
state of the population as the path satisfies the mission objectives, having reached the
target and terminated successfully at the GOAL.

In Figure 7.2, we present an additional 2D scenario which can be interpreted either
in terms of a ground vehicle trying to reach a goal on the other side of a bridge, or
aternatively, in terms of an air vehicle attempting to fly between a set of buildings. We
will adopt the former interpretation for the purposes of discussion. Here, the vehicle,
originating at point S, must cross one of two possible bridges to reach the GOAL on the
other side of aravine or river (represented by the rectangular obstacles). Note that a
separate boundary has been created along the top and sides of the environment in order
to force the search to concentrate on using the bridges to cross the river. Without this
boundary, the planner tended to find paths around the “ outside” of the water (i.e. outside
of thefigure). The planner isgiven no prior knowledge that biasesitstrajectoriestoward
the exact locations of the bridges. It discoversthe bridges solely on the basis of creation

of trial solutionswhich crossto the other side.

The conditions for this simulation are identical to those described in the previous
example, with the exception that in this case, we do not inject random individuals into
the population. Figure 7.2(a)-(b) show the initial distribution of paths and the state
of the search after approximately 30 generations, respectively. Here we see that the
planner successfully uses the left-most bridge to reach the GOAL. At this point, a set

of additional obstacles are inserted (interactively while the search is running) as shown
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(© (d)

Figure 7.1: Dynamic planning example through a changing obstacle field. Frames (a)-
(d) show snapshots at various generations while evolution reacts to user modifications
to the environment
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in Figure 7.2(c), triggering the movement of the population away from the left bridge
and towards the right-most crossing. By generation 100, the population has found a

waly to sgueeze through the opening and has reached the GOAL, asindicated in Figure
7.2(d).

(©) (d)

Figure 7.2: Ground vehicle planning - frames (a)-(d) show the reaction to an unantici-
pated blockage of the left-hand bridge after initial plan creation.
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7.2.1 Handling Terrain Changes

In this section, we present a simple example which illustrates the ability of the EP-
based planner to search to find feasible, near-optimal paths through spatialy varying
“terrain”. The environment in this example initially consists of a uniform windfield,
pointing to the north (upwards along the page), where the windspeed is defined to be
the maximum vehicle speed, i.e.||w|| = wma = 3. ASshownin Figure 7.3, the vehicle
starts at location S and is tasked with finding a path to atarget location, marked GO A L.
Fixed obstacles are represented by the numbered, open circlesin the figure.

The effects of the wind are included in the evaluation of the physical trgjectory by
modifying the effective speed of the vehicle over a given interval. First, the instruction
list for each trial solutionis mapped into a corresponding sequence of speeds and head-
ings, as defined by the speed/heading change operators. In this case, we again use the
stochastic version of these operators. The values in this speed sequence are modified
to account for coupling with the environment by adding the average wind components

over each interval:

Usepslte] = ultelcos(Y[ti]) + 0z [te]

Uyopplte] = ulte]sin(Plte]) + @, tx] (7.2

Given this sequence of effective speeds (in terms of their inertial components), the
physical locations of the vehicle at each sampling instant are then obtained.

Running the EP-based planner through this initial scenario results in the left-most
(dashed) path shown in Figure 7.3. Note that the arrows emanating from each path rep-
resent the vehicle orientation at each time step. As expected, the trgjectory “ delivered”
once the planner finds a complete path (i.e. RangeGoal(77) < R.) essentially follows
the wind field, making slight diversions as necessary to route around the fixed obstacle
field.

To demonstrate the adaptation of the population, we assume that the vehicle be-

gins moving along this left-most path when it becomes aware (based on an assumed
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Figure 7.3: Planning through an “annoying” wind field. A localized inversion triggers
are-plan asindicated by the right-most path.

updated forecast or via on-board sensing) that the direction of the wind immediately in
front of it has changed direction, now pointing downwards. In re-evaluating the current
population in light of this “new” environment, the population performs quite poorly,
even heading backwards from its intended direction. This encourages the development
of “new” offspring with different “behavior” which better match this changed environ-
ment. The results of the re-planning are highlighted in the right-most path of Figure 7.3,
where we see that 30 generations after discovering the discrepancy in wind direction,
the planner has “ corrected” the motion plan to go around the outside of the downward
pointing cells. Thisis the best course of action in the absence of any information or
estimate of the duration over which the wind inversion is expected to last. If such an es-
timate were available, it could be incorporated to allow alternative strategies including

apotential “stall” tactic waiting for the inversion to pass.
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7.3 Dodging Moving Obstacles

We now turn to the problem of finding atarget amidst amoving obstaclefield - asmight
be the case in an adversarial environment. For the results presented here, we assume
that the planner has perfect knowledge with regard to the motion of the obstacles in
time. In other words, the planner can always deduce the future “intent” of the obstacles
by accessing itsposition at any point in time. Thisisadmittedly amajor assumption, but
is used here to facilitate demonstration of the basic capability of the EP-based planner
to handle such scenarios. Implementation of this capability is possible by modifying
the obstacle penetration penalty to account for the motion of the obstacles in time to
check for possible future collisions. Here, we assume that the obstacles do not “react”

to the action of the vehicle.

For the purposes of this example, the initial position of each obstacle is assumed
known to the planner, and the obstacles are assumed to move along pre-defined straight-
line trajectories at a constant velocity. This alows the obstacle position at any future
time to be easily determined. Orienting the path-bounding rectangles along each path
segment facilitates rapid collision checking in the local frame of the path segment. This
technique is selected based on the assumption that the motion of the obstacles is in-
significant between sampling instants of the path motion - in other words, the obstacle
cannot suddenly jump from one side of a path segment to another between samples. If
this assumption is violated, an aternate scheme must be used. A better solution con-
sists of running a generalized collision detection calculation based on the rectangles
bounding the vehicle motion segment and obstacle motion between samples. Thisin-
creased complexity, however, is not necessary for the purposes of demonstrating the

basic concepts.

As an illustration of the capability of the EP planner to find routes through a dy-
namic obstacle field, consider the snapshots shown in Figures 7.4(a)-(c). These results

were obtained with a population size . = 30, with all other parameters defining the
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simulation identical to those of the previous examples. In addition, in this case, we
allow for the addition of multiple instructions (up to 10) to the end of each list. Obsta-
cles are represented as the shaded circles and the vehicleis represented by an open disk
with an arrow indicating its orientation and direction of travel. This example problem,
modeled after that presented in [45], involves planning through a set of obstacleswhich
are converging towards the vehicle. The direction of travel of each obstacle is defined
in multiples of 15° from [180° — 270°]. The speeds of the obstacles in this case is set
to 1.25 units per timestep, chosen to be less than the maximum achievable speed of the
vehicle (u,.. = 3). Figure 7.4(a) shows the population once the planner has delivered
a complete motion plan (indicated by the thicker solid line in each sub-figure). Here
we have used a population size i = 30. Note that several alternative routes around the
obstacle field are represented. Figures 7.4(b)-(c) show the vehicle executing a sharp
turning maneuver in order to clear the “wave” of obstacles, leaving a clear path to the
GOAL. Agan, we do not claim this to be a unique solution, just afeasible one. Addi-
tion of secondary optimization criteria (minimum time, minimum fuel, etc.) might well

change the nature of the solution obtained.

7.4 Tracking a Moving Target Amidst Moving Obstacles

We now further complicate the planner’stask by allowing the GO A L location to change
with time. Thus, it must solve the problem of tracking a moving target while simulta-
neously avoiding moving obstacles. Again, we assume that the planner has perfect
knowledge regarding the GO AL position at any instant of time. The GOAL is given
asimple, straight line trgjectory and its speed is limited to be less than the maximum
achievable speed of the vehicle. This alows the planner to catch the GO AL from be-
hind in addition to “intercepting” it in the traditional sense. In maneuvering around the
dynamic obstacles, the vehicle has two options. If it is faster than the obstacles, it can
navigate around them. If it is slower, it must wait for them to pass and then proceed

along its way. Note that we do not constrain the time of capture in this example, but
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Figure 7.4: Navigation through a converging obstaclefield toward afixed target. Frames
(a)-(c) show snapshotsin time during “execution” of the delivered trajectory.
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rather, allow it to be a free parameter.

In this example, a moving “field” of five obstacles of various radii is set in motion
along vertical trgjectories at different speeds - each of which is set to less than the
maximum vehicle speed. Obstacles 1, 3, and 5, are set in motion in the negative y-
direction with a speed of 1 unit per timestep. Obstacles 2 and 4 move upwards with
a speed of 1 unit per timestep. The radius of the vehicle disk in this case is set to 2
units. The vehicle is tasked with visiting a fixed target (denoted by the circle with a
red ‘X’) and then intercepting the moving GOAL. The “execution” of the delivered
plan is captured in Figures 7.5(a)-(c). The GO AL trajectory is indicated by the dashed
line in each figure. Here we see that the EP-based planner finds a route which allows
the vehicle to reach the target, squeezing between obstacles 3 and 4 and successfully
capturing the GO AL at timestep 30.

7.5 Adapting to Failures

Toillustrate the ability of the evolution-based planner to adapt its plan based on vehicle
capabilities, consider the situation depicted below in Figure 7.6. Here, the vehicle is
tasked with navigating from itsinitial location (-10,-10) and orientation (—45°) in order
to reach the goal location (25,25) by timet, = 35.

In this exampl e, we define the popul ation using the maneuver sequence formulation,
with the available maneuvers consisting of go straight, turn right, turn left, speed up
or slow down. We treat the application interval as a continuous variable in the range
0 < At < 5 and use a stochastic (Gaussian) perturbation to adjust these values over
the course of the search.

We utilize two different cost functions in this example. Prior to failure, we simply
specify path performance in terms of the distance from the end of a tria path to the
goal, evaluated at ¢, = 35:

Ji = RangeGoal ([t = 35]) (7.3
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Under the action of this nominal cost function, the EA planner finds an initial path,
depicted by the solid (blue) line, which allows the vehicle to arrive at the designated
goal location (marked with an * X") at a specified time (t = 35 seconds). Thistrgjectory
is then delivered to the navigation controller for execution.

To investigate the planner response to failures, we suppose that as the vehicle is
traversing along thisinitial path, a failure occurs which hinders its ability to turn right.
As such, the current plan has become infeasible. The evolutionary search, upon be-
coming aware of the failure, is modified to include a penalty which discouragesit from
generating trajectories requiring right turns, i.e. J, = J; + TurnRightCount. Under
the action of this modified cost function, (without any re-initialization of the popula-
tion), the dashed line path (red) is discovered, which consists solely of left turns. Note
that the EA planner has also adjusted the speed of the vehicle as necessary to enable to
vehicleto reach the designated goal location at the same time, thus maintaining mission

utility.

7.6 Summary

We have demonstrated the use of an evolution-based planner as a means of provid-
ing dynamic adaptation of the motion plan for an autonomous vehicle in response to
changes in the environment as well as the vehicle itself. A key feature to be empha-
sized is the genera nature of the evolution-based search. For this purpose, we refer to
Figure 7.1 as an example. It can be seen that the typical behavior of the populationisto
quickly enumerate many alternative feasi ble routes which span a certain radiusfrom the
current spawn location, as determined by the average length of the generated paths. The
population is then gradually focused in the most promising area, soon becoming dom-
inated by a particular solution. This dominant solution then continues to be fine-tuned
until reaching the goal and satisfying the remaining mission objectives,

When this occurs, however, the other potentia paths are essentialy “lost” from the

memory of the EA. Thus, if the current best path is somehow invalidated by future
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changes in the environment, it is necessary for the EA to re-discover pathsit has previ-
ously found and discarded. This suggests spatially separating the populationsto enable
these multiple routes to emerge independently, rather than allowing the forces of nat-
ural selection to make a choice before the paths have stretched all the way to the goal
location. Further, the genetic material from these separate populations might be mixed
in order to patch together additional trial paths. Although this idea is not developed

further in this dissertation, it is the subject of on-going research.



214

Chapter 8

EVOLUTION OF MOTION AGAINST AN INTELLIGENT
ADVERSARY

This chapter presents preliminary results obtained by simultaneously evolving the
motion strategy (in real-time - on a per decision basis) of both pursuer and evader in

severa “games’.

8.1 Overview

We have conducted some preliminary experiments investigating the potential suitabil-
ity of the evolutionary computational framework for application to problems involving
intelligent adversaries. In doing so we address the case in which, rather than follow-
ing a fixed pre-determined action strategy, an intelligent adversary responds based on

perception of agent/automaton behavior to actively foil the automaton’s plan.

8.2 Simulation Examples

Asafirst step, we consider variationson the classic “homicidal chauffeur” game (1saacs,
[102]) involving asingle pursuer and evader. In thisclassic problem, a pursuer with lim-
ited turn capability attempts to run down amore agile but slower evader. We denote the
pursuer and evader speeds at each instant of time by u,,[t,] and u.[t;], respectively, with
the requirement that v, > u.. The minimax performance objectives for each player
involve minimizing or maximizing the time of capture for the pursuer and evader, re-
spectively. Assumption on the motion of the pursuer isthat its turn rate is bounded. In

contrast, the evader is allowed to change directions arbitrarily at each instant of time.
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From an evolutionary perspective, we consider evolution of motion strategy on a sam-
ple by sample basis, where we evolve the motion decision (heading direction) for each
player at each discrete instant of time. The evolution of the species corresponding to
pursuer and evader are carried out in an inter-weaved fashion in which each player
reacts to the latest observed position of the other (in general, we could also consider
heading information). We consider a generalization of this classic problem in which
the evader not only wishes to avoid capture for as long as possible, but also desires
to reach a specific location in space. Thisis atypica multiple objective optimization
problem. The relative strength of these two objectivesis represented by two “gains’ in
the performance function for the evader, namely Kqo4r, and K 4vorp. For thissimple
example, the pursuer is modeled as having only a single objective, that of capturing the
evader. In this sense, the pursuer has no explicit knowledge of the GOAL point which
the evader is trying to reach. A different flavor of behavior could be redlized if the
pursuer had knowledge of the point it was effectively trying to defend. In this case, the
pursuer performance function might be DefendGoal () rather than CaptureEvader().

For this problem instance, we set the GOAL position which the evader is trying to
reach to be equal to the pursuer’s initial position (-15,-15). The evader starts at the
origin (0,0) and has a constant speed of 1.5. The pursuer isinitialy at (-15,-15) with
an initial heading of 150 degrees (relative to 0 to the right) and a fixed speed of 3 units
per second. Note that we allow the evader to move “first” in the game. As such, we
do not specify itsinitial heading as thisis the outcome of the evader’'s decision at time
t = 1. The traces in the following figure represent the time histories of the player's
motions where red is used to represent the pursuer and green is used for the evader. By
setting Koz equal to zero, we re-capture the classic homicidal chauffeur solution,
which is presented for reference in Figure 8.1. Here we see that the evader isincapable
of escaping the pursuer and thus chooses to maximize the longevity of its existence by

fleeing in a straight line.

We now consider the case where Koo, takes on a non-zero value. Let us first
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Figure 8.1: lllustration of the classic homicidal chauffeur game in which the evader
tries to maximize the time of capture.

examine what happens if Kqoar, = 1 and Kayorp = 2. This situation is shown in
Figure 8.2. Note that the evader speed in this exampleis set to a fixed value of 2 units
per timestep. Thisis still slower than the pursuer speed which is equal to 3 units per
timestep. Here, because the evader’s behavior is biased toward avoiding the pursuer, it

takes a slow, looping route to the goal and is captured at time ¢ = 16 asindicated.

Alternatively, we can examine the response when we invert the influence of the
behaviors, setting Kgoar, = 2 and Kavorp = 1. In this case, the evader is more
strongly attracted to the GOAL and isthus less “afraid” of the pursuer, resulting in the
player traces shown in Figure 8.3. Here we see that the evader motion toward the GOAL
isfast enough to alow it to get inside of the turning radius of the pursuer and thusreach
the GOAL safely. At this point, assuming the game had not ended, the evader could
have stayed within the minimum turning radius indefinitely.

As alast illustration, we consider the behavior resulting from a change in relative
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weight on the various terms in the objective function for the evader - corresponds to a
shift in strategy over time. In this case, at time step 12, we change the Ko 4, vaue
from an initial value of 0.5 to a new value of 2.0. An example of the the resulting

response is characterized in Figure 8.4.
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Figure 8.4: An additional example in which the evader strategy is changed toward
increased goal attraction at timet¢ = 12.

As expected, due to the relatively low initial GOAL attraction, the evader begins
alarge spiral which would eventually alow it to reach the GOAL while attempting to
maximize its time to capture. During this time, the pursuer has not quite caught up to
the evader. Upon the strategy transition, the evader quickly ducks inside the turning
radius of the pursuer but, as shown, is too far away from the goal to avoid capture

indefinitely - despite some deft maneuvering as indicated in Figure 8.4.

Finally, we consider a different formulation of the evader’s objective. Namely,
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rather than trying to maximize her distance from the pursuer, she adopts an avoidance
strategy of “Stay outside of a radius of 5 units” from the pursuer position. Thus, in
the absence of any goal-seeking behavior, one would expect the evader to effectively
do nothing unless the pursuer gets within 5 distance units - at which point, the evader
would attempt to modify its location to satisfy its avoidance objective. We model this
objective using an identical cost function to that used previoudly. In this case, however,
whenever the distance between the pursuer and evader is greater than 5 units, the corre-
sponding cost component related to avoidance is set to zero. Thus, when the evader is
out of harm’s way, she reverts to goal-seeking behavior, only invoking avoidance when
threatened. For this experiment, we set K 4,vo;p = 4 and Kgoar, = 3. The speeds of
the pursuer and evader are set to u, = 3 and u. = 2, respectively. Typical behavior
resulting from the simultaneous evolution of strategy in this case is depicted in Figure
8.5.

Here, one observes a dramatic difference in the evader trace as compared with the
previous examples. The evader, rather than heading away from the GO AL, isinstead
initially drawn directly towards the GOAL, as it isinitially outside of its perceived
threat radius (and is thus safe). The evader then proceeds to execute a series of small
course corrections as indicated. These maneuvers serve to improve itstactical position
by placing it inside the pursuer’s turning radius, running essentially “parallel” to the
pursuer. At time step 12, the evader then takes a quick step to the right, allowing the
pursuer to go by, then hops back to its previous position and proceeds safely to the
GOAL.

8.3 Summary

Thischapter hasillustrated the use of evolution-based planning to simultaneously evolve
“real-time” (e.g. per decision) strategies for both a pursuer and evader in several types
of differential games. It was demonstrated that this approach can result in “solutions’

which are similar to those obtained analytically using classic differential-game theory.
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Further, the effect of time-varying strategy on the part of the evader (against afixed pur-
suer strategy) was illustrated. In particular, an aternative evader cost function related
to a heuristic approximation of “safety” was shown to result in rather creative evader
behavior, similar to might be observed in agame of tag. This behavior was not scripted,

but rather emerged naturally through the evol utionary decision process.
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Chapter 9

MULTIPLE VEHICLE COORDINATED PLANNING

In this chapter we present discussion of variousissuesrelated to the coordination of
multiple vehicles on agiven task. The tasks considered include coordinated rendezvous
and atarget coverage problem. We demonstrate the ability of the evolution-based plan-

ner to successfully evolve solutions to these types of problems.

9.1 Coordinated Rendezvous

A simple example of multiple vehicle planning is the coordinated arrival at a specified
location. There are two options available for determining the arrival time. It can either
be specified by amission commander as afixed time, or can be negotiated by the various
players. We consider the arrival time as determined a priori by some external source.
The population representation we utilize for this example is the maneuver sequence
discussed previously in Chapter 4. We model the decision space of maneuvers at each
point in the sequence as integers in the range [1,5], as defined by the top five rows of
Table 4.3. The application interval for each maneuver is taken as a continuous variable
in the range [0,5]. The vehicle speed is bounded in the range [1,3] with the maximum
changein speed over agiveninterval limitedto 1/sec?. Theturn rate within amaneuver
issimilarly limited to 30°/sec.

We define initial states for ateam of three vehicles (labeled A, B, and C) and allow
the evolutionary a gorithm to proceed to find routes which enable the team to converge
at a specified point (28.0, 0.0) at the desired time (t = 45 secs). The results of this
simulation are shown below in Figure 9.1. Here we see that the vehiclesdo indeed reach

the specified location simultaneously as desired. The performance function used in this
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case was simply the minimization of distance between the vehicle and GOAL location
at the rendezvous time. Note that the vehicles happen to have arrived on approximately
the same “vector” toward the GOAL. Thiswas a coincidence in that no specific penalty
or reward was included in the performance function for the purpose of aligning the
vehicles relative to the GOAL location. This could be trivially included, however, in
order to constrain the arrival to a particular pattern, as might be necessary to optimize

the number of viewed angles, for example (e.g. automatic target recognition).
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Figure 9.1: Coordinated rendezvous at a target.

In the next example, shownin Figure 9.2, we again utilize the maneuver formulation
to generate paths for coordinated engagement of a specified target. The objectiveisto
nominally arrive at the target at a rendezvoustime of 35 seconds, engage the target, and
then return to the base location. In this case, however, we do not allow the vehicles
to approach the target arbitrarily. Rather, we define specific points (at a radius of 5

units from the target center) at which the vehicles must arrive by the rendezvous time.
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Further, we explicitly penalize collisions between vehicles.

The three vehicles in the team start at the specified locations at arbitrarily chosen
initial speeds and orientations. For the purposes of collision detection, each vehicle
is modeled as a disk of unit radius. The evolved trgjectories after 100 generations are
shown in Figure 9.2. The circles shown in Figure 9.2 indicate the vehicle position at
the rendezvous point. Each “dot” along atrajectory correspondsto the vehicle position

at one second intervals. Details of the maneuvering in the vicinity of the target (Figure
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Figure 9.2: Solution obtained by EP planner after 100 generations for coordinated ar-
rival of 3 vehicles and then return to base.

9.3) highlight the complex behavior that emerges through evolution. In the detailed
view, Vehicle 2 (red) makes afirst pass, engaging the target and leaving the engagement
area by t = 35 seconds. Next to pass through the engagement zone is Vehicle 3 (green)
which engages the target and then proceeds to enter a spiral maneuver. This maneuver
effectively allows Vehicle 3 (green) to clear the area for Vehicle 1 (blue) who follows
with a perimeter strike. Finally, Vehicle 3 (green) makes afinal pass through the target

area in what might be interpreted as a battle damage assessment role. Note that this
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Figure 9.3: Detailed behavior in the vicinity of the target.

emergent behavior was not “forced” through the objective function. In this case, the
objective function merely consisted of reaching the engagement area by the nominal

rendezvous time and then returning to base.

9.2 Coordinated Coverage of Targets

In this section we consider a target “coverage” problem in which a set of M vehicles
must observe N targets. There are several variations to this problem. In one case, it
might be desirable to minimize the overall mission completion time. Another problem
might be to maximize the value of the overall mission with the requirement that the
vehicles reach the base at a particular time.

A key question to be addressed relates to the overall architecture: whether a single
evolutionary algorithm (EA) should be used for all vehicles or whether separate EAs

should be used for each vehicle. Inthelatter case, it would be necessary to include some
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means of communication between the EAs so that information regarding the relative
vicinity of the individual vehicles to particular targets could be shared. This would
eliminate duplicate coverage, ensuring that each vehicle would observe a unique set
of targets. Before delving into one possible solution to this problem, we motivate the

nature of the solution desired through an anal ogy.

9.2.1 Analogy to Basketball

As a step toward solving this larger problem, we look to analogies which exhibit the
features with which we are most concerned. Namely, we want to identify and distribute
vehicles (e.g. in units of individuals, small groups, or larger swarms) in such a fashion
as to nearly optimally achieve a set of objectives. Note that the objective may not be
a static quantity, but rather may change instantaneously and often over the course of a
given “game’. Here, we look to the game of basketball to provide some insight as to
the desired characteristics we wish our automata to exhibit.

To begin, we consider the “view from the press box” or “eye in the sky” - similar
to a coach who has available a global view of the action in the game. This external,
global view allows the coach to identify patterns and spot anomalies that are perhaps
indetectable at the individual “player” level - either due to alack of global perspective
or due to alevel of complexity which cannot be unraveled. In fact, humans are gen-
erally unequalled in their ability to “filter out” background noise and discern patterns.
The flow of the game of basketball is such that the teams alternately play offense and
defense with the high-level goals of scoring or stopping the other team from scoring,
respectively. The intangible that the coach provides is the mechanism for transform-
ing these high-level objectives into a scheme which is then “learned” by the players
to handle the different situations of play as the arise. These schemes take the form of
“patterns’ which are used and transitioned between depending on the state of the game.
They are developed based on the coach observing the strategy of the opposing team

(e.g. on film or based on experience) and abstracting out a mechanism for counter-
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ing different strategies. The players obviously handle the details of implementing the
“plays’ or “patterns’ and adjusting the pre-planned motion “agorithms’ as necessary
to compensate for the competitor’s actual moves which differ from the “film”.
Typically abasketball team consists of a center, two guards, aforward, and awing-
man. Associated with each player is a particular role that they typically assume, de-
pending on whether on offense or defense. For a given “play”, each player knows
their role in the pattern. Of course, at various points in the game, each player might
be required to exhibit the characteristics of each role as dictated by the course of play
in order to help out a teammate who might be out of position. Additionally, they are
continually monitoring for certain predicates such as “look for open player”, “maintain
passing lanes’, etc. The players must also know how their roles change as the effective
mode of play on each side changes, ranging from fast break in which the strategies are
“go to basket” and “maintain passing lanes’ to full-court press which involves* double-
teaming the ball” and “ obstructing passing lanes’. Finally, each player handlesthelocal

navigation and motion planning necessary to carry out their part of each strategy.

9.2.2 Proximity-Based Responsibility

As apreliminary study into multiple vehicle coordinated path planning, the evolution-
ary programming framework was extended to allow for multiple searches to progress
simultaneously. The problem considered consists of path planning for a set of three
vehicles to provide coverage of a set of five randomly placed targets. The mission ob-
jective in this case is sSimply to visit each observation site and then transit to the base
location. No constraints on the time at which the mission is to be completed are spec-
ified. The architecture chosen for these preliminary investigations incorporates a sep-
arate evolutionary search for each vehicle - with communication between the vehicles
established via the performance evaluation. Essentially the coordinated path planning
problem in this context reduces to a determination of the subset of targets to be associ-

ated with each vehicle as the search progresses. The mechanism used here for handing
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off or “trading” targets between the vehicles is based on path proximity. For example,

consider Figure 9.4 which shows paths emanating from three vehicles.
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Figure 9.4: Initia implementation of target association based on proximity of trial
paths.

The minimum distance between any of these paths and the targets is noted, with the
corresponding targets being “assigned” to the different vehicles asindicated. The com-
putation of this minimum distance is carried out in a brute force fashion using equation
(5.4). Each vehicle'stria paths are evaluated based on the set of targets they are cur-
rently closest to. Thus, the individual EP searches accrue target range error penalties
only for those targets it is currently trying to reach. In general, this set of targets can
change with each generation.

As desribed above, the initial implementation used for the simultaneous evolution
of trial paths for multiple vehicles utilized a target assignment scheme based solely on
proximity. Each vehicle effectively runs an independent evolutionary al gorithm respon-
sible for determining its path through a set of targets with which it is associated. The
overall cost function used for the 5 trial solution of the it vehicle's EA isthen of the
form:

F(E) = Wor (#9) + WgR (#9(N7], GT[N7)) (.)
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where 7(+) is the cumulative minimum range error to the set of targets closest to the it

vehicle during the current generation:
T(E) =) min R(Z[te], Ty[ts]) (9.2)

A typica result for this type of problem is illustrated in Figure 9.5, in which the
vehicle routes found after just over 100 generations satisfy the target coverage require-
ments of the mission. For this example, the population size is fixed at ;1 = 20 indi-
viduals. We represent the input vectors using the instruction list formulation, where
changes in speed and heading are implemented using fixed, deterministic changes of
A, = £1 and A, = £30°. Generation of offspring utilizes the standard GA-like
mutation (p,uiate = 0.1) and multi-point crossover (perossover = 0.7). The number of
crossover pointsfor each individual is chosen independently at random from a uniform
distribution in the range [1,5].

We demonstrate the adaptation of the individual EA searches by dynamically re-
distributing the targets in the environment. We do this twice in succession, waiting for
the trajectories to converge prior to initiating each new target distribution. The routes
resulting from this process are illustrated in Figure 9.6 in frames (a) and (b).

What can be noted from these figuresisthat, since the cost function does not include
a penaty on PathLength, paths which have no targets associated with them after re-
distribution tend to remain the same - even when the twists and turns present in their
route are no longer needed. Such isthe case, for example, in comparing the trajectory
for vehicle 1 between frames 9.6(a) and (b).

We repeat a ssimilar experiment using the maneuver sequence as the basis of the
input representation. The maximum number of active maneuversis set to ¢ = 20 for
each of the ;» = 20 individuals. The space corresponding to the application intervals
Is confined to integersin the range [1,5]. The initial distribution of targets is identical
to that used at the outset of the previous example. Results obtained for p . ossover =

0.8 and prancuver = Prime = 0.2 are shown in Figure 9.7. Interestingly enough, in
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Figure 9.5: Multiple vehicle coordinated routing - after only 100 generations, the vehi-
cles have distributed targets and reached the common goal point.
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Figure 9.6: Frames (a) and (b) illustrate two subsequent adaptations of routes triggered
by re-distribution of observation targets.
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comparing the trajectories found in this case with those obtained in Figure 9.5 (based
on the instruction list formulation), one finds that they are quite similar in character.
Investigating the adaptation of trajectoriesto changesin target position, we interactively
move the set of targets in a manner similar to that presented above - the corresponding

modified routes are displayed in Figure 9.8(a) and (b), respectively.
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Figure 9.7: Multiple vehicle target coverage problem - using the maneuver sequence
formulation. State of simulation after approximately 200 generations.

9.2.3 Ability-Based Responsihility

The above example has demonstrated spatial decomposition of targets among a set of
vehicle resources in which dynamic sharing of targets takes place solely on the basis
of physical proximity. A more redlistic demonstration would include a mechanism
for assessing the ability of a given vehicle to actually reach its set of goals. In the
event that a vehicle's planner is struggling to find a route to a given target, this target
could be put up for “auction”, allowing the other vehicles to bid on it based on their

individual estimates of reachability. In this fashion, a more natural collaboration can
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Figure 9.8: Frames (a) and (b) illustrate two subsequent adaptations of routes triggered
by re-distribution of observation targets. Routes represented using the maneuver se-
quence.

form as a means of maximizing the team value. Generalizing this concept, in order
for autonomous adaptation to the environment to be possible, it is necessary to grant
each individual planning system the ability to make decisions regarding its objectives.
If re-prioritization is deemed necessary in order to continue progress, the planner must
be empowered to do so. Further, this re-prioritization on the individual level must
be communicated to any other vehicles working on the same problem such that they
may adjust their own individual objectivesto mesh appropriately relative to the overall
team objectives. This alows vehicles to to take up the slack or anticipate a situation
necessitating a similar re-prioritization on their part. This is not unlike the bidding
and negotiation described by Dias and Stentz [65] in their interpretation of multiple
vehicle coordination in terms of a free market economy. Of course, any changes in
mi ssion obj ectives must al so be communi cated to a human manager who may ultimately
determine that data or encounter value warrants a potential loss of vehicle and thus

chooses to override the adaptation and force the originally prescribed behavior. On the
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other hand, the manager may be able to learn something about the environment based
on the adaptation which might guide future decisions.

With no additional constraints imposed, the solution obtained from the proximity-
based formulation is effectively arbitrary - there being no auxiliary conditions placed
on the solution other than it provide coverage of al the targets and result in each of the
vehicles terminating at the goal location. In some sense, the aforementioned problem
is almost ill-defined in the sense that there is little information available to guide the
optimization process. If, however, one introduces additional features such as alimited
fuel supply for each vehicle, different speed ranges and maneuverability, the problem
becomes much more challenging. Other options which serve to better define the nature
of the solution include modification of the objective function to search for shortest

paths, minimum time paths, minimum energy paths, etc.

9.24 Generalized MTSP formulation

We have carried out preliminary simulations involving the simultaneous evolution of
paths for several robotic vehicles charged with visiting a set of arbitrarily located target
locations and convening at a common goal location. These preliminary experiments,
however, implemented dynamic target “sharing” /transfer between robots based solely
on a proximity measure - the idea being that various targets be associated with the
vehicles closest to them. However, we did not take into account the reachability of
the various targets relative to their associated vehicles - either in terms of physical
constraints limiting access or in terms of planning difficulty. Thus, we wish to extend
our study of multiple vehicle coordinated path planning to include consideration of the
difficulty in reaching a given target with any given vehicle.

An aternative formulation, given that the goal of the team of robotsisto maximize
the coverage of the targets, is to use an aggregate sum of the distances to al targets
over al vehicles as the figure of merit. In other words, rather than scoring the paths on

an individual basis, one could reserve judgement, effectively combining the trial paths



234

from each vehicle prior to assigning fitness.

We consider a coordinated planning problem consisting of /V vehicles tasked with
finding away to visit M target locations and terminate at a single goal location, where
the aggregate distance traveled by the team is minimized. This is an instance of a
multiple traveling salesperson problem (MTSP). The population representation used
for this problem consists of a “string” of length M, corresponding to the number of
target locations that must be covered. Each of the N vehicles has associated with it
a parameter that represents the number of targets which it is responsible for. These

parameters define the responsibility boundarieswithin agiven string, asindicated below

in Figure 9.9.
shift
reverse
swap
l v v l "team" individual
vehicle A vehicle B vehicle C
numA numB numcC

Figure 9.9: “Team” individual representation for cooperative planning.

A set of trial solutionsis initialized by choosing random permutations of the num-
bers 1 through M and assigning arbitrary responsibility boundaries such that N, + Ny +
-+ + Ny = M. Evolution of thisinitial population is carried out through the applica-
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tion of a set of mutation operators that adjust the ordering and boundaries, as indicated
in Figure 9.9. These operators effectively introduce a dynamic exchange of information
between vehicles, allowing different team strategies to be effectively searched in order
to determine a coverage pattern that minimizes the cumulative team traversal distance.
In evaluating a given sequence, the fitness is obtained assuming straight-line travel of
each vehicle from its starting location, through its associated set of targets, and termi-
nating at the goal location. Note that the initial and goal locations are only utilized for
fitness evaluation and are not explicitly included in the popul ation representation. This
representation provesto be very efficient in finding the true optimal solution (as verified
by comparison with exhaustive enumerative search). A typical exampleis shown below
for ateam of three vehicles seeking to optimally cover a set of five targets. The initial
locations of each of the vehiclesis depicted by the shaded circles marked withan *S'.
As indicated in Figure 9.10, the team evolution found the optimal solution within 10
generations (approximately 1.5 seconds total run time as compared with 31 secondsfor
exhaustive search)

We aso include examples with N = 10 and N = 20 targets, shown in Figure 9.11
and Figure 9.12. It is noted that for N = 10, approximate computation time was on
the order of 20 seconds. By comparison, computation time for N = 20 targets was
approximately 120 and 200 seconds for the cases with and without obstacles, respec-
tively. In comparing Figures 9.12(a) and (b), one is struck by the similarities in the
paths discovered by the search process. In particular, one can observe the deviationsin
the path necessary in the latter case to avoid the obstacles. These path deviations cause

adight increase in the cumulative path length, as noted in the figures.

9.3 Summary

Preliminary efforts to date have focused on a centralized “team” representation for the
purposes of evolution, as discussed previously. Although this technique has proved ef-

ficient, we recognize that it suffers due to its dependence on centralized computation
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Figure 9.10: Solution of MTSP obtained using evolutionary programming and the
“Team” individual concept for cooperative planning.
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Figure 9.11: Solution of MTSP involving M = 3 vehiclesand N = 10 targets -
obtained using the “Team” individual concept. Elapsed time for this solution was ap-
proximately 20 seconds.
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Figure 9.12: Solution of MTSP involving M = 3 vehiclesand N = 20 targets (a)
without any obstacles and (b) with four obstacles place at random locationsin the envi-
ronment.

of plans which are subsequently distributed to the team members. Several alternative
architectures exist to allow more distributed planning to take place. First off, one could
limit the global extent of planning being considered by restricting the team representa-
tion to include vehicles only in the immediate vicinity. Of course, this would assume
that a vehicle outside of the local area could not potentially contribute in some useful
fashion. Another option is to allow each vehicle to compute a global plan (using the
centralized representation) based on its own local perspective. The idea here is that
each automaton would determine its own duties in the context of what it knows about
the other vehicles. Of course, thisalternativeis less desirable for several reasons. First,
it does not really distribute the planning effort, but rather duplicatesit over each vehicle
in the team. Second, it still depends on a centralized conflict resolution manager which
must receive the global plans from each of the vehiclesto sort out potential conflicts or
duplication of effort. What one really desiresis atrue distributed planning architecture
in which the individual vehicles plan their routes in their own best interest with the re-

sult that the overall team benefits. This is the idea behind a market analogy in which
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vehicles effectively bid and negotiate for each of the sub-tasks[8]. Given a certain sub-
task (e.g. “observe target 3"), each vehicle which is aware of the presence of target 3
generates a trgjectory which allows it to accomplish the task along with the associated
cost in doing so. It is assumed that accomplishing the sub-task brings with it a certain
profit, which serves to benefit both the individual and the team as a whole. Thus the
objectiveisto assign the sub-task to the automatawhich can achieve the task at the min-
imum expense, just maximizing the revenue from the transaction. At this point, one can
imagine that the sub-task has associated with it an agent (this might be, for instance, the
vehicle which “found” the target in the first place). The individual vehicles bid against
one another for the sub-task. In particular, the agent compares the cost of doing the
job itself with that received from each of the vehicles. One of the aspects we wish to
explore is the marriage of this market-based analogy which is useful for real-time alo-
cation of tasks with planning. In other words, to study the potential gains to be had if
one can virtually explore potential collaborations prior to execution.

In some sense, one can think of cooperative planning as a multi-objective optimiza-
tion problem in which, in trading off tasks between team members, it is desired to in-
crease the team profit without jeopardizing that of any of the individuals. There are two
basic approaches in solving this problem. In one case, we can consider the shopping
“bag” of each team member to be initially empty. The known targets are then “uncov-
ered” one at a time and presented to the team. The team then commences arbitration
to determine which vehicle should “pick up” the target (based on maximizing individ-
ual revenue). This process continues until all known targets have been assigned. An
alternative approach is to fill the shopping “bags’ of each vehicle or “team” randomly
and then allow the market forces to enable trades/purchases/sales of the corresponding
items. This latter approach captures the spirit of the “team” population representation
discussed.
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Chapter 10

IMPLICATIONS FOR REAL-TIME, REAL-WORLD PLANNING

In the previous chapters, we have demonstrated the ability of an evolution-based
planner to discover trgjectories of high utility in both static and dynamic environments.
Throughout these examples, however, it was tacitly assumed that the planner had at its
disposal full information regarding the environment and the motion of various actors
within that environment. In addition, the planner was never under any time pressure to
deliver a solution - it simply was allowed to search until finding a suitable trajectory.
Thus, we now explore the implications of using simulated evolution as the basis for
real-time, real-world planning with time constraints and incomplete information. In
particular, we discuss the relationship between the planning horizon and the global

utility of the evolved trajectories.

10.1 Structure for Real-Time Planning

We begin out discussion of real-time planning by assuming the existence of an initial
feasible trgjectory, computed off-line prior to execution. Since this path is computed
off-linein abounded yet arbitrarily large amount of time, it will generally satisfy there-
quirements of the mission as defined by the various performance objectives. Of course,
the utility of this path is based solely on information available to the planner prior to
execution. As such, if this trgjectory is blindly followed, it is likely that considerable
reduction in utility will occur as the vehicle encounters an environment which fails to
match that assumed in the off-line planning process. Thus the need to be able to adapt
the vehicle' s trgjectory on-line while it isin motion.

It is inevitably the case that, despite the availability of faster and faster computa-
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tional resources, there will always be situations where the vehicle will encounter unan-
ticipated features of the environment faster than the adaptive planner can respond. In
other words, the planner bandwidth is limited - any events that happen outside of this
bandwidth smply cannot be reacted to in time. For this reason, deliberative (Iook-
ahead) planning alone is not sufficient for control of an autonomous vehicle. In the
limit, one can consider determining the course of action for the next instant of time
based solely on the information available at the current instant. Thisis the role played
by so-called reactive behaviors [5], aset of high-bandwidth responses to events outside
of the planner bandwidth. These reactive behaviors represent tight, fast loops connect-
ing sensors to actuators, with very little processing in between. Examples for mobile

robots include basic obstacle avoidance or wall-following behavior.

This“library” of basic reactive behaviors can be extended to include goa seeking
behavior - where the vehicle moves towards the goal when possible and avoids obsta-
cles otherwise [6]. This can be thought of as a sort of summation of forces from each
contributing factor (similar to potential field methods, [9]) where forces of attraction
are emitted from goals and forces of repulsion are emitted from obstacles. It is known,
however, that these potential field methods are al so subject to the problem of local min-
ima when forces sum to zero in various places in the topology. When this occurs, the
vehicle tends to get “stuck” - in the absence of any net force for local guidance. By
the same token, because reactive behaviors act only on the information available at any
given time, they tend to be exhibit inefficient behavior. This occurs in situations where
multiple behaviors “compete” for control of the vehicle's action, causing the robot to
wander or hesitate. Further, navigation based on purely reactive strategiesis incapable
of utilizing non-sensor based information about the environment such as maps or “in-
telligence” regarding distant threat locations or environment dynamics. Thus, a hybrid

approach to autonomous vehicle control is necessary.

In order to make this idea more concrete, consider Figure 10.1 which shows a ve-

hicle (at time T,.) moving along a nominal feasible trgjectory, indicated by the shaded
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solid line. We define a spawn point, located atime 7’y > T, from the current vehicle po-

planning
horizon

initial feasible
path

free/evolving section

committed section
(reactive only)

____________

current vehicle
location, x[ T ]

Figure 10.1: Illustration of concept of adaptive real-time search.

sition along this nominal trajectory, indicated by the black diamond. Thisspawntimeis
directly related to the planning bandwidth and represents an estimate of the maximum
time available to the planner to update the tragjectory for ¢, > 7. In other words, the
portion of the trgjectory for 7. < ¢, < T, isassumed committed to execution, being
altered perhaps only by the influence of local reactive behaviors. The path downstream
of the spawn point istaken as free to be further refined or adapted. In this manner, the
planner can naturally account for new information that becomes available regarding the
spatial and temporal state of the environment. There are severa optionsin terms of the
instantiation of the spawn point. One implementation sets the spawn point at a constant

timeinterval, At,,..,, = const ahead of the current vehicle location. In this case, the
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spawn point would be continually updated as the vehicle moves and the length of the
committed portion of the trgjectory would remain constant over the length of the mis-
sion. An alternative approach would be to alow the spawn point to remain fixed for a
certain interval, At,,., of time while the vehicle moves along the nominal path toward
it. When the vehicle enters within a certain time interval of the spawn point, A,,.;,., the
spawn point is then reset to a position A,,,.. ahead of the current position. This latter
method has the advantage of allowing more planning time to be alotted to the region

of the trajectory in the immediate vicinity of the spawn point.

Regardless of its implementation, real-time delivery of trajectories to the vehicle
control system requires the introduction of time available for planning as an additional
constraint on the planning process. This additional constraint has an immediate influ-
ence on the cost function used for evaluating trial paths. During intervals in which
the time for planning is abundant, the priorities represented in the cost function can
be biased toward optimizing performance and satisfaction of long-term goals. As the
urgency to deliver a plan increases, the priorities in the cost function must necessarily
be shifted toward delivering feasi ble solutions which enable the vehicle to keep moving
in at worst a zero-loss manner (e.g collision free, avoiding risky behavior, etc.). Once
the motion plan is updated and the planner window expands, the goal priorities can be

reset to the longer-term objectives.

An obvious consideration in this formulation is the extent of the planning horizon,
or how far ahead of the spawn point the planner looks. Ideally, one could plan the
entire remainder of the mission from 7, < t[k| < t[¢] within the time available. In
this fashion, one could guarantee that all downstream factors are considered in making
local shaping decisions, hedging the probability of discovering more globally optimal
solutions. Further, as the mission progresses, the temporal extent of planning required
continually decreases until finally the last portion of the mission is committed to exe-
cution. This ability, however, isimpractical for realistic problems involving missions

of long duration (on the order of hours) due to the computation effort required and the
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degradation in certainty in the datawith increasing time. Thereisapoint of diminishing
returnsin terms of the tradeoff of value against computational effort.
These considerations lead one to envision a planning architecture in which several

planners operate simultaneously, running as separate processes.

1. alow bandwidth planner which updates every hour the entire remainder of the

mission,

2. a medium bandwidth planner which updates the motion plan for the next hour

every ten minutes, and

3. a high-bandwidth planner which updates the next ten minutes of the trajectory

every minute.

10.2 Planning with Incomplete Information

The previous section addressed the design of an architecture for real-time planning for
an individual vehicle. Implicit in this design, however, is the assumption of the avail-
ability of data regarding the time-varying state of the environment. Such information
may be provided, for example, in the form of a set of gridded databases. In thisfashion,
the grid point value (e.g. wind speed) at a given location and future time can be at |east
approximately computed by interpolation between the various data sets. In actuality,
however, such data may be only scarcely available or may not be available directly at
al. Evenif such datais available, it will inevitably contain both spatial and temporal
uncertainty. For example the wind intensity at a given location might vary in speed
and/or heading. Ideally, one could take this uncertainty into account in order to find
trajectories with a high probability of being successful. One mechanism for doing so
would be to plan a series of trgjectories over various worst-case scenarios and using
some sort of blending scheme to combined these trajectories based on the actual values

sensed during execution.
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In terms of sources of data, often times the vehicle itself (via its sensors) is the
most reliable source at a given point in time. Typically, however, it is the downstream
(i.e. separated in “time” or distance) estimates of the future state of the environment
which are of most concern. Unfortunately it is often the case that information at loca-
tions where we are not is more valuable that that at our current location. This is the
advantage of teams of automata distributed spatially through an environment. By co-
ordinating their sensor readings, they can share with one another their own individual
views to form auniform shared composite view of the environment. This has the effect
of drastically reducing at least the spatial uncertainty in data. Obviously, temporal vari-
ationsin the environment will tend to increase uncertainty to a certain extent. Thus, itis
assumed that each robot in ateam keeps an internal representation of the environment.
These representations, initially identical prior to execution, are modified through the
personal experience of each member of the team (e.g. unique sensor capabilities and
exposure to different parts of the environment). This unique experience allows each
robot to contribute to a shared “mental model” of the environment in situations where
communication between robotsis not limited. Planning is predicated on the existence
of internal models of both the environment as well as the robotic system itself. On-
line learning, based on experience, is used to continually update these models during
execution. In this manner, the planning algorithms have access to the best available
information (as well as estimates of uncertainty) in making decisions regarding future

courses of action.

Such data may be developed based on external detailed ground-based computation
(e.g. atmospheric models) or might be derived based on sensor information obtained by
other systems (e.g. satellite imagery, databases, humans, or robotic vehicles). Thus, a
practical concern isthe dissemination of data throughout the virtual network - whether
this network consist of a single or multiple vehicles. Questions which must be an-
swered include the types of information which need to be distributed, the frequency at

which communication must take place, and the required topology of the network. In
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other words, is it necessary for each vehicle to talk to each other node of the network
or isaproxy or relay system adequate? Does this communication happen at a fixed
rate or sporadically asthe situation dictates? Limited communication (due to stealth re-
quirements, security concerns, or simply lack of bandwidth or line-of-sight) inevitably
impacts the quality of planswhich can be created as the planner isrequired to act on an
incomplete picture or “mental model” of the environment and the intent of the various

actors within that environment.

10.3 Toward Semi-Autonomous Vehicles

In this section, we re-visit the role of planning in the overall vehicle control system. We
do so from the perspective of highlighting the requirements which enable autonomous

robotic systems to work together with human counterparts to solve problems.

As described throughout this dissertation, operations in dynamic rea-world envi-
ronments, wrought with uncertainty, require robotic systems to continually adapt their
behavior in the face of unanticipated changesin order to continueto carry out their mis-
sion to the extent possible. Such adaptation may be triggered, for example, by sensed
discrepancies between the vehicle'sinternal representation and the actual environment,
vehicle or communication failures, or a detected inability to achieve its goal(s). In
the extreme, it may be necessary to redefine or re-prioritize the objectives of the orig-
inal mission - thus the motivation for explicitly taking a multi-objective approach to
the planning problem. True autonomy implies the ability for this adaptation to occur
without direct human intervention. A semi-autonomous system allows the human to
establish and manage the objectives for the system and participate in the planning at

will while removing the need for direct control.
Given a high-level objective such as “Clear that building and search for survivors’
or “Follow that vehicle, but stay high to avoid being detected”, it is up to the individual

or team of robots to:
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1. Resolve any ambiguity in the syntactical parsing and interpretation of the stated

objective

2. Transform the objectiveinto a set of sub-tasksto be accomplished

3. Determine the mapping of individual robots to sub-tasks

4. Decidethe ordering (if any) in which the tasks are to be compl eted

5. Develop detailed plansfor each of the individual robotsin accomplishing each of

their assigned tasks

6. Account for possible collaboration between robots taking advantage of different

resources and capabilities and resolve potential conflicts

Of course, this list does not represent a single-pass process. Rather, the various items
must really occur simultaneously (possibly as separate processes) on-board the individ-
ual or team of robots while the mission is being executed. Thisis necessary to handle
the potential time-varying nature of the mission objective(s), the environment, and the
vehicle's themselves (e.g. failures). We reiterate that a key feature implied by the no-
tion of semi-autonomy is the ability of the human to intercede at any given level of
processing and computation. The level of autonomy granted to the robotic systemsis
therefore adjustable and time-varying, depending on the needs and constraints imposed
by the evolving mission.

Note that this dissertation has focused on alimited sub-set of the taskslisted above.
Namely, we have demonstrated the viability of an evolution-based planner in devel-
oping detailed action plans, where action is interpreted in the context of sequential
motion decisions. It is emphasized, however, that the results obtained thus far, a-
though promising, really only represent the tip of the iceberg in terms of the long-term

potential for these techniques. In fact, the sequential decision formulation developed
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in this research can not only handle the detailed low-level planning (Task 5), but can
quite readily be extended to handle the higher-level optimization implied by Tasks 3-4
aswell. This follows from a generalization of the “team” representation described in
Chapter 9. Thisteam representation would be utilized at the highest level of abstraction,
making decision regarding the fitness of different task distributions based on the output
of additional (potentially evolution-based) search taking place at lower levels. Such an
architecture implies the existence of either explicit (through direct communication) or
implicit (through sensing of the environment) feedback among the search agorithms

processing information at the various levels of abstraction.
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Chapter 11

CONCLUSIONS

In this chapter, we summarize the main results and make suggestions for future

research.

11.1 Summary of Work

This research began in the context of devel oping adaptive path planning algorithms for
air vehicles flying missions requiring significant duration (on the order of hours). Ini-
tially, approaches based on variational calculus and dynamic optimization were investi-
gated and found to be infeasible for on-line planning due to the excessive time required
for solution. Heuristic approaches to traveling salesperson problems (TSP) were then
explored. While these algorithms efficiently find near-optimal orderings of target or
goal points, they fail to provide any information regarding the details of how to get
between the points. As afirst step toward filling this gap, graph search techniques (dy-
namic programming, A*, etc.) were studied and found to be capable of finding optimal
gpatial solutions to “shortest path” type problems over discrete graphs. Shortcomings
of these algorithms, however, include their inability to determine speeds between the
nodes of the graph and the complexity involved to get them to handle time-of-arrival
constraints at particular goals. Further, although these algorithms can be modified to
solve problems involving multiple goals, they require the use of a separate combinato-
rial optimizer for the purpose of higher-level mission goals.

Rather than making decisions on atime-step by time-step basis, we propose the use
of evolutionary algorithmsfor the generation of “look-ahead” motion plans. Depending

on the search horizon used, these algorithms allow future actions to be eval uated based
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on an estimate of the environment within which these future decisions are made.

We have found evol ution-based plannersto be effective at finding high utility routes
through generally open environments containing both static and dynamic obstacles and
target locations.

We have shown that, given appropriate population representations and mutation

strategies, an evolution-based planner can:

1. Efficiently search complex multi-dimensional search spaces (mixed continuous

and/or discrete in nature)

2. Handle performance functions of arbitrary complexity and form (e.g. not hin-

dered by smoothness/differentiability requirements)

3. Naturally include hard constraints (e.g. collision and threat avoidance)

4. Include a mix of robotic platforms with differing dynamics (e.g. land, sea, air,

non-holonomic)

5. React toimpaired performance resulting form battle damage and quickly generate

alternative courses of action

6. Incorporate intelligent adversaries (e.g. differential games) through simultaneous

evolution of both friendly and enemy strategies

11.2 Improvements for Real-Time Implementation

The investigations with the evolution-based planner to date have been largely proof-
of-concept studies to establish the viability of simulated evolution as an adaptive path
planning process. As such, little effort has been made to streamline the search process

for the purposes of real-time operation.
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11.2.1 Efficient Collision Detection

A mgjority of the computational loading (approximately 70 — 80%)of the current im-
plementation involves the estimation of collisions through obstacle penetration values,
based on the intersection of minimally enclosing rectangles bounding the various “ bod-
ies’ in the simulation. These values are utilized in order to avoid hard constraints as
well as maintain adequate separation in multiple vehicle simulations. For asingle vehi-
cle maneuvering through M obstacles, this computation requires O(M N;) comparisons
per path at each generation, where N is the number of segmentsin the i*"path. This
computational effort grows exponentially with the number of vehicles in the simula-
tion. Thus, it is desired to find mechanisms for reducing the computational burden of
collision detection. Recall, however, that we desire not only a binary indicator of col-
lision but a semi-continuous variable indicating the “degree” of collision. This degree
of penetration effectively as a“gradient” to alow the evolution to find aternative mo-
tion strategies around obstacles. Without thisinformation, it is difficult to differentiate
between really deep collisions and those paths which are nearly collision-free.

One way in which the collision computation can be reduced is to prune the physical
environment of the simulation in some fashion, such as using a quadtree to break the
whole environment into a number of separate sections. In this manner, detailed col-
lision checks only have to be done between bodies within the same section, avoiding
unnecessary computation between bodies that could not be colliding. It should be in-
vestigate the impact that this and other concepts from computational geometry might
be used to reduce the cost of collision detection.

11.2.2 Avoiding Duplication of Effort

Recall that evolution-based search is fundamentally a “generate and test” approach to
planning in which alarge number of potential future action plans are generated in paral-
lel. Each potential action plan isthen assessed as to the degree to which it accomplishes

the mission objectives while satisfying the mission constraints. Because this generation
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processisrandom, it isoften the case that candidate solutions, previously judged to have
poor fitness, will be “rediscovered’” many times. To prevent this duplication of effort,
one could imagine keeping track of each candidate solution which is generated such
that any future duplicates are thrown away without any computational effort expended
in its evaluation. Note that without a one-to-one mapping between the instruction list
and paths would make such a decision impossible. Of course, depending on the size
of the search space and the number of generations involved, the computational effort
required to search this history “buffer” would quickly surpass that needed to evaluate
the path in thefirst place. Further, since the state of the environment isin general time-
varying, there is no reason to think with absolute certainty that a solution previously
judged to have poor fitness might suddenly become optimal based on the current en-
vironment. A compromise solution which should be considered would keep a“local”
(in time) history buffer which acts a diding window, tracking the enumeration of paths
(or instruction lists) over the last Nj,s.-, generations. This buffer could be “reset”
whenever a significant change in the environment was sensed or otherwise indicated by

external information.

11.3 Suggestions for Future Research

The following topics are suggested as starting points for further research:

e Further generalize the “repulsion” concept introduced in Chapter 6 as a means of
avoiding local minima traps. This is necessary for path planning in more con-
fined areas such as buildings and/or “mazes’ where multiple walls separate the
vehicle from the goal. What is needed is a path scoring mechanism which en-
courages exploration of new territory (e.g. maximize along-path distance from
the current position) while avoiding looping behavior (which extends the along-
path distance without significantly changing location). Of course, such domains

are more amenable to discrete space representations or landmarks (e.g. stairs,
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hallways, doorway locations, etc.) and alowing the local control of the vehicle

(obstacle avoid, wall follow, etc.) to handle navigation between landmarks.

Evaluate performance relative to uncertain information to find best performance

over anumber of likely scenarios

Further devel op applications of simultaneousevolution of strategy in multi-player
games. In particular, utilize aset of battle dynamicsto evolveforce allocation and

deployment (air tasking) in simulated war games.

Investigate cooperative co-evolution as a mechanism for coordinating motion
plans and action strategies between multiple autonomous vehicles cooperating

on agiven task

Investigate the potential for evolution-based methods to not only devel op the de-
tailed plans given amapping of vehiclesto tasks, but also to devel op this mapping
in the first place. At thislevel of abstraction, optimization would be over the set

of available platforms, resources, and high-level task descriptions.

Develop an integrated, multi-layer evolution-based mission planning and man-
agement algorithm. Study the interaction of evolution at a number of different
levels smultaneously. Each layer has its own population dynamics, but there
needs to be communication through the hierarchy to transmit strategy updates
at each individual layer. These decisions, based on “experience” gained at the
individual level, potentially influence future decisions at both higher and lower
levels. Some of thisinformation may be observable indirectly through sensing of

the environment rather than through direct communication.

Combine a deliberate, forward-looking evolution-based planner with a machine

learning strategy (e.g. reinforcement learning) for evolving reactive behaviors.
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Appendix A

STOCHASTIC SEARCH TECHNIQUES

A.1 Simulated Evolution

When applied to optimization problems, all methods of evolutionary computation in-
volve an iterative population-based search with random variation and selection. The
methods differ with respect to the choices of representation of the population, the pro-
cedures used for generating new solutions, and the sel ection mechanism for determining
which solutions to maintain into future generations. The differences between the vari-
ous approaches to evolutionary computation can be explained by considering the basic
rules which comprise evolutionin general.

Living organisms can be viewed as a duality of their genotype (the underlying ge-
netic coding making up the individual) and their phenotype (the manner of response
contained in the behavior and physiology of the organism). The distinction between
these two representations is best illustrated following the development of Lewontin
which describes an informational state space and a behavioral space corresponding to
genotype and phenotype respectively. Four functions can be used to map elements both
within and between these spaces as depicted in Figure A.1 below.

Genotypic simulations of evolution (such as genetic algorithms), tend to focus on
genetic structures in the sense that candidate solutions are described as analogous to
chromosones and genes. These data structures are then manipulated by genetic oper-
ators attempting to model chromosomal transformations observed in living cells such
as cross over, inversion, and point mutation. Phenotypic simulations on the other hand,
focus attention on the behaviors of the candidate solutionsin a population. In doing so,

various techniques for modifying behaviors are applied in an attempt to generating the
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selection

Pheotypic
(behavioral)
State Space

epigenesis

Genotypic
(informational)
State Space

Figure A.1: Pictorial representation of the four mappings of evolution occurring over a
single generation (taken from [103])

possibility for a nearly continuous distribution of new behaviors while maintaining a
strong behavioral link between a parent and its offspring.

Evolutionary programming falls under this latter, phenotypic category of simula-
tion. Attention is placed on variation operations that are constructed for a given repre-
sentation so as to usefully adjust the behavior of solutionsin light of the performance
measure chosen for the task at hand. No attempt, however, is made to explicitly model
the mechanisms of genetics found in nature. Rather, general mathematical transforma-
tions are applied to solutionsin order to modify behaviors. In other words, evolutionary
programming’s underlying philosophy is one of inquiring about useful transformations
from p, to p} in Figure A.1. Thisis opposed to the genotypic approach which applies
heuristic genetic operators to g, in order to generate g;. The question may be asked
as to why evolutionary programming does not attempt to mimic the transformations of
nature? Fogel provides thisanswer in [103] by noting that there is no reason to believe
that any particular mechanism of achieving a specified functionality will be produc-

tive in a simulated evolution simply because it is observed in the natural world. He
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notes that the experience of practitioners of evolutionary algorithms has indicated that
isis often possible to design more productive means of varying solutionsin a particular

circumstance than is afforded by overtly mimicking natural genetic mechanisms.

A.2 Evolutionary Programming

The motivation for evolutionary programming thus stems from the view of intelligence
as being based on the adaptation of behavior to meet goalsin arange of environments.

The basic algorithm can be summarized as follows.

1. Select an initial population of parent vectors, x;,i = 1,..., P a random from
a feasible range in each dimension. The distribution of initial trial solutionsis

typically uniform.

2. Create an offspring vector, x, for each parent, x; by adding a Gaussian random
variable with zero mean and pre-selected standard deviation to each component

zf =x;+ N(0,07) (A1)

3. Use a selection strategy to determine which of these vectors to maintain for the
next generation by comparing F'(z;) and F'(x}) where F'() represents the real-
valued functional mapping R — R. The P vectors that possess the least (or
most, depending on if minimizing or maximizing) cost become the new parents

for the next generation.

4. Continue the process of generating new trials and selecting those with best value

until a sufficient solution is reached or available computation time is exhausted
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At the core of evolutionary programming (EP) liesthe concept of ” generate and test”
- i.e. the method proceeds by generating trial solutions and then continually perturbing
these evolving solutions to optimize the relevant performance index.

To begin, it is necessary to determine a set of behaviors (namely, the z;) that ade-
quately describe the ”function” to be optimized. Thisisbest illustrated by an example.
Consider the application of EP to the solution of the N-city traveling salesperson prob-
lem (TSP) [50]. In this case, the goal isto find atour that covers the shortest distance
possible allowing the salesperson to visit each of the N cities and then return to the
starting point. The most natural representation of such a ”tour” is thus an ordered list
of cities. In order to establish an initial parent population of tours, we can simply gen-
erate a set of these lists, where each list consists of random numbersin the range [1, V]
representing the ordering of the cities. These represent our first set of "trial” solutions
and will serve as the basis for mutation which will be discussed presently.

Now the question becomes one of determining a suitable means of evolving the
current set of tours - in other words, creating offspring from each of the parent trial so-
lutions. The EP approach is generally implemented using a single offspring per parent
- although there is nothing preventing multiple offspring being generated from a single
parent. The EP approach, as implied in the previous discussion of phenotypic ssmula-
tions, does not feature the cross-over combination of two parents (simulating sexual re-
production in which the genetic material for two parentsis actually combined). Rather,
EP ssmply randomly perturbs each of the P ”parents’ in a given generation to produce
aset of at least P "offspring”. For the TSP routing, a reasonable approach for mutation
isto choose a section of each tour at random (choose a random starting point and sec-
tion length) and simply reverse the ordering of the cities over this section. This turns
out to be quite an effective mechanism, providing a rich and thorough coverage of the
possible search space.

At this point, we have a population of size 2P comprised of theinitial set of parents

and their offspring (assuming a single offspring per parent). It is now necessary to
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from range [1,N]) 7
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Figure A.2: The mutation process utilized by Fogel [50] in an EP solution to the Trav-
eling Salesperson Problem

formulate a means of scoring the fitness, F'() of each of the potential tours. Thisis
typically done based on the characteristics of the problem being solved. For the TSP
problem, a natural choice of fitness is the distance covered by each trial tour. Given a
tour of cities, this performance metric can be computed by simply traversing down the
list and accumul ating the length. Repeating this processfor each of the” parents’ results
inaset of 2P scores representing the relative fitness of each of the trial solutions.

For the most part, it is desirable to maintain the " healthier” members of the current
population - capturing the idea of survival of the fittest or natural selection - for future
generations. However, it is generally not a good idea to always use the best parents -
this can lead to problems with local minima. Rather, Fogel introduced the idea of con-
ducting a "tournament” or series of competitions between each potential solution and
a set of other solutions chosen at random from the current " generation”. Competing
against a set of competitors chosen at random from the current popul ation allows occa-
sional "weaker”/less fit tours to survive in a probabilistic fashion, helping to improve
the curiosity of the search. A deterministic approach isto order the toursrelative to the
number of losses suffered in the completion. In this way, those with the fewest losses,

and thus most fit will serve as the basis for mutation. Alternatively, it is possible to use
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amore probabilistic formulation to determine the survivability of the ;" trial tour:

Ji
(fi + 1)

where f; represents a randomly chosen competitor, f; represents the tour being

u < (A-Z)

examined, and u represents a uniform random number in the range [0, 1]. Note that
thisform for survivability of trial solutionsis specific to cost function minimization (an
aternative form can be used for maximization). Given that we are minimizing the cost
functional, if atrial solution f; iscloseto zero (i.e. near optimal) then theright hand size
evaluatesto unity and thus any random number in thisrange will satisfy the survivability
condition. On the other hand, if f; is large compared with f; (and thus further from
optimal), then the right hand size will tend to approach zero and the probability that a
random number chosen in the range [0, 1] will satisfy is correspondingly reduced. Once
anew set of P trial solutionsis selected based on the results of this competition, the EP
process is repeated, starting with step 2 until a termination criteria is reached, which
may include atime constraint on the optimization.

Modifications to the basic EP algorithm include producing multiple offspring per
parent and adapting the variance used for the random perturbations proportional to the
fitness of a given solution. This latter technique is used to control the mutation ” step”
size, effectively increasing the curiosity and extent of the state space explored by trial
solutions exhibiting poor fitness while insuring that trial solutions near an optimal so-
lution converge. An aternative approach for adaptive variance involves inclusion of
the variances themselves as parameters subject to mutation [104]. Using this approach
allows the evolution stragegy to self-adapt to errors and more appropriately distribute
trial solutions. An extension of this method [104]incorporates correlated (as opposed
to independent) mutations so that the distribution of new trials can adapt to contours on
the error surface.

Admittedly, the EP approach to the TSP routing problem is not the most effi-

cient means of solving the TSP problem - other sub-optimal methods such as closest-
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insertion, nearest neighbor insertion, etc. can find quicker solutions. But this is not
the point. Rather, by showing that EP can be applied to TSP, Fogel opened the door
to awhole new world of applications where EP is a more natural choice. And the fact
that it can be used to solve even dynamic TSP problems is a tribute to the flexibility
of the algorithm and the robustness of the theory on which it is built. Further, it shows
the applicability of the EP process to combinatorial optimization problems over finite

search spaces - an essential feature for path planning problemsin general.
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A.3 Other Stochastic Search Techniques

The following discussion follows the development of [105] which is a collection of
research notes and papers related to Genetic Algorithms and Simulated Anealing.
A.3.1 Genetic Algorithms

Genetic algorithms (GA) represent an alternative evolutionary scheme which is based
on modification of the genotypic representation of individuals rather than their pheno-

typic features. A typical GA contains:

e achromosomal representation of solutions,

methods for creating an initial population of solutions,

an evaluation function which plays the role of the environment and assesses the

"fitness” of trial solutions,

a set of genetic operators that alter the composition of children during reproduc-

tion, and

a set of parameters which define and control the GA process.

The original chromosomal representation used by Holland in his pioneering work
in developing the GA was a bit string consisting of O’sand 1's. This representation has
shown to be effective in encoding a wide variety of information, even in unexpected
domains such as function optimization. Being of a binary nature, it is quite straight-
forward to apply standard genetic operators such as crossover (exchange of genetic
material), mutation (flip random bits), etc. It is also common for additional heuristic
genetic operators to be taken from and tailored to particular domains of application. In

terms of control of the algorithm, parameters include: population size, the probability
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of applying certain genetic operators, and the appropriate combination of these opera-
tors to be used in a given domain. It is this latter degree of control which lies at the
heart of the successful application of GA. The proper combination of crossover and
other optimizing operators can quickly move a solution toward promising regions of

the state space.

A.3.2 Smulated Annealing

Simulated annealing is a stochastic computational technique derived from statistical
mechanicsfor finding near globally-minimum-cost sol utionsto large optimization prob-
lems. In general, finding the global extremum value of an objective function with many
degrees of freedom subject to conflicting constraints is an NP-hard problem due to the
presence of many local minima. A procedure for solving such difficult optimization
problems should sample values of the objective function in such a way as to have a
high probability of finding a near-optimal solution. Simulated annealing has emerged
as a viable technique which meets these criteria. Further, it lends itself to an efficient
implementation.

The basis of SA lies in statistical mechanics - the study of the behavior of very
large systems of interacting components. One way of characterizing the configuration
of such asystem isto identify the set of spatia positions of each of the components. If
asystemisin thermal equilibrium at a given temperature 7', then the probability 7+ (s)
that the system isin configuration s depends upon the energy FE(s) of the configuration

and follows a Boltzmann distribution:

—E(s)
e kT

7TT($) = ﬁ (AS)
wes € 1

where k is Boltzmann’'s constant and S is the set of al possible configurations.

One can simulate the behavior of a system of particles in thermal equilibrium at
temperature 7" using a stochastic rel axation technique (Metropoliset al. 1953) whichis

shown briefly here. Given a system in configuration ¢ at time ¢t when a candidate » for
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timet + 1 isgenerated. The criterion for selecting or rejecting configuration  depends
on the difference between the energies of » and ¢. Specifically, one computes the ratio

p between the probability of being in configuration » and ¢:

7r(r) —(E(r)~E(q))
= = e kT
mr(q)
If p > 1, then the energy of r is strictly less than that of ¢ and the configuration r

(A.4)

is automatically accepted as the new configuration for timet¢ + 1. If p < 1, then the
energy of r isgreater than or equal to that of ¢ and r isaccepted asthe new configuration
with probability p. Thus, higher energy configurations can be propagated. Thisisthe
mechani sm through which the Metropolis al gorithm avoids entrapment at local minima.

The annealing process involves determining the nature of low-energy states or
configurations. This corresponds to |ow-temperature configurations where these low-
energy states predominate due to the nature of the Boltzmann distribution. To achieve
low-energy configurations, however, it is not sufficient to simply lower the tempera-
ture. Instead, one must use an annealing process where the temperature of the system
is elevated and then gradually lowered, spending enough time at each temperature to
reach thermal equilibrium (and thus satisfy the condition for Boltzmann distribution to
apply).

In application, the configuration of particles becomes the configuration of param-
eter values. The energy function becomes the objective function. Finding low-energy
configuration is equivalent to seeking a near-optimal solution. Temperature becomes
the control parameter for the process. An annealing schedule must be chosen which
specifies a decreasing set of temperatures together with the amount of time to spend at
each temperature. Finally, one must develop a mechanism for generating and selecting
new configurations.

The annealing process is inherently slow. However, may applications of simulated
annealing map naturall to parallel processing implementation allowing substantial in-

creases in speed. Determination of a satisfactory annealing schedule for a given prob-



276

lem can be difficult and is largely a matter of trial and error - again, being more of an
art than a science. Some researchers have incorporated genetic algorithms as a means

for more efficient search for better annealing schedules.
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Appendix B

DISCUSSION OF THE A* ALGORITHM

B.1 General Features

The A* algorithm isthe basis of many graph search techniques- it isadepth-first search

which uses a cost function of the form:

fIn] = gln] + h[n] (B.1)

where g[n| represents the actual cost of traversing from the start node to a given
node, n, and h[n] represents an optimistic (heuristic) estimate of the cost remaining to
traverse from node n to the goal. This cost function can be thought of as the estimate
of the cost of the optimal path constrained to pass through node n. The algorithm isa
variant of Dijkstra’s algorithm which is recovered by setting 2[n| equal to zero. Like
all graph search algorithms, it requires a discretization of the environment in which the
planning is taking place - typicaly into a set of vertices and edges where each node
in the grid has a maximum of 8 neighboring nodes. For path planning, the traversal
costs, g[n|, are typically implemented in terms of a cost per distance traveled. For
shortest path problems, the costs g[n] are taken to be the actual distances throughout
the graph where diagonal traversals are scored proportionally as shown in Figure B.1.
The heuristic estimate of " cost to go” from a given node to the goal, h[n], is most often
taken to be the Euclidean distance as this is the minimum possible cost of reaching the
goal. More than likely, the actual path found will be longer due to obstacles, vehicle
performance limitations, etc.

Consider how the A* algorithm proceeds. First off, if possible, it is convenient to
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Figure B.1: Example of an 8-connected grid showing the associated Ax data for a
shortest path problem

pre-compute the heuristic cost of reaching the goal from each node in the search space.
Now the search begins from the start node and spreads out in a wavefront manner,
expanding all nodes which are immediate descendants. Note that in general, expansion

updates the traversal cost g[n]. Specificaly, in this case:

951 = g[1] + ¢[1, 5] (B.2)

where c[1, 5] represents the cost of traversing from node 1 to node 5. Comparing

the f[n] for each expanded descendent of node 1 reveals the following:

node | g[n] | h[n] | f[n]
2 1 2 3
4 1 | V2 |24142
5 V2 1 | 24142

Notice that both nodes 4 and 5 yield identical f[n] values. This effect is known

as discretization bias [14] and is typical of the situation which occurs when searching
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over adiscretized grid with a finite set of angles departing from each node. Based on
the discrete nature of the grid, it is impossible to represent the true optimal solution.
In general, thisresults in parallel ogram-shaped regions of the search space which yield
identical costs asillustrated in Figure B.2.

start

node G\ " /7)

true __—
optimal (> 5 g goal
solution node
) O )

Figure B.2: Illustration of discretization bias resulting from inability of discrete grid to
represent the optimal solution

Several authors have proposed ad-hoc fixes to alleviate this bias [14], although for
the purposes of the current work, its effects are reasoned to be negligible. Application
of the A* search to more realistic environment conditions (spatially and temporally
varying winds, for example) will make this a moot point as it is quite unlikely that
multiple paths will evaluate to identical costs given such disturbances, depending on
the resolution of the grid relative to the scale of the environmental features.

Obstacle and threat avoidance can easily be incorporated by introducing an addi-
tional penalty associated with arcs which penetrate such zones - typically scaled relative
to the certainty and severity of the threat - and requiring the inclusion of some sort of
collision detection scheme. For a static threat environment, it is possible to pre-process
the map data to produce an /N-dimensional lookup table (where N represents the num-

ber of dimensions of the space) representing the certainty of obstacle presence at any
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particular index into the grid structure. This would alleviate the need to perform ex-
pensive collision detection calculations on-line while the vehicle is moving. Of course,
it is possible to handle dynamic environments in the same way, assuming that a local
patching of the lookup table could be done fast enough as a background processrelative

to the time constants of the evolving environment.

B.2 Algorithm Description

The following steps define a general graph search algorithm. If the evaluation function
f(n) uses aheuristic function, h(n) which is alower bound on the actual ~2*(n), then

this general procedure istermed the Ax algorithm.

1. Given asearch graph G, put the start node S on alist called OPEN. If S does not
exist, then exit with failure. Establish thevalue f(S) = g(S) + h(S) = h(S).

2. Create alist called CLOSED that isinitially empty.
3. LOOP: If OPEN isempty, exit with failure.

4. Select the first node on OPEN, remove it from OPEN and put it on CLOSED.
Call thisnode n.

5. If n isthegoal node, F', exit successfully with solution obtained by tracing a path
along the backpointers from S to F' in GG. Note: backpointers are established in
step 7.

6. Expand node n, generating the set M of its successorsin G.

7. For each member m € M that was not already on OPEN or CLOSED, establish
apointer from n to m. Add m to the OPEN list with the value:
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f(m) = g(n)+ C(n,m) + h(m) (B.3)

For each member m € M which was aready on OPEN, decide whether or not
the change its value f (m) and redirect its backpointer based on:

g(n) +C(n,m) < g(m) (B.4)

Note: if g(n)+ C(n,m) = g(m), keep the original pointer and establish a second

pointer from n to m.
8. Re-order the OPEN list according to heuristic merit.

9. Goto LOOP in Step 3.

B.3 Properties of the General Graph Search Algorithm, Ax

Recall that the basis of the Ax graph search algorithmisthe evaluation function, f(n) =
g(n) + h(n) where g(n) isthe cost function and i (n) is the heuristic function.

Let the function f*(n) be defined as the sum of the actual cost of a minimal cost
path from the start node S to node n plus the actual cost of a minimal cost path from

node n to agoal node:

fr(n) = g"(n) + h*(n) (B.5)

Based on this notation, the application of Ax involves finding estimates of these
actual minimal values- f(n) — f*(n), g(n) — g*(n), h(n) — h*(n).

Before the properties of this search agorithm can be enumerated, it is necessary to
define two related terms. The first of these is the notion of admissibility, which implies

that the search algorithm will terminate finding an optimal path from the start node S
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to agoa node whenever a path from the start node S to a goal node exists. The latter
term is related to a monotonicity restriction. This monotone restriction is satisfied by

the heuristic function, i(n), if for all nodes n and m with m the successors of n:

h(n) < h(m) + C(n,m) (B.6)
where C'(n, m) is the arc traversal cost associated with traveling between nodes n

and m. Severa relevant properties of the Ax algorithm are given below.

Property 1 : Ax awaysterminates for finite graphs.

Property 2 : At any time prior to termination, there exists on the OPEN list a node
n that is on an optimal path from the start node S to a goal node, with f(n) <

f(S).
Property 3 : If thereisapath from the start node S to agoal node, then Ax terminates.
Property 4 : The Ax agorithm is admissable.
Property 5 : For any node n selected for expansion by Ax, f(n) < f*(9).

Property 6 : If A; and A, are two version of Ax such that A, is more informed than
Aj, then at the termination of their searches on any graph having a path from the
start node S to a goal node, every node expanded by A, is aso expanded by A;.

It followsthat A; expands at |east as many nodes as does A,.

Property 7 : If the monotone restriction is satisfied, the Ax has already found an opti-
mal path to any node n it selects for expansion. That is, if Ax selects node n for

expansion, and if the monontone restriction is satisfied, then g(n) = g*(n).

Property 8 : If the monotone restriction is satisfied, then the value of the evaluation

function, f(n) of the sequence of nodes expanded by Ax is non-decreasing.
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Appendix C

DISCRETIZATION OF THE SEARCH SPACE

When conducting a search over a state space, it is often necessary to discretize that
space in some manner. Common methods for performing this discretizations include
Voronoi diagrams and various quadtree representations. These methods offer a signifi-

cant savings with regard to memory requirements over regular uniform grids.

C.1 \oronoi Diagrams

A Voronoi diagram for a set of NV pointsp; (1 < ¢ < N) in the Euclidean plane
is a partitioning of the plane into N polygonal regions, one region associated with
each point p;. A point p; is referred to as a Delaunay point. The Voronoi region,
V (p;) consists of the locus of points closer to p; than any other of the N — 1 points.
These regions are constructed from the Voronoi edges which consist of the the pointsin
the plane equidistant between from two Delaunay points p; and p;. Essentially, these
edges are the perpendicular bisectors of the line connecting p; and p;. By joining these
edges at intersections, referred to as Voronoi points, the Voronoi diagram isformed. An
example of such adiagram is shownin Figure C.1. Note that all Voronoi edges are not
bounded - some extend to infinity.

In terms of navigation and path planning, a common use of Voronoi diagramsisto
interpret the Delaunay points, p; as the centers of obstacles or regions to be avoided.
By constructing the Voronoi diagram in this fashion and using the resulting VVoronoi
points and edges as the space for the search, the resulting solution is guaranteed to be
optimally distant from all of the threats. An example of a search space created in this
fashion is shown in Figure C.2. Note that since the start and goal nodes are most likely
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not on the Voronoi diagram, it is necessary to construct path segments from the start
node to the Voronoi graph Of course, there are some issues related to this representa-
tion. Most notably is the fact that it entails modeling threats as discrete points in the
plane. In reality, these threats or obstacles will likely have afinite shape and size. Con-
structing the Voronoi diagram in the usual fashion can thus create Voronoi edges that
cross obstacle boundaries - an undesired feature. Modifications to the basic construc-
tion of the Voronoi diagram to account for finite obstacle size include the Circle Rule
and the Contour Vertex Point methods [19]. Essentially these modifications involve
modeling obstacles via multiple Delaunay points and constructing modified Voronoi
diagrams using thislarger set of points. Using these modified construction rules results
in Voronoi diagrams free of obstacle-crossing edges.

The most notabl e features of the Voronoi approach to discretization isthat very few
nodes are used to create the search graph. Further, this graph naturally attempts to
represent all possible routes around obstacles. As such, the resulting search reduces
to a relatively ssimple decision at each node to determine the passage way to proceed

through next.

Voronoi point

Delaunay points

Voronoi edge

Voronoi region

Figure C.1: Example of a Voronoi diagram for a set of points p;
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search nodes

° 47 obstacles

G
goal
node

search space

Figure C.2: Search space defined by Voronoi nodes and edges
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C.2 Quadtree Representations

C.2.1 Basic Quadtree

A quadtree is based on the successive subdivision of a region into four equaly sized
guadrants. A region is recursively subdivided until either a subregion free of obstacles
isfound or the size of the subdivided regions reaches aminimumthreshold. An example

of a quadtree representation is shown in Figure C.3.

goal
location

T 1

ral =S | \

i T | \

A lobstacle H T possible

I : 7] path through

o N e cell centers
star R
/ T T T T

locationA

Figure C.3: Search space defined by quadtree representation

Quadtrees allow efficient partitioning of the search space as single cells can be used
to encode large empty regions. The drawback, however, with thistechnique isrelated to
the generation of pathsthrough these cells. Typically, paths are constrained to segments

between the centers of the cells and as such are generally suboptimal.

C.2.2 Framed Quadtrees

As a remedy to the the suboptimal path problem caused by the traversal between
quadtree cell centers, a modified approach involves "framing” the perimeter of each
guadtree region with cells of the highest resolution. This allows much more freedom

in terms of the angles available in that paths can be generated between any two border
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cells. Since a path can be constructed by connecting two border cells which are far

away from one another, more optimal paths can be created.

goal

goal location
/\Iocation [TT [T DT 1T
o [T N
= == 11 ]
u [T [T
| I 11 [T
v 17 u
[T H
start start K L .
location location
(@) (b)

Figure C.4: Comparison of basic (a) and framed (b) quadtree representations. The
additional bordering cells of the framed quadtree alow more optimal paths to be con-
structed.
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Appendix D

VEHICLE PERFORMANCE MODEL

Given that ultimately we want to be able to plan flyable paths through real weather,
it is necessary to have some means of predicting vehicle performance over a given tra-
jectory segment. As afirst cut, a point-mass performance model was extracted from
existing Aerosonde simulator code. This code was rewritten in C++ in an object-
oriented modular fashion with a ssimple interface. Given a starting point and end
point defining a trajectory segment, this module predicts the time and fuel required
to reach the end point over a range of vehicle speeds. Currently this computation as-
sumes the trajectory segment is a constant altitude great circle arc. Included in this
calculation is an approximation of engine performance which iterates to find the en-
gine power/throttle setting needed for a given velocity and outputs a fuel flow esti-
mate. Aerodynamic/Propellor/Engine parameters are interpolated as necessary from
pre-compiled lookup tables. This model also accepts gridded wind model data (binary
format) and performs interpolation in both space and time to estimate the wind effect
on performance as the UAV moves along the trajectory segment. This feature is easily
turned on and off to allow rapid comparison of relative performance with and with-
out winds factored into arc traversal computations. The general input/output for the
performance estimate is shown below in Figure D. 1.

It is important to note that the time of arrival and fuel estimates from the perfor-
mance module are based on forecast wind data defined at particular grid locations and
at aset of forecast times (every N hours, for example). Thus, the estimated time and fuel
expended along a given arc between any two nodesis not constant, but rather changes as

afunction of thetime at which the arc traversal isinitiated. Thisisadirect consequence
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lat/lon/alt

node k conditions
initial time

initial fuel

child c location

wind field, w(x,t)
between node k and

child ¢

estimate time, fuel usage

Figure D.1: The data required for the performance module in estimation of time and
fuel expenditures along a given arc between anode, £, and a child, c.

of the time dependent nature of the environmental weather model data.

Although no actual execution timing of this model has been done thus far, it is
possible that the computational cost associated with evaluating this point-mass model
repeatedly over the course of atypical graph search may represent a large proportion
of the overall computation (a fact noted in [25] as well). As such, some thought has
been given to developing some sort of functional "fit” to the estimation of fuel and/or
time costs based on parameters such as distance between nodes, averaged winds over
the segment, etc. Another option would be to train a neural network with data from the
actual performance model and then useit in apredictive fashion for carrying out the ac-
tual search. Wilkin [26] hasfollowed asimilar path, having trained a Bayesian network
using actual data from the Aerosonde simulator to use as a predictor of future aircraft
state. Apparently this network acts as a sort of " switching” Kalman filter providing es-
sentialy a set of linear modelsfor avariety of flight conditions (cruise, descent, climb,

turn, etc.) without requiring extensive lookup tables.
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Appendix E

SUMMARY OF COMPUTATIONAL COMPARISON

E.1 Graph Search Performance

This section details the graph search performance over the set of four test problems,
P, — P,. Toillustrate the dependence of computation effort on grid resolution, the total
number of flopsis plotted versus grid resolution for each of the problem instances in
Figure E.1. Therelationship of the number of nodes expanded relativeto grid resolution
issummarized in Figure E.2. The relationship of the computation time required to find

the goal state relative to grid resolution is summarized in Figure E.3.
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Figure E.2: Variation of number of function evaluations (nodes expanded) for Ax asa
function of grid resolution for problem instances P, (a) through P,(d)
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E.2 Improved Hit and Run Results

This section shows the results obtained using the Improved Hit and Run algorithm as a

path planner. Included in each figure isthe variationin:

1. computation time,

2. best achieved RangeGoal,

3. number of iterations

4. approximate number of floating point operations (flops)

5. path distribution

6. rate of convergence as afunction of iteration

These plots are included in lieu of presenting mean and standard deviation since the
data collected was found not to be normally distributed.
Figures E.4-E.7 illustrate the results for a Discrete Speed/Heading Change formu-

lation. Figure E.8 - E.11 show the results obtained using a Maneuver formulation).
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E.3 Ewvolutionary Algorithm Results

This section shows the results obtained using an Evolutionary Algorithm as a path plan-

ner. Included in each figure isthe variationin:

1. computation time,

N

. best achieved RangeGoal,

3. number of iterations

SN

. approximate number of floating point operations (flops)

a1

. path distribution

6. rate of convergence as afunction of iteration

These plots are included in lieu of presenting mean and standard deviation since the
data collected was found not to be normally distributed.

Figures E.12 - E.15 show the results obtained based on a Discrete Speed/Heading
Change formulation.

The results shown in Figures E.16 - E.19 were obtained using mutation only (e.g.
no crossover recombination) with fixed values of pye = 0.1 and pranewver = 0.1,
respectively. We investigate the effect of larger mutation rates for both the time and
maneuver values by setting piime = 0.2 and paneuver = 0.4. These results are shown
in Figure E.20.

The results shown in Figures E.21 - E.24 were obtained using mutation only (e.g.
no crossover recombination) with fixed values of pye = 0.1 and prgnewver = 0.1,
respectively. We investigate the effect of larger mutation rates for both the time and
maneuver values by setting piime = 0.2 and prianewver = 0.4. These results are shown
in Figure E.25.
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Figure E.25: Maneuver (mutation + crossover). Elapsed time (&), minimum range to
GOAL (b), iterations (c), flops (d), distribution of paths (€), and best cost convergence
(f) over 20 EA trials on Problem P,. Note that shortest and longest paths found over
the 20 triadlsare indicated in (€). Note: p;ime = 0.2 and p,ancuver = 0.4.
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Appendix F

CONVERGENCE PROPERTIES OF EVOLUTIONARY
ALGORITHMS

This appendix serves as a brief summary of the major results detailed in Rudolph
[87] with regard to the convergence properties of EAs operating on both binary and

continuous variables.

F1 A Binary Example

For genetic algorithms, in which states are coded in terms of binary strings (see Section
3.4.1), the states of the chain can be defined by every possible configuration of an entire
population of bit strings. Assuming ¢ bits are used in the coding and the size of the
population is 1, the number of possible states is given by 2¢“. For example, with ¢ = 2

and ;. = 1, the state space consists of four unique states:

Table F.1: Enumeration of the states of a binary population consisting of . = 1 mem-
bers of length ¢ = 2 hits each

0,0 | (0,1) | (1,0) | (1,1)

Recall that the probability transition matrix, P, which modelsthe EA, representsthe
combined effects of mutation and selection. For our purposes here, we ignore the ef-
fects of recombination (crossover). Aswe begin constructing the EA transition matrix,

we first consider a mutation matrix, M/, whose entries, m,;; represent the probability
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of mutating between two states i and j. We assume a mutation operator in the form
of equation (3.5), in which each of the bits in a string is flipped independently with
probability p. Thus, the probability of moving between any two states can be expressed

as

P{Y(n) =y | X(n) =z} = p" (1 — p)*-HE (F.1)

where H(z,y) = Zle |z; — ;| is the Hamming distance (sum of bit differences)
between the two states = and y. Equation (F.1) expresses the fact that to move from
statex toy, H(x,y) bitsneed to be flipped while the number of bitswhilethe remaining
¢— H(z,y) bitsneed to be unchanged. Computing each of these transition probabilities
for the 2-bit states in Table F.1 yields the matrix:

(I-p)? p(1=p) p(A—=p)  p°

= p(l—=p) (1-p?* p*  p(l-p) F2)

pl—=p) p*  (1-p? p(l-p)
P> p(l—p) p(l—p) (1-p)?

where, note that the probability of transitioning to the same state, p,; reflects the fact

that each of the two bits must remain unchanged.

The effects of the selection operator must also be modeled in order to get the tran-
sition matrix for the entire evolutionary algorithm. We limit our attention to elitist
selection strategies which always preserve the best member of the population - a fea-
turewhich will proveto be crucial for convergence to the global optimal solution. Thus,

we consider a selection operator of the form:

X(nt1) = Y(n) if Y(n) e G(X(n)) (F3)
X(n) if Y(n) € G(X(n)) '

Here, G(X(n)) isthe gain set of X (n) given by those states satisfying G(z) = {y €
S fly) < f(x)} and G°() is the set complement. In other words, we only allow
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solutions Y'(n) to survive if they are a member of alower level set that the previous
best solution found - a state ; is accepted only if it is better than state ;. The matrix

entries corresponding to this selection operator can thus be described as:

e The probability that the Markov chain transitions to a state j that is better than
state 7 isjust the probability to generate this state by mutation

e If state j isworse than state 4, then it is not accepted and the probability of tran-

sitioning to such a state is zero

e The probability that the Markov chain staysin its current stateis the sum over the
probabilities to generate a state by mutation that is not better than state i. Such
states are collected inthe set G°(i) = {k € S : f(k) > f(i)}.

The entries of the overall transition matrix for this mutation and selection operators

can thus be summarized as;

mij if f(j) < f(2)
Pij =\ Dpegewy Mk 1f j=1i (F4)

0 if f(j) = f@2)
where the mutation probabilities, m;;, are those contained in the mutation matrix, M,
given in equation (F.2). Note that these mutation probabilities are not problem specific.

Rather, they depend only on the mutation scheme chosen.

We can now apply this transition matrix to a particular problem. Consider the fol-
lowing objective function, which effectively tries to minimize the number of ”ones” in

the binary string:

¢ if ||z||; isodd
x) = { | (F.5)

jzfly izl iseven
where ||z, = 32% ;] = 3¢ ;. The behavior of this objective function for || X (0)[| >

0 being odd is such that only a one-bit mutation can be improving. If, on the other
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hand, || X' (0)|l; > 0 iseven, only atwo-bit mutation can decrease the objective function

value. The transition matrix for this EA can thus be written as;

1 0 0 0
p(1—p) 1—p+p? 0 0
Pij = (F.6)
p(1—p) 0 1—p+p° 0
G 0 0 (1-p?

Note in particular the one in the top row of the transition matrix (where the remainder
of the row is zero as it must be since > iDij = 1). This reflects the fact that once the
population enters this state it never leaves. Such a state is termed an absorbing state.
In this case, this state represents the global optimum solution. In general, if we did not
have an €litist selection strategy, it would be possible that this solution might be ”lost”

due to mutation (see Section 3.4.3). The €litist strategy guarantees that the optimal

solution is an absorbing state. Asanillustration of the probability dynamics associated
with this example problem, consider the case where initially, each state has the same
probability of being chosen: 7(0) = [0.25 0.25 0.25 0.25]. The probability of being in
state ¢ after n transitions is then given by equation (3.15). Figure F.1 below shows the
components of thisrow vector for 500 steps of the EA (Markov chain) given amutation

probability, p = 0.1.

F.2 Convergence Properties of Continuous EAS

For completeness, we summarize key results regarding the asymptotic convergence of
continuous EAs, as presented in Rudolph [87].

Given the state space, S, convergence results for continuous EAs require the def-
inition of the probabilistic behavior of the evolutionary operators, expressed in terms
of transition probabilities (i.e. the Markov kernel) over this state space. The general
technique to derive the Markovian kernel, K, rests on its property thait can be decom-

posed into k£ < oo mutually independent Markovian kernels K, . . ., K. Each of these
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describe a single evolutionary operator, and the aggregate Markovian kernel, K istheir

product kernel:

K(z,4) = (Ki,Ky---Ky) (2, A)
= /SKl(azl,d:Eg)/K2($2,d$3)“'

s
/Kk-Q(£k-2d$k—1)/Kk—1($k—1,d$k)Kk($k,A)
S S

Rudol ph [87] has devel oped an expression for this Markovian kernel for an evolutionary
algorithm restricted to the set A, where A, = {x € S : b(z) < f : x + ¢} denotesthe
set of solutions = whose best value, b(z), fallswithin e of the optimal solution.

The properties of this kernel required for convergence to a global optimum can be
stated, namely:

Theorem 2 ([87], p201) A population-based evolutionary algorithm, whose Marko-
vian kernel satisfies the conditions K(xz, A.) > 0 > Oforall z € A = S\ A, and
K(z, A.) = 1for x € A, will converge completely to the global minimum of a real-

valued function f regardless of theinitial distribution.

In particular, we can denote the Markovian kernel, K as the product of the stochas-
tic kernels corresponding to crossover, mutation, and selection. It can be shown [87]
that a sufficient condition for an EA to satisfy the preconditions of Theorem 2 is that
Kems(z, A) > 6 > 0 for x € A..

Theorem 3 ([87], p201) Let X, € S betheinitial population of some elitist EA and
let K., K,,, K, denote the stochastic kernels of the crossover, mutation, and selection

operator, respectively. If the conditions:
1. 35, >0:Vz e S: K.z, B(x)) > 4.

2. 30, > 0:Vz € B(Xp) : Kpu(z, Ae) > 6
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3. 30s>0:VreS:Ky(z,B(x)) > ds

hold simultaneously, the for every e > 0 there existsa ¢ > 0 such that K.,,,s(z, A.) >

d > 0 for every x € B(Xj).

The proof of Theorem 3 relies on several properties. One of these involves the

mutation distribution.

Definition 1 Let 2 be a random vector with support R and D = diag(d;,ds, . . ., dy)
be a diagonal matrix with det(D) = 1 and d; > d,,;, > 0. A mutation distribution,
F, will be termed strictly covering if z can be generated via z = o7 D?Z for arbitrary
orthogonal matrix 7" and where o is allowed to vary in a closed and bounded subset of

{c € R:0 > 0}.

With this definition, one can summarize the conditions for global convergence for

popul ation-based continuous EAS:

Theorem 4 ([87],p.205) A population-based EA with elitism that uses

1. multipoint, parameterized uniform, parameterized immediate, gene pool, or pa-

rameterized intermediate gene pool recombination (with replacement)
2. adtrictly covering mutation distribution,
3. standard proportional, g-fold binary tournament, or top . selection

converges completely to the global minimum of an objective function f : R¢ — R from

theset {f € F': f(x) — oo as|z|| — oc.
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