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on the ZaP-HD Flow Z-Pinch
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Chair of the Supervisory Committee:
Professor Uri Shumlak

Aeronautics & Astronautics

The ZaP-HD Flow Z-Pinch project provides a platform to explore how shear flow stabilized Z-

pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar)

and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which

the plasma carries axial electric current and is confined by its self-induced magnetic field.

ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching

60 µs. The goal of the project is to increase the plasma density and temperature compared

to the previous ZaP project by compressing the plasma to smaller radii (≈ 1 mm).

Radial and axial plasma electron density structure is measured using digital holographic

interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD’s DHI

system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to

produce holograms recorded by a Nikon D3200 digital camera. The holograms are numer-

ically reconstructed with the Fresnel transform reconstruction method to obtain the phase

shift caused by the interaction of the laser beam with the plasma. This provides a two-

dimensional map of line-integrated electron density, which can be Abel inverted to determine

the local number density. The DHI resolves line-integrated densities down to 3 × 1020 m−2

with spatial resolution near 10 µm.

This dissertation presents the first application of Fresnel transform reconstruction as an



analysis technique for a plasma diagnostic, and it analyzes the method’s accuracy through

study of synthetic data. It then presents an Abel inversion procedure that utilizes data on

both sides of a Z-pinch local number density profile to maximize profile symmetry. Density

measurements from DHI reveal the quality of ZaP-HD’s confinement, specifically its scaling

properties. DHI measurements also enable an evaluation of Z-pinch stability metrics.
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Chapter 1

INTRODUCTION

Mankind’s boldest aspirations hinge on the development of plasma physics. Harnessing

the power plasmas promise would supply humanity with fusion reactors generating clean

electricity from limitless fuel. Applying fusion technology to space propulsion would enable

manned colonization of distant planets. Ultimately, mastery of plasmas may give us the

opportunity to leave our solar system, explore our galaxy, and perhaps even allow our species,

in some form, to outlive our sun.

The reasons to study plasmas are compelling, but what gives plasmas such captivating

potential? Plasmas are ionized gases composed of charge particles, which can be moved

and contained by magnetic fields. The ability to act on plasmas at a distance allows for

compression without physical wall contact, which opens the possibility of confining extremely

hot, high energy matter. Most concepts for terrestrial energy sources or highly efficient space

thrusters rely on confining a plasma at high density and temperature for long periods of time.

The ZaP-HD Flow Z-Pinch Experiment tests the efficacy of the flow shear stabilized Z-

pinch concept of plasma confinement. The project aims to extend Z-pinch lifetimes while

learning how density and temperature scale. This research described in this dissertation

applies a laser diagnostic called digital holographic interferometry (DHI) to investigate the

scalability of ZaP-HD’s plasma confinement and stability.

1.1 General plasma and Z-pinch theory

1.1.1 Z-Pinch plasma equilibrium

Among the simplest confinement geometries is the Z-pinch: a linear column of plasma with

electric current flow along its length. The magnetic field induced by the current compresses



2

the plasma on its axis. The magnetic force balances the confined plasma pressure, P, as in

∇P = ~j × ~B (1.1)

where ~j is the current density and ~B is the magnetic field. Expressing Eq. (1.1) in cylindrical

vector components yields

d

dr

(
P +

B2
θ

2µ0

)
=
B2
θ

µ0r
(1.2)

where B2
θ/2µ0 is magnetic pressure, and B2

θ/µ0r is magnetic field tension. Within the plasma

radius, the magnetic tension and pressure both balance the plasma pressure. Outside the

plasma radius, the magnetic tension balances the magnetic and plasma pressures.

A figure of merit for plasma confinement, β = 2µ0P/B
2, indicates how effectively a

plasma can be contained with a given magnetic field. Most plasma confinement concepts

have β values of a small fraction of unity, but Z-pinches have unity average β as defined by

β =
〈P 〉

B2
a/2µ0

= 1 (1.3)

where 〈P 〉 is the average pressure and Ba is the field at the edge of the plasma. High β

confinement makes the Z-pinch an attractive concept as long as it can be sustained.

1.1.2 Z-Pinch stability

Generally, Z-pinches are difficult to sustain because they are highly susceptible to sausage

(m = 0) and kink (m = 1) mode instabilities, which reduce plasma lifetimes by ending

confinement. Figure 1.1 illustrates the two instability modes. When a Z-pinch constricts

as in the sausage mode, the local current density increases, which increases the magnetic

compression at the constriction. Unmitigated, a sausage mode will constrict until it cuts

the plasma apart. When a Z-pinch bends off axis as in a kink mode, the magnetic field

concentrates on the concave side and diminishes on the convex side. The imbalance in
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Figure 1.1: Sausage and kink mode instabilities are shown at left and right respectively. The
magnetic fields induced by current flow from right to left are shown. The sausage mode
results in azimuthally symmetric ~B concentration that causes the pinch to further constrict.
The kink mode causes an asymmetric ~B concentration that drives the pinch further off axis.

magnetic pressure bends the Z-pinch further until it rips apart.

These instabilities can be neutralized by several methods. Some are proven, but come

with severe drawbacks. Close-fitting conducting walls induce image currents, which oppose

and mitigate plasma perturbations [1]. This works for relatively cool plasmas, but they

cannot be used to stabilize high temperature, high energy plasma as their proximity to the

plasma exposes them to extreme heat loads. Another stabilization concept relies applying an

axial field component to the Z-pinch, turning it into a screw pinch. This introduces magnetic

shear, which stabilizes the plasma. However, the axial field provides a pathway along which

charged particles can exit the equilibrium, which causes significant energy losses and exposes

metal electrodes to high heat loads. Additionally, the axial field component can only stabilize

pinches with axial currents up to a maximum set by the Kruskal-Shafranov limit [2, 3].

Methods do exist to mitigate the instabilities without the negative repercussions of the

aforementioned methods. Z-pinches with sufficiently gradual pressure profiles are stable

against sausage modes. Kadomtsev showed the stability criterion to be
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d lnP

d ln r
≤ 4γ

2 + γβ
(1.4)

where γ = Cp/Cv, which must be satisfied everywhere in the plasma for stability against the

sausage mode [4].

Sheared axial flows can stabilize kinks. The radial shear of the axial flow must meet the

criterion

dVz
dr
≥ 0.1kVA (1.5)

where k is the wave number of the instability, and VA = Ba/
√
µ0ρ0 is the Alfvén speed

defined by the maximum field and density. To ensure stability everywhere in the plasma, the

shear must be maintained for at least the time it takes the plasma to flow along the Z-pinch’s

length. In other words, the plasma’s viscous damping time must exceed a bulk flow through

time to ensure the shear is not dissipated by viscosity [5].

Magneto-Rayleigh-Taylor (MRT) instabilities with m = 0 and m = 1 azimuthal mode

numbers also occur in Z-pinch implosions. Related to the Rayleigh-Taylor (RT) fluid insta-

bility, MRTs may occur when the vacuum-plasma interface accelerates [6]. The RT instability

occurs when a light fluid accelerates into a heavy one. Imagine a closed classroom filled with

air at atmospheric pressure. An atmosphere of pressure is enough to hydro-statically sup-

port a sizable layer of water at the room’s ceiling, yet the world is devoid of such fascinating

classrooms. If such a room did exist, it would not take long for the gravitational acceleration

imparted on the fluids to drive RT instabilities to interchange the relatively dense water

with the relatively sparse air. Localized perturbations at the interface between the fluids

grow into a pattern of bubbles and spikes. Oftentimes, the instability growth terminates in

a global interchange where the fluids either mix or switch positions [7]. The MRT instability

operates in analagous fashion with a magnetic field acting as the light fluid. MRT instabili-

ties frequently limit dynamic Z-pinch performance [8], but steady state Z-pinches are stable

against the MRT because the vacuum-plasma boundary remains stationary. In ZaP-HD,
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MRTs are most likely to occur near the inner electrode nosecone where the plasma rapidly

converges on axis.

Current-driven microinstabilities can also disturb the plasma and limit its current. When

the plasma drift speed, vd = |ve−vi|, exceeds the ion thermal velocity, vti =
√
kTi/mi, kinetic

effects cause disturbances such as two-stream and lower-hybrid drift instabilities, which are

thought to cause anomalous resistivity and reduce vd [9]. Sec. 1.1.3 describes how reducing

a Z-pinch’s linear density, N , leads to increased temperature and density. However, because

Ti depends on linear density through Bennett’s relation, decreasing the linear density too

much reduces the ion thermal velocity to the point microinstabilities develop [10].

1.1.3 Ideal Z-pinch scaling

To explore how Z-pinch properties scale, consider the Bennett pinch relation,

8πNkT (Z + 1) = µ0I
2, (1.6)

which applies to Z-pinches with arbitrary current profiles. Here, T = Te+Ti, Z is the charge

state, k is Boltzmann’s constant, and the total current I =
∫ a
0

2πJzrdr. The relation is

derived from applying Ampere’s Law to radial pressure balance, treating the plasma as an

ideal gas, and defining a linear density N =
∫ a
0

2πnrdr where a is the plasma radius [11].

Rearranging the Bennett relation expresses how Z-pinch temperature scales with plasma

current and linear density as indicated in

T2
T1

=

(
I2
I1

)2
N1

N2

(1.7)

where the subscripts 1 and 2 indicate initial and final states respectively. Theoretical scalings

for number density, n = Zni = ne when Z = 1, and pinch radius, a, can be found by

assuming adiabatic compression. An adiabatic process occurs without heat transfer from

the system, i.e. it happens so fast that no energy flow is possible, which means the quantity

P/nγ = (1 + Z)kT/nγ−1 remains constant. This relates density to temperature, and radius
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Figure 1.2: The ideal scaling of temperature, density, and radius with plasma current for
an adiabatically compressed Z-pinch with constant linear density. The red and blue dots
indicate the nominal run conditions for ZaP and ZaP-HD respectively.

relates to density as in n = N/πa2. This gives everything necessary to obtain scaling relations

for density and pinch radius given by

n2

n1

=

(
I2
I1

) 2
γ−1
(
N1

N2

) 1
γ−1

(1.8)

a2
a1

=

(
I1
I2

) 1
γ−1
(
N2

N1

) γ
2(γ−1)

. (1.9)

The temperature and density both scale directly with increased current but inversely with

linear density. Optimal scaling results from increasing plasma current independent of linear

density, which has been plotted in Fig. 1.2. These plots use the original ZaP experiment

(n1 = 6 × 1022 m−3, T1 = 20 eV, I1 = 50 kA, and a = 1 cm) as the initial state and trace

out a series of final states for a range of elevated currents [12]. As current increases, pinch

radius shrinks, which means high resolution diagnostics are required to view hot, dense Z-

pinches. These ideal scalings help predict how much current, and therefore power, is required

to sustain certain temperatures and densities. The ZaP-HD experiment explores how the

flow Z-pinch scales in reality.
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1.1.4 Historical context of Z-pinches, X-pinches, and Dense Plasma Foci

Research into Z-pinches as potential magnetic confinement fusion (MCF) reactors began in

the 1950s [13], but MHD instabilities plagued these static, µs-timescale discharges [14]. Mov-

ing forward, fast (10-100 ns) Z-pinches were explored as a means to compress the plasma

faster than the instabilities could grow, which led to improved compression and X-ray emis-

sion [15]. Fast Z-pinches employ various loads including wire arrays, gas-puffs, and cylin-

drical liners [16]. Today’s experimental concepts include Magnetic Liner Inertial Fusion

(MagLIF) [17] and the staged Z-pinch [18].

Delivering more than 10 percent conversion efficiency from capacitor bank energy to ra-

diation, Z-pinch X-ray sources could be relatively efficient drivers for implosions of spherical

fuel pellets in inertial confinement fusion (ICF) schemes [19]. Presently, at experiments like

the National Ignition Facility (NIF) such implosions are driven by costly, inefficient high

power lasers striking a hohlraum. A hohlraum is a cylindrical gold shell that surrounds a

spherical fuel pellet. At NIF, 192 of the world’s most powerful ultraviolet lasers simultane-

ously strike the hohlraum, which then emits X-rays that drive the fuel implosion [20].

Bursts of X-ray emission from Z-pinches emanate from small micropinches caused by

sausage mode instabilities, and the locations of these micropinches are unpredictable in both

space and time. X-ray bursts are generated with greater predictability by a similar category

of devices called X-pinches, which drive loads consisting of metal wires that contact each

other at a cross point [21]. The pre-pulse load of a two-wire X-pinch literally looks like the

letter X. X-ray emission consistently occurs at the cross point in X-pinches, which enables

their use as point sources of X-rays for radiography, a diagnostic useful in imaging dense

Z-pinch and X-pinch plasma implosions [22].

Another related class of devices, the dense plasma focus (DPF), is being explored as a

source of X-rays, particle beams, and fusion neutrons [23]. Two broad categories of DPF

geometry exist: the Filippov and Mather designs. The Filippov design consists of concentric,

circular, co-planar electrodes and is rather similar to plasma guns used to study magnetic
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reconnection and astrophysical plasma jets [24, 25]. The Mather design ostensibly resem-

bles the geometry of the ZaP-HD accelerator, but it lacks the downstream assembly region

provided by ZaP-HD’s outer electrode. Also, DPFs are typically driven with power supplies

with much faster rise times (< 1 µs) than ZaP-HD (≈ 50 µs). DPFs employ gas puff loads

and generate Z-pinches, which quickly break up due to instabilities. These instabilities ac-

celerate ion and electron beams, which enables beam target fusion to generate neutrons [23].

Unlike thermonuclear fusion, which relies on heating a plasma to such a high temperature

that random particle motions are sufficiently energetic to cause fusion reactions, beam target

fusion relies on the directed kinetic energy of a particle beam to overcome the electrostatic

repulsion of similarly-charged ions [26]. The resulting fusion neutrons can be used to test

the robustness of materials for potential use in future fusion power plants. A high energy

neutron source could also aid remote nuclear weapon detection. Exposure to high energy

neutrons causes fissile material to undergo fission reactions, which can be detected via the

neutrons and gamma rays they produce at a distance around 10 m [27].

1.2 Motivating the flow shear stabilized Z-pinch

1.2.1 Space propulsion

A flow Z-pinch could provide a plasma thruster for interplanetary and interstellar space

travel. Plasma propulsion concepts offer far greater fuel efficiency than chemical rockets

because they allow greater control of exhaust velocity, ce. Their development could open

realistic opportunities for manned exploration and colonization on other planets.

A chemical rocket releases energy from fuel through combustion and turns it into a

directed flow to produce thrust. Combustion releases thermal energy, which is converted

to directed kinetic energy when the rocket’s working fluid expands through a converging-

diverging nozzle. The heat of combustion and the nozzle geometry fix ce.

Alternatively, plamsa thrusters accelerate propellant by applying electromagnetic forces.

Varying the applied power enables control over the rocket’s ce. Much higher ce are possible
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Figure 1.3: A proposed concept for a flow Z-pinch thruster with propellant exhausting to
the right. Points of plasma contact with the electrodes would be distributed over large areas
to minimize heat loading. Some of the fusion power could be extracted via direct energy
converter to power spacecraft systems. This concept has favorable mass requirements as it
requires no external field coils and could generate plasmas hot and dense enough to employ
aneutronic fusion reactions [28].

with plasma propulsion because the applied power has no theoretical limit although increas-

ing ce requires a more massive power supply. Increasing ce can improve fuel efficiency, but

practically there exists a ce above which further fuel savings no longer justify a larger power

supply.

To understand why exhaust velocity plays a key role in rocket efficiency, consider the

force balance for a rocket losing propellant mass exhausted at velocity ce as in

m
d~v

dt
=
dm

dt
~ce + ~Fg, (1.10)

wherem is the rocket’s mass, ~v is the rocket’s velocity, and ~Fg is the force of gravity. Ignoring

gravity and solving Eq. (1.10) assuming a constant ce yields the rocket equation,

m0

mf

= exp

(
∆V

ce

)
. (1.11)

Here, m0 and mf are the initial and final masses respectively, and ∆V = |vf − v0|, the
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difference of the final and initial velocities of a straight trajectory. More generally, ∆V

quantifies the energy required to conduct a spacecraft maneuver.

For simplicity, consider a mission that starts at rest, v0 = 0, and accelerates along a

straight path to vf . If ce is constant, the fuel mass, m0−mf , required to accelerate to higher

vf increases exponentially. Achieving long distance missions over a reasonable time period

demands high vf , which can require impractical, or even impossible, amounts of fuel.

If ce can vary, much greater fuel efficiency is possible. Consider a spacecraft that starts at

a small initial velocity, ε, but accelerates while incrementally increasing its exhaust velocity

to match its own. Solving Eq. (1.10) with ce = v + ε where v is the spacecraft’s velocity

yields
m0

mf

=

(
vf
ε

+ 1

)
. (1.12)

In this variable-ce case, the fuel mass increases linearly with vf , which is far more efficient

than the exponential scaling of the fixed-ce case.

The flow Z-pinch presents many features advantageous to space propulsion. Fig. 1.3

illustrates a theoretical concept, in which accelerated plasma flows out of the confinement

chamber to the right where the released propellant would cool and recombine into neutral

particles. The concept could operate in steady state to generate exhaust velocities in excess

of 1× 106 m/s and thrusts on the order of 1× 105 N. Fusion reactions would provide power

to sustain the plasma and run spacecraft systems.

Compared to other plasma rockets, flow Z-pinches offer significant mass savings. The

plasma self stabilizes and uses its own magentic field for confinement, so it does not demand

heavy external field coils. The high β confinement enables higher temperatures and densities,

allowing aneutronic fusion reactions like proton-boron fusion, p+B11 −→ 3He4. Generating

power with aneutronic fusion means a spacecraft would not need to carry heavy neutron

shielding to protect the payload.

As with terrestrial fusion reactors, the keys to developing a fusion thruster are figuring

out how to sustain the plasma at high temperatures and densities.
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1.2.2 Thermonuclear fusion reactor

A stable Z-pinch could be used as a fusion reactor to generate clean electricity with prac-

tically limitless Deuterium fuel extracted from sea water. Much plasma physics research

focuses on attaining MCF, which utilizes magnetic fields to confine and stabilize a plasma

hot enough to generate fusion reactions. Working MCF reactors could provide humanity

with an extraordinarily fuel efficient source of electricity while posing no risk of catastrophic

failure and generating relatively benign waste.

Fusion reactors can be highly efficient because each fusion reaction releases a tremendous

amount of extractable energy. Atomic nuclei electrostatically repel each other, but they will

fuse if they move close enough together that the strong nuclear force overcomes their coloumb

repulsion. Light atomic nuclei heated to 10 keV or hotter have sufficient kinetic energy to

overcome their repulsion, collide, and fuse. The binding energy of a resulting fused nucleus

is much less than the energy in the fusing nuclei, and the energy remaining after fusing is

released.

The lightest elements fuse most easily because their nuclei have the fewest protons and

therefore the least electrostatic charge. Therefore, Hydrogen-based reactions are those most

considered for use in reactors. The fusion reaction with its peak rate at the lowest temper-

ature is the fusion of deuterium (D) and tritium (T), two isotopes of hydrogen. D-T fusion

is expressed by the chemical formula: D + T −→ He4(3 · 5MeV) + n(14 · 1MeV). The He4

alpha particles produced are charged and therefore confined to the plasma, so their energy

can help sustain fusion conditions. The chargeless high energy neutrons escape.

In a D-T fusion reactor, energy could be extracted from the energetic neutrons colliding

with a flowing liquid Pb-Li blanket surrounding the core. The neutrons would heat the Pb-

Li, which could transfer that energy to a steam generator. The neutrons would also react

with the Li to form more tritium. As tritium has a 12-year half life, this breeding would be

key to the sustained success of a D-T reactor. Conversely, a practically limitless supply of

Deuterium can be extracted from ocean water. The tritium required to start a D-T reactor
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could be supplied from the world’s reserves generated during H-bomb testing or from D-D

fusion.

To obtain ignition (a self-sustaining reactor with net power output), a plasma of at least

10 keV must be generated at sufficient density for a sufficient time duration. We can obtain

a required product of density and confinement time required for ignition through analysis

by first observing the power generated, Pr, must exceed the power required to confine the

plasma, Pc. The power required to maintain the equilibrium is the energy confined divided

by the energy confinement time

Pc =
3
2
nk(Te + Ti)

τc
. (1.13)

The energy the reactor retains by confining produced alpha particles is given by

Pr = nDnT 〈σv〉Eα =
1

4
n2 〈σv〉Eα. (1.14)

Here, the equation is reduced assuming D-T fusion with equal reactant number densities

(nD = nT = n), Eα is the energy of the alpha particle ejected by each reaction, and 〈σv〉 is

the reaction rate averaged over the velocity distribution.

Plugging Eq. (1.13) and Eq. (1.14) into the requirement for ignition, Pr > Pc, gives

nτc >
12T

Eα 〈σv〉
(1.15)

as a requirement on the plasma density and confinement time to obtain ignition. This

product is commonly known as the Lawson Criterion. ZaP-HD’s aim to increase the plasma

density and confinement time of the shear flow stabilized Z-pinch takes the concept closer to

ignition.

1.3 The ZaP Flow Z-Pinch Experiment

The ZaP Flow Z-Pinch investigates velocity shear stabilization and Z-pinch scaling. The

experiment consists of a coaxial electrode gun, which ejects plasma into a cylindrical flux
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Figure 1.4: A cross-section of the ZaP experiment shows its internal design. The inner and
outer electrodes are colored yellow and green respectively, the vacuum chamber is shown in
gray, and the Z-pinch is in pink. The coaxial accelerator ionizes plasma and pushes it into
the assembly region. The z = 0 location for ZaP’s axial coordinate system is shown. The
z-coordinate increases to the right in units of cm; locations left of z = 0 are negative.

conserver called the assembly region where a Z-pinch forms on machine axis. Fig. 1.4 illus-

trates the experiment’s geometry.

Prior to each plasma pulse, a power supply charges a capacitor bank (composed by as

many as 16 170 µF capacitors) to up to 10 kV, roughly 150 kJ of energy. The capacitors store

this energy while neutral gas is puffed between the electrodes and given time to expand within

the accelerator. Then, ignitron switches apply the capacitors’ potential to the electrodes,

which breaks down the neutral gas into a conducting plasma. The capacitors discharge, and

currents flowing in the plasma and through the electrode walls induce magnetic fields, which

push the plasma from the accelerator to the assembly region where the plasma convenes on

axis into a Z-pinch.

1.3.1 Shear flow stabilization of ZaP

ZaP sustains Z-pinches for several flow through times and thousands of instability growth

times with flow shear stabilization [29]. The extended period of plasma stability, called the

quiescent period, is identified by examining data from arrays of azimuthally spaced magnetic

field probes. The Fourier decomposition of these data detailed in Sec. 2.1.3 allows estimation
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of the plasma current centroid in the plane of a probe array. ZaP identifies a quiescent period

as when the current centroid is steadily centered within 1 cm of machine axis at z = 0 [30].

Strong correlation exists between the quiescent period and the presence of velocity shear.

Radial profiles of plasma velocity are measured by observing Doppler shifts of impurity line

radiation. ZaP measures such shifts with a 0.5 m spectrometer with an attached intensified

charge-coupled device (ICCD), which records one 100 ns exposure per plasma pulse and is

discussed in more detail in Sec. 2.1.4. A bundle of 20 fibers views the z = 0 location at an

oblique angle to observe axial velocity. Imaging optics allow the 20 chords to view roughly

24 mm across the plasma with spatial resolution of 1.2 mm. If repeatable Z-pinches are

generated, the time evolution of the velocity profiles can be obtained by varying the timing

of ICCD. Fig. 1.5 shows such an evolution as a contour plot in space and normalized time.

The time normalization is applied such that τ = 0 and τ = 1 correspond to the start and

end of the quiescent period respectively; this normalization makes for a better comparison

between similar plasma pulses with small differences in quiescent period. A sheared flow

profile exists throughout the quiescent period except for a shear reversal that occurs roughly

halfway through. Oftentimes fluctuations in the current centroid are measured at the time

of the shear reversal as the plasma’s flow profile is briefly uniform [29].

The end of the quiescent period correlates with depletion of density in the accelera-

tor [31] [32]. When the accelerator runs out of neutral gas, it no longer has fuel to sustain

the Z-pinch’s shear with a flow of newly ionized plasma. A large fraction of the neutral gas

puff can be ionized and accelerated early on during a pulse leaving less in the accelerator to

supply sustained shear later. Increasing the total amount of injected neutral gas lengthens

quiescent periods to some degree by giving the machine more fuel, but it does not prevent

excessive early fuel consumption [31]. An insulator installed between the inner and outer

electrodes extends from the farthest upstream point in the machine (z = -120 cm) to z =

-70 cm, 5 cm downstream from the gas injection plane. This modification prevents the ini-

tial ionization front from moving upstream in the accelerator, which limits the neutral gas

it ionizes and accelerates before Z-pinch formation. Operating with the insulator extension
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Figure 1.5: The contour plot of axial plasma velocity in space and normalized quiescent
time shows the presence of sheared flow for the duration of the quiescent period. The shear
typically reverses halfway though the quiescent period probably due to flow stagnation at
the outer electrode endwall [29].
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Figure 1.6: The 10 cm and 16 cm inner electrode configurations of the ZaP experiment are
shown along with the outer electrode with the perforated section installed. Axial locations
are referenced in units of cm. Gas injection from outer and inner vales occurs at z = -75 cm.
The insulator extension shown in black extends downstream from these valves by 5 cm.

prevented premature gas depletion leading to longer quiescent times, which were only limited

by the duration of the current pulse supplied by the capacitors [33].

To isolate the flow shear stabilization mechanism from the potentially stabilizing effect

of a conducting wall, the outer electrode was extended with a perforated section. Illustrated

in Fig. 1.6, roughly 70 percent of the perforated section is removed to prevent stabilizing

azimuthal current flow. Plasma pulses with and without the performated section with oth-

erwise identical settings exhibit similar quiescent times, and data from optical images and

interferometry corroborate pinch stability through the perforated section [1]. These obser-

vations agree with theoretical predictions that the outer electrode is too far away from the

plasma to provide stabilization [5].

1.3.2 Investigating Z-Pinch scaling on ZaP

Changing the diameter of ZaP’s inner electrode allows for investigation of Z-pinch scaling

with modified linear density for constant plasma current. Consider a model for Z-pinch

formation as the compression of an annular plasma (contained in the geometry of the ac-
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celerator) to a cylindrical pinch. Assume that the length of the annular plasma and the

pinch are equal. For a given plasma current and accelerator conditions (n = ni = ne and

T = Ti = Te in the accelerator), a larger diameter inner electrode decreases the linear den-

sity by reducing the total amount of gas required to match accelerator conditions. If the

plasma compresses adiabatically, reduced linear density should increase pinch density and

temperature while shrinking its radius as in Eqs. (1.7 - 1.9).

Comparing Z-pinches generated with 10 cm and 16 cm diameter inner electrodes exposes

difficulties in reducing linear density and suggests the presence of non-adiabatic processes.

For given accelerator conditions and plasma current, the 16 cm electrode should compress

the plasma to three times the density and twice the temperature as the pinches generated

by the 10 cm electrode. In reality, the 16 cm electrode produces plasmas larger, colder, and

less dense than those of the 10 cm electrode. Non-adiabatic effects like shock heating, ohmic

heating, and radiation explain some of the disagreement with the anticipated scaling. The

major culprit in the poor compression of the 16 cm configuration is that a repeatable run

condition cannot be established at low enough gas injection pressure to match the accelerator

conditions of the 10 cm electrode configuration [32].
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Chapter 2

THE ZAP-HD FLOW Z-PINCH EXPERIMENT

ZaP-HD provides a more versatile platform to study Z-pinch scaling than ZaP because

it allows more effective, independent control over linear density and plasma current. Shown

in Fig. 2.1, the experiment utilizes three co-axial electrodes to form shear flow stabilized

Z-pinches.

ZaP-HD’s operation consists of two main processes: plasma acceleration and compres-

sion. Separate control over the two processes is exerted by two capacitor bank power supplies

connected to the three electrodes. The acceleration bank (680 µF connected as a pulse form-

ing network (PFN) with 90 µs half period) drives current between the inner and middle

electrodes. Neutral hydrogen is puffed between the electrodes before high voltage is applied

across the gap to ionize the gas. The Lorentz force induced by the resulting currents pushes

the plasma downstream to the assembly region. Once the plasma enters the assembly region,

the compression bank (680 µF connected as a PFN with 90 µs half period) drives current

between the outer and inner electrodes, which compresses the plasma on axis as its momen-

tum carries it down the length of the machine. After the pinch compresses, a steady stream

of flow from the accelerator provides the shear necessary for plasma stability.

Decoupling plasma acceleration and compression such that each process is primarily con-

trolled by an independent power supply allows for effective temperature and density scaling.

The current flow in the accelerator dictates the linear density, N , in the assembled pinch,

while the current flow in the assembly region is the plasma current, I, in scaling Eqs. (1.7

- 1.9). ZaP-HD aims to scale up density and temperature by minimizing linear density and

maximizing plasma current.
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Figure 2.1: A cross section of the ZaP-HD experiment reveals its triaxial electrode design. A
coaxial accelerator ionizes and accelerates plasma into the assembly region where the plasma
is compressed on axis as a Z-pinch. The inner, middle, and outer electrodes are colored
yellow, red, and blue respectively. The vacuum chamber is shown in gray, and the Z-pinch
is in pink. The ZaP-HD coordinate system is also shown; unlike in ZaP, z = 0 is located at
the inner electrode nosecone. Neutral gas injection into the accelerator between the middle
and inner electrodes occurs at the two labeled axial locations. The inner gas injection puffs
from a single valve through a manifold with eight outlets spaced evenly on the circumference
of the inner electrode. The outer gas injection puffs inward from the exterior of the middle
electrode through eight valves at the farthest upstream location in the accelerator.
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2.1 Diagnostics

A versatile suite of instruments diagnoses the ZaP-HD Z-pinch. Augmenting standard cur-

rent and voltage measurements, magnetic field probes embedded in the outer and middle

electrodes measure the field topology in space and time. Axially-spaced probes measure

the radial current distribution in the machine, while azimuthally-spaced probes allow for

determination of pinch position based on its current centroid.

Four large rectangular windows and matching cutouts in the outer electrode provide ex-

tensive viewing access in the assembly region for optical diagnostics. Passive spectroscopy

looks for Doppler broadening and Doppler shifts to measure spatially-resolved ion temper-

ature and plasma velocity profiles respectively. High speed optical camera imaging reveals

insights about the Z-pinch’s structure and dynamics. A heterodyne quadrature interferome-

ter measures time-resolved electron density at movable discrete locations within the assembly

region, and digital holographic interferometry (DHI) measures line-integrated electron den-

sity with fine spatial resolution at one time instant at movable locations in the assembly

region The DHI’s resolution allows for Abel inversion of line-integrated density to obtain

number density.

2.1.1 Current Measurements

Rogowski coils provide measurements of the total plasma current, IP , and the compression

current, IC . These coils are positioned as shown in Fig. 2.2 and each measures the net

current passing through the area enclosed by each coil. The acceleration current, IA, can be

computed by subtracting the compression current from the total plasma current,

IA = IP − IC . (2.1)

Fig. 2.7 (a) shows IA and IC traces for a typical plasma pulse.

Rogowski coils operate based on Faraday’s law. A current passing through the area
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enclosed by a Rogowski coil generates a magnetic field, which penetrates the poloidal loops

wrapped around the coil’s toroidal core. This changing magnetic flux, Φ, induces a voltage

at the Rogowski coil terminals

Vrogo = −dΦ

dt
= −µ0nA

dI

dt
, (2.2)

which can be integrated to give the current, I, passing through the area enclosed by the coil.

For proper operation, the turn density and cross-sectional area must remain constant along

the length of the coil, and the coil ends must be carefully matched to make a closed loop.

ZaP-HD’s Rogowski coils are constructed by stripping the outer black insulator off of

co-axial cable and winding 32 gauge, enamel-coated copper wire around the exposed white

insulator. The 32 gauge wire is soldered to the inner conductor of the co-axial cable at one

end and to the outer braid at the other end. A BNC plug is attached to the co-axial cable

to allow for easy digitization.

2.1.2 Voltage Measurements

Voltages between the ZaP-HD electrodes are measured by observing the currents through

high power non-inductive carborundum resistors connected between each pair of electrodes.

The resistances (≈ 500 Ω) are selected to divert a small fraction (< 1 percent) of the power

supply current from the plasma while still providing a large enough signal for the Pearson

current probes to obtain ample current signals. Knowing the resistances and the current

passing through the resistors is sufficient to determine the electrode voltage with Ohm’s law,

V = IR.

ZaP-HD employs two voltage measurements: one between the inner and middle electrodes

gives the acceleration voltage, VA, and the other between the inner and outer electrodes gives

the compression voltage, VC . A circuit diagram of the voltage measurements is shown in

Fig. 2.2. VC effectively is the voltage of the inner electrode. The middle electrode voltage
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Figure 2.2: A view of the upstream portion of the ZaP-HD electrodes shows the location
of the experiment’s current and voltage measurements. The orange dots with black crosses
indicate the positions of the Ic and Ip Rogowski coils, and the circuit diagram at the bottom
illustrates the design of the voltage measurement, which uses Pearson probes to measure the
current across high power, non-inductive resistors.
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can be computed by subtracting the acceleration voltage from the compression voltage,

VM = VC − VA. (2.3)

The measurements of VM and VC are referenced to the potential of the outer electrode cold

plate, which can conceivably float relative to the data acquisition ground during a pulse.

Fig. 2.7 (b) shows VM , VA, and VC for a typical plasma pulse.

2.1.3 Magnetic Probes

ZaP-HD’s magnetic field probe array provides extensive insight into its plasma dynamics

and stability. As shown in Fig. 2.3, probes are embedded in the outer and middle electrodes

at many axial and azimuthal locations. All probes measure the azimuthal component of

the magnetic field. The assembly probes are digitized at 40 MHz by Joerger TR1612 12-bit

digitizers, and the accelerator probes are digitized at 20 MHz by 8-bit T2008 digitizers. The

time resolution of this digitization paired with the spatial resolution and large number of

probes makes the array a powerful diagnostic tool. Four eight-probe azimuthal arrays (with

45 degrees spacing between probes) and six four-probe azimuthal arrays (with 90 degrees

spacing between probes) exist in the assembly region. One eight-probe azimuthal array and

one fifteen-probe linear array exist in the accelerator. In total, the assembly region has 56

probes and the accelerator has 22.

The probes convert changing magnetic flux to a voltage, Vφ, as in Faraday’s Law,

Vφ = −dΦ

dt
= −nAdB

dt
, (2.4)

where n is the number of windings of area A. This voltage is integrated by active analog

integrating circuits to provide a signal proportional to B, which is then digitized. The same

32 gauge wire used for ZaP-HD’s Rogowskii coils is wound 10 times around in a machined

groove in a Kel-F plastic form. The form and coil are glued with Torr-Seal into machined
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Figure 2.3: A cross-section of the ZaP-HD experiment with transparent inner electrode shows
the magnetic probe locations. The white circles visible on the outer and middle electrodes
are machined boron nitride probe shields, in which copper windings around a Kel-F form
are protected from plasma contact. The labels indicate the locations of the eight-probe
azimuthal arrays in units of cm from the end of the accelerator.

boron nitride shields. The shields insert into holes in the electrodes and are secured in place

with silver-plated, vented bolts. These shields protect the windings from plasma contact, and

they also allow magnetic flux to penetrate to the windings because the material is electrically

non-conductive.

The metal surrounding probes, however, is conductive, and it affects the field measure-

ment because image currents in the metal oppose magnetic field from pushing into the probe

windings. Proper calibration enables compensation of the image currents. Calibration is

performed by installing, in place of the inner electrode, a copper rod, which connects to the

outer electrode endwall and the inner electrode hot plate. A pulsed power supply drives a

known current through the outer electrode and the copper rod, which enables computation

of a calibration coefficient for each probe. This calibration method works for the assembly

probes, but it provides an incomplete calibration for the accelerator probes. The calibration

of the assembly probes is accurate because the set up directs currents through the paths

expected during an actual plasma pulse as shown in Fig. 2.4 (b). The set up provides an

incomplete calibration for the accelerator probes because it does not account for the current
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Figure 2.4: Axial cross-sections show the magnetic fields near wall-embedded magnetic field
probes for (a) an accelerator probe and (b) an assembly region probe. The inner, middle,
and outer electrodes are shown in yellow, red, and blue respectively in (a). In (b), the outer
electrode is blue and the Z-pinch plasma is pink. Directions of current flow are shown by
vectors into and out of the page, and magnetic field lines are also drawn. Boron nitride probe
shields are shown in white, and Kel-F plastic forms are green.
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flow in the middle electrode shown in Fig. 2.4 (a), which would be expected during a plasma

pulse. In the future, new calibration hardware will be constructed to drive known currents

through the middle electrode and a central copper rod to obtain a second calibration coef-

ficient for each accelerator probe. Using coefficients from the original and new calibrations

will allow accurate computation of the field measured at the middle electrode wall.

Because the accelerator probe calibration is incomplete, this disseration shows accelerator

probe data in arbitrary units. The accelerator’s linear array still reveals much about the

current distribution in that region, which is useful in understanding how the initial plasma

formation and rundown operate and how the gun continues to fuel the assembly region later

in time. Because no current connection exists between the outer and middle electrodes

upstream of z = 0 cm, using the incomplete calibration gives an accurate measure of the

relative magnitudes of fields in the accelerator. Fig. 2.8 (b) shows data from the accelerator

linear array during a typical plasma pulse. As the initial current front flows downstream, the

probe signals rise one by one. Determining the time differences between the signals’ initial

rises allows for computation of the speed of the front. The radial component of Ampere’s

law in cylindrical coordinates,

µ0jr = −∂Bθ

∂z
, (2.5)

states that axial gradients in the magnetic field necessarily coincide with radial current flow.

Therefore, the relatively uniform field gradient during the quiescent period in Fig. 2.8 (b)

indicates an axially uniform radial current. The presence of radial current in the accelerator

is a positive sign that plasma is being accelerated by the Lorentz force downstream to sustain

stabilizing flow shear in the assembly region.

The assembly probes provide important information about the Z-pinch’s stability and

structure. The axial current and current centroid position in the plane of each azimuthal

array can be determined by computing Fourier modes of the raw azimuthal field data. Cur-

rent centroids provide an objective determination of the Z-pinch’s stability: at a given axial

location, a quiescent period of plasma stability can be defined as the time when the centroid
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resides within some threshold distance from the machine’s axis. A stable Z-pinch of long

length will have quiescent times along its length that overlap in time.

Determination of the current centroid relies on a Fourier decomposition of azimuthal

magnetic probe data, which is written in discrete form as

Bθ(θi) =
∑
j=0,m

aj cos(jθi) +
∑
j=1,m

bj sin(jθi). (2.6)

For a single axial location, this equation expresses the discrete Fourier series as a function

of θi, the azimuthal position of each probe.

Solving for the coefficients, aj and bj, in the Fourier series allows the determination of

azimuthal mode amplitudes, mj, and phase, φi, as in

mj =
√
a2j + b2j (2.7)

φj = tan−1
(
bj
aj

)
. (2.8)

This can be done by posing the series expansion as a linear algebra problem. The measured

fields and unknown coefficients are written as vectors, while the sine and cosine terms are

arranged as a matrix. Taking a pseudo-inverse of the matrix solves for the coefficients aj

and bj [30].

Each mode amplitude, mj, indicates the contribution of a different modal shape to the

total current distribution. For instance, as the zeroth-order mode of the Fourier series, m0, is

the mean magnetic field, which is proportional to the mean current. Like with the accelerator

probes, observing axial gradients in the mean fields in the assembly region as in Fig. 2.8 (a)

reveals where and when radial and axial currents exist in the Z-pinch.

The m1 amplitude relates to the radial displacement of current from the geometric center



28

of the probe array. The radial displacement can be written as

∆r =
1

2

m1

m0

rwall (2.9)

by assuming axially uniform current perturbations and ∆r/rwall < 0.5 [30]. A value of

normalize mode data, m1/m0, below 0.2 means the current is displaced within a centimeter

of the geometric center. On ZaP, if m1/m0 < 0.2 for an extended time while the m0 > 0,

the plasma was defined to be stable. The duration the stability lasts is called a quiescent

period. Note that the condition for m0 > 0 ensures axial current is actually flowing to

provide plasma confinement during the quiescent period. Fig. 2.9 shows m1/m0 data for a

typical ZaP-HD pulse. At high bank charge voltages on ZaP-HD, the m1/m0 takes higher

values than ZaP during the quiescent period, but as described more in Sec. 2.2, the plasma

moves gradually as a coherent, stable structure during this time. Note that obtaining the

radial displacement ∆r and phase φ1 allows computation of the current centroid location in

the x and y coordinates of the plane of the azimuthal probe array.

2.1.4 Spectroscopy

ZaP-HD employs two spectrometers. The ICCD Czerny-Turner spectrometer, a 0.5 m Acton

Research SpectraPro 500i with intensified CCD (ICCD) Roper Scientific PI-MAX camera,

allows for impurity identification and measures ion temperature and bulk velocity profiles.

The CCD spectrometer, a 0.5 m Jarrell Ash model 82-020 spectrometer with Santa Barbara

Research Group ST-6 CCD camera, pairs with a photo-multiplier tube (PMT) to give time-

resolved intensity of a single selectable spectral line.

The ICCD’s measurements rely on the Doppler effect, which dictates how the wavelength

of an observed wave changes as a function of the relative velocity between an observer and the

wave source. Waves moving toward an observer appear to shift to shorter wavelengths, while

those moving away shift to longer wavelengths. The Doppler shift is commonly discussed in

astronomy: light is a wave phenomenon, so stars moving towards Earth appear blue-shifted
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and stars moving away appear red-shifted.

The ICCD spectrometer views the plasma through oblique and transverse telescopes,

which mount to a rail system on the rectangular viewports for easy movement of the axial

measurement locations. The telescopes use telecentric irises to image 20 parallel lines of

sight in the plasma onto 20 fibers, which convey the light to the spectrometer [34]. The

20 chords view roughly 24 mm across the plasma with spatial resolution of 1.2 mm. The

ICCD has adjustable gain and gate (to a duration as short as 200 ns) and records one

spectrum per plasma pulse. Oriented at a 45 degree angle relative to the ZaP-HD centerline,

the oblique telescope observes blue shifts in impurity line radiation to detect bulk plasma

velocity profiles. Velocity measurements usually observe the C III line at 229.687 nm because

its brightness eases the identification of the Doppler shift. The transverse telescope observes

Doppler broadening of line radiation to detect ion temperature. The ions in a plasma in

thermodynamic equilibrium follow a Maxwellian distribution in velocity space, which leads

to a broadening in the observed impurity line radiation. In an average sense, particles move

towards and away from the telescope in equal quantities and at equal speeds, so the integrated

Doppler shift of the entire population appears as a broadening of line radiation. The width

of the ion’s Maxwellian distribution and therefore the magnitude of Doppler broadening

depend on the ion temperature. Various lines are observed to determine temperature because

different impurities are present in different temperature ranges; for ZaP-HD’s usual operating

conditions, the O V triplet at 278.101 nm, 278.699 nm, and 278.985 nm is most often used.

The CCD spectrometer employs a CCD and a PMT to resolve the time-evolution of

impurity lines. The input to the CCD spectrometer comes from a single fiber viewing the

plasma. The dispersed light from the spectrometer’s diffraction grating passes through a

beam splitter, which sends half the light to a CCD sensor and half to a PMT. The CCD col-

lects a single time-integrated spectrum for each plasma pulse. The diffraction grating in the

spectrometer can be tilted to change the wavelength of the spectrum recorded by the CCD.

A certain pixel on the CCD corresponds to alignment with the PMT. The PMT converts

incident photons to an electric signal, which can be digitized, so matching an impurity line
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to the proper CCD pixel allows for measurement of the time-evolution of that impurity line.

2.1.5 High-speed optical imaging

A high-speed Kirana-05M camera provides optical images with great spatio-temporal reso-

lution. The camera employs a 10 bit monochrome sensor of 924 x 768 pixels with 30 µm

pixel size. Its frame rate is adjustable between 1,000 and 5,000,000 frames per second, and it

stores 180 frames even at the fastest rates. The camera views light in the visible spectrum.

Fig. 2.5 shows images from the camera immediately before, during, and after the quiescent

period of plasma pulse 160310013. Taken from the positive x side of the experiment, these

images show from 5 cm to 20 cm in the assembly region. A stable plasma exists in this region

during a quiescent period from 38 µs to 46 µs.

Due to the plasma’s high energy, much of its light emission is UV. Even so, useful insight

can be obtained from the visible light emission. Much of the visible light emitted by hydrogen

plasmas is Hα line radiation at 656.28 nm. Bound electrons falling between specific energy

states emit this light (for more about the quantum theory of light, see Sec. A.1). Operating

the camera without a filter allows viewing of Hα and other line radiation from impurities.

Observation of Hα radiation is an indication of neutral hydrogen because bound electrons

emit at this wavelength. Alternatively, free electrons unbound from any nucleus emit broad-

band light called bremsstrahlung (German for "braking radiation"). Free electrons pushed

by local electric fields emit photons to conserve energy. Using a band pass filter, which

cuts out line radiation such as Hα, allows observation of bremsstrahlung. ZaP-HD employs

Wratten #18 and #12 filters together as a bandpass filter in the 500-600 nm range [35].

Generally, the presence of bremsstrahlung correlates to hotter, well-ionized plasma, while

Hα appears at cooler regions. The images in Fig. 2.5 were taken with the bremsstrahlung

bandpass filter in place.
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Figure 2.5: Images taken 2 µs apart with the bremsstrahlung bandpass filter installed on
the camera lens show a shear flow stabilized Z-pinch between 5 and 20 cm throughout this
pulse’s quiescent period from 36 µs to 48 µs. The axes are labeled in units of meters relative
to the coordinate system of Fig. 2.1.
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2.1.6 Heterodyne Quadrature Interferometery

Interferometry measures line-integrated electron density by passing a laser beam through

plasma and observing the phase shift imparted on the beam. Such measurements involve

splitting a single laser into scene and reference beams, passing the scene beam through the

plasma, and recombining the beams onto single sensor as in Figs. 2.6 and 3.1.

Because light’s phase velocity in plasma is faster than in air, the scene beam’s phase

angle leads that of the reference beam at the sensor. The interference of the beams at the

sensor captures the phase shift of the scene beam, φne , which is related to line-integrated

electron density by

φne = − e2

4πc2meεo
λNe, (2.10)

where the line-integrated density, Ne is given as the integral

Ne =

∫
nedl, (2.11)

along the laser’s path, e is the electron charge, c is the speed of light, me is the electron

mass, λ is the laser wavelength, and ε0 is the permittivity of free space.

Heterodyne quadrature interferometery measures time-resolved line-integrated density at

discrete spatial locations. ZaP-HD’s heterodyne quadrature interferometer employs a 10 mW

continuous wave (CW) Helium-Neon (HeNe) laser with wavelength λ = 633 nm. The system

applies heterodyning in the sense it interferes visible light beams (frequency ≈ 100 THz) of

slightly different frequencies to create a much lower frequency light amplitude beat (40 Mhz),

which can be resolved by a photodiode. This gives the system its time resolution. The phase

shift between the beams is measured as phase modulations to the resulting 40 MHz light

intensity beat. In practice, an acousto-optic modulator (AOM, or Bragg Cell) splits the

laser into two beams while shifting the reference beam to 40 MHz higher frequency than the

scene beam. Recombining the two beams of differing frequencies on a photodiode creates to

a detectable beat frequency of 40 MHz in the light amplitude. The heterodyne quadrature
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Figure 2.6: The heterodyne quadrature interferometer splits a laser beam into two beams of
similar intensity with the reference beam shifted 40 MHz higher in frequency. The scene beam
passes through the plasma while the reference beam bypasses the experiment. The beams
are recombined with a beamsplitter and directed to a photodiode. Co-linear alignment of
the beams after the beamsplitter generates spatially uniform illumination on the photodiode.
The phase shift between the beams is measured as phase modulations to the resulting 40
MHz light intensity beat measured by the photodiode.

interferometer relies on co-linear alignment of the recombined beams to generate a spot of

illumination with more or less uniform intensity across the photodiode.

The system employs quadrature with analog circuitry and low-pass filtering to obtain

voltage signals proportional to sin(φne) and cos(φne), which are digitized by Joerger TR 3412

12-bit digitizers at 25 MHz. By identifying both the sine and cosine, applying quadrature

allows for unambiguous determination of the phase shift φne , which is ambiguous if only sine

or cosine is known.

The heterodyne quadrature interferometer works well when ZaP-HD operates at low com-

pression bank voltages, but increasing the compression bank voltage beyond 7 kV leads to

massive disturbances to the line-integrated density signals. This limits the utility of the

data to identifying the time of plasma arrival and observing the density evolution before

the compression bank trigger. The cause of these disturbances has been traced to plasma

phenomena. An interferometry chord directed over the experiment so that both the scene

and reference beams bypass the plasma does not encounter disturbances even at high com-

pression bank voltages. This suggests the erroneous signal behavior does not result from
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electrostatic noise pickup from discharging the compression bank. The disturbances in each

chord directed through the plasma correlate with a loss of signal from the photodiode similar

to that when the chord’s scene beam is blocked. This suggests that something in the plasma

either prevents the scene beams from reaching the photodiode or disturbs the co-linear align-

ment of the scene and reference beams incident on the photodiode. Plasma density gradients

caused by the compression bank discharge could cause refraction to redirect the scene beams

enough to disturb their signals. Because of such disturbances in the heterodyne quadrature

interferometer data during the ZaP-HD quiescent period, limited comparisons can be drawn

between these measurements and those of DHI.

2.2 Chronology of a ZaP-HD plasma pulse

This section explains the events in a plasma pulse representative of the behaviors observed

in great generality on ZaP-HD. This exhibition aims to simultaneously familiarize the reader

with ZaP-HD’s performance and illustrate the experiment’s diagnostics. The pulse consid-

ered is a pure Hydrogen discharge conducted with acceleration and compression bank charges

of 9 kV and 8 kV respectively. Respectively, the inner and outer gas injection puffs trigger at

1.6 ms and 1.5 ms prior to the accelerator bank discharge, and the inner and outer gas feed

pressures are 5500 Torr and 3500 Torr. These settings generate plasma pulses with consistent

quiescent periods visible in high speed camera images and that provide sufficiently dense,

centered line-integrated density distributions for successful DHI measurement and analysis.

The pulse begins with the acceleration bank discharge, which ionizes the plasma, drives

acceleration current, and accelerates plasma downstream. The acceleration bank discharge

coincides with the initial IA rise in Fig. 2.7 (a) as well as the discrete steps in VA and VM in

Fig. 2.7 (b). Next, the accelerator magnetic probe signals rise one after another in Fig. 2.8

(b) as the initial plasma front moves downstream. The time delay between the initial rise

of IA and of the accelerator probe signals indicates the initial plasma breakdown takes place

upstream of the linear probe array. The successive rises of the accelerator probes indicate

the plasma reaches the end of the accelerator around t = 20 µs when the conductive plasma
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Figure 2.7: In a typical ZaP-HD plasma pulse, (a) the acceleration current, IA, begins
rising when the acceleration bank discharges, and the compression current, IC , rises when
the compression bank discharges. (b) The accelerator voltage, VA, and middle electrode
voltage, VM , step when the acceleration bank discharge applies voltage. VM goes to zero
when conductive plasma exits the accelerator and grounds the middle electrode to the outer
electrode. The compression voltage, VC , as well as VM and VA all step when the compression
bank discharges. Plasma dynamics during Z-pinch formation cause voltage spikes after the
compression bank discharge, and once the Z-pinch forms on axis, VA stabilizes to a constant
value during a quiescent period denoted by the shaded green region. The quiescent period
concludes with voltage spikes, after which VM usually proceeds to zero while VA approaches
VC . The first, second, third, and fourth dashed vertical lines correspond to the acceleration
bank discharge, plasma exiting the accelerator, the compression bank discharge, and the high
peak in the assembly magnetic field respectively.
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Figure 2.8: In a typical ZaP-HD plasma pulse, (a) the average magnetic fields from assembly
azimuthal probe arrays rise one after another starting with the z = 0 array at the time of
the compression bank discharge. During the quiescent period denoted by shaded green, the
radial current distribution in the assembly region remains more or less constant in time.
Radial currents exist between z = 0 cm and 20 cm, although current further downstream
is more purely axial. (b) The relative magnitudes of the magnetic fields in the accelerator
linear probe array initially rise one after another as the initial plasma front moves down
the gun. The time this plasma front exits the accelerator matches the time VM goes to
zero in Fig. 2.7. During the quiescent period, radial current exists in the accelerator, while
an abrupt decrease in the radial current marks the end of the quiescent period. The first,
second, third, and fourth dashed vertical lines correspond to the acceleration bank discharge,
plasma exiting the accelerator, the compression bank discharge, and the high peak in the
assembly magnetic field respectively.
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grounds the middle electrode to the outer electrode, causing VM to move to zero.

Then, the compression bank discharges, which drives compression current. The com-

pression bank discharge coincides with the initial rise in IC Fig. 2.7 (a) and with abrupt

steps in the voltages in Fig. 2.7 (b). The current propagation downstream is seen by the

assembly probes in Fig. 2.8 (a). As the plasma current proceeds down the assembly region,

the plasma’s geometry changes rapidly and chaotically, affecting its inductance and causing

rapid spikes in VA, VM , and VC between 28 µs and 38 µs.

After the plasma arranges itself on machine axis, it stabilizes for a quiescent period of

roughly 25 µs shown by the green boxes in Figs. 2.7, 2.8, and 2.9. During this quiescent

period, a constant VA drives a steady radial current in the accelerator. The presence of this

radial current suggests a steady flow of plasma out of the gun, which should supply stabilizing

flow shear. Also during this period, radial currents exist in the assembly region between

z = 0 cm −15 cm although further downstream most current is axial. The normalized mode

data, m1

m0
, during the quiescent period is low and slowly-varying relative to other times in

the plasma evolution as seen in Fig. 2.9. This indicates the current centroid remains near

machine axis without chaotic deviations. Optical images such as those in Fig. 2.5 corroborate

that the plasma moves slowly as a coherent structure during the quiescent period.

The quiescent period concludes abruptly as the accelerator runs out of the fuel necessary

to sustain the flow for shear stabilization. The behavior observed at the end of the ZaP-HD

quiescent period resembles the high peak magnetic field operational mode of ZaP in which a

peak in the assembly region magnetic field coincided with the end of the quiescent period and

with a drop in accelerator region line-integrated density. These phenomena were thought to

indicate the accelerator running out of fuel causing the quiescent period to end as the supply

of flow shear from the gun ceased [32]. Similar to ZaP, ZaP-HD observes a magnetic field peak

coincident with the end of the quiescent period. At the time of the field peak, voltage spikes

occur that drive VM to zero and make VA approach VC . The radial current in the accelerator

disappears at this time, and optical images show irregular blobs of plasma expelled from

the accelerator at times after the field peak. ZaP-HD’s accelerator interferometry ports are
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Figure 2.9: In a typical ZaP-HD plasma pulse, a quiescent period of relatively low mode
activity occurs, which corresponds to optical camera images showing stable, slowly varying
plasma behavior. The normalized mode data, m1

m0
, remains relatively low during this period

denoted in shaded green. On ZaP, m1

m0
would remain below 0.2 for the quiescent period. On

ZaP-HD, m1

m0
often takes higher values than 0.2 during the quiescent period, but m1

m0
between

z = 0 cm and 20 cm changes slowly during this time, which indicates the current centroid
moves gradually. Optical images corroborate than the plasma moves slowly as a coherent
structure during the quiescent period. The m1

m0
further downstream in the assembly region

exhibits more rapid oscillations that the data from z = 0 cm to 20 cm. Optical images
also suggest less coherent plasma structure and less stable dynamics further downstream.
The first, second, third, and fourth dashed vertical lines correspond to the acceleration bank
discharge, plasma exiting the accelerator, the compression bank discharge, and the high peak
in the assembly magnetic field respectively.



39

covered by insulating material to prevent arcing in the region between the middle and outer

electrodes upstream of z = 0 cm, and this prohibits measurements of the ZaP-HD accelerator

density. However, as the timing of the field peak can be moved by changing gas puff timing,

this behavior on ZaP-HD also likely relates to gas starvation.

2.3 Accelerator operation

The operation settings exhibited in the previous section lead to plasma behavior optimal

for capturing DHI holograms, which means ZaP-HD creates dense, on-axis Z-pinches. Opti-

mization of these settings resulted from a wide exploration of the available machine settings.

The coarsest means of changing the plasma behavior comes from adjusting the capacitor

bank settings, which is discussed further in Sec. 2.4. Finer adjustment of plasma behavior

is exercised by tuning the gas injection settings. The gas settings play a major role in the

accelerator’s operation, which affects the behavior of the Z-pinch in the assembly region.

This section discusses the design and operation of the ZaP-HD accelerator and demonstrates

what practical control regulating the gas injection affords.

ZaP-HD’s accelerator design originates from ZaP’s, which was designed to match the

aspect ratio of the Marshall Gun [36]. The addition of ZaP-HD’s middle electrode has

changed the accelerator’s aspect ratio, and its gas injection system has evolved as well. The

Marshall gun started with gas injection solely from the inner electrode. ZaP added gas

injection from eight equidistant azimuthally-spaced valves in the outer electrode halfway

down the length of the accelerator at the same axial location of the inner gas injection.

Based on results from a gas supply study on ZaP [37], ZaP-HD moved the outer gas injection

upstream to the breech of the gun to provide a neutral gas plenum to supply the gun with

fuel for a longer time.

Coaxial plasma accelerators operate in two modes: snowplow (detonation) and defla-

gration [38, 39]. A snowplow occurs in accelerators with uniform gas fill so that the initial

plasma accelerates downstream into neutral particles. This accelerated ionization sheet forms

a shock, which entrains and ionizes neutrals, compressing the plasma to high temperature
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as it moves down the accelerator. A deflagration happens in low pressure accelerators where

gas is supplied from a transient gas puff. In this case, when the initial plasma accelerates

downstream, it does not encounter neutral gas. Instead it can expand into the vacuum while

simultaneously accelerating due to the Lorentz force. Lacking compression and the obstruc-

tion caused by neutral gas fill, deflagrations more efficiently convert the electrical discharge

into kinetic energy, yielding a cooler plasma at a higher velocity. In a deflagration into a

pure vacuum, the ionization front will remain stationary.

Changing the gas injection timing relative to the accelerator bank discharge provides

significant control over the accelerator’s behavior. Timing gas injection to allow more gas

dissipation before the voltage discharge promotes snowplow behavior, while giving the gas

puff less time to expand favors deflagration. Past work observed an abrupt bifurcation be-

tween the operation modes in a coaxial accelerator [40]. Tests of the ZaP-HD outer gas

injection system reveal similar behavior. Fig. 2.10 (a) and (b) show data from pulses trigger-

ing the outer gas at -1.0 ms and -0.8 ms relative to the acceleration bank trigger respectively.

Adjusting the outer gas trigger by 0.2 is enough to move the accelerator operation from a

snowplow to a deflagration operational mode. The -1.0 ms timing gives the gas more time

to fill the gun, which leads to a initial current front that moves relatively slowly according to

magnetic data from the acceleration and assembly regions. A chord of heterodyne quadra-

ture interferometry in the assembly region at z = 7 cm and y = 0 cm reveals the abrupt

arrival of a slab of plasma accumulated by the snowplow. The -0.8 ms timing causes a faster

current front with a more gradual density arrival consistent with deflagration operation.

Conceptually, ZaP-HD seeks to operate in a combination of the two modes. Ideally, an

initial snowplow ionizes and accelerates any neutrals that have expanded downstream of

the location of the original discharge. This establishes an initial plasma in the assembly

region ready to accept the compression current and also clears out neutrals in the gun so a

deflagration can operate. Then, the deflagration efficiently accelerates the plasma to high

velocity for a sustained time. The snowplow helps form the Z-pinch and the deflagration

supplies sustained flow shear to stabilize it. It is unclear what actually happens as diagnostic
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Figure 2.10: (a) Accelerator probe data shows a slower-moving current front when the outer
gas is given more time to expand. (c) An interferometry chords at z = 7 cm and y =
0 cm shows an abrupt arrival of density in the assembly region. These characteristics are
indicative of snowplow operation where plasma is entrained by the current front and pushed
downstream. Pulse 150611027 had inner/outer gas timings of -0.6/-1.0 ms. (b) Accelerator
probe data shows a faster-moving current front when the outer gas is given less time to
expand. (d) Interferometry shows a more gradual density arrival. Both these characteristics
are indicative of a deflagration mode of operation. Pulse 150611033 had inner/outer gas
timings of -0.6/-0.8 ms.
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access to the accelerator is limited. The relatively early inner/outer gas timings presented in

Sec. 2.2 of -1.6 ms/-1.5 ms ostensibly promote snowplow behavior, but these settings create

stable Z-pinches, which suggest a deflagration may also exist that supplies requisite flow

shear. More study will be possible once the acceleration probe calibration is complete and

when optical viewports to the accelerator can be sufficiently insulated to allow interferometry

access without allowing arcing between the middle and outer electrodes.

The acclerator’s operation most strongly depends on the outer gas injection timings

although the inner gas injection time also plays a significant role in determining its mode

of operation. Varying the gas feed pressures on the inner and outer puff independently at

settings of 3500, 4500, and 5500 Torr did not significantly alter the accelerator’s behavior.

2.4 Interface between acclerator and assembly regions

Complicated plasma dynamics occur at the end of the accelerator as the plasma exits into

the assembly region. These behaviors correlate to coupling between ZaP-HD’s acceleration

and compression phases, which leads to inefficient compression and non-optimal scaling. An

exploration of the plasma behavior at the gun exit led to changes in the ZaP-HD design to

improve performance.

Although the initial ZaP-HD design assumed any current contact between the outermost

electrodes would be swept away by magnetic flux exiting the accelerator, initial results in-

dicated sustained, significant plasma current flow between these electrodes upstream of z =

0 cm. An early design to stop this current includes a machined ring of alumina as shown

in Fig. 2.11(a) to block plasma from moving into the volume between the middle and outer

electrodes upstream of z = 0 cm. This insulator is held in place by four set screws and over-

laps with a Teflon sheet, which provides additional necessary insulation. This arrangement

stops currents between the outer and middle electrodes upstream of z = 0 cm, but measure-

ments of the magnetic field at the outer electrode wall in the assembly region still indicate

significant radial current flow just downstream of the gun exit. The large difference between

the average field at z = 0 cm and 5 cm between 35 µs and 55 µs in Fig. 2.12(a) indicates
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a large radial current in that axial region. This amounts to a substantial inefficiency in the

compression process as a sizable fraction of the applied compression current flows radially

driving acceleration instead of flowing axially to drive compression.

Optical high-speed camera images captured surface arcing across the alumina ring in-

sulator, revealing a possible mechanism allowing radial current flow. Fig. 2.14 shows an

arc between the middle and outer electrode across the ring insulator. The position of such

arcs observed in camera images corroborates with magnetic field measurements from the

azimuthal probe array at z = 0 cm. The azimuthal location of the arc observed in optical

images corresponds to the location of the probes measuring the highest fields.

Figure 2.11: (a) In ZaP-HD’s original design, a simple ring of electrically insulating alumina
was intended to block plasma flow into the gap between the middle and outer electrodes
upstream of the accelerator exit. Plasma arcing across the insulator surface may have con-
tributed to large radial currents just downstream of the accelerator. (b) A modified ring
insulator extends further downstream with machined grooves meant to baffle surface track-
ing arcs.
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Figure 2.12: For pulses with the same run settings, (a) the average wall magnetic field at
each axial location plotted versus time for the first ring insulator design of Fig. 2.11(a). The
large gradient in magnetic field versus axial position indicates large radial currents, which
causes inefficiency. (b) The same average fields plotted for the modified ring insulator design
of Fig. 2.11(b). The new design inhibits the radial current flow allowing for sustained axial
currents far downstream.

A new ring insulator design, shown in Fig. 2.11(b), strives to block these radial currents.

The new design extends further downstream and includes three ridges to increase the tracking

length arcs must follow to bridge the electrodes. The new ring extends axially as far as

possible while retaining ease of installation. Limiting the axial extent of the ring allows

for it to be inserted through the rectangular openings in the outer electrode, turned ninety

degrees, and then pushed into place. Installing a wider insulator would require removing the

outer electrode endwall, a labor-intensive process. The new insulator includes a slot for a

Rogowskii coil, which may be used in the future as a measurement of plasma current with

fast time response to check the time delay on the relatively slow magnetic field probes.

With the new insulator in place, magnetic data and optical imaging still observe radial

current at the gun exit, but the effects are reduced. Optical images suggest that arcs still

occur across the insulator as Fig. 2.15 shows an arc jumping between the insulator’s three

ridges to bridge the middle and outer electrodes. Comparing pulses before and after insulator

installation with otherwise identical run settings, Fig. 2.12 shows significantly higher average



45

Figure 2.13: For pulses with the same run settings, (a) the current and (c) voltage time series
for a pulse with the first ring insulator. (b) The current and (d) voltage time series for a
pulse with the modified ring insulator. The insulator modification increases the impedance
between the middle and outer electrodes, leading to lesser compression current and higher
middle electrode voltage. The vertical dashed lines indicate the timing of the compression
bank trigger.
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Figure 2.14: (top) A CAD image indicates the positions of the electrodes and ring insulator.
(bottom) An optical camera image taken with a bremsstrahlung filter, f stop of 5.6, and
exposure time of 200 ns (pulse 160224046). Localized plasma contact between the middle
and outer electrodes across the ring insulator correlates with current centroid position data
at z = 0 and suggests current flow directly between the outer and middle electrodes.
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magnetic fields extend further down the assembly region. Instead of the radial current

existing entirely within 5 cm downstream of the gun, it now spreads over at least 30 cm

downstream. This increases the effectiveness of compression in the upstream portions of

the plasma. This redirection of current correlates with an increased inductance between the

middle and outer electrodes. Comparing the current and voltage in the pulses in Fig. 2.13

reveals the modified insulator geometry decreases the compression current while increasing

the middle electrode voltage, which is the voltage between the middle and outer electrodes.

The interaction between the assembly and acceleration regions also depends on the rela-

tive charge voltages of the compression and acceleration capacitor banks. Evidence suggests

the current paths in ZaP-HD are topologically different for different charge settings. Fig. 2.16

shows voltage and assembly magnetic field data for three different charge settings. In the

three cases shown, the accelerator bank is charged to 9 kV, and the compression bank is

charged to (a) 0 kV, (b) 2 kV, and (c) 8 kV respectively.

Running with only the accelerator, VM floats positive for the majority of the pulse except

for a brief moment when the plasma first exits the gun and creates a low impedance short to

the outer electrode. The outer electrode is the reference ground for the voltage measurements,

so a positive VM implies current flow from the middle electrode to the outer electrode.

Fig. 2.17 (a) illustrates what the paths of the acceleration and compression currents look like

in this case. Note that when running with only acceleration bank charge, no compression

current exists. Fig. 2.16 (a) shows reduced magnetic field magnitudes at z = 0, 5, and 10 cm,

which corroborate this current flow topology. The probe calibration assumes that all current

flow in the positive z-direction, which is called return current here, goes through the outer

electrode. Here, some of the return current flows through plasma instead, which reduces the

magnetic field apparent to the probes.

Charging the compression bank to 2 kV, VM still floats positive, but to a lesser magnitude.

Therefore, the current flow topology remains the same as in Fig. 2.17 (a) although less

return current flows through the plasma. The addition of compression current may help

move plasma out of the region where the return current flows readily during accelerator-



48

Figure 2.15: (top) A CAD image indicates the positions of the electrodes and ring insulator.
(bottom) An optical camera image taken with a bremsstrahlung filter, f stop of 5.6, and
exposure time of 200 ns (pulse 160427024). Localized plasma contact between the middle
and outer electrodes across the ring insulator correlates with current centroid position data
at z = 0 and suggests current flow directly between the outer and middle electrodes. The
plasma appears to jump across each of the three ridges in the ring insulator.
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Figure 2.16: Comparison of the voltage and assembly probe data at different compression
bank charge voltages, (a) and (d) 0 kV, (b) and (e) 2 kV, and (c) and (f) 8 kV, suggests
different current flow topologies exist depending on the relative magnitude of the acceleration
and compression bank charge voltages. The polarity of VM indicates direction of current flow
between the middle and outer electrodes. Probe data suggests some return current flows in
the plasma.
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only operation. Compared to running with only the acceleration bank, the magnetic field

measurements at z = 0 and 5 cm are reduced to a lesser degree.

Employing an 8 kV compression bank charge, the current flow appears topologically

different as shown in Fig. 2.17 (b). Here, after the compression bank discharge, VM goes

negative, which implies current flow from the outer electrode to the middle electrode. The

assembly region field data suggests substantial radial current flow between z = 0 and 5 cm,

some of which, as suggested by optical camera images earlier in this section, likely proceeds

from the outer electrode to the middle electrode.

The compression current that flows to the middle electrode must eventually proceed to

the inner electrode, which means the compression bank can drive radial current in the ac-

celerator. This represents an inefficiency in the plasma confinement as energy that could

go to compression is instead expended in accelerating plasma. Detailing how and where the

compression current proceeds to the inner electrode is difficult, especially as the accelerator

probe calibration is presently incomplete and prohibits the identification of the radial current

flow between z = -5 and 0 cm. Regardless of exactly how the compression current distributes

in the accelerator, applying the compression bank discharge does drive more plasma acceler-

ation as the magnetic field peak indicating fuel exhaustion only occurs at higher compression

charge voltages. Exhaustion at high compression bank charge may occur simply because the

compression current must flow through the inner electrode, which increases the field strength

in the accelerator. Increasing the total current in this manner is unavoidable, but exhaus-

tion could also relate to the compression bank driving more radial current in the accelerator,

which may be addressable by further design modifications.

The interplay between the acceleration and compression banks adds a great deal of com-

plexity to the ZaP Flow Z-Pinch concept, and the coupling between the acceleration and

assembly regions deserves more investigation.
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Figure 2.17: Illustration of the flow of IA and IC in ZaP-HD for (a) the case of low compression
bank charge voltage relative to acceleration bank charge voltage. Acceleration current flows
from the middle electrode to the outer electrode. This topology applies for 0 kV compression
bank charge except in that case IC = 0. (b) The case of high compression bank charge
voltage relative to acceleration bank charge voltage. Compression current flows from the
outer electrode to the middle and inner electrodes.
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Chapter 3

DIGITAL HOLOGRAPHIC INTERFEROMETRY

ZaP-HD can generate smaller, denser Z-pinches that ZaP. The small size (radius of 2-

5 mm) of ZaP-HD’s plasmas motivates the development and use of digital holographic in-

terferometry (DHI). The diagnostic’s spatial resolution approaching 10 microns allows it to

resolve line-integrated electron density profiles of pinches less than a millimeter across at one

instant per plasma pulse. This spatial resolution allows for Abel inversion of line-integrated

density to number density. Identification of the actual number density is crucial to under-

standing the scaling properties of ZaP-HD and useful in computing other plasma parameters

such as temperature and magnetic field. This chapter discusses the theory of DHI and

demonstrates the diagnostic by applying holographic reconstruction and error analysis to

measured holograms.

3.1 Historical context

Holography originated as a means to improve the resolution of transmitting electron mi-

croscopes (TEM) [41]. Unavoidable aberrations in TEM degrade image clarity by mixing

electron beam amplitude and phase information. Measuring both amplitude and phase simul-

taneously with holography allows for deconvolution of the two for improved imaging [42]. The

demonstration of the laser in 1960 opened up holography to more applications including non-

destructive stress testing [43], data encryption [44–46], and fluid dynamics diagnostics [47].

Before the advent of high-resolution digital sensors, laser-based holography required holo-

graphic plates, optical reconstruction, and multi-exposure techniques like phase-shifting [48]

and spatial heterodyning [49, 50] to measure phase information because optical reconstruc-

tions can only explicitly recover amplitude. Explicit simultaneous recovery of amplitude and
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phase is possible with numerical reconstruction, which simulates the diffraction process of

optical reconstruction. Today’s digital sensors record holograms with sufficient resolution to

allow seamless integration of holograms and reconstruction algorithms to efficiently provide

phase data.

Several methods have been developed to conduct numerical reconstruction, and some have

been applied to plasma physics research. Research in electron holography led to a recon-

struction algorithm [51] now used to observe neutral gas injection on the Lithium Tokamak

Experiment (LTX [52,53] and proposed to observe plasma facing component erosion [54]. A

similar, independently developed method originating in laser-based holography research [55]

is used to measure electron density on Z-pinch experiments [56]. Both of these methods

Fourier transform the hologram, filter the data in the Fourier domain, and then apply an

inverse Fourier transform to obtain the phase. Such Fourier transform methods are similar

to Fast Fourier Transform (FFT) methods used in two-dimensional inteferometry analysis

discussed in the next paragraph [57]. The method presented in this dissertation uses a single

modified Fourier transform called a Fresnel transform [58–60]. This dissertation presents

the first application of the Fresnel transform reconstruction method as part of a plasma

diagnostic as well as novel analysis of the method’s accuracy.

Interferometric techniques resembling, yet distinct from DHI have been applied to mea-

sure Z-pinch electron densities. Although interferometric and holographic methods both rely

on interfering scene and reference beams, interferometric methods generally employ co-linear

interfering beams to generate interferograms with relatively large fringes, while holography

interferes the beams at an angle to generate holograms with comparatively small fringes,

which enable holographic reconstruction [53]. A method known as digital interferometry

subtracts the amplitudes of plasma and vacuum interferograms to obtain an intensity pat-

tern from which a computer algorithm can count fringes to compute the spatially resolved

phase [61,62]. Another method uses well-aligned scene and reference beams to generate large-

scale fringes, which are modulated by phase shifts. This method employs an algorithm to

trace fringes and computes their shift between plasma and vacuum interferograms [63]. Inter-
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Figure 3.1: A Mach-Zehnder interferometer splits a laser beam into two identical beams.
One beam passes through the plasma while the other bypasses the experiment. Then, the
beams are recombined with a beamsplitter and recorded on a camera or other sensor. The
phase shift between the two beams is proportional to the plasma’s line-integrated electron
density.

ferogram analysis employing FFTs enables phase computation without fringe counting [57],

and such methods are also applicable to holographic reconstruction [64].

3.2 Theory of holographic reconstruction

ZaP-HD employs an Ekspla NL-121 Nd:YAG laser with a second harmonic generator and

2 ns pulse length (see Sec. A.3 for more details about the laser) as well as a Nikon D3200

digital single-lens reflex (DSLR) camera with Thorlabs absorptive neutral density filters.

The camera shutter is left open through the plasma pulse, so the laser pulse defines the

hologram exposure time.

DHI obtains fine spatial resolution by employing a two-dimensional sensor with sufficient

resolution to measure the interference pattern of the interferometry beams. A recording

of this pattern is called a hologram. The interfering beams in a holographic system are

more misaligned than those in a 2D interferometer, which leads to fringes of higher spatial

frequency and enables holographic reconstruction. Previously, only special holographic films

and plates could resolve holograms, but modern consumer CMOS and CCD cameras provide

the resolution (the Nikon D3200 pixels are 3.85 µm wide) necessary as long as scene and



55

reference beams are misaligned by no more than a few degrees when directed to the camera.

Interferometric fringe spacing δ decreases as misalignment angle θ increases as in δ = λ
sin θ

.

A misalignment less than 4 degrees is required to ensure a fringe spacing greater than two

pixel widths at λ = 532 nm to meet the Nyquist sampling criterion and avoid fringe aliasing.

A hologram implicitly contains the amplitude and phase of the scene beam, which can be

reconstructed through optical or numerical means. Optical reconstruction involves shining

the reference beam through the hologram and allowing diffraction of that beam to recreate the

original scene beam amplitude. Reconstruction can be performed numerically by simulating

this optical diffraction process.

The result of numerical reconstruction is the electric field strength, E, of the scene beam.

In this dissertation, light waves are described by their electric field strength. The field

strength is a complex number at each point in space, from which the light intensity, I, and

wave phase, φ, can be computed at any location. These quantities are defined by

I(ξ, η) = |E(ξ, η)|2 (3.1)

φ(ξ, η) = tan−1
(

ImE(ξ, η)

ReE(ξ, η)

)
(3.2)

in a user-defined reconstruction plane with coordinates (ξ, η), downstream from the hologram

plane with coordinates (x, y) (see Fig. 3.2).

Modeling the scene and reference beams as complex exponentials mathematically reveals

how passing the reference beam through a recorded hologram reconstructs the scene beam.

This section illustrates the theoretical foundation for reconstruction by assuming a linear

model for the camera’s light response where

T (x, y) = α− βτI(x, y) (3.3)

describes the transmittance T (x, y) of a recorded hologram, which is the sensor’s measured

exposure to amplitude I(x, y) for a duration τ . Constant α accounts for uniform background
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Figure 3.2: If the reference beam is incident normal to the hologram, both first-order beams
propagate at the incident angle of the original scene beam, θ. Reconstruction distance, d,
spans from the hologram to the reconstruction plane. In the case of a planar reference beam,
the phase distributions of the two first-order diffraction beams are identical except for being
180-degrees shifted. Therefore, the reconstructed phase maps resulting from the first-order
diffraction beams are commonly called twin images. Zeroth-order diffraction is the portion
of the reference beam that does not diffract; it contains no useful information.

illumination, and β is the sensor’s light sensitivity.

I(x, y) is the amplitude of the sum of the incident reference and scene beams, which are

expressed as spherical waves in

ER =
E0R

dR
ei(kdR+φ) (3.4)

ES =
E0S

dS
ei(kdS+ψ). (3.5)

These waves describe the spatial distribution of the electric field strength of each beam. For

the reference and scene beams respectively, E0R and E0S are the beams’ amplitudes, dR and

dS are the distances from the beams’ point sources, k = 2π/λ, and φ and ψ are arbitrary

phases. Note that treating these beams as spherical waves gives the most general results
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from this analysis.

Computing the amplitude of the combined beams from Eq. (3.1) yields

I(x, y) = ESE
∗
S + ESE

∗
R + ERE

∗
S + ERE

∗
R (3.6)

where ∗ indicates the complex conjugate.

Passing the reference beam through the recorded hologram is done mathematically by

multiplying the transmittance and the reference beam

Erec = TER, (3.7)

which gives Erec as the reconstructed field. Substituting Eqs. (3.3) and (3.6) into Eq. (3.7)

yields

Erec = −βτ |ER|2ES · · ·

−βτE2
RE
∗
S · · ·

+(α− βτ(|ER|2 + |ES|2))ER. (3.8)

Eq. (3.8) shows that the reconstructed field contains the original scene beam, illustrating

the theoretical basis for why the scene can be reconstructed [60]. Erec consists of three

images, each corresponding to a different term in Eq. (3.8). The scene is contained in the

first term (∝ ES), which is the product of the original scene field and a scalar that does not

affect its phase. The second term (∝ E2
RE
∗
S) is a conjugate image of the scene. The third

term (∝ ER) corresponds to light passing through the hologram without diffracting (e.g.,

zeroth-order diffraction), while the first and second terms represent first-order diffraction.

In practice, ER can be treated as a plane wave, and the phase maps of the first-order terms

are 180-degrees out of phase but otherwise identical. The first-order waves propagate at

the incident angle of the scene beam, θ, if the reference beam is normal to the hologram

as in Fig. 3.2 [60]. The reconstructed phase maps resulting from the first-order diffraction
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beams are commonly called twin images due to their similarity. The reconstructed phase

shown in Fig. 3.6 exhibits a zeroth-order diffraction image as well as two pairs of twin images

containing the reconstructed phase from a synthetic hologram. The nomenclature used in

this dissertation comes from laser-based holography; in electron holography, the zeroth-order

diffraction image is called the autocorrelation and the twin images are called sidebands [52].

This section’s analysis assumed a sensor with a linear response, but testing revealed the

Nikon D3200 CMOS to be non-linear. The above analysis still applies to DHI with a non-

linear sensor because the non-linearity does not affect the phase of the first-order images.

It does distort the reconstructed amplitude and adds harmonics to the reconstructed phase,

but these effects do not change the diagnostic’s operation. The harmonics sometimes show

up as apparent additional twin image pairs with greater sensitivity to phase shift than the

first-order images [58] .

3.3 Fresnel transform reconstruction

The analysis of the previous section shows that reconstruction of the original scene is theo-

retically possible by passing the reference beam through the hologram. This section presents

a tractable means to compute the reconstruction in practice. Numerical reconstruction com-

putes the phase of the original scene beam by modeling the reference beam’s propagation

downstream of the hologram as scalar diffraction.

While light propagation really involves a coupled evolution of electric and magnetic field

vectors, scalar diffraction theory models light as a scalar amplitude of a single transverse

(transverse to the propagation direction) component of either field. This treatment is ac-

curate in cases where the diffraction aperture is large compared to the wavelength and the

diffracted wave field is observed far from the aperture. In this treatment, the linear Helmholtz

equation is the appropriate model for monochromatic light propagation [58].

The Huygens-Fresnel principle provides the most common heuristic explanation of diffrac-

tion. It posits that each point on an electromagnetic wavefront is a source of secondary

spherical wavelets. The interference between these secondary wavelets manifests itself in the
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alternating light and dark regions of diffraction patterns. This statement’s mathematical

analog is written in its general form as

Erec(ξ, η) =

∫ ∞
−∞

∫ ∞
−∞

h(ξ, η;x, y)T (x, y)dxdy, (3.9)

where Erec(ξ, η) is the reconstructed electric field strength, T (x, y) is the transmittance of the

hologram, and h(ξ, η;x, y) is the mathematical representation of a secondary wavelet. Here,

Erec(ξ, η) is obtained by convolving the hologram transmittance with a secondary wavelet

impulse response. This two-dimensional convolution integrates the contributions of wavelets

from all transparent points on the hologram at downstream locations on the (ξ, η) plane.

The secondary wavelets can be modeled most generally as spherical waves emanating

from point sources. Spherical waves are mathematically represented as

h(ξ, η;x, y) =
1

iλ

exp(ikρ)

ρ
(3.10)

in which ρ is the distance from the source [58] . To obtain Erec(ξ, η) numerically from

Eq. (3.9) using a spherical wavelet would require a Fourier transform and an inverse Fourier

transform. The convolution theorem states the convolution of two functions, f and g, can

be expressed as

f ∗ g = F−1 {F {f}F {g}} (3.11)

where F and F−1 represent the Fourier and inverse Fourier transforms respectively. When

applying Eq. (3.11) to Eq. (3.9), the Fourier transform of the spherical wavelet, H =

F {h(ξ, η;x, y)}, does not have to be computed for each hologram, but a transform of the

transmittance as well as an inverse transform are required for each hologram as in

Erec(ξ, η) = F−1 {HF {T (x, y)}} . (3.12)

Choosing a parabolic wave as a model for the secondary wavelets simplifies Eq. (3.9) such
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that computing Erec(ξ, η) requires one Fourier transform. Using parabolic waves (the Fresnel

approximation) provides accuracy as long as the reconstruction distance d (see Fig. 3.2) is

large compared to the lateral size of the aperture. To arrive at the equation for a parabolic

wave,

h(ξ, η;x, y) =

exp(ikd)

iλd
exp

(
i
k

2d
[(x− ξ)2 + (y − η)2]

)
, (3.13)

Eq. (3.10) is modified by approximating ρ ≈ d in the denominator and using a binomial ex-

pansion to

approximate ρ ≈ d
[
1 + 1

2

(
x−ξ
d

)2
+ 1

2

(
y−η
d

)2] in the exponential [58].

Substituting Eq. (3.13) into Eq. (3.9) and applying a change of variables

ν =
ξ

dλ
(3.14)

µ =
η

dλ
, (3.15)

the two-dimensional convolution reduces to a form involving one Fourier transform as in

Erec(ν, µ) = AF {T (x, y)C(x, y)} , (3.16)

where A is a real-valued coefficient that does not effect the phase of the reconstructed field,

and

C(x, y) = exp

(
iπ

dλ
(x2 + y2)

)
(3.17)

does not have to be computed for each hologram. The change of variables can be reversed

after conducting the Fourier transform to revert to spatial coordinates, and Erec(ξ, η) can

be computed numerically with a single FFT allowing expedient reconstruction of the scene

phase [58]. Eq. (3.16) is called the Fresnel transform [60]. While software packages exist

that conduct Fresnel transform reconstruction [65, 66], here the reconstruction is conducted
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in MATLAB to facilitate data analysis and storage immediately after each plasma pulse with

minimal user input.

Note that the change of variables reduces the resolution of the reconstruction. The pixel

sizes in the reconstruction plane, ∆ξ and ∆η, relate to the hologram pixel sizes, ∆x and ∆y,

as in

∆ξ =
dλ

M∆x
(3.18)

∆η =
dλ

N∆y
(3.19)

where M and N are the total number of pixels along the x and y axes of the hologram

respectively [60]. ZaP-HD’s DHI’s reconstructed phase resolution is near 10 µm even though

its CMOS sensor has a pixel size of 3.85 µm. As the reconstruction distance increases, the

reconstruction plane expands leading to lower resolution since the same number of pixels is

available to resolve the larger area. In holographic reconstruction of a scene beam scattered

off of a solid object, the choice of reconstruction distance selects what portion of the solid

object appears in focus in the reconstructed image. Because a laser beam passing through

a transparent plasma retains a planar wave front, the choice of reconstruction distance only

affects the reconstructed phase’s resolution and not its value. Even so, the reconstruction

distance cannot be set to arbitrarily small values because the three images contained in

Erec of Eq. (3.8) have finite size, and the twin images can be obscured if the reconstruction

distance is too short for the twin images to diverge outside the bounds of the zeroth-order

diffraction image. Fig. 3.8 illustrates a reconstruction performed with a reconstruction dis-

tance just long enough to prevent the zeroth-order term from obscuring the first-order terms.

The misalignment of the scene and reference beams should be maximized without inducing

aliasing to allow for use of a minimal reconstruction distance.
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3.4 Unwrapping the phase information of the hologram

The reconstructed phase information in one of the twin images is analyzed to extract the

measured Ne given by Eq. (2.11); the rest of the reconstruction plane is discarded as it

contains no additional data. The numerically reconstructed phase difference is computed as

the difference

∆φ = φp(ξ, η)− φv(ξ, η) (3.20)

where φp and φv are the plasma and vacuum phases respectively, each computed using a

two-argument arctangent to avoid divisions by zero, so the phase difference is confined in the

interval (−π, π]. Phase shifts greater than 2π may still be reconstructed, but discontinuous

fringe jumps occur wherever the phase crosses ±π. A map of the actual phase shift can be

recreated by unwrapping the fringe jumps.

Unwrapping algorithms typically follow an arbitrary path through the wrapped phase

map and look for the fringe jumps by examining the first derivative of the phase. Where the

derivative exceeds a critical value, a fringe is identified and ±2π is added to all points on the

remaining path. The sign of the addition depends on the sign of the derivative of the phase

at the fringe jump.

Noise in the reconstructed phase can encumber unwrapping methods, but smoothing

the phase map prior to unwrapping can help. Any method that smooths the phase must

leave the sharp, discontinuous fringes unaffected; otherwise the derivative-based unwrapping

algorithm can no longer detect the fringes. Smoothing the sine and cosine of the phase

independently and then taking the arctangent of their ratio as in

∆φsmoothed = tan−1
(

(sin ∆φ)smoothed

(cos ∆φ)smoothed

)
(3.21)

smooths the data while retaining the sharp fringes [60].
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Figure 3.3: The Abel transform breaks up an axisymmetric plasma into concentric annular
areas. Assuming uniform ne in each annulus makes computation ofNe a matter of multiplying
the discrete ne by a matrixA containing the relative lengths of chord lengths in the geometry.
The elements ofA for a coarse discretization are shown here. A can be expanded to arbitrary
size to transform arbitrarily large ne profiles.

3.5 Abel transform and inversion

Assuming an axisymmetric Z-pinch allows for conversion of Ne density measured by DHI to

ne. Expressed as

Ne(y) = 2

∫ ∞
y

ne(r)rdr√
r2 − y2

, (3.22)

the analytic Abel transform expresses Ne as a function of impact parameter, y, in terms

of ne as a function of the radial coordinate, r. For each impact parameter, the transform

integrates ne along a chord at height y from the pinch center to infinity. Note that this

transform holds if ne is a function of r alone (ie: if ne is axisymmetric).

The analytic transform can be discretized as in
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~Ne = 2∆rA ~ne (3.23)

in terms of a matrix, A. Figure 3.3 shows the employed discretization, which splits the

plasma into concentric annular areas of uniform ne. The thicknesses of the areas equal the

resolution of the ne profile, ∆r. To compute Ne for each impact parameter, the contributions

to that Ne of all the annuli are summed. The contribution of each annulus is the product

of the chord length through the annulus times its ne. The relative lengths of these chords

are expressed as elements in A, so multiplying A by ∆r gives the actual chord lengths.

Eq. (3.23) is multiplied by 2 because the matrix multiplication only integrates through half

the plasma.

This discrete treatment of the Abel transform makes computing the inversion as easy as

inverting A as in

~ne =
1

2∆r
A−1 ~Ne. (3.24)

The discrete Abel transform and inversion are used to convert both densities and refractive

indices between line-integrated and local quantities [67].

3.6 Identifying sign of twin image phase

As discussed in Sec. 3.2, the phase shifts in the twin images are 180-degrees out of phase

relative to each other. Keeping track of the coordinate system to identify which twin image

corresponds to the scene beam is possible, but imaging a candle flame to perform a calibration

is an easy way to verify the correct phase shift sign. The hot interior of a flame is less dense

than the surrounding atmosphere, so placing a flame in the scene beam and observing the

reconstructed phase provides a known reference for the phase shift sign. The flame is assumed

to be neutral gas, which is significant because neutral density causes phase shifts opposite

the shift caused by electron density [68].
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3.7 Exploring Digital Holography’s Accuracy

3.7.1 Uncertainty quantification using synthetic holograms

Synthetic holograms provide controlled inputs to test the Fresnel transform reconstruction

algorithm and evaluate its accuracy. Holograms generally contain a superposition of many

fringe patterns of varying length scales caused by interference between scene and reference

beams, interference of reflected beams, and diffraction due to imperfections in the DHI optics

(see Fig. 3.7). To match this characteristic, the synthetic holograms are constructed as sums

of cosine functions as

Tv(x, y) =
N∑
i=1

{
Ci cos

(
2π

δx,i
x+

2π

δy,i
y

)}
+ ζh (3.25)

Tp(x, y) =
N∑
i=1

{
Ci cos

(
φne(x) +

2π

δx,i
x+

2π

δy,i
y

)}
+ ζh (3.26)

where the vacuum transmittance, Tv(x, y), and plasma transmittance, Tp(x, y), are expressed

in terms of the phase shift caused by the plasma at one axial location, φne(x). Quantities

δx,i and δy,i are the components of the ith fringe pattern’s spacing, and constants Ci set

the patterns’ relative magnitudes. Uniform random pixel noise, ζh, is also added to the

holograms to investigate its effects on the reconstruction.

The transmittances are scaled as 8-bit amplitude values ranging from 0 to 255 to match

the bit depth of experimental JPEG holograms, and the resolution (3.85 µm) and fringe

sizes of the synthetic holograms are picked to mimic experimentally observed values. Fig. 3.4

shows holograms containing two superposed fringe patterns: a purely horizontal pattern with

spacing δx,1 = 0 µm and δy,1 = 30 µm and a diagonal fringe pattern with δx,2 = 20 µm and

δy,2 = 20 µm.

Selection of an ne(r) profile sets φne(x), which appears in the plasma hologram as a
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Figure 3.4: Synthetic (a) vacuum and (b) plasma holograms for the Lorentzian ne profile of
Eq. (3.29) demonstrating the phase change caused by the plasma. The vertical scales have
been expanded to reveal the horizontal fringes (horizontal fringe spacing δ1 with δx,1 = 0 µm
and δy,1 = 30 µm, which causes the red-outlined twin images in Fig. 3.6). The disparity
between the horizontal and vertical scales does not fully resolve the diagonal fringes (diagonal
fringe spacing δ2 with δx,2 = 20 µm and δy,2 = 20 µm), which cause the green-outlined twin
images in Fig. 3.6. The phase shift φne(x) appears as a modulation to the plasma hologram.

modulation to both fringe patterns. Profiles considered here include

ne(r) = ne0

{
a2

r2 + a2

}
(3.27)

ne(r) = ne0

{
exp

(
− (r − a)2

(a/2)2

))}
(3.28)

ne(r) =
ne0
2

{
1− tanh

(
k(r − a)

a

)}
(3.29)

where a is the characteristic radius of the plasma and ne0 is the maximum electron density.

Fig. 3.5 shows the prescribed profiles in blue. The Lorentzian profile, Eq. (3.27), has a

gradual gradient. The hollow profile, Eq. (3.28), is composed of a Gaussian distribution
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offset from r = 0. The hyperbolic tangent profile, Eq. (3.29), is internally uniform, and its

edge gradient can be tuned via parameter k. A discrete Abel transform converts the selected

ne(r) profile to line-integrated density, Ne(x), which is related to φne(x) by Eq. (2.10).

The Fresnel transform reconstruction method described in Section 3.3 reconstructs the

phase difference of Eq. (3.20) between the vacuum and plasma holograms at a user-defined

reconstruction distance, d. The transmittances of Eqs. (3.25) and (3.26) are used in Eq. (3.16)

to compute the Erec for the plasma and vacuum holograms, and the phase of each hologram

is computed with Eq. (3.2). The phase difference with d = 0.6 m is shown in Fig. 3.6.

Each pair of twin images corresponds to a different cosine term, and the displacement of the

twin image centers (hix ,hiy), are predictable based on the fringe spacing and reconstruction

distance as in

h = d tan

(
sin−1

λ

δf

)
. (3.30)

Recall from Section 3.2 that the twin images propagate at the incident angle of the scene

beam, θ, which was prescribed by choosing fringe spacing, δf . Changing the reconstruction

distance, d, controls the distance of the twin images from the center of the reconstruction

plane, but the orientation at which the twin images are displaced from the center is con-

trolled by the fringe orientation (e.g. the purely horizontal fringe pattern δ1 generates the

vertically displaced red twin images in Fig. 3.6 while the diagonal fringe pattern δ2 leads to

the diagonally displaced green twin images), which is physically set by the optical alignment.

Each of the twin images contains the same phase information, so any of them can be cho-

sen for unwrapping and conversion to the reconstructed density, ne. The synthetic holograms

are uniform in y, so a single cross-section of the twin image reveals all usable information

about the phase φne(x), which gives Ne from Eq. (2.10) and ne from an Abel inversion.

Fig. 3.5 shows the reconstructed profiles in red.

Uncertainty in the reconstructed ne, σne(r), comes from two sources: the finite resolution

of the Frenel transform’s FFT and hologram pixel noise, ζh. As described in Section 3.3, finite

FFT resolution leads to resolution loss in the reconstructed twin images, which ultimately
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Figure 3.5: Prescribed number density profiles and their corresponding line-integrated pro-
files are shown in blue in (a) and (d) for the the Lorentzian profile of Eq. (3.27), (b) and
(e) for the hollow profile of Eq. (3.28), and (c) and (f) for the hyperbolic tangent profile
of Eq. (3.29). The red curves are the profiles reconstructed from synthetic holograms. The
differences between the assumed and reconstructed line-integrated density profiles are propa-
gated through an Abel inversion to compute the uncertainties in the number densities, which
are plotted as red error bars.
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Figure 3.6: The reconstructed phase difference of the synthetic holograms of Fig. 3.4 at
reconstruction distance d = 0.6 m. The zeroth-order diffraction image is visible at the
center of the image. The twin images indicated in red come from the fringe pattern δ1 with
δx,1 = 0 µm and δy,1 = 30 µm, and the images in green come from the pattern δ2 with
δx,2 = 20 µm and δy,2 = 20 µm. Fringe jumps are visible within the twin images because
unwrapping has not yet been applied.
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contributes to the difference between the prescribed and reconstructed line-integrated density

profiles in Fig. 3.5,

σNe(r) = Nepre(r)−Nerec(r). (3.31)

This difference is propagated through an Abel inversion to obtain σne(r) [67]. The uncertainty

caused by resolution error is isolated by conducting reconstructions with ζh = 0, and the

resulting σne(r) is shown by the red error bars in Fig. 3.5. Hologram pixel noise causes

additional uncertainty, which is analyzed by a Monte Carlo approach. For each profile, this

analysis conducts twenty reconstructions, each with a unique set of uniform random pixel

noise with a max value of 2 percent of the dynamic range of the hologram. This noise level

was estimated from observing blank camera exposures. Averaging the uncertainties of the

twenty reconstructions reveals the σne(r) from pixel noise is insignificant compared to that

from resolution error.

Reduction of σNe(r) is possible by increasing sensor resolution, which allows measurement

of finer fringe patterns. Generating finer fringes requires greater misalignment of scene and

reference beams, and increased misalignment allows for unobstructed twin images with a

shorter reconstruction distance. This leads to larger twin images with better resolution.

Note that the resolution error observed in Fig. 3.5 depends on the shape of the prescribed

ne profile. For reasonably smooth and continuous profiles, Fresnel transform reconstruction

provides accurate density data.

3.7.2 Experimental data

Analyzing experimental data is more challenging since there is no prescribed profile structure.

Unlike with the synthetic data where the plasma’s density centroid is specified to reside on

the edge of the hologram, the centroid of an empirical measurement could reside outside

the bounds of the image. Because the Abel inversion employed is sensitive to centroid

location [50], accurate inversion demands the centroid reside somewhere within the hologram

where it can be unambiguously located.
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Figure 3.7: Raw experimental (a) vacuum (pulse 160524020) and (b) plasma (pulse
160524021) holograms. The horizontal axes measure the distance downstream from the
ZaP-HD nose cone, and the vertical axes indicate the impact parameter relative to the ge-
ometric axis of the outer electrode. The full holograms exhibit aliasing at this size, so the
subsection of the plasma hologram identified by the magenta box has been magnified in (c)
to resolve the approximately vertical df ≈ 20 µm fringes. The small fringe size and gradual
density gradient make it difficult to see the phase shift in the raw data, but Fresnel transform
reconstruction reveals shifts of approximately one fringe.
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For each axial cross-section, an iterative analysis searches for a centroid location and edge

density value to make the ne profiles on either side of the centroid as similar as possible,

thereby enforcing the axisymmetry condition implicit in the Abel inversion. The centroid

search is centered about the peak in Ne, and an Abel inversion is applied to the Ne profiles

on either side of each centroid. The number density at the edge of one of the profiles is also

varied to maximize profile similarity. If the lengths of the two sides are equal, the edge with

the lower phase value is set at zero density, and the other edge value is iteratively increased

starting from zero. If the lengths differ, the edge of the longer profile is taken to be zero

density, and the edge of the shorter profile is varied through values centered on the density of

the longer profile at the same radial distance. Profile similarity is maximized by minimizing

Ψ =

√∑K
i=1 |neleft(r)− neright(r)|2

K
, (3.32)

the l2−norm of the difference between the resulting ne profiles to the left and right of the

centroid normalized by K, the number of pixels common to both sides of the cross-section.

All the Abel inversions done in this analysis assume zero Ne at the edge, which is not

always true and therefore requires correction. Prior to each inversion, the edge value of Ne is

subtracted from the profile, and then the resulting ne profile is corrected by adding a constant

number density. For a given cross-section, the first such correction takes place when different

edge densities are added to one of the profiles to optimize profile similarity. After identifying

the best centroid and edge density, the analysis accounts for axial variations in Ne. Axial

variation in Ne means the edge Ne will generally be non-zero and require a correction applied

to the profiles on both sides of the centroid. These corrections are computed by dividing the

Ne at the edge by the path length through ZaP-HD’s outer electrode at the edge’s impact

parameter.

The analysis is shown here for a plasma pulse with 9 kV acceleration bank charge and 8 kV

compression bank charge, which drove approximately 90 kA through the plasma at the time

and location imaged. Raw holograms are shown in Fig. 3.7, and although the full holograms
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Figure 3.8: The reconstructed phase difference (between pulses 160524021 and 160524020)
at a reconstruction distance d = 0.5 m. This figure shows the equivalent of the reconstructed
phase difference shown in Fig. 3.6 for experimental plasma data. The choice of reconstruction
distance here maximizes the size of the twin images and therefore the resolution obtained for
the reconstruction. A smaller reconstruction distance would lead to the zeroth-order image
obscuring the twin images.
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Figure 3.9: (a) A subsection of one of the twin images of Fig. 3.8 smoothed and converted
to Ne. The horizontal axis measures the distance downstream from the ZaP-HD nose cone,
and the vertical axis indicates the impact parameter relative to the geometric axis of the
outer electrode. The black dots indicate centroid locations identified by the Abel inversion
process. (b) A twin image of Ne obtained from computing the phase difference between
two vacuum holograms (pulses 160524020 and 160524017), one of which was used to find
the phase difference with the plasma hologram leading to Fig. 3.9(a). The Ne variation of
1.5×1021 m−2 observed across axial cross-sections of (a) is much larger than the 3×1020 m−2
variation seen across (b).

printed at this size exhibit aliasing, a subsection of the plasma hologram is magnified to

resolve the δf ≈ 20 µm interference fringes. Fig. 3.8 shows the reconstructed phase difference

prior to smoothing and further processing. To maximize the spatial resolution of the phase

difference, the reconstruction distance is selected such that the twin images just border the

zeroth-order image. Smoothing one of the twin images from Fig. 3.8 and converting it to

line-integrated density yields the contour plot of Ne in Fig. 3.9(a), which shows a profile

peaked within the image.

Several vacuum holograms are collected during each experimental run day by triggering

DHI prior to gas injection, which provides a measurement of background variations between
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plasma pulses. Computing the phase difference between two vacuum holograms ideally re-

sults in a perfectly flat map of Ne, but in practice some non-uniformity exists. Installation

of beam guide tubes along the laser path is necessary to reduce variations between vac-

uum holograms caused by air currents. Fig. 3.9(b) is the phase difference of two vacuum

holograms converted to Ne. One of these two vacuum holograms was used to compute the

phase difference of Fig. 3.8 and Ne of Fig. 3.9(a). The Ne in Fig. 3.9(b) varies as much as

3 × 1020 m−2 across an axial cross-section, which is much smaller than the 1.5 × 1021 m−2

variation observed across Fig. 3.9(a).

Performing the Abel inversion and adding the edge densities that maximize symmetry and

account for axial variation leads to Fig. 3.10, a contour plot of ne. The DHI resolves radial

and axial structures, with density peaking around 2.5 × 1023 m−3 at the center of a pinch

with radius a ≈ 2.5 mm, which is reasonable for a Z-pinch in equilibrium with Te = 1000 eV

and a peak magnetic field around 9 T computed with the uniform drift velocity model of Ch.

4. The axial variation along the bottom of Fig. 3.10 of around 1× 1021 m−3 is insignificant

compared to the peak density. The similarity of the sides of the ne cross-sections is evident

in Fig. 3.11, which shows ne profiles corresponding to the vertical lines in Fig. 3.10.

The peak density and pinch radius from ZaP-HD compare favorably with profiles mea-

sured on the original ZaP experiment with a heterodyne quadrature interferometer. Although

that interferometer does not have the spatial resolution necessary to measure ZaP-HD’s pro-

files, it is sufficient to measure ZaP’s pinches (a ≈ 6−10 mm). It resolves profiles with peak

densities around 2− 6× 1022 m−3 at 40− 60 kA pinch currents [69]. Using measurements of

ZaP as an initial plasma condition, Eqs. (1.9) are applied to scale to the current and linear

density seen on ZaP-HD. The resulting density and pinch size are consistent with the DHI

measurements of ZaP-HD.

As described in Section 3.7.1, σne(r) depends on density profile shape, so each profile

requires its own uncertainty analysis. For each measured ne profile, a test hologram is

generated by the same means as the synthetic holograms of Section 3.7.1 except now the

measured profile is used in place of a prescribed profile. Each test hologram is reconstructed,
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Figure 3.10: The ne from Abel inversion of the Ne in Fig. 3.9(a) using the centroids plotted
as black dots. The vertical lines correspond to the profiles plotted in Fig. 3.11.

and the Ne profiles before and after the reconstruction are subtracted to give σNe(r) of

Eq. (3.31), which is then propagated to obtain σne(r). Each test hologram is created with

a single fringe pattern of δx = 20 µm and δy = 0 µm and spatial resolution of 3.85 µm to

mimic experimental holograms. Fig. 3.11 shows the uncertainty in ne as errorbars with the

experimental profiles. Note that these errorbars do not include the uncertainty implied by

the phase shifts seen between vacuum holograms.

Details about the set up and operation of the DHI system can be found in the appendices.

Appendix B describes how to align the interferometer and how to run the system with ZaP-

HD to collect data. Appendix C explains how to run the basic hologram analysis codes.
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Figure 3.11: The two sides of the ne cross-sections are shown for axial locations (a) z =
0.077 m, (b) z = 0.080 m, and (c) z = 0.083 m corresponding to the vertical lines in
Fig. 3.10. For each cross-section, the red profile shows the side with impact parameters
less than the centroid, while the black is the side with impact parameters greater than the
centroid. The search for centroid and edge density maximizes the similarity between the
sides of each cross-section. The errorbars shown correspond to the uncertainty σne , which
includes error from Abel inversion.
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Chapter 4

EVALUATING ZAP-HD’S CONFINEMENT WITH DENSITY
MEASUREMENTS AND Z-PINCH EQUILIBRIUM MODELS

Measuring density profiles from many plasma shots allows empirical analysis of ZaP-

HD’s confinement and scaling. This chapter describes equilibrium modeling that allows

computation of other plasma properties from the DHI-measured density profiles. These

computed plasma properties characterize ZaP-HD’s confinement, and analyzing data from

many plasma pulses enables comparison of empirical Z-pinch scaling to the theoretical scaling

described in Sec. 1.1.3.

4.1 Modeling the Z-pinch equilibrium

Although Ch. 2 describes the ZaP-HD lifetime as a pulsed, dynamic process, a force balance

equilibrium does not require steady state behavior in which all plasma properties are constant

in time. A time dependent equilibrium maintains force balance while the internal energy

changes with time [70]. This section presents one means of applying force balance to ne

profiles measured on ZaP-HD to compute profiles of B and Te.

Assuming a spatially uniform plasma drift velocity,

vd = ve − vi, (4.1)

greatly simplifies the equilibrium analysis. Then, the current density becomes proportional to

the electron density, i.e. the current becomes proportional to the number of charge carriers,

as in

jz(r) = −vdene(r). (4.2)
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The drift velocity is computed by numerically integrating ne(r) as in

vd = − I

2πe
∫ a
0
ne(r)rdr

, (4.3)

where the total current I = 2πBθ0R0/µ0 is computed from Bθ0 , the azimuthal magnetic field

measured by magnetic field probes embedded in the outer electrode, at radius R0. All the

plasma current is assumed to flow within radius a.

Integrating Ampere’s law

µ0
~j = ∇× ~B (4.4)

gives

Bθ(r) =


µ0evd
r

∫ r
0
ne(r)rdr r < a

µ0I
2πr

r ≥ a

(4.5)

where r is a dummy variable for integration.

Integrating force balance

∇P = ∇(2nekTe) = ~j × ~B (4.6)

gives

Te(r) =


evd

2ne(r)k

∫ r
a
ne(r)Bθ(r)dr r < a

0 r ≥ a

(4.7)

where k is Boltzmann’s constant. The pressure is P = 2nekTe assuming the ideal gas law,

ne ≈ ni, and Te ≈ Ti, which are conditions observed on ZaP [69]. The integration in Eq. (4.7)

assumes as a boundary condition that the plasma pressure is zero at and beyond a. Force

balance in the radial direction is

d

dr (2neTe) = −jzBθ = evdneBθ. (4.8)
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Integrating both sides

∫ r

a

d

dr (2neTe) dr = evd

∫ r

a

neBθdr (4.9)

2

(
neTe

∣∣∣∣r=r − neTe
∣∣∣∣r=a

)
= evd

∫ r

a

neBθdr (4.10)

reduces to the form in Eq. (4.7) since neTe

∣∣∣∣r=a = 0.

Although ZaP-HD relies on bulk flow shear for stabilization of MHD modes, this does

not universally invalidate the application of a uniform drift velocity model because the drift

velocity and bulk plasma velocity are independent. Commonly known as viscosity, momen-

tum transfer across adjacent layers of flow plays an integral role in shaping velocity profiles.

Assuming ni ≈ ne in MHD, the bulk flow velocity, v, reduces to v ≈ vi because ions carry

the vast majority of the flow inertia. Therefore, ion viscosity mediates the bulk flow shear.

Conversely, the drift velocity profile is controlled by both the ion and electron viscosities.

Differences in the viscosities and species flow velocities can expand the applicability of the

uniform vd model.

Understanding where the model best applies requires some comprehension of the differ-

ence between ion and electron viscosities. The following provides a cursory explanation of

plasma viscosity relevant to the present discussion, and a more detailed treatment applicable

to ZaP-HD exists [35]. In a ZaP-HD-relevant Cartesian coordinate system with magnetic field

in the z-direction, axial flow in the x-direction, and flow shear in the y-direction, the non-zero

viscous components of Maxwell’s stress tensor in an unmagnetized plasma (ωiτii << 1, where

ωi is the ion cyclotron frequency and τii is the ion-ion collision time) are πxy = πyx = −ησ0 ∂vx∂y
where σ represents species. The viscosities for the ions and electrons are

ηi0 = 0.96niTiτii (4.11)

ηe0 = 0.73neTeτee, (4.12)
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where τee is the electron-electron collision time.

In a magnetized plasma (ωiτii >> 1), the stress tensor components are πxy = πyx =

−ησ1 ∂vx∂y where the ion and electron viscosities are

ηi1 = 0.3
niTi
ω2
i τii

(4.13)

ηe1 = 0.51
neTe
ω2
eτee

(4.14)

and ωe is the electron cyclotron frequency [71].

In the unmagnetized region, the viscosity is directly proportional to the collision times.

More time between collisions means that particles uninfluenced by a magnetic field travel

longer distances between collisions thereby transfering their momentum across a larger dis-

tance. In the magnetized region, the viscosity varies inversely with the collision time. The

magnetic field confines the moving particles, so more time between collisions does not lead

to more effective transfer of momentum. When the particles are bound close to a field line,

the more effective means of transferring momentum is through a larger number of collisions.

In a heuristic sense, more frequent collisions serve to transfer momentum from particles sur-

rounding one field line to the particles surrounding adjacent field lines. For equal species

temperatures, Ti = Te, the ratio of the collision times is

τee : τii : τei = 1 :

√
mi

me

:
mi

me

. (4.15)

In magnetized plasmas, the electron viscosity is larger than the ion viscosity by a factor of

mi/me. In unmagnetized plasmas, the ion viscosity exceeds the electron viscosity by the same

mi/me factor. The bulk plasma flow shear exists at the plasma edge, where the magnetic

field is highest and ion viscosity is low. In this magnetized region, electron viscosity is far

higher than the ion viscosity, which should lead to a relatively flat electron velocity profile.

The ion viscosity is highest at the unmagnetized plasma center and compels a uniform bulk

plasma velocity in the core plasma. It is more difficult to predict the electron viscosity at



82

the plasma center without separate measurements of ne and Te.

Because the uniform vd model has limitations, understanding those limits is important

when applying the model to analyze equilibria. When vd >> vi and the electron viscosity

is sufficient to flatten the ve profile, vd becomes uniform as the amount of bulk shear is

insignificant compared to the magnitude of vd. If the electron viscosity is low in the core,

the uniform drift velocity model may not be as accurate in the center of the plasma as shear

in ve could exist with little damping. As vd approaches vi, the uniform vd model becomes

less accurate as bulk shear becomes more of an influence on the vd profile.

The radius a in Eqs. (4.3-4.7) is chosen as the radius at which the density drops to half

its peak value to match a previous investigation on ZaP [69]. Although meant to facilitate

comparison with previous analysis, this choice is somewhat arbitrary. Figure 4.1 shows the

sensitivity of several parameters to the plasma radius for the red Lorentzian profile of Fig. 4.2

defined by Eq. (4.16) with peak density of 1023 m−3, al = 0.004 m, and plasma current I =

100 kA. Note that al defines the profile in Eq. (4.16) and, unlike a, does not necessarily

correspond to the radius where ne drops to half its maximum. The drift velocity decreases

with increased radius, and the region at small radii where the drift velocity exceeds the

thermal velocity is not physical as microinstabilities described in Sec. 1.1.2 act to decrease

vd to vthi when vd > vthi . The magnetic field at the edge Bθ(a) is less sensitive at larger radii

where vd < vthi as is the maximum Te.

The shape of a measured density profile also affects the equilibrium analysis. In Ch. 3,

error analysis quantifies the uncertainty in the measured density profiles, and this uncertainty

propagates to the computed fields and temperatures. Figures 4.2 and 4.3 illustrate the error

propagation for various Lorentzian-like profiles. The red profiles in each figure are prescribed

the same as the Lorentzian shown in Fig. 3.5 except the peak densities of 1023 m−3 are chosen

to more closely match measured values. The red error bars are obtained through the process

described in Sec. 3.7.1. Modifying the shape of the Lorentzian profile of Eq. (3.27) to include

a changable parameter, h, as in

f(r) =
al

hr2 + a2l
, (4.16)
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Figure 4.1: The sensitivity of plasma parameters to chosen plasma radius a. Conditions
where vd > vthi are non physical. The magnetic field at the plasma radius Bθ(a) is less
sensitive at larger radii as is the maximum Te.

allows tuning of the profile shape. Here, al is the characteristic radius selected to define the

profile. Enforcing the profile to go to zero at radius Rmax and normalizing to allow easy

selection of peak density, n0, yields

ne(r) = n0
f(r)− f(Rmax)

f(0)− f(Rmax)
(4.17)

as an adjustable, Lorentzian-like profile valid for r = [0, Rmax].

Computing the equilibrium analysis for various Lorentzian-like profiles within the error

bars of the red prescribed Lorenztian profile provides insight into the uncertainty of the field

and temperature. The three tested profiles in Fig. 4.2 are the same shape (i.e. they all have

h = 1) but have different peak densities. Changing the peak density does not change the

magnetic field profiles while it does affect the temperature profiles. Fig. 4.3 shows three

Lorentzian-like profiles with the same peak density but with different shapes. Varying the

shape has a more pronounced effect on temperature and affects the field because such changes

affect the plasma radius a.
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Figure 4.2: Results of equilibrium analysis of three Lorentzian density profiles with different
peak densities and identical shape parameter, h = 1. Changing the peak density does not
affect the magnetic field, but it does change the temperature profile. Changing only the peak
density does not affect the radius a.
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Figure 4.3: Results of equilibrium analysis of three Lorentzian-like density profiles with
identical peak densities and different shape parameters. Changing the density profile shape
affects both the field and the temperature. Note that changing the profile shape affects
radius a.
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Conducting a similar analysis for the hyperbolic tangent profile from Sec. 3.7.1,

ne(r) =
ne0
2

{
1− tanh

(
k(r − ah)

ah

)}
, (4.18)

provides additional insight. Here, k allows tuning of the profile steepness, and the radius

of the specified profile, ah, is also tunable. Fig. 4.4 shows the field and temperature are

insensitive to the steepness of this profile type. The size of the pinch has a much greater

effect, with smaller pinches exhibiting higher fields and temperatures.

In general, changes in the plasma radius, a, can significantly affect the field and tem-

perature profiles. Observing how the field and temperature profiles change in response to

changes in density suggests computed peak temperatures and edge field magnitudes likely

lie within a factor of two of their nominal values.

4.2 Applying equilibrium analysis to individual ZaP-HD pulses

Applying the equilibrium analysis of the previous section to measured density data reveals

the shape of plasma parameters in experimental plasma pulses. The DHI’s axial resolution

allows for identification of non-adiabatic heating mechanisms for individual plasma pulses.

As seen in the synthetic data of Sec. 4.1, computed magnetic field and temperature pro-

files are sensitive to the specific shape of the density profile. Figs. 4.5 and 4.6 show the

computed Z-pinch equilibria for different experimentally-measured plasma density profiles.

Fig. 4.5 exhibits a relatively narrow density profile from pulse 160524021 with high fields

and temperatures, while Fig. 4.6 shows a wider density profile from pulse 160628009 with

correspondingly reduced fields and temperatures. These figures identify the peak density,

peak temperature, and magnetic field at the radius a as characteristic equilibrium parame-

ters. Reducing the profiles down to these characteristic values enables the comparison across

many plasma pulses performed in Sec. 4.3.

Applying the equilibrium analysis to all density profiles from a hologram reveals two-

dimensional field and temperature structure. Computed field and temperature contour plots
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Figure 4.4: Results of equilibrium analysis of four hyperbolic tangent profiles with varying
steepness and size. The field and temperature are insensitive to profile steepness, while
changing the specified radius makes a greater difference in the analysis.
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Figure 4.5: Cross-sections of measured density and computed field and temperature from the
uniform drift velocity equilibrium model for pulse 160524021. This pulse exhibits relatively
narrow profiles. The vertical red lines indicate the pinch radius, a, and the red circles indicate
the peak density, edge field, and peak temperature values taken as characteristic property
values.
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Figure 4.6: Cross-sections of measured density and computed field and temperature from the
uniform drift velocity equilibrium model for pulse 160628009. This pulse exhibits relatively
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Figure 4.7: Contour plot of electron density measured on pulse 160524021 with markers
indicating density centroid and pinch size. The black markers indicate the density centroids
identified during Abel inversion, and the magenta markers show the radius a for each profile
defined as the location where the density drops to half the max value in the cross-section.
The plasma radius bulges slightly near 0.081 m but otherwise remains largely uniform axially.

corresponding to the density contour of Fig. 4.7 are shown in Figs. 4.8 and 4.9 respectively.

The field and temperature show mild axial variation due to the plasma radius bulge at

z = 0.081 m.

Observing how pinch properties relate for individual pulses indicates the mechanisms

of Z-pinch heating in ZaP-HD. Specifically, data from equilibrium modeling can distinguish

between adiabatic and non-adiabatic processes. For an adiabatic process, the number density

scales as

n2

n1

=

(
T2
T1

) 1
−γ−1

=

(
I2
I1

) 2
γ−1
(
N2

N1

) 1
γ−1

. (4.19)
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Combining Eq. 4.19 with n = N/πa2 and Ampere’s law, B = µ0I/2πa, leads to

T2
T1

=

(
a2
a1

)−2(γ−1)(
N2

N1

)γ−1
(4.20)

B2

B1

=

(
a2
a1

)−γ (
N2

N1

) γ
2

, (4.21)

which relate magnetic field and temperature to pinch radius. The density relates to pinch

radius as in
n2

n1

=

(
a2
a1

)−2(
N2

N1

)
, (4.22)

although this relation only depends on the definition of the linear density and does not

require assumption of an adiabatic process.

Using equilibrium analysis data to plot the left-hand-side normalized to the right-hand-

side of each Eq. (4.20, 4.21) elucidates how closely a plasma pulse conforms to adiabatic

conditions. In comparing a secondary plasma state (n2, T2, B2, N2, a2) reached from an

initial plasma state (n1, T1, B1, N1, a1) through an adiabatic process, the fractions

B2

B1(
a2
a1

)−γ (
N2

N1

) γ
2

, (4.23)

T2
T1(

a2
a1

)−2(γ−1) (
N2

N1

)γ−1 (4.24)

should each be 1. Comparing the plasma state measured by DHI at different axial cross-

sections reveals the presence of non-adiabatic processes. This analysis assumes that the

profiles at all axial locations share the farthest upstream profile as a common initial state. All

the profiles from one side of a hologram, i.e. either above or below the density centroids, are

chosen for this analysis. The characteristic properties from the most upstream cross-section

are taken as (n1, T1, B1, N1, a1), and the characteristic properties of each downstream profile

are taken as (n2, T2, B2, N2, a2). Linear density is numerically integrated for each profile as

N =
∫ a
0

2πnrdr.
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Figure 4.10: Examining relations between pinch size and density and field and temperature
to determine if an axially uniform Z-pinch behaves adiabatically. The two plots compare
the left and right-hand-sides of Eqs. (4.20, 4.21) for pulse 160524021. The profiles below the
density centroids in Fig. 4.7 are used in this analysis, and each black marker corresponds to
a profile at a different axial location. Upstream of 0.077 m, the markers near a value of 1 on
the ordinate indicate states reached in agreement with the adiabatic scaling laws. Between
0.077 and 0.081 m, non-constant deviations of the markers from 1 suggest non-adiabatic
processes are responsible for the difference of the plasma state in this region compared to the
upstream region. The flat region in the markers downstream of 0.081 m indicates differences
in the plasma state within this region are explained by adiabatic processes.

Figure 4.10 shows the ratio from each profile plotted as a single marker for plasma pulse

160524021, which exhibits fair axial uniformity in density. Upstream of 0.077 m, the markers

near a value of 1 on the ordinate indicate states reached in agreement with the adiabatic

scaling laws. Between 0.077 and 0.081 m, where the ratio Eq. (4.23) increases and then

decreases with axial distance, non-adiabatic processes are at least partially responsible for the

differences in the plasma state between adjacent cross-sections. This non-adiabatic behavior

correlates with the bulge in the plasma radius seen in Fig. 4.7. The flat region downstream of

0.081 m suggests differences between cross-sections in this region are explained by adiabatic

processes.

For a different pulse with more axial variation in density (pulse 160621026), Fig. 4.11

shows more pronounced deviation from adiabatic behavior. Figures 4.13-4.14 show contours
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of density, field, and temperature for this pulse, and all show significant axial variation.

Specifically, they show an expansion of the plasma downstream of 0.081 m. The observation

of greater deviation from adiabatic behavior for axially-varying Z-pinch equilibria corrobo-

rates with data from ZaP, which indicated that pinches with large oscillations in pinch size

exhibited non-adiabatic behavior [32]. The study performed on ZaP used density data mea-

sured at one axial location with the HeNe interferometer to compute the volume-averaged

adiabatic function, 〈
P

ργ

〉
=

(Z + 1)knaTa
(mina)γ

, (4.25)

as a function of time. Here, na and Ta are volume-averaged density, n = ni = ne/Z, and

temperature, T = Te = Ti, respectively. P/nγ remains constant in adiabatic processes, and

ZaP data showed changes in the adiabatic function during oscillations in plasma size. If the

axially-varying structures (size ≈ 1 cm) observed with DHI on ZaP-HD translate at the bulk

flow speed (≈ 1 cm/µs), they could lead to oscillations in plasma radius apparent at one

axial location comparable to those observed on ZaP over similar time scales.

4.3 Empirical observation of ZaP-HD’s plasma property scalings

Extending the equilibrium analysis across many plasma pulses elucidates how ZaP-HD’s

confinement properties scale. Plotting the characteristic pulse properties n, T , B, N , and a

in various parameter spaces reveals the empirical scaling.

Pulses examined in this analysis all have similar run settings. They all share identical

charge voltages (9 kV acceleration bank voltage, 8 kV compression bank voltage) and gas

injection pressures (5500 Torr inner gas pressure, 3500 Torr outer gas pressure), and they

have similar gas injection timings (-1.6 to -1.5 ms inner gas timing, -1.6 to -1.4 ms outer gas

timing) and compression bank trigger times (17 to 20 µs). All holograms are centered at z =

8 cm where optical images observe stable confinement (see Fig. 5.3). All profiles from 13

high quality hologram reconstructions are considered for this analysis, and a single marker

represents each profile in Figs. 4.15-4.21. The profiles above and below the centroid of each
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Figure 4.11: Examining relations between pinch size and field and temperature to determine
if an axially non-uniform Z-pinch behaves adiabatically. The two plots compare the left and
right-hand-sides of Eqs. (4.20, 4.21) for pulse 160621026. The profiles below the density
centroids in Fig. 4.12 are used in this analysis, and each black marker corresponds to a
profile at a different axial location. Upstream of 0.076 m, the markers near a value of 1 on
the ordinate indicate states reached in agreement with the adiabatic scaling laws. Abrupt
changes in the ratios of Eqs. (4.23, 4.24) at 0.076 m and 0.081 m suggest non-adiabatic
processes dictate the difference between the plasma states at adjacent cross-sections in these
locations. The more abrupt change at 0.081 m corresponds to the plasma radius change.
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Figure 4.12: Contours of density for pulse 160621026 analyzed in Fig. 4.11. The black dots
indicate the centroids used in Abel inversion, and the magenta dots indicate the radius a for
each profile where the density drops to half its peak value. This pulse exhibits significant
axial variation in density.
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Figure 4.13: Contours of magnetic field for pulse 160621026 analyzed in Fig. 4.11. This pulse
exhibits significant axial variation in field with the highest fields in cross-sections with the
smallest pinch radii.
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Figure 4.14: Contours of temperature for pulse 160621026 analyzed in Fig. 4.11. This pulse
exhibits significant axial variation in temperature with the hottest temperatures in cross-
sections with the smallest pinch radii.
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Figure 4.15: Linear density versus plasma radius and linear density versus plasma current.
Each marker represents a profile from a reconstructed hologram, and all profiles from 13
high quality holograms taken at pulses with similar run settings are displayed. Profiles
above and below the centroid of each cross-section are indicated by diamond and square
markers respectively, and markers are assigned colors determined by ranges of linear density.
The horizontal black lines show the boundaries of the linear density ranges, and the assigned
colors are consistent throughout the remaining figures in this section. The profiles show
no strong functional relationships exist between N and a or N and plasma current. The
observed linear densities are lower than those measured on ZaP (NZaP ≈ 3 - 5×1019 m−1),
and plasma currents seen exceed those on ZaP (IZaP ≈ 30 - 60 kA) [69]. The lack of a
strong relationship between N and plasma current suggests the acceleration and compression
processes in ZaP-HD are effectively uncoupled in terms of these parameters.

cross-section are indicated by diamond and square markers respectively, and marker colors

are determined by the linear density.

ZaP-HD has expanded upon the operating regime of ZaP by driving more compression

current while reducing linear density. Figure 4.15 shows the linear density versus plasma

radius and linear density versus plasma current with horizontal lines indicating the linear

density ranges. The observed linear densities are lower than those seen on ZaP (NZaP ≈ 3 -

5×1019 m−1), and plasma currents exceed those on ZaP (IZaP ≈ 30 - 60 kA) [69]. The plasma

current discussed in this section is computed as the axial current at the magnetic probe array

closest to the DHI measurement location. The current is computed from the average magnetic
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field measured at that probe array. The combination of increased current and reduced linear

density leads to smaller pinches with higher densities, fields, and temperatures. Unlike the

ZaP experiment, which exhibited coupling between the plasma current and linear density,

the plot of N versus plasma current in Fig. 4.15 shows the current does not significantly

affect the linear density in ZaP-HD, which allows for improved compression. The scatter

plot of n(a) in Fig. 4.16 shows an expected trend that pinches compressed to smaller radii

reach higher density. The profiles seen on ZaP-HD exceed the parameter space attained by

ZaP illustrated by the transparent red box. Similarly, scatter plots of B(a) and T (a) in

Figs. 4.17 and 4.18 show increased field and temperature for smaller pinches. Values of field

and temperature computed with the uniform vd model are sensitive to the plasma radius at

smaller radii (see Fig. 4.1), which could lead to exaggeration of the fields and temperatures

for small pinches. Even so, values computed at relatively large radii exceed values from the

same equilibrium model applied on ZaP, which saw fields around 1 T and temperatures near

200 eV [31]. ZaP-HD compresses plasma more effectively than ZaP.

For a plasma that behaves adiabatically, the loci of markers in Figs. 4.16-4.18 would

follow the scaling relations Eqs. (4.20-4.22). The colored curves in Figs. 4.16-4.18 show the

adiabatic scaling for different values of N . A reference state, i.e. (n1, a1), (B1, a1), and

(T1, a1), is required to plot Eqs. (4.20-4.22), and the reference state for each orange curve is

chosen to maximize its proximity to the orange markers in each plot so that the orange curve

represents the adiabatic scaling for the linear density bin 1×1019 m−1 < N < 1.5×1019 m−1.

A linear density ratio N2/N1 = 1 is chosen to draw the orange curves. The green and red

curves use N2/N1 = 2 and N2/N1 = 1/2 respectively, and these curves roughly represent

where the adiabatic scaling should lie for the green and red linear density ranges. The

empirical n(a) scaling of Fig. 4.16 follows the qualitative trends of the adiabatic scaling. The

density increases with decreased plasma radius, and the locus of markers for lower N are

shifted towards the bottom-left of the plot. The empirical B(a) scaling in Fig. 4.17 appears

insensitive to N , which is inconsistent with adiabatic theory. While the general trend of

increased field with decreased pinch size is consistent with adiabatic theory, the empirical
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trend is less steep than predicted. In Fig. 4.18, the trend of increased T (a) with smaller

radius matches the adiabatic prediction, but the dependence on N appears inverted from

the adiabatic scaling with markers for lower N shifted towards the upper-right of the plot.

Deviations from the adiabatic scalings seen across multiple pulses are consistent with the

non-adiabatic behavior shown in individual pulses in Sec. 4.2.

Understanding the scaling of n and T with respect to plasma current has major ramifi-

cations for applications like fusion energy power plants and space propulsion. The markers

in Figs. 4.19-4.21 show the empirical relations for n(I), a(I), and T (I). In these plots, the

curves indicate the adiabatic scaling of Eqs. (1.7-1.9). The orange curves are again chosen

to have N2/N1 = 1 and initial states so they conform to the majority of the orange markers.

The red and green curves once again roughly correspond to the red and green linear density

ranges. The empirical density does not scale up as effectively as adiabatic theory predicts.

Both the adiabatic and empirical scalings indicate low sensitivity of a, and T to plasma cur-

rent over this range of currents. In its present form, DHI only has success measuring density

profiles at the highest capacitor bank charge voltage settings. As changing the charge volt-

age settings are the primary means of changing the plasma current, future studies discussed

in Ch. 7 will need to open the operating space of DHI to enable data collection at lower

plasma currents, lower densities, and larger pinch sizes. An investigation over an expanded

range of currents would help appraise the utility of the flow stabilized Z-pinch to applications

requiring high temperature and density.

DHI measurements reveal ZaP-HD provides more effective plasma compression than ZaP.

Equilibrium modeling using the measured 2D density data allows investigation of the 2D

structure of magnetic field and temperature. This structure reveals non-adiabatic processes

associated with axial variation in the plasma, specifically with changes in the plasma radius.

Such observations support previous work observing a relationship between Z-pinch radius

oscillations and non-adiabatic behavior [69]. A study of data from many plasma pulses indi-

cates non-adiabatic behavior commonly occurs in ZaP-HD leading to poorer than predicted

density scaling. More research is necessary to provide a conclusive appraisal of the scalability
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Figure 4.16: Peak density versus plasma radius for profiles from many plasma pulses with
similar run settings. Markers are colored according to the linear density ranges in Fig. 4.15.
The orange curve represents the adiabatic scaling of Eq. (4.22) for the orange linear density
bin. The curve is drawn from Eq. (4.22) with N2/N1 = 1 and an initial state chosen
to maximize the proximity of the curve to the orange markers. The green and red curves
indicate the adiabatic scaling for values of N2/N1 of 2 and 1/2 respectively, which correspond
to the green and red linear density ranges. The red-shaded box indicates the region of ZaP
operations, and extends off the plot to radii of 0.015 m. The empirical data exhibits the same
trends as the adiabatic predictions: density increases as pinch size decreases, and markers
of higher linear density generally appear towards the upper-right of the plot. The empirical
relation between density and radius is more gradual than the adiabatic prediction.
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Figure 4.17: Magnetic field plotted versus plasma radius for profiles from many plasma
pulses with similar run settings. Markers are colored according to the linear density ranges
in Fig. 4.15. The orange curve represents the adiabatic scaling of Eq. (4.21) for the orange
linear density bin. The curve is drawn from Eq. (4.21) with N2/N1 = 1 and an initial
state chosen to maximize the proximity of the curve to the orange markers. The green
and red curves indicate the adiabatic scaling for values of N2/N1 of 2 and 1/2 respectively,
which correspond to the green and red linear density ranges. The empirical B(a) relation
appears insensitive to linear density, which does not match the adiabatic prediction. Also,
the empirical trend is more gradual than the prediction.
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Figure 4.18: Temperature plotted versus plasma radius for profiles from many plasma pulses
with similar run settings. Markers are colored according to the linear density ranges in
Fig. 4.15. The orange curve represents the adiabatic scaling of Eq. (4.20) for the orange
linear density bin. The curve is drawn from Eq. (4.20) with N2/N1 = 1 and an initial state
chosen to maximize the proximity of the curve to the orange markers. The green and red
curves indicate the adiabatic scaling for values of N2/N1 of 2 and 1/2 respectively, which
correspond to the green and red linear density ranges. The observed temperature follows
the predicted trend of increased temperature at smaller pinch sizes. The dependence of the
empirical data on linear density appears inverted from the adiabatic predictions with markers
of higher linear density generally shifted towards the lower-left corner of the plot.
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of flow stabilized Z-pinches.
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Figure 4.19: Electron density plotted versus plasma current for profiles from many plasma
pulses with similar run settings. Markers are colored according to the linear density ranges
in Fig. 4.15. The orange curve represents the adiabatic scaling of Eq. (4.19) for the orange
linear density bin. The curve is drawn from Eq. (4.19) with N2/N1 = 1 and an initial state
chosen to maximize the proximity of the curve to the orange markers. The green and red
curves indicate the adiabatic scaling for values of N2/N1 of 2 and 1/2 respectively, which
correspond to the green and red linear density ranges. The dependence of the measured
density on the linear density does not appear to follow the adiabatic theory. The empirical
density does not scale up as effectively as adiabatic theory predicts.
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Figure 4.20: Plasma radius plotted versus plasma current for profiles from many plasma
pulses with similar run settings. Markers are colored according to the linear density ranges
in Fig. 4.15. The orange curve represents the adiabatic scaling of Eq. (1.9) for the orange
linear density bin. The curve is drawn from Eq. (1.9) with N2/N1 = 1 and an initial state
chosen to maximize the proximity of the curve to the orange markers. The green and red
curves indicate the adiabatic scaling for values of N2/N1 of 2 and 1/2 respectively, which
correspond to the green and red linear density ranges. The insensitivity of the observed
plasma radius over this range of currents matches the adiabatic prediction. The dependence
of the radius on the linear density appears to follow the trend of adiabatic theory with lower
linear density markers generally located towards the bottom of the plot.
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Figure 4.21: Temperature plotted versus plasma current for profiles from many plasma
pulses with similar run settings. Markers are colored according to the linear density ranges
in Fig. 4.15. The orange curve represents the adiabatic scaling of Eq. (1.7) for the orange
linear density bin. The curve is drawn from Eq. (1.7) with N2/N1 = 1 and an initial state
chosen to maximize the proximity of the curve to the orange markers. The green and red
curves indicate the adiabatic scaling for values of N2/N1 of 2 and 1/2 respectively, which
correspond to the green and red linear density ranges. The insensitivity of the observed
temperature over this range of currents matches the adiabatic prediction. The dependence
of the temperature on the linear density appears to follow the trend of adiabatic theory with
lower linear density markers generally located towards the top of the plot.
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Chapter 5

EVALUATING ZAP-HD’S STABILITY WITH MULTIPLE
DIAGNOSTICS

ZaP-HD’s behavior differs from ZaP’s in significant ways that compel investigation of new

metrics of plasma stability. On ZaP, the primary means of determining plasma stability is

magnetic mode data. Defining the plasma’s quiescent period as the time duration where the

normalized mode data, m1/m0, remains less than 0.2 gives an objective measure of stability.

As described in Sec. 2.1.3, m1/m0 corresponds to the Z-pinch current centroid displacement,

and the condition m1/m0 < 0.2 means the current centroid resides within 1 cm of machine

axis. Defined as such, quiescent periods on ZaP-HD are shorter than on ZaP and ZaP-HD’s

normalized mode data is typically, higher indicating more off-centered plamas. The vastly

increased resolution of ZaP-HD’s field probes further confounds the definition of stability as

a plasma that appears well-centered at one axial location can move chaotically at another

location. This chapter evaluates the normalized mode data as a stability metric by comparing

it to density measurements from DHI and optical images from the high-speed camera.

5.1 Characterizing ZaP-HD’s stability with mode data

Initial attempts to optimize ZaP-HD’s behavior were based on observing the magnetic mode

data and trying to extend the quiescent period based on ZaP’s definition of plasma sta-

bility. These attempts encountered many difficulties. The large number of tunable set-

tings on the ZaP-HD machine makes the optimization difficult. Experiments must span a

multi-dimensional parameter space, and results are time-consuming to obtain and difficult to

comprehend. Taguchi methods, design of experiments techniques, and analysis of variance

(ANOVA) were employed to span this parameter space more efficiently and also look for
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dependencies obscured from experimental runs varying only one parameter at a time [72,73].

Such methods show the most influential parameters by far affecting the quiescent period

are the capacitor bank charge voltages. Increasing acceleration bank charge voltage lengthens

the quiescent period, so optimal plasma conditions are achieved with the acceleration bank

charged to its maximum value, 9 kV. Fig. 5.1 shows normalized mode data from pulses during

testing of the accelerator. During accelerator testing, the middle electrode is grounded to

the outer electrode, which eliminates the complicated effects described in Ch. 2 at the end of

the gun caused by the middle electrode floating. Mode data from this testing shows stability

improves monotonically with increased accelerator charge voltage. During operation with

the compression bank, pulses with zero compression bank charge show high mode activity

due to the interaction at the interface between the acceleration and assembly regions. As

the compression bank charge voltage increases, chaotic fluctuations in the magnetic mode

data initially decrease but eventually tend to increase at higher voltages. These fluctuations

at high compression bank charge voltages reduce the ability of the Taguchi methods to

determine finer correlations between the quiescent period and other run parameters like gas

puff timing, gas pressure, and compression bank trigger timing.

Taguchi and design of experiments methods rely on reducing the results of each experi-

ment in a dataset to a single number or metric. The methods reveal changes in that metric

as a response to changes in experiment inputs or set up. These methods are commonly used

to optimize chemical reactions where identifying the reaction yield as the metric for each

experiment is easy. Here, the metric is the quiescent time based on the magnetic mode data.

On high compression bank charge pulses, the quiescent period is at least as sensitive to the

chaotic processes in the plasma as it is to any change in experiment set up, so other methods

are needed to fine-tune ZaP-HD’s performance.

Despite the inconclusive results of Taguchi methods, changes in run parameters besides

charge voltages certainly affect the plasma behavior and stability. Camera images were used

to identify a run conditions of optimal stability, which led to more invertible DHI density

data than other run conditions. Note that invertible DHI data comes from relatively centered
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Figure 5.1: Normalized magnetic mode data, m1/m0, showing stability improves with in-
creased acceleration bank voltage. The middle electrode was grounded to the outer electrode
for the pulses shown during testing of the accelerator. Acceleration bank voltages of (a) 3.5
kV and (b) 6 kV are shown for pulses with otherwise identical run settings. Horizontal black
lines indicate a current centroid displacement of 1 cm.
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Figure 5.2: Normalized magnetic mode data, m1/m0, showing stability initially improves
with increased compression bank voltage and then degrades at high voltages. Compression
bank voltages of (a) 0 kV, (b) 2 kV, and (c) 8 kV are shown for pulses with otherwise identical
run settings. Horizontal black lines indicate a current centroid displacement of 1 cm.
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plasmas, so the prevalence of invertible DHI data at this condition corroborates with the well-

centered pinches seen in the camera images. The prominent feature seen camera images of

stable Z-pinches is the constriction seen at z = 10−15 cm in Fig. 5.3 in the frames at 41 and

46 µs. Plasma radially converges upstream of z = 12 cm and radially diverges downstream

from that position. Downstream of z = 20 cm exhibits little light emission until later in the

quiescent period when light appears from the farthest downstream location and works its

way upstream, which may indicate flow stagnation at the end of the assembly region. Little

light is ever seen between z = 20 and 30 cm.

5.2 Comparing the magnetic mode data to optical images

Error sources do exist that can affect the normalized mode data and may degrade its effec-

tiveness as a stability metric. The increased instability implied by the mode data of ZaP-HD

as well as instability observed in camera imaging prompted deeper investigation into possible

shortcomings in the mode data. The most significant errors in current centroid position stem

from two assumptions in the probe data analysis. First, the magnetic probes are assumed

to react instantaneously to changes in plasma current. In reality the probes have limited

frequency response because they are embedded in steel conducting walls. Therefore, it takes

a finite time, related to the resistive diffusion time of the steel, for the field to buldge into

the holes in the walls housing the probes. This means the probes are blind to quick changes

in magnetic field, and relatively large non-uniform displacements flowing along very quickly

or rapid time-varying oscillations can occur without detection. Second, the analysis assumes

axially uniform displacements. As a result, the normalized mode data under-reports non-

uniform displacements because the fraction of plasma moving closer to one side of a probe

array is less for a localized displacement.

Examining saturated instabilities provides a great illustration of the magnetic mode data’s

limitations. Instabilities do appear in shear flow stabilized plasmas, but they do not grow to

the point of destroying plasma confinement. The shear flow stabilization prevents the insta-

bilities from growing beyond a point where their size saturates. After saturation, instabilities
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Figure 5.3: High speed camera images showing the typical appearance of a stable Z-pinch
during a 14 µs quiescent period from 36 to 51 µs during pulse 160310013. The frame at 41 µs
shows the distinct necking behavior localized at z = 10− 15 cm typical of stable Z-pinches.
The intensity is shown on a logarithmic scale.
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are conveyed by the plasma flow to the end of the assembly region. Saturated instabilities

may go unreported by the magnetic mode data. Fig. 5.4 shows four frames in which an

apparent saturated kink instability propagates past the z = 15 cm probe array without af-

fecting that location’s current centroid. The size (λ ≈ 3 cm) and velocity (≈ 5 cm/µs) of this

kink instability match observations of saturated instabilities on ZaP [32]. The localized na-

ture of the instability may make it invisible to the probes. Conversely, larger axial structures

often corroborate well with optical images as seen in the four frames of Fig. 5.5. Correlation

between optical images and mode data is not always consistent. Fig. 5.6 shows five frames

where a large-sized (5-10 cm) structure starts far from the current centroid location before

kinking and severing the plasma. The mode data remains unaware of this unstable behavior

until 4 µs after the pinch severs.

Does such disagreement expose flaws in the magnetic mode data? The answer is com-

plicated. The plasma emission in the visible spectrum integrated during the time of usual

high speed camera operation is shown in Fig. 5.7 (top). Visible light emission is dominated

by metal and Hα spectral lines, which are more likely found in the edge of the plasma than

in its ionized core, so light emission generally does not correlate to plasma current or den-

sity. Better theoretical correlation exists between density and bremsstrahlung light emission,

which comes from free electrons being deflected in the plasma. The radiation power output

of bremsstrahlung radiation goes like

Pbr ∝ Z2neniT
1/2
e , (5.1)

where Z is the effective charge state. In a hydrogen plasma, Pbr ∝ n2
eT

1/2
e , which is a strong

function of density and a weak function of temperature. Because bremsstrahlung comes

from electrons changing trajectory in response to electromagnetic fields, the emitted light

is broadband as a continuum of trajectory changes are possible. Bremsstrahlung radiation

intensity decreases with increased wavelength, but it will appear uniform over narrow wave-

length ranges. Installing a Wratten No. 58 filter with a Wratten No. 12 on the camera lens
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Figure 5.4: High speed camera images showing a saturated kink instability move past the
z = 15 azimuthal probe array without affecting the current centroid. The intensity is shown
on a logarithmic scale. The size (λ ≈ 3 cm) and velocity (≈ 5 cm/µs) are consistent with
instabilities seen on ZaP. The vertical shadow at 0.12 m is part of a 3D printed hanger
holding a laser beam guide. The shadow of the beam guide is visible at the right edge of the
image.
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Figure 5.5: High speed camera images showing relatively large scale, slow moving structure
correlates well with current centroid locations. The intensity is shown on a logarithmic scale.
The vertical shadow at 0.12 m is part of a 3D printed hanger holding a laser beam guide.
The shadow of the beam guide is visible at the right edge of the image.
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Figure 5.6: High speed camera images showing plasma translation and instability behavior
not captured by magnetic mode data. In the first frame, a large structure has already
deviated far from the current centroid. The subsequent frames show a kink instability grow
and break apart. Throughout the instability breakup, the mode data remains well within
the ZaP stability criterion. The mode data only register unstable conditions 4 µs after the
final frame shown here.



118

Figure 5.7: (top) Visible wavelength spectra collected by the ICCD spectrometer with a
gate during the operation of the high speed camera. The intensities are normalized so the
peak value equals 1. The green and magenta curves show the transmittances of the Wratten
number 12 and 58 filters respectively. The blue curve is the transmittance of the combination
of the two filters. (bottom) The filtered spectrum computed by multiplying the transmittance
of the combined filter and the spectrum shown in (top).

is an attempt to reject line radiation and retain the uniform bremsstrahlung. The green and

magenta curves in Fig. 5.7 (top) show the transmittances of the Wratten filters, and the blue

curve shows their combined transmittance. Fig. 5.7 (bottom) shows the filtered spectrum.

The integrated intensity of the line radiation in the filtered spectrum is small compared to

the integrated intensity of the uniform regions, which suggests the filter does a good job of

isolating bremsstrahlung. Unless otherwise noted, all camera images shown in this chapter

are taken with the bremsstrahlung filter installed in an attempt to capture light with better

correlation to plasma density.

Consistent correlation exists between unfiltered and filtered light. Placing the bremsstrahlung

filter on ZaP-HD’s rectangular viewport during imaging reveals structures seen in both fil-

tered and unfiltered light. For instance, Fig. 5.8 shows plasma structures that begin upstream

of a circular bremsstrahlung filter, remain visible while passing through the filtered region,
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and then exit downstream. Throughout their journey, these structures retain consistent

shapes. This could mean that the filter transmits enough line radiation for the camera to

see the same structures through the filter as it does without it. It could also mean that the

bremsstrahlung and line radiation are highly correlated in ZaP-HD.

5.3 Corroborating stability metrics with DHI

An unambiguous verification of plasma stability is provided by DHI as density profiles provide

the plasma location unambiguously. Unfortunately, ZaP-HD’s DHI provides only one image

per plasma pulse in a relatively small area (2 cm × 1 cm). If bremsstrahlung light from

camera images could be correlated to DHI measurements of density, the high speed camera

could act as a surrogate for DHI to verify stability with great time resolution over a wider

spatial extent of the Z-pinch.

Overlaying line-integrated density, number density, and the current centroid locations on

optical images reveals how well the diagnostics correlate. As in Ch. 4, the DHI is aimed at

z = 8 cm to image the apparent stable constriction of plasma seen in optical images like in

Fig. 5.3. Figure 5.9 presents such data during a generally quiescent (except at z = 5 cm)

time in a plasma pulse. The density centroid matches the current centroid within 1 cm, and

the light emission matches the density centroid even more closely. Another pulse is shown

in Fig. 5.10, which exhibits good agreement between all three diagnostics. Fig. 5.11 shows

similar overlayed contours of magnetic field and temperature computed from the density

shown in Fig. 5.10.

Agreement between the current centroid and density is common, but the light emission

often deviates from the density. Axial variation is also common in the line-integrated density,

which may obscure the diagnostic’s ability to view kink instabilities as obvious kinks are never

seen by DHI. Such axial variation does not significantly alter Abel-inverted number density,

but the axisymmetry assumption inherent in the inversion ensures number density data can

only capture axisymmetric sausage instabilities. Figs. 5.12 and 5.13 show DHI data with

axial variation. Both figures show excellent correlation between the density and current
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Figure 5.8: High speed camera images contrasting unfiltered and filtered plasma light emis-
sion. The circular bremsstrahlung filter is visible between z = 10 and 15 cm. Structures
originating in the unfiltered region upstream are visible moving through the filtered region
and then out into the unfiltered region downstream. Observations consistently see strong
correlation between unfiltered and filtered structures. The vertical shadow at 0.12 m is part
of a 3D printed hanger holding a laser beam guide. The shadow of the beam guide is visible
at the right edge of the image.
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Figure 5.9: Contours of (left) line-integrated density and (right) number density are plotted
over an optical image taken during pulse 160621026 at 50 µs, the time of the DHI pulse. The
magenta circles are the current centroid locations projected into the plane of the image, and
the red markers indicate the density centroids computed during Abel inversion. This image
shows fair agreement between the image, density data, and centroid position. The vertical
shadow at 0.12 m is part of a 3D printed hanger holding a laser beam guide. The shadow of
the beam guide is visible at the right edge of the image.
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Figure 5.10: Contours of (left) line-integrated density and (right) number density are plotted
over an optical image taken during pulse 160524018 at 50 µs, the time of the DHI pulse.
The magenta circles are the current centroid locations projected into the plane of the image,
and the red markers indicate the density centroid computed during Abel inversion. This
image shows good agreement between the image, density data, and centroid position. The
downstream scene beam guide was removed on this pulse, but testing showed this section of
beam guide made little difference to the DHI’s signal to noise.
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Figure 5.11: Contours of (left) magnetic field and (right) temperature are plotted over an
optical image taken during pulse 160524018 at 50 µs, the time of the DHI pulse. The field
and temperature are computed from the density in Fig. 5.10. The magenta circles are the
current centroid locations projected into the plane of the image. Excellent correlation exists
between the field, temperature, and current centroid.
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Figure 5.12: Contours of (left) line-integrated density and (right) number density are plotted
over an optical image taken during pulse 160823016 at 60 µs, the time of the DHI pulse.
The magenta circles are the current centroid locations projected into the plane of the image,
and the red markers indicate the density centroid computed during Abel inversion. Here,
excellent correlation exists between density and current centroid, but the light emission
position is significantly different. In the upstream portion of the DHI data, the density
centroid reaches the edge of the imaged area. At every cross-section where this happens, the
number density is set to zero across the cross-section.

centroids. The light emission is displaced from the density in Fig. 5.12, and the light in

Fig. 5.13 is too diffuse to make a meaningful comparison with the other diagnostics.

Possible sources of the axial line-integrated density variation include the plasma’s radial

features seen in optical images during the quiescent period (i.e. the plasma necking down

near z = 12 cm and then expanding out). These radial features may be diffuse compared

to the compressed on-axis plasma, but they extend over a wide area, and their effect would

be weighted heavily in measurements of line-integrated density. Camera images also show

irregular light structures emitting from the accelerator during the quiescent period, which

pass through the DHI imaging area. These local perturbations as well as others invisible to

the camera could cause the observed axial variations.

Comparison of the density with optical images and current centroids promote magnetic

mode data as the better measure of plasma position and stability. At present, the high
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Figure 5.13: Contours of (left) line-integrated density and (right) number density are plotted
over an optical image taken during pulse 160524025 at 50 µs, the time of the DHI pulse. The
magenta circles are the current centroid locations projected into the plane of the image, and
the red markers indicate the density centroid computed during Abel inversion. Excellent
correlation exists between density and current centroid, but the light emission is too diffuse
to make a meaningful comparison of its position to the other diagnostics. In the upstream
portion of the DHI data, the density centroid reaches the edge of the imaged area. At every
cross-section where this happens, the number density is set to zero across the cross-section.
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speed camera cannot act as a reliable stability measure on its own. Different filters could

be attempted in the future to cut out more line emission. As they are, the camera images

are not so distinct from the mode data to not make them helpful in allowing the machine

operator to more easily distinguish the general stability quality of different pulses.

5.4 Visualizing instability structure with DHI

As mentioned in Sec. 5.2, saturated instabilities appear in flow stabilized Z-pinches. ZaP-

HD’s DHI system has yet to capture kink instabilities, but it has observed sausage insta-

bilities. While an instability does not appear in the optical images of Fig. 5.14, a sausage

instability of size λ ≈ 1 cm does appear in the number density for this pulse. The insta-

bility structure becomes more apparent when contours of density are plotted with magenta

markers indicating the plasma radius in Fig. 5.15. Contours of magnetic field for this pulse

in Fig. 5.16 are consistent with a sausage mode having increased field strength at the con-

striction. Temperature contours of Fig. 5.17 indicate a hotter plasma inside the instability.

Despite extensive data collection, instabilities are not often seen with the DHI. This could

mean their characteristic sizes typically exceed the DHI image size. Instabilities seen in

camera images are typically around λ ≈ 3 cm.

5.5 Searching for noise sources to improve DHI signals

Great care has been taken to maximize the quality of the DHI measurements. An initial lack

of coherent structure consistently matching optical camera images compelled investigation

of noise sources in the DHI system. Variations in vacuum holograms throughout the day can

spoil the electron density measurements. Many baseline holograms (a more general term for

vacuum hologram used here because some testing involved passing the entire DHI system

through air) were collected consecutively from a variety of DHI set ups to look for correlation

between the set up and the variation in the measured phase shifts. Vibrations mildly affected

the measurements, and air currents significantly obscured them until installation of beam

guides.
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Figure 5.14: Contours of (left) line-integrated density and (right) number density are plotted
over an optical image taken during pulse 160524034 at 50 µs, the time of the DHI pulse. The
magenta circles are the current centroid locations projected into the plane of the image, and
the red markers indicate the density centroid computed during Abel inversion. Excellent
correlation exists between density and current centroid, but the light emission is too diffuse
to make a meaningful comparison of its position to the other diagnostics.

Holographic reconstruction of a single hologram yields the phase front of the scene beam,

which is difficult to analyze by itself. To ease the analysis of baseline hologram variability,

the scene beam phase of each baseline under analysis is subtracted by the scene beam phase

of the preceding baseline. The resulting phase difference is analogous to the reconstructed

phase differences of Figs. 3.6 and 3.8. After smoothing and unwrapping the twin image

phase difference as in Sec. 3.4, the maximum phase difference between any two points in the

image for each baseline pair is identified. This investigation converts this maximum phase

difference to an equivalent maximum variation in line-integrated density with Eq. 2.10 as the

metric to monitor baseline variability. Fig. 5.18 compares the maximum variation in line-

integrated density for many vacuum and plasma holograms at the start of the investigation.

The noise affecting the vacuum holograms is of comparable magnitude to the measurements

of the plasma holograms.

The DHI set up was systematically stabilized to search for the noise source. The can-
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Figure 5.15: Electron number density contour plot showing a sausage mode instability. The
DHI image was taken on pulse 160524034 at 50 µs. It shows a λ ≈ 1 cm sausage mode
instability where the plasma size constricts and density increases near z = 8 cm.
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Figure 5.16: Magnetic field contour plot showing field concentration at the constriction of
a sausage mode instability. Field values are computed with the analysis of Ch. 4 from the
density in Fig. 5.15.
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Figure 5.17: Temperature contour plot showing high temperature at the constriction of a
sausage mode instability. Temperature values are computed with the analysis of Ch. 4 from
the density in Fig. 5.15.

0 20 40 60 80
Shot number

0

2

4

6

Li
ne

-in
te

gr
at

ed
 d

en
si

ty
 [1

021
 m

-2
]

Vacuum holograms

0 50 100 150
Shot number

0

2

4

6

Li
ne

-in
te

gr
at

ed
 d

en
si

ty
 [1

021
 m

-2
]

Plasma holograms

Figure 5.18: Line-integrated density from many vacuum and plasma holograms prior to DHI
beam guide installation showing the noise level on baselines is similar to the line-integrated
density seen on plasma pulses.
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Figure 5.19: Comparison of the baseline variability during the original DHI set up, a reduced
vibration set up, and the reduced vibration set up including beam guides. The beam guides
significantly reduced baseline variability.

tilevered beam expander was supported, mirror mounts were tightened, reference beam mir-

rors were lowered, and the camera was moved from a tripod to a rigid stand on the down-

stream optics table. The vacuum system was turned off and the rectangular windows were

removed to allow the scene beam to pass directly through the machine. The set up with

reduced vibrations slightly reduces the observed noise. Installation of beam guides far more

significantly reduced the noise. Fig. 5.19 compares noise levels between the original set up,

the reduced vibration set up, and the reduced vibration set up with beam guides.

Subsequently collecting plasma data with the beam guides in place reduced the vacuum

hologram variation to a level below the measured density. Fig. 5.20 compares baseline and

plasma holograms from a run day after beam guide installation. All DHI data presented this

thesis was collected after the beam guide installation unless otherwise noted.
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Figure 5.20: Line-integrated density from many vacuum and plasma holograms after DHI
beam guide installation showing the noise level on baselines is below the line-integrated
density seen on plasma pulses.
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Chapter 6

CONCLUSIONS

The ZaP-HD Flow Z-Pinch experiment investigates how the shear stabilized Z-pinch

concept scales to higher energy density. The experiment’s three-electrode design allows for

improved plasma compression over the previous ZaP experiment while still sustaining pinches

with stable lifetimes of 15-60 µs. Electron density data from DHI demonstrates ZaP-HD’s

pinches have less linear density (NZaP−HD ≈ 0.5 - 2×1019 m−1) than ZaP’s (NZaP ≈ 3 -

5×1019 m−1), and magnetic field measurements indicate larger compression currents in ZaP-

HD (90 - 125 kA) than in ZaP (30 - 60 kA) [69]. The combination of greater current and

reduced linear density allows ZaP-HD to more effectively compress plasma, leading to higher

electron densities (≈ 2.5× 1023 m−3) and smaller pinch sizes (≈ 2.5 mm).

DHI provides an expedient means of measuring spatially-resolved electron density. Fres-

nel transform reconstruction allows the extraction of the phase shift from holograms mea-

sured with a Mach-Zehnder-like interferometer. The phase shift provides the line-integrated

electron density, which is Abel-inverted to obtain electron number density.

ZaP-HD generates less stable plasmas than ZaP, and this instability proves a difficulty in

collecting DHI data. The best confinement observed in ZaP-HD by both magnetic mode data

and optical images is located around z = 5-15 cm, which is where most DHI data is obtained.

Complex and dynamic interactions at the interface between the acceleration and assembly

regions at z = 0 cm likely extend into the DHI view and affects the density measurements,

causing apparent axial variation and making Abel-inversion more difficult. Unfortunately,

the plasma stability farther downstream is too poor for reliable measurements removed from

these dynamics.

The highest quality holographic reconstructions are selected for further study. An equi-
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librium analysis, which computes magnetic field and temperature profiles from measured

density, suggests portions of the Z-pinch compression process are non-adiabatic. Analysis of

individual plasma pulses, especially those with significant axial variation, suggests deviations

from adiabatic behavior because temperatures and fields predicted by adiabatic theory are

not consistent with measured pinch sizes. Non-adiabatic behavior correlates strongly with

axial variation in pinch size, which supports previous work observing a relationship between

Z-pinch radius oscillations and non-adiabatic behavior [32].

The invertible DHI data supports the reliability of the magnetic mode data over optical

imaging for determining plasma position and stability. DHI does not observe kink instabil-

ities, which are sometimes seen in optical images, but it has captured sausage instabilities.

The smallest observed instabilities are 1 cm in wavelength.

Over the range of plasma currents tested, the peak plasma density does not increase with

current, which disagrees with the predicted adiabatic scaling. Invertible DHI measurements

were only obtainable at the highest observed plasma currents, so a relatively small range of

currents are considered. Further testing over an expanded range is required to draw more

definite conclusions about the viability of the flow Z-pinch for fusion and high-energy-density

plasma applications.
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Chapter 7

FUTURE WORK

Expanding the capability of the DHI can enable a more conclusive study of the scalability

of the flow shear stabilized Z-pinch. In its present form, much of the line-integrated density

data collected by the DHI system is non-invertible, which means the DHI’s view is not wide

enough to see both sides of the density cross-sections. The lack of time resolution also makes

data interpretation difficult.

Identifying if the sheared flow Z-pinch could scale to high-energy-density plasma condi-

tions requires data collection with DHI over a wider range of plasma currents. This requires

expanding the operating envelope of the DHI diagnostic to measure larger, less-dense plas-

mas. Widening the view of the DHI by expanding the scene beam through the experiment

and then contracting it back down to the size of the camera sensor should increase the amount

of invertible data by making both sides of the cross-sections visible. Presently, the scene and

reference beams are expanded to roughly a 1 inch diameter, but the rectangular openings in

the outer electrode are 2 inches across, which allows for significant beam expansion.

Employing 2D interferometry with the high speed camera could also allow for easier

data interpretation and better understanding of noise sources. The Kirana camera does not

have sufficient resolution to enable Fresnel transform reconstruction, but its 30 µm pixel

size is sufficient to resolve the larger fringes used in 2D interferometry. Using a CW HeNe

laser with the camera would provide 180 interferograms per plasma pulse. Using such a

2D interferometry system to study baseline variations and to observe the time evolution of

the plasma density could reveal noise sources and density dynamics invisible to the single

pulse Nd:YAG system. Using 2D interferometry requires a different method to convert the

raw interferograms to line-integrated density, but software packages are available with such
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capabilities [65, 66].

Perhaps the single biggest difficulty in collecting quality DHI data was the plasma’s own

dynamics. The DHI was consistently aimed in the region between z = 5-10 cm where optical

images and magnetic mode data identified stable, compressed plasma. Although this region

exhibits relative quiescence, the plasma structures from the dynamics occurring near the

end of the accelerator likely reach into this region. As the DHI measures line-integrated

density, structures at large radii moving out of the accelerator can significantly affect the

measurements. One example of such structure is the radial constriction often observed during

stable plasmas as in Fig. 5.3. Visible irregular blobs of light also intermittently eject from

the gun, and objects invisible to the camera also likely flow through the DHI view. The

next iteration of the ZaP-HD experiment, FuZE, has plans to arrange the three electrodes

differently to improve stability. The design will remove the middle electrode and instead use

an endwall insulated from the outer electrode to act as the third electrode. This design aims

to eliminate the troublesome interactions at the end of the accelerator, leading to improved

stability while retaining scalability.
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Appendix A

THEORY OF LASER OPERATION

Lasers are ubiquitous as light sources in research and industry because they generate

amplified, coherent beams of light. In plasma physics, they allow for non-perturbing mea-

surements of plasma parameters like density, temperature, and magnetic field. In this con-

text, we will explore how lasers contribute to plasma diagnostics measuring electron density.

Laser qualities of importance to this application include temporal and spatial coherence,

pulse duration, and pulse energy.

A.1 Einstein’s quantum theory of light

Einstein’s 1916 quantum theory of light laid down the theoretical foundations that would

later enable the development of the laser. His theory explained all of atomic spectral light

emission with three processes: absorption, spontaneous emission, and stimulated emission

(see Fig. A.1). Figuring out how to encite stimulated emission, which does not often occur

in nature, was critical to the production of the first laser.

To understand these three processes, we first need to introduce quantum electronics.

Bound electrons, which orbit atoms or molecules, can reside in many distinct orbits; the

precise orbit each electron occupies at a given time depends on its energy. A finite number

of orbits are possible, which means the electrons can only occupy discrete energy states.

When gaining or losing energy, an electron must instantly jump from one energy to another.

When an electron undergoes such a transistion, energy must either be absorbed or released;

this energy is usually transferred as a photon. The frequency of that photon depends on the

magnitude of the energy change as in
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Figure A.1: At left, absorption of an incident photon raises an electron’s energy level. At
center, spontaneous emission of a photon at a random phase results from the random drop
of an electron’s energy. At right, stimulated emission caused by an incident photon with
energy equal to that of the stimulated transition results in emission of an additional photon
with identical energy and phase.

E = hν (A.1)

where h is Planck’s constant, E is the energy change, and ν is the photon’s frequency in

Hertz. Certain energy transitions are more probable than others, which helps lasers achieve

monochromaticity.

Absorption occurs when a photon’s energy raises the energy state of a bound electron in

an atomic orbit. Spontaneous emission is the release of a photon when a bound electron drops

to a lower energy state randomly at a random phase. Stimulated emission is the release of a

photon when another photon causes an electron to drop energy levels. A stimulating photon

must carry the same energy as the energy drop it stimulates, and each photon released by

stimulated emission will carry the same frequency and phase as its stimulating photon, which

allows lasers to attain coherence and monochromaticity. Because the stimulating photon is

not destroyed in this process, stimulated emission can amplify radiation. Stimulated emission

is not common in nature because the process requires electrons in an energetic state to fall to

a lower energy state, and the steady equilibria observed in nature already contain minimal
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energy.

A.2 General laser theory

To build a laser, we need to compel stimulated emission. Lasers commonly employ optical

pumping to excite electrons in a gain medium to achieve a population inversion. A gain

medium can be gaseous, liquid, or solid matter, which exhibits a probable electron transi-

tion of some utility. A population inversion occurs when the number of electrons in that

transition’s excited state exceeds the number in the lower state. This means a light beam

of photons of this transition energy will be amplified each time the beam traverses the gain

medium because more photons will stimulate emission rather than be absorbed.

Energy transitions involved in laser operation are mapped in Fig. A.2. Early lasers (i.e.

ruby lasers) utilized three levels: an upper energy state, upper laser state, and a ground state,

which effectively acts as the lower laser state. Optical pumping raises electrons to the upper

energy state from which they spontaneously drop to the upper laser state via non-radiative

decay. Pumping can maintain a population inversion between the upper laser state and the

ground state because the rate of spontaneous emmission across the laser transition is much

slower than the non-radiative decay that resupplies the upper laser state. Most present-day

lasers, including Nd:YAG lasers, employ four levels because they can maintain the population

inversion more efficiently. While three level lasers can only attain a population inversion by

resupplying the upper laser state, four level lasers can also deplete the lower laser state.

To allow amplification, the gain medium is located between two mirrors, so that initially

spontaneous emission will reflect back into the gain medium, stimulating emission, which will

then oscillate in the cavity and amplify with each pass. Note that only radiation directed

down the length of the cavity will be amplified, which gives the laser its collimation. The

stimulated emission will resonate within the cavity at several different longitudinal modes,

each of which is really a different wavelength of light. Having a single longitudinal mode

(SLM) (ie: a very monochromatic beam), maximizes temporal coherence, and several tech-

niques are employed to ensure SLM operation. All such techniques ultimately ensure one
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Figure A.2: At left, energy transistions of a three level laser are shown. Absorption of
photons from optical pumping elevates electrons to the upper energy state. The electrons
quickly drop to the upper laser state via a non-radiative decay. A population inversion is
maintained between the upper laser state and the ground state. At right, energy transitions
of a four level laser are shown. Four level lasers employ a separate lower laser state, which
allows for easier sustainment of the population inversion. In the case of both designs, the
goal is maintaining a population inversion across the laser transition to allow amplification
of stimulated emission.

mode experiences more amplification from the gain medium than the other modes. The

longitudinal modes compete for the finite energy of the gain medium, and if one mode grows

larger than the rest, it will draw energy at the expense of the other modes. A Fabry-Pérot

etalon is commonly employed within the laser cavity to give one mode preference over the

others. An etalon itself is an optical cavity, which only transmits light wavelengths that res-

onate within it. By choosing its thickness and refractive index carefully, a narrow bandwidth

can be selected to resonate in the laser cavity.

High energy pulsed lasers rely on an optical switching mechanism called a Q-switch to

forestall the resonant mode growth until a large population inversion has been established.

The switch resides within the cavity and is closed while the population inversion builds during

pumping of the gain medium. When sufficient inversion is present, the switch is opened to

allow mode growth. This leads to a short pulse of much higher power than that possible

in continuous wave (CW) operation. Typical components of a pulsed laser are shown in
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Figure A.3: A high energy pulsed laser cavity consists of a fully-reflective rear mirror, a
partially transmitting output coupler, an optically pumped gain medium, and a Q-switch.
Other intra-cavity optics like etalons are often employed to improve temporal coherence.
SHG downstream of the cavity can frequency double the fundamental beam to produce
additional useful wavelengths.

Fig. A.3.

A.3 ZaP-HD’s pulsed Nd:YAG laser

ZaP-HD utilizes an Ekspla NL-121-G Nd:YAG laser, which uses a second harmonic generator

(SHG) to emit 532 nm light. At the second harmonic, it delivers pulses of 20 mJ energy lasting

2 ns. The laser is designed to operate in single shot mode with external triggering, but it can

also repeatedly pulse at 1 Hz, which helps in alignment. The laser’s diode-pumped master

oscillator generates an SLM pulse, which proceeds through a flashlamp-pumped amplification

stage and then through a SHG before exiting the laser head. Many optical components in

this section will be referenced with labels in parentheses, which point to the labels in the

optical layout shown in Fig. A.4 [74].

The master oscillator employs self-seeding along with an etalon (6) to achieve SLM op-

eration. Self-seeding relies on biasing the intra-cavity Pockels cell to open the intra-cavity

Q-switch (8) slightly prior to the laser pulse. This allows a period of pre-lasing during which

the etalon selects one longitudinal mode to grow. When the Q-switch is triggered to open



147

Figure A.4: The NL-125-G ND:YAG laser optical layout. Many of the component labels are
referenced in this section. For a complete list of all optical components, see the NL-125-G
manual [74].

completely, the mode growth competition is finished with only a single mode surviving in

the cavity. The surviving mode is then amplified by the oscillator and proceeds towards the

downstream amplification stage. An extra-cavity Pockels cell (PC) acts as a Q-switch to

truncate the pre-lasing light from the pulse before it reaches the amplifier.

The quarter wave plates (2 and 4) on either side of the oscillator’s Nd:YAG rod (3) also

contribute to SLM operation by preventing spatial hole burning. Spatial hole burning is gain

saturation in an amplification medium caused by the interference pattern of standing waves.

Such gain saturation can make SLM operation more difficult to achieve because it limits the

gain for the desired mode, which could allow competing modes to grow and survive to the end

of pre-lasing. The quarter wave plates ensure that the polarization of counter-propogating

waves are orthogonal in the Nd:YAG crystal, which prevents interference.

The laser has been configured to optimize spatial coherence and output a single transverse

mode (ie: a Gaussian beam profile or TEM00). The laser’s optics have been adjusted at the

factory to utilize a smaller cross-section of the amplifier crystal (R1). This outputs a beam

with better spatial coherence at the expense of beam energy.
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The gain applied by the amplification stage can be tuned by changing the relative timing

between oscillator Q-switching and the amplifier flashlamp. The flashlamp sets up a time-

dependent population inversion in the amplifier rod, and there exists an optimal time at

which the pulse from the oscillator should travel through the amplifier to achieve maximum

gain. Setting the amplification to the minimum value is convenient for alignment purposes

because diffuse reflections of the second harmonic green beam can be viewed with the naked

eye without danger. Glasses should be worn at all times when directing the IR beam outside

the laser head.

The amplified fundamental beam passes through a Potassium Titanyl Phosphate (KTP)

crystal, which acts as a SHG (SH) and outputs 532 nm light. For maximum conversion

efficiency, the crystal needs to be adjusted to ensure phase matching of the fundamental and

frequency doubled light at the output plane. Two knobs allow the crystal to tilt to change its

apparent thickness along the laser’s opitcal axis. The SHG’s operation is polarization depen-

dent, and a half-waveplate (HWP2) needs to be adjusted to match the crystal’s orientation

to maximize either 532 nm or 1064 nm light emission.

Important Notes on NL-121-G Adjustment and Maintenance

1. Piezo Voltage: the user can change a parameter called the piezo voltage, which

affects the length of the laser cavity by actuating the output coupler. Adjusting the

cavity length allows for optimal SLM operation. Changing the laser cavity length

allows the user to shift the longitudinal modes in wavelength space until one can

optimally transmit through the etalon. The single mode autotracker LabVIEW sub VI

automatically sweeps the piezo voltage and measures the resulting oscillator amplitude

as measured by photodiode 1 (PHD1). After conducting a sweep, this sub VI will

suggest an optimal piezo voltage value that maximizes the oscillator output amplitude.

The user can then apply this piezo voltage in the main FNL.vi GUI.

2. Faraday Rotator: install protective rubber caps on FR when working near this
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component. Its large magnetic field can literally attract damage.

3. SHG Crystal: the KTP is mounted in a temperature-controlled heater, which is kept

on at all times even when the key in the laser head is turned off. This protects the

crystal against atmospheric humidity. KTP is very hygrophilic and water-soluble, so

never clean it with water or liquids.

When adjusting the SHG orientation note that the transmitted amplitude versus phase

angle has multiple local maxima, but only one global maximum. This means that if

the SHG is too far displaced from its optimal orientation, it may appear to be at an

optimal position.

4. Flashlamp Simmering: to extend flashlamp lifetime, minimize simmering the flash-

lamp. Simmering maintains low-current plasma in the flashlamp to reduce the power

requirements and wear of initial ionization. The flashlamp electrodes are composed of

a Barium core coated in Tungsten; they are designed such that at the Temperature

of a flash, the Barium will act as the electron source for the ionization. Simmering

occurs at a much lower temperature, such that the Tungsten plays more of a role in

the ionization, which leads to damage to the Tungsten layer. Over time, the tungsten

coating can be redeposited on the glass walls of the lamp. The flashlamp driver sim-

mers the flashlamp whenever the driver is turned on while the laser is not in run mode.

The laser typically runs in single pulse mode, so some amount of simmering during the

downtime between plasma pulses is unavoidable. But, when breaking for lunch or at

the end of the day, the flashlamp driver should be turned off to stop the simmering.
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Appendix B

ALIGNMENT AND OPERATION OF THE DHI

This section details how to initially align the DHI, how to perform routine alignment

checks, and how to run the system during a usual run day.

B.1 Running the Nd:YAG laser manually from inside the lab

Enumerated below are steps for users to follow when operating the laser manually from inside

the lab during alignment. For the Nd:YAG laser to operate, all interlock conditions except

the grounding rod condition must be satisfied. This allows users to run the laser inside the

lab while keeping the capacitor banks safely grounded. If a personnel switch is flipped or a

door opens, laser operation will cease. The Nd:YAG laser is connected to ZaP-HD’s interlock

panel as in Fig. B.1. A manual light switch to toggle ZaP-HD’s high voltage warning lights

is positioned on the table next to the laser. During alignment, the warning lights should be

turned on and a danger sign should be hung above the main entrance door knob to discourage

unauthorized lab entry.

1. Turn on the laser. Turn the key in the laser head to on, and ensure the power on the

cooling unit is on. Wait for 5 minutes before running the laser to allow the cooling

system to achieve proper temperatures. Note that if the laser has just been connected

to mains power, you should wait longer before running (see the laser manual). Until

you are ready to fire the laser, leave the amplifier power supply off.

2. Check that the safety interlocks described above are met, that proper safety signage is

placed on the main lab door, and that the high voltage warning lights are turned on.

Ensure the lab windows are blocked.
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Figure B.1: Electronic schematic of the ZaP-HD interlocks system. Items within the orange
box are inside the 19 inch rack mount panel while all other items are external. The Nd:YAG
laser needs to see a short circuit connection to allow itself to enter run mode. Relay number
9 inside the panel will short the laser interlock circuit provided all interlock conditions are
met except the grounding rod condition. A manual switch in the lab next to the laser allows
the user to toggle the high voltage warning lights even when no interlocks are met. This
allows users to discourage unauthorized lab entry during DHI alignment.
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3. Ensure the laser shutter is closed.

4. Use the laser control pad to change the synchronization mode to internal. Push the

"Menu" button on the control pad, use the arrows to scroll down to "Synchronization,"

and push the "OK" button. Then, scroll to "Synchroniz. mode" and push the "OK"

button. Finally, use the arrows to toggle from "External sync. mode" to "Internal

sync. mode" and push "OK." Internal synchronization is used for firing at 1 Hz for

alignment, while external mode allows externally triggered single pulses during plasma

pulses.

5. Connect the control laptop to the CAN-to-USB adapter. Open the FNL.exe control

GUI and ensure the AMP is set to 1 and turned off. Most of the DHI alignment requires

only the lowest amplification setting.

6. Turn on the amplifier power supply.

7. Put the laser into run mode by pushing the "Run" button either in the FNL.exe GUI

or on the control pad. It should take 5 seconds for the laser to begin firing at 1 Hz.

The laser status can be read on the upper left corner of the control pad. Fig. B.3 lists

laser status symbols and their definitions. Normally, the hollow arrow will appear for

the first 5 seconds before normal laser operation begins and the dark arrow appears.

8. Put on Nd:YAG laser goggles.

9. Hold a piece of orange laser paper in front of the laser output and open the shutter.

Verify that the laser is operating at a low amplification by observing the intensity of

the florescence of the laser paper, which is safely visible through the Nd:YAG laser

goggles.

10. Proceed with alignment of downstream optics. The lowest possible amplification setting

should be used at all times to maximize safety. Sometimes carbon buildup on the
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Figure B.2: The FNL.exe GUI controls the laser amplification and displays the amplitude
of light detected by photodiodes in the oscillator (PHD1 in Fig. A.4) and downstream of the
amplification stage (PHD2 in Fig. A.4). The amplification level is set in the numeric control
in the lowest yellow box. The amplifier can be toggled on and off with the "AMP" button
in the middle yellow box. The "Run Laser" button in the top yellow box toggles the laser
in and out of run mode. The top center graph plots the oscillator amplitude as a function
of pulse, and the bottom center graph plots the amplifier amplitude as a function of pulse.
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Figure B.3: The meanings of status symbols displayed by the laser control pad. Most often,
displayed errors correspond to the safety interlocks not being met. See Chapter 9 of the laser
manual for error codes, which are also displayed on the control pad next to the error status
symbol.

ZaP-HD vacuum tank windows attenuates the scene beam to the point increasing the

amplification above 1 is necessary to see the beam downstream of the tank. Diffusive

reflections of the Nd:YAG laser at the lowest amplification setting can be safely viewed

without safety goggles although care should be taken before looking for such reflections

to understand the beam path sufficiently to avoid specular reflections, which may be

harmful. This can be helpful in some instances especially when directing the beam

across long distances. Large black poster board makes an excellent background target

for viewing such diffusive reflections.

B.2 DHI alignment

Aligning the downstream optics can be performed in many ways. This section describes a

proven procedure. Before starting this procedure, the operator should sketch out the desired

optical set up. Oftentimes, knowledge of the DHI’s complete geometry is required to proceed

through these steps efficiently. Figs. B.4-B.6 show the set up used to collect most of the data

in this dissertation.

1. The first task in the DHI alignment is to direct the laser beam to the proper height

to pass through the mid-plane of the vacuum tank. On ZaP-HD, the output of the

Nd:YAG laser is lower than the mid-plane, but three turning mirrors (two prior to

the beam expander and one after) raise the beam to the proper height. Start by
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positioning and adjusting these three mirrors without the beam expander in place to

raise the unexpanded beam to the height of the mid-plane (an approximate height is

sufficient for now since adding the beam expander will affect the direction of the beam).

In positioning these mirrors, be sure to leave room for the beam expander.

2. Place the beam expander in the system. The beam expander has a magnification of 6

and is composed of two lenses in a 68 cm long, 2" diameter beam tube. The expander

is held by two 3D-printed clamps, which are attached to 1.5" diameter posts. Two

linear translators attached to each post give the user independent control of the center

position of each lens in the expander. For precise adjustment and minimal vibrations,

the clamps should hold the expander on each end, but in practice the optics table can

be crowded with other optics and require alternative positioning such as in Fig. B.4.

An easy way to align the expander is to first install it without lenses and adjust the

tube to be co-linear with the unexpanded laser beam. The lenses can be removed from

the beam expander by unscrewing the farthest upstream and downstream sections.

Then, a 3D-printed cross-hair can be positioned on the open ends of the tube. Orange-

red color PLA 3D-printing filament from justpla.com fluoresces just like orange laser

paper, so the user can observe the laser beam impact the cross-hair while wearing laser

goggles. Using the cross-hair, each side of the tube can be positioned with the laser

beam at its center.

To avoid back reflections into the laser, the beam expander should be slightly misaligned

prior to installing the lenses. This misalignment is normally applied by adjusting the

horizontal position of one end of the beam expander slightly. The proper amount of

misalignment can be computed considering the distance from the laser output to the

expander.

After misalignment, install the lenses, fire the laser, and observe the beam downstream

of the expander. The output beam of the beam expander should remain columnar far
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Figure B.4: The DHI beam expander is held by orange 3D-printed clamps. The clamps
mount to 1.5" vertical posts and linear translators, which give the user independent control
of the position of the two lenses in the expander.

downstream. If beam divergence is observed downstream of the expander, the distance

between the lenses may be incorrect. The expander employs CVI optics lens numbers

PLCX-50.8-386.3-C-1064/532 and PLCC-25.4-51.5-C-1064/532. The intentional mis-

alignment of the expander will redirect the expanded beam off of its original path, so

the position of the third turning mirror may require adjustment.

3. Direct the laser beam through the desired location in the experiment using the third

turning mirror. This sets the measurement location as well as the locations of the other

optics in the system. Positioning a cross-hair made of thin metal wire just downstream
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Figure B.5: The DHI’s optical set up on the upstream optics table. The dashed green line
shows the laser’s path through black beam guides meant to block air currents. Three turning
mirrors raise the Nd:YAG laser beam to the height of the ZaP-HD mid-plane.

of the beam expander is helpful for precisely determining the beam position relative to

the experiment. This cross-hair should be centered in the middle of the beam exiting

the expander. Note that the expander misalignment dictates that the center of the

beam will not be at the center of the downstream lens tube, so the cross-hair will

need to be positioned off the expander’s axis. Observing the shadow of the cross-hair

at the upstream and downstream rectangular windows allows for precise scene beam

positioning.

Position a 1.5" diameter post with mirror on the downstream optics table to turn the

scene beam vertically. Ensure the mirror is near a 45 degree angle by attempting to

make the deflected beam as vertical as possible.

4. Direct the reference beam over the machine, to the final turning mirror, and finally to

the camera. Install the 3" diameter visible wavelength beam splitter on a 1.5" diameter
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post just downstream of the third turning mirror. Ensure the beam splitter is near

a 45 degree angle by attempting to make the deflected beam as vertical as possible.

On the same 1.5" post, install a turning mirror to direct the reference beam over the

machine.

On the downstream optics table, install the final turning mirror on a 1.5" post at

the same height as the reference beam turning mirror. The final turning mirror is a

rectangular mirror large enough to allow it to turn both the scene and reference beams.

Install the digital camera on the downstream optics table at the same height as the

final turning mirror. The horizontal side of the camera sensor is longer than its vertical

side, so mounting the camera turned 90 degrees on a 1.5" post allows the camera to

capture more of the density profiles across the Z-pinch axis.

For now, direct the reference beam to impact the camera’s lens cover.

5. Direct the scene beam to the camera. To turn the scene beam horizontal, install a

mirror towards the top of the same 1.5" post used for the initial scene beam turning

mirror on the downstream optics table. Position this mirror at the same height as the

final turning mirror and digital camera.

For now, direct the scene beam to impact the camera’s lens cover.

Keeping the scene and reference beams in the same horizontal plane as they enter the

camera, makes fine adjustments to the fringe pattern easier. Without moving posts or

changing the orientation of the fringes, the size of the fringes can be changed.

6. Fine tune the alignment of the reference beam to the camera. Connect a push button

to the bulb trigger input on the camera, install a 2.5-3.0 optical density neutral density

filter on the camera, and set the camera’s exposure time to 1.3 s. Block the scene beam

and run the laser. Use the bulb trigger push button to take pictures. Alternate taking

images and adjusting the final turning mirror until the cross-hair shadow appears at
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Figure B.6: The DHI’s optical set up on the downstream optics table. The solid green lines
show the laser paths incident on the final turning mirror and to the DSLR camera. Keeping
the scene and reference beams in the same horizontal plane entering the camera makes it
easier to change the fringe size.
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the center of the image.

7. Fine tune the alignment of the scene beam to the camera. Unblock the scene beam and

block the reference beam. Again, use the bulb trigger to take pictures while adjusting

the two scene beam turning mirrors on the downstream optics table. Adjust the scene

beam until the cross-hair shadow matches the position of the reference beam. Matching

the cross-hair positions can be made easier by marking the position of the reference

beam cross-hair on the camera screen with a dry erase marker or by viewing the camera

output on a computer monitor using the camera’s HDMI output.

8. Cover the beam path with beam guide tubes to block air currents, which can corrupt

the quality of the holograms. 3D-printed v-blocks and window hangers along with 0.5"

diameter posts provide a flexible means to support 2.5" diameter PVC tubes.

B.3 Running DHI on ZaP-HD

The following steps describe how to operate the laser during a normal run day.

1. Turn on the laser. Turn the key in the laser head to on, and ensure the power on the

cooling unit is on. Wait for 5 minutes before running the laser to allow the cooling

system to achieve proper temperatures. Until you are ready to fire the laser, leave the

amplifier power supply off.

2. Turn on the two trigger boxes on top of the laser. The laser requires two signals

to trigger externally. The trigger box with transistor-transistor logic (TTL) output

plugged into the "GATE IN" plug on the laser head should be triggered at the desired

laser pulse time. The trigger box with TTL output plugged into "SYNC IN" should

be triggered 987.8 µs prior to the "GATE IN" trigger. The laser manual specifies this

delay time in the Testing Data section.

3. Use the laser control pad to change the synchronization mode to external. Push the

"Menu" button on the control pad, use the arrows to scroll down to "Synchronization,"
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and push the "OK" button. Then, scroll to "Synchroniz. mode" and push the "OK"

button. Finally, use the arrows to toggle from "Internal sync. mode" to "External

sync. mode" and push "OK."

4. Ensure the CAN-to-USB adapter is connected to the fiber optic cable connected to the

screen room computer. This enables the screen room computer to control the laser.

5. Turn on the DHI camera, and ensure the bulb trigger is connected to the push button

by the charging rack. Operators employ this button to trigger the camera during each

plasma pulse. Set the camera exposure time to 1.3 s and install the neutral density

filter with optical density 4.0.

6. Turn on the laser amplifier.

7. Open the laser shutter.

8. Meet all safety interlocks and exit the laboratory.

9. Open the FNL.exe GUI on the screen room computer and turn the laser amplification

on to a value of 6-12 depending on the attenuation caused by the rectangular windows.

Note that when significant scene beam attenuation occurs requiring increased ampli-

fication, neutral density filters can be positioned to attenuate the reference beam to

keep the scene and reference amplitudes similar.

10. Put the laser into run mode.

11. Prepare for a normal plasma pulse and charge the capacitor banks. When ready to

trigger the pulse, press the push button connected to the DHI camera one second prior

to triggering the experiment.

Anytime the safety interlocks are broken and reestablished, the operator should use the

FNL.exe GUI to take the laser out of and back into run mode because the laser will not
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automatically return to run mode once the interlocks are reestablished. Also if the amplifier

power supply is turned off and then back on while the FNL.exe GUI is running, AMP must

turned off and back on with the FNL.exe GUI to reset the software to communicate with

the amplifier.

Recording DHI images of the cross-hair shadow for the scene and reference beams during

the first two pulses of each run day provides a daily check of the system’s alignment. Start

the day by positioning the metal wire cross-hair downstream of the beam expander. Block

the reference beam before the first shot of the day. Before the second shot, unblock the

reference beam and block the scene beam. Compare the images from these two pulses to

verify the cross-hair shadows are coincident. If the beams are not coincident, perform steps

6 and 7 in the alignment procedure above to fine tune the beam positions. Usually, such

adjustment is required every 1 to 2 weeks.

Multiple baselines are collected throughout the day to account for drift in the optics.

Each baseline is collected during a plasma pulse by setting the laser trigger time to 5 ms

prior to shot trigger, which is long before gas injection. Operators should take a baseline

between every 2 to 3 plasma holograms.
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Appendix C

HOW TO RUN THE ANALYSIS CODES FOR HOLOGRAPHIC
RECONSTRUCTION

This section provides instructions on how to run the DHI reconstruction and analysis

codes. The procedure for daily hologram reconstruction is enumerated below. File locations

referenced in the manual can be changed for future convenience. This section also includes

flow charts as documentation intended to improve the transparency of code conducting the

error analysis of the Abel inverted electron number density.

1. At the end of each run day, upload new holograms to the holography shared network

drive using the Nikon Transfer software. When Nikon Transfer opens, select the "Pri-

mary Destination" tab (see Fig. C.1) and ensure the primary destination folder is set

to H:\Raw Holograms. Select "Create subfolder for each transfer" and use the "Edit"

button to instruct the program to name each new folder based on a yyyy_mm_dd for-

matted date (see Fig. C.2 (a)). Check "Rename photos during transfer" and use the

"Edit" button to instruct the program to name the files according to a yyyy_mm_dd_XXX

format where XXX is a three digit shot number (see Fig. C.2 (b)). Once these settings

are in place, click the "Start Transfer" button to download the images to the computer.

2. Run DHI_basicRecon.m (script included below) to identify an appropriate reconstruc-

tion distance and mask filter for the day’s shots. This requires changing variable

shotnum_def_it to the shot number of the first plasma hologram of the day and

shotnum_base_vec to the shot number of the vacuum hologram immediately preced-

ing the first plasma hologram. Run the code and observe the plotted figure like the one

in Fig. C.3. Ensure the twin images are positioned as close to the zeroth order images
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Figure C.1: These are the settings selected in the "Primary Destination" tab in the Nikon
Transfer software.

Figure C.2: The folder naming settings employed in the Nikon Transfer software. These
settings are accessed through the "Edit" buttons in the "Primary Destination" tab shown
in Fig. C.1.
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Figure C.3: The image of the reconstruction plane used to identify the proper reconstruction
distance and twin image boundary coordinates. The data cursor allows the user to identify
the corners of the twin image to the right of the zeroth-order image.

as possible by adjusting the reconstruction distance, d, on line 59 and rerunning the

code. This takes some trial and error, but the positioning of the twin images does not

need to be perfect. Once the twin image position is satisfactory, use MATLAB’s "data

cursor" to select the lower left and upper right corners of the twin image positioned

on the right, and note the coordinates of the corners. The reconstruction distance and

positioning of the twin images should only change if the interferometer alignment has

been modified.

3. Open shotnumber_inputs.m (script included below) and modify the shotnumber and

reconstruction settings. Change the vector shotnum to include all the hologram pulses

from the day. Specify the identified reconstruction distance as variable d and input the

coordinates of the corners of the twin image as variables xmin, xmax, ymin, and ymax.
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The function shotnumber_inputs.m allows the user to provide program input without

modifying analysis codes. The function is called in analysis codes to provide the shot

numbers and reconstruction settings.

4. Run DHI_recon_invert_all.m (script included below), which performs the Fresnel

transform reconstruction described in Sec. 3.3 and then conducts the Abel inver-

sion process described in Sec. 3.7.2. The user needs to specify the axial location

of the measurement as the z_loc variable in units of meters. The code stores the

reconstructed line-integrated density and Abel inverted number density as images in

H:\Reconstructions\<shotnum>\inverted for easy viewing. The code also uses func-

tion MDS_DHI_put.m to save data to ZaP-HD’s DHIHD MDSplus data tree for easy

recollection and future analysis. Fig. C.4 shows the DHIHD data tree, and its contents

are detailed in Table C.1.

The daily analysis codes do not conduct the error analysis detailed in Sec. 3.7 because

such analysis takes more computation time. The error analysis can be performed on selected

shots by running DISS_DHI_error.m, which also reads shot numbers and reconstruction set-

tings from shotnumber_inputs.m. The flow chart in Fig. C.5 shows the process involved in

identifying the error in the Fresnel transform reconstruction for one density profile. Accord-

ing to the chart, the density profile on the lower side of the cross-section is Abel transformed

to line-integrated density, which is converted to a phase shift with Eq. 2.10. That phase

is interpolated, stacked into a 2D matrix, and added to a linearly varying function. Taking

the cosine of the resulting sum generates a synthetic hologram of resolution comparable to

the empirical hologram. The linearly-varying function causes evenly-spaced fringes, which

are modulated by the phase shift corresponding to the line-integrated density. This syn-

thetic hologram is then reconstructed by the Fresnel transform method. The line-integrated

density from the reconstruction of the synthetic hologram is compared to the measured line-

integrated density. The difference in these line-integrated densities is the σNe(r) of Eq. (3.31)

described in the explanation of the error analysis in Sec. 3.7.1.
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Figure C.4: The DHIHD data tree contains the reconstruction settings and reconstructed
density data for each plasma hologram pulse.
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Node Name Data Type Data Description
base_number Scalar Baseline shot number used the recon-

struction
centroid_abs Vector Centroid locations in units of pixel

number
dhi_int 2D Matrix Line-integrated density
dhi_inverted 2D Matrix Abel inverted number density
recon_dist Scalar Reconstruction distance
sign_twin Scalar Sign of the twin image (can account for

180 degree phase shift between the twin
images)

xmax Scalar Coordinate of analyzed twin image
xmin Scalar Coordinate of analyzed twin image
x_twin Vector Horizontal axis of dhi_int and

dhi_inverted data
ymax Scalar Coordinate of analyzed twin image
ymin Scalar Coordinate of analyzed twin image
y_twin Vector Vertical axis of dhi_int and

dhi_inverted data

Table C.1: DHIHD tree contents
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C.1 Main codes required for daily DHI analysis

shotnumber_inputs.m

1 % shotnumber_inputs.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This script allows for user control of the shotnumbers and

5 % reconstruction settings in other DHI analysis codes. The subfunction

6 % shot_base_pair can be made to identify pairs of adjacent plasma

7 % (deformed) and baseline shots or adjacent baseline shots.

8

9 function [shots,d,xmin,xmax,ymin,ymax,sign_twin] = shotnumber_inputs(import,

varargin)

10

11 % using varargin to accept input identifying if the user desires

12 % deformed−baseline or baseline−baseline pairs

13 switch(nargin),

14 case 0,

15 whichPair = 1; % if second input is not provided, the program seeks

16 %deformed−baseline pairs by default

17 case 1,

18 whichPair = 1; % if second input is not provided, the program seeks

19 %deformed−baseline pairs by default

20 case 2,

21 whichPair = varargin{1}; % a second input value of 1 tells the

22 %program to seek for deformed−baseline pairs, a value of 0 tells

23 %the program to seek for baseline−baseline pairs

24 end
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25

26 switch(import) % this switch statement gives the user some flexibility to

27 % toggle between different groups of shots for analysis. Usually, case

28 % 2 is used.

29 case 1

30

31 shots_tmp = shot_base_pair(shotnum,whichPair);

32 d(1:size(shots_tmp,1)) = 0.5;

33 xmin(1:size(shots_tmp,1)) = 0.0446;

34 xmax(1:size(shots_tmp,1)) = 0.0555;

35 ymin(1:size(shots_tmp,1)) = 0.0237;

36 ymax(1:size(shots_tmp,1)) = 0.0429;

37 sign_twin(1:size(shots_tmp,1)) = −1;

38 shots = shots_tmp;

39

40 case 2

41

42 % RSI 2016 Paper shots for analysis:

43 shots = [160524000+[21,20]]; % identify range of pulses (first

44 % pulse must be a baseline

45 shots_tmp = shot_base_pair(shots,whichPair);

46 d = 0.5;

47 xmin = 0.0446;

48 xmax = 0.0555;

49 ymin = 0.0237;

50 ymax = 0.0429;

51 sign_twin = −1;

52 shots = shots_tmp;
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53 end
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DHI_basicRecon.m

1 % DHI_basicRecon.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code performs the Fresnel transform reconstruction to

5 % obtain the phase difference between specified plasma and vacuum

6 % holograms. This code primarily allows the user to view the

7 % reconstruction plane to identify the bounds of the twin images for

8 % further analysis. The code proceeds through 9 main sections:

9 %

10 % 1.) Declare reconstruction parameters/constants

11 % 2.) Input holograms from file

12 % 3.) Mask filter the hologram

13 % 4.) DC image suppression

14 % 5.) Apply windowing to the holograms

15 % 6.) Reference wave generation

16 % 7.) Fresnel transform reconstruction

17 % 8.) Compute the phase difference

18 % 9.) Plotting the reconstruction plane

19

20 tic; clear all; clc;

21 close all; drawnow;

22 format compact;

23

24 section = 0;

25 cross_sect = section;

26

27 shotnum_base_vec = [160817006]; % user specifies vacuum/baseline shot here
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28

29 for shotnum_def_it = [160817007] % user specifies plasma shot here

30 close all, drawnow;

31 close all, drawnow;

32

33 ind_base_tmp = find((shotnum_def_it−shotnum_base_vec)>0,1,'last');

34 shotnum_base_it = shotnum_base_vec(ind_base_tmp);

35

36 %% 1.) Declare reconstruction parameters:

37 % Significantly, the reconstruction

38 % distance, d, only affects the resolution of the reconstructed

39 % interference phase. Maximize resolution by selecting the

40 % reconstruction distance to maximize the size of the twin images while

41 % still separating them from the DC term.

42

43 status = sprintf('Initializing... \n')

44

45 res = (3.85e−6);% [m] Pixel size of Nikon 3200D, 4.3e−6 for Canon T2i

46 lambda = 532e−9;% [m] Nd:YAG wavelength, ruby is 694.3e−9 [m]

47 d =.50; % [m] Reconstruction distance

48 n_c = 2.312e27; % [m^−3] Critical plasma density

49

50 %% 2.) Input holograms from file:

51 % This section uses imread() to load MxN−sized uint8 datatype color

52 % holograms into MATLAB. Each MxN color hologram is stored in an MxNx3

53 % array. Each of the three MxN slices correspond to the intensity

54 % distribution of each color in the the RGB color palette. To consider

55 % the total intensity at each pixel, this code converts the MxNx3 array
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56 % to an MxN grayscale array with rgb2gray(). The grayscale intensity

57 % value at a given pixel location amounts to a norm of the three RGB

58 % intensities at that pixel. Finally, the code converts the uint8

59 % datatype to double to prepare the intensity information for

60 % mathematical manipulation.

61

62 %%% Starting with ZaP's shot number convention:

63 SN_def = num2str(shotnum_def_it);

64 SN_base = num2str(shotnum_base_it);

65

66 %%% Converting to Canon Camera shot number convention:

67 year_def = num2str(2000+str2num(SN_def(1:2)));

68 month_def = num2str(SN_def(3:4));

69 day_def = num2str(SN_def(5:6));

70

71 year_base = num2str(2000+str2num(SN_base(1:2)));

72 month_base = num2str(SN_base(3:4));

73 day_base = num2str(SN_base(5:6));

74

75 date_def = [year_def,'_', month_def,'_', day_def];

76 date_base = [year_base,'_',month_base,'_',day_base];

77 date_plot = [year_def, month_def, day_def];

78

79 shot_def = SN_def(7:end);

80 shot_base = SN_base(7:end);

81

82 % Specifying where the raw holograms are stored:

83 hol_def_rgb = imread(['H:\Raw Holograms\',date_def,'\',...
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84 date_def, '_', shot_def,'.jpg']);

85 hol_base_rgb = imread(['H:\Raw Holograms\',date_base,'\',...

86 date_base, '_', shot_base,'.jpg']);

87

88 % Converting from RGB to grayscale (rgb2gray is not a supported command

89 % without the image processing toolbox):

90 rgb_red = 0.3;

91 rgb_green = 0.59;

92 rgb_blue = 0.11;

93

94 hol_def = double(hol_def_rgb(:,:,1).*rgb_red + hol_def_rgb(:,:,2).*

rgb_green + hol_def_rgb(:,:,3).*rgb_blue)';

95 hol_base = double(hol_base_rgb(:,:,1).*rgb_red + hol_base_rgb(:,:,2).*

rgb_green + hol_base_rgb(:,:,3).*rgb_blue)';

96

97 %% 3.) Mask filter the hologram:

98 % This section applies a mask filter by selecting only a limited

99 % section of the grayscale holograms. The mask filter can improve the

100 % quality of the reconstruction by cutting out unused parts of the

101 % camera sensor.

102

103 % xmin = 1200;

104 % xmax = 4200;

105 % ymin = 1000;

106 % ymax = 4000;

107 % hol_def = hol_def(ymin:ymax,xmin:xmax);

108 % hol_base = hol_base(ymin:ymax,xmin:xmax);

109
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110 % Determining the size of the holograms:

111 L = size(hol_def);

112 M = L(2); % x−direction

113 N = L(1); % y−direction

114

115 %% 4.) DC image suppression:

116 % This section subtracts the mean intensity of the hologram from the

117 % intensity at each pixel location. In some cases, this can improve

118 % the reconstructed intensity. For the purpose of reconstructing the

119 % phase, the benefit is minimal as long as the twin images are

120 % sufficiently separated from the DC term, so this section can be

121 % omitted to save computation time. Subtracting the mean intensity from

122 % the hologram serves to suppress the DC diffraction term by

123 % eliminating the DC (or zeroth) order term in the discrete Fourier

124 % series of the hologram. Our reconstruction relies on the discrete

125 % Fourier transform, so removing its DC term reduces the DC diffraction

126 % term, improving the reconstructed intensity. Recall that the DC term

127 % of the Fourier series is merely the mean value of the function.

128

129 % [hol_def,hol_base] = DC_suppression(hol_def,hol_base,M,N);

130

131 %% 5.) Apply windowing to the hologram:

132 % Applying a window to the raw holograms before reconstruction

133 % can reduce Gibb's phenomena by smoothing out non−periodic boundary

134 % conditions. This provides marginal noise reduction in the

135 % reconstructed interference phase distribution. Two window functions

136 % are available here.

137
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138 % Hamming window:

139 % [hol_def,hol_base] = hamming_window(hol_def,hol_base);

140 % Hyperbolic window:

141 % [hol_def,hol_base] = hyperbolic_window(hol_def,hol_base);

142

143 %% 6.) Reference wave generation:

144 % Because our hologram recording utilizes planar reference waves, we

145 % can model our reference beam as a plane wave. If we use lenses to

146 % create a spherical reference beam during recording, modeling the

147 % reference wave will involve a complex exponential.

148

149 ref = 1;

150

151 %% 7.) Fresnel transform reconstruction:

152 % The Fresnel transform reconstruction method generates the electric

153 % field strength at reconstruction distance d for the deformed and

154 % baseline holograms. The Fresnel method, which assumes parabolic

155 % wavelets as source functions, is an approximation of scalar

156 % diffraction theory applicable for sufficiently large reconstruction

157 % distances.

158

159 b_def = fresnel(hol_def,d,lambda,res,ref);

160 b_base = fresnel(hol_base,d,lambda,res,ref);

161

162 %% 8.) Compute the phase difference:

163 % Properties of complex numbers are applied to the complex wavefield to

164 % compute the phase difference.

165
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166 phase_diff = phase_diff_func(b_def,b_base);

167

168 %% 9.) Plotting the reconstruction plane:

169

170 fnt = 20;

171 xsize_fres = abs(d*lambda/M/res);

172 ysize_fres = abs(d*lambda/N/res);

173 x = 0:xsize_fres:(M−1)*xsize_fres;

174 y = 0:ysize_fres:(N−1)*ysize_fres;

175 x_plt = x − max(x)/2;

176 y_plt = y − max(y)/2;

177

178 figure(1); hold on;

179 fig1 = imagesc(x,y,phase_diff); axis image; colormap gray;

180 set(gca,'Ydir','normal');

181 title('Reconstructed Phase [rad]','fontsize',fnt);

182 ylabel('\xi [m]','fontsize',fnt);

183 xlabel('\eta [m]','fontsize',fnt);

184 set(gca,'fontsize',fnt);

185 colorbar;

186

187 end
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DHI_recon_invert_all.m

1 % DHI_recon_invert_all.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code takes the shot numbers and reconstruction

5 % settings specified in the shotnumber_inputs function and performs a

6 % Fresnel transform reconstruction on the data.

7 %

8 % Then, it proceeds to Abel invert the line−integrated density data to

9 % obtain number density. The code follows the procedure described in

10 % Sec. 3.6.2 to minimize the difference in the resulting sides of the

11 % number density profile.

12 %

13 % The code saves some data as a .mat file for use in other analysis codes.

14 % It saves images of the reconstructed phase, line−integrated density, and

15 % number density to the holography network drive. Finally, it uses the

16 % function MDS_DHI_put.m to store the density data alongside reconstruction

17 % settings in ZaP−HD's MDSplus data tree.

18

19 clear all; clc;

20 close all;

21

22 %% User inputs, file directories, and constants:

23

24 % Importing the desired shot numbers:

25 [shots,d,xmin,xmax,ymin,ymax,sign_twin] = shotnumber_inputs(2,1);

26 % Fraction along z axis for each cross−section:

27 cross_sect_frac = [.25 0.5 0.75];
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28 % Axial measurement location:

29 z_loc = 0.08; % [m]

30

31 % Creating a directory for .mat file and image storage:

32 date_ref = num2str(shots(1,1));

33 date = date_ref(1:6);

34 directory_save = ['H:\Reconstructions\',date,'\inverted'];

35 mkdir(['H:\Reconstructions\',date],'inverted');

36

37 % Declare constants and ZaP−HD plasma parameters:

38 e_0 = 8.85e−12; % Permitivity of free space

39 mu_0 = 1.257e−6; % Permeability of free space

40 k = 1.38e−23; % Boltzmann's constant in SI units

41 q = 1.6e−19; % electron charge [C]

42 c = 3e8; % speed of light [m/s]

43 mi = 1.67e−27; % proton mass [kg]

44 me = 9.12e−31; % electron mass [kg]

45 lambda = 532e−9; % laser wavelength [m]

46 R_electrode = 8*2.54/100;

47

48 %% 2.) Fresnel transform reconstruction and Abel inversion:

49 % Iterate through desired shots:

50 for shot_ind = 1:size(shots,1)

51 % Close figures and clear data on each iteration for memory management:

52 close all;

53 clearvars −except h theta d_fringe step_sm Bw V ni ne Ti Te T r ...

54 R_electrode lambda me mi c q k mu_0 e_0 z_loc cross_sect_frac ...

55 shots d xmin xmax ymin ymax sign_twin shot_ind directory_save date
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56

57 shotnum_base = shots(shot_ind,2);

58 shotnum_def = shots(shot_ind,1);

59

60 %% Fresnel transform reconsruction:

61 [unwrapped,x_twin,y_twin,phase_diff,phase_x,phase_y] = ...

62 holographic_reconstruction(shotnum_base,shotnum_def,xmin,...

63 xmax,ymin,ymax,d);

64

65 % Plot and save the reconstructed phase:

66 fig999 = figure(999);

67 imagesc(phase_x,phase_y,phase_diff);

68 saveas(fig999,[directory_save,'\phase_map_',num2str(...

69 shotnum_def),'_',num2str(shotnum_base),'POS.tif']);

70

71 % Define the indices for the selected cross sections:

72 cross_sect = round(cross_sect_frac*size(unwrapped,2));

73

74 % Converting the phase to the 2−D line−integrated density:

75 % Note that the sign of den_int_full here depends on the optical

76 % set up (e.g. the twin images can flip if the scene and reference

77 % beams flip orientation).

78 den_int_full = sign_twin*[unwrapped/((−q^2/(4*pi*c^2*me*e_0))...

79 *lambda)]';

80 den_int_full = den_int_full − min(min(den_int_full));

81

82 % Reducing the size of x_twin and y_twin to match unwrapped

83 % (unwrapped is reduced in size because of boxcar smoothing):
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84 del_y = y_twin(2) − y_twin(1);

85 del_x = x_twin(2) − x_twin(1);

86 y_twin_red = [0:del_y:del_y*(size(den_int_full,2)−1)];

87 x_twin_red = [0:del_x:del_x*(size(den_int_full,1)−1)];

88

89 % Adjusting the zero value of x_twin and y_twin so the origin is

90 % centered. Can adjust here for when the hologram is not centered at

91 % 0 impact param.

92 y_twin_red_adj = (y_twin_red − y_twin_red(end)/2);

93 x_twin_red_adj = x_twin_red − x_twin_red(end)/2+z_loc;

94

95 % Save .mat file with line−integrated data for further analysis:

96 save(['H:\Reconstructions\',date,'\Ne_',num2str(shotnum_def),...

97 '.mat'],'x_twin_red_adj','y_twin_red_adj','den_int_full');

98

99 % Identify number of cross sections:

100 num_of_cross_sect = size(unwrapped,2);

101

102 % Identify number of centroids:

103 num_of_centroids = 10;

104

105 % Identify number of n_edge values:

106 num_of_n_edge = 15;

107 n_edge_delta = 5e21;

108

109 %% Peform the Abel inversion:

110

111 % Iterate through cross sections:
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112 for k = 1:num_of_cross_sect

113

114 % Identify the max Ne value and its index:

115 den_int = den_int_full(k,:);

116 [Ne_max(k),ind_Ne_max(k)] = max(den_int);

117

118 % Initialize centroid_ind_tmp to enable determination of

119 % centroid_abs (the centroid locations in absolute pixel−space):

120 centroid_ind_tmp = ind_Ne_max(k)−num_of_centroids;

121

122 % Reset the centroid_iterations if it was reduced to accomodate

123 % centroids close to the bounds of the data:

124 centroids_iterations = num_of_centroids;

125

126 % Case statements to allow adjustments to the analysis for centroid

127 % searches starting at or near the bounds of the data:

128 quit2nextShot = 0; % for debugging

129 % for centroids at the lower boundary:

130 if centroid_ind_tmp <=0

131 den_num_l{k} = NaN(size(unwrapped,1),1);%[];

132 den_num_r{k} = NaN(size(unwrapped,1),1);

133 centroid_abs(k) = 1;

134 centroid(k) = 0;

135 % for centroids at the upper boundary:

136 elseif centroid_ind_tmp >= size(unwrapped,1)

137 den_num_l{k} = NaN(size(unwrapped,1),1);

138 den_num_r{k} = NaN(size(unwrapped,1),1);%[];

139 centroid_abs(k) = size(unwrapped,1);
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140 centroid(k) = 0;

141 else

142

143 % for centroids near (within 2*num_of_centroids of) the upper

144 % boundary:

145 if centroid_ind_tmp >= size(unwrapped,1)−2*num_of_centroids

146 centroids_iterations = 2*num_of_centroids−...

147 (centroid_ind_tmp−(size(unwrapped,1)−2*...

148 num_of_centroids));

149 % for centroids near the lower boundary:

150 else

151 centroids_iterations = 2*num_of_centroids;

152 end

153

154 % Iterate through centroids:

155 for i = 1:centroids_iterations

156

157 % Selecting the left side of the Ne profile and flipping it

158 Ne_1d_left{k,i} = fliplr(den_int(1:centroid_ind_tmp));

159

160 % Selecting the right side of the Ne profile:

161 Ne_1d_right{k,i} = den_int(centroid_ind_tmp+1:end);

162

163 % Iterate the index to prepare the code to move to the next

164 % centroid value on the next loop iteration:

165 centroid_ind_track(k,i) = centroid_ind_tmp;

166 centroid_ind_tmp = centroid_ind_tmp + 1;

167
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168 % Conductig the Abel inversion to compute the ne profile on

169 % each side of the assumed centroid:

170 ne_1d_left{k,i} = abel_invert(y_twin,[Ne_1d_left{k,i}−...

171 min(Ne_1d_left{k,i})]');

172 ne_1d_right{k,i} = abel_invert(y_twin,[Ne_1d_right{k,i}−...

173 min(Ne_1d_right{k,i})]');

174

175 % When the centroid does not divide the Ne profile in half,

176 % the longer of the two sides must be truncated to match

177 % the length of the shorter side. The following case

178 % statements conduct this truncation:

179 len_left(k,i) = length(Ne_1d_left{k,i});

180 len_right(k,i) = length(Ne_1d_right{k,i});

181

182 if len_left(k,i)>len_right(k,i)

183 ne_1d_left_trunc{k,i} = ne_1d_left{k,i}(1:...

184 len_right(k,i));

185 ne_1d_right_trunc{k,i} = ne_1d_right{k,i};

186 elseif len_left(k,i)<len_right(k,i)

187 ne_1d_left_trunc{k,i} = ne_1d_left{k,i};

188 ne_1d_right_trunc{k,i} = ne_1d_right{k,i}(1:...

189 len_left(k,i));

190 else

191 ne_1d_left_trunc{k,i} = ne_1d_left{k,i};

192 ne_1d_right_trunc{k,i} = ne_1d_right{k,i};

193 end

194

195 % Identify the nominal n_edge_0 value as the density in the
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196 % longer profile at the radius of the edge of the short

197 % profile:

198 if len_left(k,i)>len_right(k,i) && len_right(k,i)~=0

199 n_edge_0(k,i) = ne_1d_left_trunc{k,i}(len_right(k,i));

200 elseif len_left(k,i)<len_right(k,i) && len_left(k,i)~=0

201 n_edge_0(k,i) = ne_1d_right_trunc{k,i}(len_left(k,i));

202 else

203 n_edge_0(k,i) = 0;

204 end

205

206 % Initialize n_edge_tmp to enable determination of

207 % centroid_abs (the centroid locations in absolute

208 % pixel−space):

209 n_edge_ind_tmp = −num_of_n_edge;

210

211 % Iterate through n_edge values:

212 for j = 1:2*num_of_n_edge

213 % populating list of all n_edge attempted:

214 n_edge_val(j) = n_edge_ind_tmp*n_edge_delta;

215

216 % Iterating through n_edge values for the shorter

217 % profile:

218 if len_left(k,i)>len_right(k,i)

219 ne_1d_left_compare{k,i,j} = ne_1d_left_trunc{k,i};

220 ne_1d_right_compare{k,i,j} = ...

221 ne_1d_right_trunc{k,i}+...

222 n_edge_delta*n_edge_ind_tmp;

223 elseif len_left(k,i)<len_right(k,i)
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224 ne_1d_left_compare{k,i,j} = ...

225 ne_1d_left_trunc{k,i}+...

226 n_edge_delta*n_edge_ind_tmp;

227 ne_1d_right_compare{k,i,j} = ...

228 ne_1d_right_trunc{k,i};

229 else

230 if ne_1d_left_trunc{k,i}(end) > ...

231 ne_1d_right_trunc{k,i}(end)

232 ne_1d_left_compare{k,i,j} = ...

233 ne_1d_left_trunc{k,i}+...

234 n_edge_delta*n_edge_ind_tmp;

235 ne_1d_right_compare{k,i,j} = ...

236 ne_1d_right_trunc{k,i};

237 else

238 ne_1d_left_compare{k,i,j} = ...

239 ne_1d_left_trunc{k,i};

240 ne_1d_right_compare{k,i,j} = ...

241 ne_1d_right_trunc{k,i}+...

242 n_edge_delta*n_edge_ind_tmp;

243 end

244 end

245

246 % Iterate the index to prepare the code to move to the

247 % next n_edge value on the next loop iteration:

248 n_edge_ind_track(k,i,j) = n_edge_ind_tmp;

249 n_edge_ind_tmp = n_edge_ind_tmp + 1;

250

251 % Computing the L2 norm of the difference in the sides
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252 % of the ne profile:

253 dens_diff{k,i,j} = abs(ne_1d_left_compare{k,i,j}−...

254 ne_1d_right_compare{k,i,j});

255 norm_dens(k,i,j) = norm(dens_diff{k,i,j},2)/...

256 (length(dens_diff{k,i,j}));

257 end

258

259 % Changing all zero−valued elements in norm_dens to NaNs

260 % (allows the code to ignore them when searching for the

261 % minimum)

262 ind_zeros = find(norm_dens(k,i,:)==0);

263 norm_dens(k,i,ind_zeros) = NaN;

264

265 % Find the minimum L2 norm value for each combination of

266 % cross−section and centroid. (n_edge_intermediate records

267 % the index location of n_edge yielding minimum L2 norm)

268 [norm_intermediate(k,i),n_edge_intermediate(k,i)] = ...

269 min(norm_dens(k,i,:),[],3);

270 end

271

272 % Find the minimum L2 norm value for each cross−section.

273 % (centroid records the relative index location of the centroid

274 % location yielding minimum L2 norm)

275 [norm_min_val(k),centroid(k)] = min(norm_intermediate(k,:)...

276 ,[],2);

277 n_edge(k) = n_edge_intermediate(k,centroid(k));

278

279 % Assigning the final left and right number density profiles:
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280 if centroid(k) == 0 % do not adjust for axial density variation

281 %for non−inverted cross−sections

282

283 elseif len_left(k,centroid(k))>len_right(k,centroid(k))

284 den_num_l{k} = ne_1d_left{k,centroid(k)};

285 den_num_r{k} = ne_1d_right{k,centroid(k)}+n_edge_delta*...

286 (n_edge(k)−num_of_n_edge);

287 den_int_edge_axial(k) = den_int_full(k,1);

288

289 elseif len_left(k,centroid(k))<len_right(k,centroid(k))

290 den_num_l{k} = ne_1d_left{k,centroid(k)}+n_edge_delta*...

291 (n_edge(k)−num_of_n_edge);

292 den_num_r{k} = ne_1d_right{k,centroid(k)};

293 den_int_edge_axial(k) = den_int_full(k,end);

294

295 else

296 if ne_1d_left_trunc{k,i}(end) > ne_1d_right_trunc{k,i}(end)

297 den_num_l{k} = ne_1d_left_trunc{k,centroid(k)}+...

298 n_edge_delta*(n_edge(k)−num_of_n_edge);

299 den_num_r{k} = ne_1d_right_trunc{k,centroid(k)};

300 den_int_edge_axial(k) = den_int_full(k,end);

301

302 else

303 den_num_l{k} = ne_1d_left_trunc{k,centroid(k)};

304 den_num_r{k} = ne_1d_right_trunc{k,centroid(k)}+...

305 n_edge_delta*(n_edge(k)−num_of_n_edge);

306 den_int_edge_axial(k) = den_int_full(k,end);

307
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308 end

309 end

310

311 % Computing the centroid indices in absolute pixel coordinates:

312 if centroid_ind_track(k,centroid(k)) == 0

313 centroid_abs(k) = size(unwrapped,1);

314 else

315 centroid_abs(k) = centroid_ind_track(k,centroid(k));

316 end

317 end

318 end

319

320 if quit2nextShot == 0 % for debugging

321

322 %% Compiling the inverted number density data to form the

323 % den_num_full matrix:

324 den_num_full = zeros(size(den_int_full));

325 for k = 1:num_of_cross_sect

326 if centroid_abs(k) == 1 || centroid_abs(k) == size(unwrapped,1)

327 den_num_full(k,:) = zeros(size(unwrapped,1),1);

328 else

329 den_num_full(k,(1+centroid_abs(k)−length(den_num_l{k})):...

330 centroid_abs(k)) = flipud(den_num_l{k});

331 den_num_full(k,(1+centroid_abs(k)):(centroid_abs(k)+...

332 length(den_num_r{k}))) = den_num_r{k};

333 end

334 end

335
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336 %% Plotting the data:

337 x_0 = x_twin_red_adj(1);

338 y_0 = y_twin_red_adj(1);

339

340 den_num_full = den_num_full';

341 den_int_full = den_int_full';

342

343 fnt = 24;

344

345 % Plotting Ne (den_int_full):

346 fig1 = figure(1);hold on;

347 h11 = pcolor(x_twin_red_adj,y_twin_red_adj,den_int_full);

348 set(h11,'edgecolor','none');

349 colormap jet

350 set(fig1,'position',[1290 520 560 420]);

351 colorbar;

352 xlim([x_twin_red_adj(1) x_twin_red_adj(end)]);

353 ylim([y_twin_red_adj(1) y_twin_red_adj(end)]);

354 title('Line−integrated electron density, N_e [m^{−2}]',...

355 'fontsize',fnt);

356 xlabel('Axial distance [m]','fontsize',fnt);

357 ylabel('Impact parameter [m]','fontsize',fnt);

358 set(gca,'fontsize',fnt);

359 set(gca,'xtick',[0.145 0.15 0.155]);

360

361 % Plotting number density not adjusted for axial variation:

362 fig3 = figure(3);hold on;

363 h31 = pcolor(x_twin_red_adj,y_twin_red_adj,den_num_full);
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364 set(h31,'edgecolor','none');

365 h32 = scatter(x_twin_red_adj,y_twin_red_adj(centroid_abs),'k','.');

366 set(h32,'sizedata',1000);

367 colormap jet

368 set(fig3,'position',[1867 519 560 420]);

369 colorbar;

370 xlim([x_twin_red_adj(1) x_twin_red_adj(end)]);

371 ylim([y_twin_red_adj(1) y_twin_red_adj(end)]);

372 line([cross_sect(1)*del_x+x_0 cross_sect(1)*del_x+x_0],...

373 [y_twin_red_adj(1) y_twin_red_adj(end)],'color','k');

374 line([cross_sect(1)*del_x+x_0 cross_sect(1)*del_x+x_0],...

375 [y_twin_red_adj(1) y_twin_red_adj(end)],'color','k',...

376 'linewidth',3);

377 if length(cross_sect)==3

378 line([cross_sect(2)*del_x+x_0 cross_sect(2)*del_x+x_0],...

379 [y_twin_red_adj(1) y_twin_red_adj(end)],'color','k',...

380 'linewidth',3);%,'linestyle',':');

381 line([cross_sect(3)*del_x+x_0 cross_sect(3)*del_x+x_0],...

382 [y_twin_red_adj(1) y_twin_red_adj(end)],'color','k',...

383 'linewidth',3);%,'linestyle','−−');

384 else

385 end

386 title('Electron number density, n_e [m^{−3}]','fontsize',fnt);

387 xlabel('Axial distance [m]','fontsize',fnt);

388 ylabel('Impact parameter [m]','fontsize',fnt);

389 set(gca,'fontsize',fnt);

390 set(gca,'xtick',[0.145 0.15 0.155]);

391
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392 %% Adjusting number density to account for axial variation of phase

393 if exist('centroid') % do not adjust for axial density variation

394 % for non−inverted cross−sections

395

396 for k = 1:num_of_cross_sect

397

398 if centroid_abs(k) == 1

399 y_edge_l{k} = 0:del_y:del_y;

400 y_edge_r{k} = 0:del_y:size(unwrapped,1)−1;

401 y_count(k) = max(y_edge_l{k});

402

403 x_edge_l(k) = 2*sqrt(R_electrode^2−max(y_edge_l{k})^2);

404 x_edge_r(k) = 2*sqrt(R_electrode^2−max(y_edge_r{k})^2);

405

406 elseif centroid_abs(k) == size(unwrapped,1)

407 y_edge_l{k} = 0:del_y:(size(unwrapped,1)−1)*del_y;

408 y_edge_r{k} = 0:del_y:del_y;

409 y_count(k) = max(y_edge_l{k});

410

411 x_edge_l(k) = 2*sqrt(R_electrode^2−max(y_edge_l{k})^2);

412 x_edge_r(k) = 2*sqrt(R_electrode^2−max(y_edge_r{k})^2);

413

414 else

415 y_edge_l{k} = 0:del_y:(length(den_num_l{k})−1)*del_y;

416 y_edge_r{k} = 0:del_y:(length(den_num_r{k})−1)*del_y;

417

418 y_count(k) = max(y_edge_l{k});

419 x_edge_l(k) = 2*sqrt(R_electrode^2−max(y_edge_l{k})^2);
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420 x_edge_r(k) = 2*sqrt(R_electrode^2−max(y_edge_r{k})^2);

421 end

422

423 if centroid(k) == 0 % do not adjust for axial density

424 %variation for non−inverted cross−sections

425

426 elseif len_left(k,centroid(k))>len_right(k,centroid(k))%%

427 den_num_edge_axial_l(k) = den_int_edge_axial(k)/...

428 x_edge_l(k);

429 den_num_edge_axial_r(k) = 0;

430

431 den_num_axial_l{k} = den_num_l{k} + ...

432 den_num_edge_axial_l(k);

433 den_num_axial_r{k} = den_num_r{k} + ...

434 den_num_edge_axial_l(k);

435

436 elseif len_left(k,centroid(k))<len_right(k,centroid(k))

437 den_num_edge_axial_l(k) = 0;

438 den_num_edge_axial_r(k) = den_int_edge_axial(k)/...

439 x_edge_l(k);

440

441 den_num_axial_l{k} = den_num_l{k} + ...

442 den_num_edge_axial_r(k);

443 den_num_axial_r{k} = den_num_r{k} + ...

444 den_num_edge_axial_r(k);

445

446 else

447 den_num_edge_axial_l(k) = 0;



196

448 den_num_edge_axial_r(k) = 0;

449

450 den_num_axial_l{k} = den_num_l{k};

451 den_num_axial_r{k} = den_num_r{k};

452 end

453 end

454

455 % Compiling the adjusted number density into a single matrix:

456 for k = 1:num_of_cross_sect

457

458 if centroid(k) ==0

459 den_num_full_axial(k,1:size(unwrapped,1)) = ...

460 zeros(size(unwrapped,1),1);

461 else

462 den_num_full_axial(k,(1+centroid_abs(k)−...

463 length(den_num_axial_l{k})):centroid_abs(k)) = ...

464 flipud(den_num_axial_l{k});

465 den_num_full_axial(k,(1+centroid_abs(k)):...

466 (centroid_abs(k)+length(den_num_axial_r{k}))) = ...

467 den_num_axial_r{k};

468 end

469 end

470 den_num_full_axial = den_num_full_axial';

471

472 %% Plotting the number density adjusted for axial variation:

473 fig33 = figure(33);hold on; fnt = 24;

474 h31 = pcolor(x_twin_red_adj,y_twin_red_adj,den_num_full_axial);

475 set(h31,'edgecolor','none');
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476 h32 = scatter(x_twin_red_adj,y_twin_red_adj(centroid_abs),...

477 'k','.');

478 set(h32,'sizedata',1000);

479 colormap jet

480 set(fig33,'position',[1867 519 560 420]);

481 colorbar;

482 xlim([x_twin_red_adj(1) x_twin_red_adj(end)]);

483 ylim([y_twin_red_adj(1) y_twin_red_adj(end)]);

484 title('Electron number density, n_e [m^{−3}]','fontsize',fnt);

485 xlabel('Axial distance [m]','fontsize',fnt);

486 ylabel('Impact parameter [m]','fontsize',fnt);

487 set(gca,'fontsize',fnt);

488 set(gca,'xtick',[0.145 0.15 0.155]);

489 legend(h32,'centroid');

490

491 % Saving figures as images:

492 if sign_twin > 0

493 saveas(fig1,[directory_save,'\den_int_contour_',...

494 num2str(shotnum_def),'_',num2str(shotnum_base),...

495 'POS.tif']);

496 saveas(fig33,[directory_save,'\den_num_contour_',...

497 num2str(shotnum_def),'_',num2str(shotnum_base),...

498 'POS.tif']);

499 else

500 saveas(fig1,[directory_save,'\den_int_contour_',...

501 num2str(shotnum_def),'_',num2str(shotnum_base),...

502 '.tif']);

503 saveas(fig33,[directory_save,'\den_num_contour_',...
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504 num2str(shotnum_def),'_',num2str(shotnum_base),...

505 '.tif']);

506 end

507

508 for k = 1:num_of_cross_sect

509 rad_l_tmp{k} = 0:del_y:(length(den_num_l{k})−1)*del_y;

510 % del_y is in empirical reconstruction coords.

511 rad_r_tmp{k} = 0:del_y:(length(den_num_r{k})−1)*del_y;

512 end

513 for k = 1:length(cross_sect)

514 rad_l{k} = rad_l_tmp{cross_sect(k)};

515 rad_r{k} = rad_r_tmp{cross_sect(k)};

516 end

517

518 else

519 end

520

521 else

522 end

523

524 %% Writing data to the ZaP−HD MDSplus data tree:

525 MDS_DHI_put(shotnum_def,shotnum_base,den_int_full,den_num_full,...

526 centroid_abs,d,xmin,xmax,ymin,ymax,sign_twin,...

527 x_twin_red_adj,y_twin_red_adj)

528 end
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C.2 Functions for DHI analysis

DC_suppression.m

1 % DC_suppression.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code suppresses the zeroth order diffraction image by

5 % subtracting the mean intensity from each hologram.

6

7

8 function [hol_def,hol_base] = DC_suppression(hol_def,hol_base,M,N)

9

10 hol_def = hol_def − ones(N,M)*mean(mean(hol_def));

11 hol_base = hol_base − ones(N,M)*mean(mean(hol_base));

12

13 status = sprintf('DC diffraction image suppressed... \n')
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hyperbolic_window.m

1 % hyperbolic_window.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code performs applies a hyperbolic window function to

5 % the holograms to remove Gibbs phenomena in the resulting recontructions.

6

7 function [hol_def, hol_base] = hyperbolic_window(hol_def,hol_base)

8

9 L = size(hol_def);

10 M = L(2); % x−direction

11 N = L(1); % y−direction

12

13 param = 8;

14 x2 = linspace(−param*pi,param*pi,M+1); x = x2(1:M);

15 y2 = linspace(−param*pi,param*pi,N+1); y = y2(1:N);

16

17 for i = 1: length(hol_def(:,1))

18 hol_def(i,:) = hol_def(i,:).*(tanh(x+(param−1)*pi)−tanh(x−(param−1)*pi))

;

19 hol_base(i,:) = hol_base(i,:).*(tanh(x+(param−1)*pi)−tanh(x−(param−1)*pi

));

20 end

21

22 for j = 1: length(hol_base(1,:))

23 hol_def(:,j) = hol_def(:,j).*(tanh(y+(param−1)*pi)−tanh(y−(param−1)*pi))

';
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24 hol_base(:,j) = hol_base(:,j).*(tanh(y+(param−1)*pi)−tanh(y−(param−1)*pi

))';

25 end
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holographic_reconstruction.m

1 % holographic_reconstruction.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code performs the Fresnel transform reconstruction and

5 % computes the phase shift between specified plasma and vacuum holograms.

6 % It also extracts a twin image from the data and smooths and unwraps that

7 % twin image.

8

9 function [unwrapped,x_twin,y_twin,phase_diff,x,y] = ...

10 holographic_reconstruction(shotnum_base,shotnum_def,xmin,xmax,ymin,...

11 ymax,d,varargin)

12

13 % Constants:

14 res = (3.85e−6); % [m] Pixel size of Nikon 3200D 4.3e−6 for Canon Rebel T2i

15

16 % Starting with ZaP's shot number convention:

17 SN_def = num2str(shotnum_def);

18 SN_base = num2str(shotnum_base);

19

20 % Converting to Canon Camera shot number convention:

21 year_def = num2str(2000+str2num(SN_def(1:2)));

22 month_def = num2str(SN_def(3:4));

23 day_def = num2str(SN_def(5:6));

24

25 year_base = num2str(2000+str2num(SN_base(1:2)));

26 month_base = num2str(SN_base(3:4));

27 day_base = num2str(SN_base(5:6));
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28

29 date_def = [year_def,'_', month_def,'_', day_def];

30 date_base = [year_base,'_',month_base,'_',day_base];

31 date_plot = [year_def, month_def, day_def];

32

33 shot_def = SN_def(7:end);

34 shot_base = SN_base(7:end);

35

36 hol_def_rgb = imread(['H:\Raw Holograms\',date_def,'\',...

37 date_def, '_', shot_def,'.jpg']);

38 hol_base_rgb = imread(['H:\Raw Holograms\',date_base,'\',...

39 date_base, '_', shot_base,'.jpg']);

40

41 % Converting from RGB to grayscale (rgb2gray is not a supported command

42 % without the image processing toolbox):

43 rgb_red = 0.3;

44 rgb_green = 0.59;

45 rgb_blue = 0.11;

46

47 hol_def = double(hol_def_rgb(:,:,1).*rgb_red + hol_def_rgb(:,:,2).*...

48 rgb_green + hol_def_rgb(:,:,3).*rgb_blue)';

49 hol_base = double(hol_base_rgb(:,:,1).*rgb_red + hol_base_rgb(:,:,2).*...

50 rgb_green + hol_base_rgb(:,:,3).*rgb_blue)';

51

52 % If an eighth input = 1 is passed to the function, the hologram intensity

53 % values are truncated within the range hol_max_cut:hol_min_cut.

54 if nargin == 8

55 hol_contrast = varargin{1};
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56

57 hol_max_cut = 100;

58 hol_min_cut = 70;

59

60 if hol_contrast == 1;

61 hol_def(find(hol_def>hol_max_cut)) = hol_max_cut;

62 hol_def(find(hol_def<hol_min_cut)) = hol_min_cut;

63 else

64 end

65 else

66 end

67

68 % Reconstruction:

69 [phase_diff,x,y,xsize_fres,ysize_fres] = DHI_rec(hol_base,hol_def,d,res);

70

71 M = size(hol_def,2);

72 N = size(hol_def,1);

73

74 x_plt = −max(x)/2:x(2)−x(1):max(x)/2;

75 y_plt = −max(y)/2:y(2)−y(1):max(y)/2;

76

77 % Extracting the twin image:

78

79 % Labeling the matrix indices:

80 x_ind_vec = 1:1:M;

81 y_ind_vec = 1:1:N;

82

83 % Interpolating to match a spatial coordinate values to the
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84 % nearest integer matrix indices:

85 x_min_ind = round(interp1(x,x_ind_vec,xmin));

86 x_max_ind = round(interp1(x,x_ind_vec,xmax));

87 y_min_ind = round(interp1(y,y_ind_vec,ymin));

88 y_max_ind = round(interp1(y,y_ind_vec,ymax));

89

90 % Defining the x,y spatial coordinate vectors for the extracted twin image:

91 x_twin = x(x_min_ind:x_max_ind);

92 x_twin = x_twin(1:10:end);

93 y_twin = y(y_min_ind:y_max_ind);

94 y_twin = y_twin(1:10:end);

95

96 twin_img = phase_diff(y_min_ind:y_max_ind,x_min_ind:x_max_ind);

97 twin_img = twin_img(1:10:end,1:10:end);

98

99 % Smoothing and unwrapping the twin image:

100 width = 8;

101 [unwrapped,phase_f,unsmoothed_unwrapped] = smooth_unwrap(twin_img,width);
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DHI_rec.m

1 % DHI_rec.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code performs the Fresnel transform reconstruction and

5 % computes the phase shift between specified plasma and vacuum holograms.

6

7 function [phase_diff,x,y,xsize_fres,ysize_fres] = DHI_rec(hol_base,...

8 hol_def,d,res)

9

10 %% Declare parameters:

11 lambda = 532e−9; % [m] Nd:YAG wavelength, 694.3e−9 [m] ruby wavelength

12 n_c = 2.312e27; % [m^−3] critical plasma density

13

14 L = size(hol_def);

15 M = L(2); % x−direction

16 N = L(1); % y−direction

17

18 ximg = linspace(0,res*M,M);

19 yimg = linspace(0,res*N,N);

20

21 %% Applying windowing to the holograms:

22 [hol_def,hol_base] = hyperbolic_window(hol_def,hol_base);

23 % [hol_def,hol_base] = DC_suppression(hol_def,hol_base,M,N);

24

25 %% Reconstruction with Fresnel method:

26 ref = 1;

27 b_def = fresnel(hol_def,d,lambda,res,ref);
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28 b_base = fresnel(hol_base,d,lambda,res,ref);

29

30 %% Computing the phase from the complex wavefield:

31 phase_diff = phase_diff_func(b_def,b_base);

32

33 %% Preparing axes necessary for plotting:

34 xsize_fres = abs(d*lambda/M/res);

35 ysize_fres = abs(d*lambda/N/res);

36 x = 0:xsize_fres:(M−1)*xsize_fres;

37 y = 0:ysize_fres:(N−1)*ysize_fres;
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fresnel.m

1 % fresnel.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code performs the Fresnel transform reconstruction

5 % and outputs the electric field strength as a matrix of complex numbers b.

6

7 function [b] = fresnel(hol,d,lambda,res,ref)

8

9 % Declaring pixel and sensor size in the hologram plane:

10 L = size(hol);

11 M = L(2); % number of pixels along x−direction

12 N = L(1); % number of pixels in y−direction

13 del_xi = res; % pixel size in x−direction

14 del_eta = res; % pixel size in y−direction

15 chirp = ones(N,M);

16

17 % Computing the length scales in the reconstruction plane:

18 xsize_fres = abs(d*lambda/M/res);

19 ysize_fres = abs(d*lambda/N/res);

20 xfres = [−(M/2)*xsize_fres:xsize_fres:(M/2)*xsize_fres];

21 xfres = xfres(1:M);

22 yfres = ([−(N/2)*ysize_fres:ysize_fres:(N/2)*ysize_fres]);

23 yfres = yfres(1:N);

24

25 k = 2*pi/lambda;

26

27 % Generating the chirp function required by the Fresnel transform:
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28 status = sprintf('Generating chirp...')

29 for n = 0:N−1

30 for m = 0:M−1

31

32 % Chirp function:

33 chirp(n+1,m+1) = exp((1i*pi/(d*lambda))*(((n−N/2)^2*...

34 del_eta^2)+((m−M/2)^2*del_xi^2)));

35

36 % Complex, constant phase factor:

37 % This factor is only required if we want a correctly scaled

38 % reconstructed intensity distribution. It is not needed in

39 % computing the interference phase distribution.

40 % A(n+1,m+1) = (exp(1i*k*d)/(1i*lambda*d))*...

41 % exp((1i*pi/(d*lambda))*(xfres(m+1)^2+yfres(n+1)^2));

42

43 end

44 end

45

46 status = sprintf('done with chirp. \n')

47

48 % Set the complex factor to 1 when only reconstructing phase.

49 A = 1;

50

51 % Multiply the hologram intensity distribution with the reference beam:

52 hol_ref = hol*ref;

53

54 % Convolving the product of the hologram function and reference wave with

55 % the chirp function.
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56 status = sprintf('Computing Fresnel transform...')

57 b = A.*ifftshift(ifft2(fftshift(hol_ref.*chirp)));

58 status = sprintf('done with Fresnel transform. \n')
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phase_diff_func.m

1 % phase_diff_func.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code computes the wrapped phase difference between

5 % plasma and vacuum holograms.

6

7 function [phase_diff] = phase_diff_func(b_def,b_base)

8

9 status = sprintf('Computing interference phase...')

10 phase_diff = atan2(imag((b_def).*conj((b_base))),real((b_def).*...

11 conj((b_base))));

12 status = sprintf('done computing interference phase. \n')
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fresnel.m

1 % smooth_unwrap.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This code smooths the extracted wrapped twin image and then

5 % unwraps the phase. The function outputs smoothed and unsmoothed versions

6 % of the unwrapped phase.

7

8 function [unwrapped,phase_f,unsmoothed_unwrapped] = smooth_unwrap(...

9 twin_img,width)

10

11 % Transforming into cosine/sine space:

12 s = sin(twin_img);

13 c = cos(twin_img);

14

15 % Boxcar averaging (change the width parameter to change the size of the

16 % sliding boxcar window):

17 % width = 4;

18 sf = boxcar2(s,width);

19 cf = boxcar2(c,width);

20

21 % Inverting back to phase space:

22 phase_F = atan2(sf,cf);

23 phase_f = phase_F(2*width+1:end−(2*width+1),:);

24

25 % unwrapping the smoothed extracted twin image:

26 unwrapped = zeros(size(phase_f,1),size(phase_f,2));

27
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28 % unwrap rows

29 for i =1:size(phase_f,1)

30 unwrapped(i,:) = unwrap(phase_f(i,:));

31 end

32 % unwrap columns

33 for j =1:size(phase_f,2)

34 unwrapped(:,j) = unwrap(unwrapped(:,j));

35 end

36

37 unwrapped = unwrapped − max(unwrapped(:));

38

39 % unwrapping the unsmoothed extracted twin image:

40 unsmoothed_unwrapped = zeros(size(twin_img,1),size(twin_img,2));

41

42 % unwrap rows

43 for i =1:size(phase_f,1)

44 unsmoothed_unwrapped(i,:) = unwrap(twin_img(i,:));

45 end

46 % unwrap columns

47 for j =1:size(phase_f,2)

48 unsmoothed_unwrapped(:,j) = unwrap(unsmoothed_unwrapped(:,j));

49 end

50

51 unsmoothed_unwrapped = unsmoothed_unwrapped − max(unsmoothed_unwrapped(:));
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MDS_DHI_put.m

1 % MDS_DHI_put.m

2 % Author: Michael P. Ross

3 % Date = Sept. 6, 2016

4 % Description: This script stores the relevant DHI data to the dhihd tree.

5

6 function MDS_DHI_put(shotnum,base_number,den_int_full,den_num_full,...

7 centroid_abs,recon_dist,xmin,xmax,ymin,ymax,sign_twin,x_twin,y_twin)

8

9 import MDSplus.*

10 tree_string = 'dhihd';

11 dhihdTree = Tree(tree_string,shotnum,'EDIT');

12

13 %% create the nodes in the DHIHD tree:

14 try

15 dhihdTree.addNode('base_number','NUMERIC');

16 catch

17 end

18 try

19 dhihdTree.addNode('dhi_int','NUMERIC');

20 catch

21 end

22 try

23 dhihdTree.addNode('dhi_inverted','NUMERIC');

24 catch

25 end

26 try

27 dhihdTree.addNode('centroid_abs','NUMERIC');
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28 catch

29 end

30 try

31 dhihdTree.addNode('recon_dist','NUMERIC');

32 catch

33 end

34 try

35 dhihdTree.addNode('xmin','NUMERIC');

36 catch

37 end

38 try

39 dhihdTree.addNode('xmax','NUMERIC');

40 catch

41 end

42 try

43 dhihdTree.addNode('ymin','NUMERIC');

44 catch

45 end

46 try

47 dhihdTree.addNode('ymax','NUMERIC');

48 catch

49 end

50 try

51 dhihdTree.addNode('sign_twin','NUMERIC');

52 catch

53 end

54 try

55 dhihdTree.addNode('x_twin','NUMERIC');
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56 catch

57 end

58 try

59 dhihdTree.addNode('y_twin','NUMERIC');

60 catch

61 end

62

63 dhihdTree.write() % need to write the nodes to the tree before storing data

64

65 %% Storing data to the tree and creating tagnames:

66 current_node = dhihdTree.getNode('base_number');

67 current_node.putData(MDSarg(base_number));

68 try

69 current_node.addTag('base_number');

70 catch

71 end

72

73 current_node = dhihdTree.getNode('dhi_int');

74 current_node.putData(MDSarg(((den_int_full'))));

75 try

76 current_node.addTag('dhi_int');

77 catch

78 end

79

80 current_node = dhihdTree.getNode('dhi_inverted');

81 current_node.putData(MDSarg(((den_num_full'))));

82 try

83 current_node.addTag('dhi_inverted');
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84 catch

85 end

86

87 current_node = dhihdTree.getNode('centroid_abs');

88 current_node.putData(MDSarg(centroid_abs));

89 try

90 current_node.addTag('centroid_abs');

91 catch

92 end

93

94 current_node = dhihdTree.getNode('recon_dist');

95 current_node.putData(MDSarg(recon_dist));

96 try

97 current_node.addTag('recon_dist');

98 catch

99 end

100

101 current_node = dhihdTree.getNode('xmin');

102 current_node.putData(MDSarg(xmin));

103 try

104 current_node.addTag('xmin');

105 catch

106 end

107

108 current_node = dhihdTree.getNode('xmax');

109 current_node.putData(MDSarg(xmax));

110 try

111 current_node.addTag('xmax');
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112 catch

113 end

114

115 current_node = dhihdTree.getNode('ymin');

116 current_node.putData(MDSarg(ymin));

117 try

118 current_node.addTag('ymin');

119 catch

120 end

121

122 current_node = dhihdTree.getNode('ymax');

123 current_node.putData(MDSarg(ymax));

124 try

125 current_node.addTag('ymax');

126 catch

127 end

128

129 current_node = dhihdTree.getNode('sign_twin');

130 current_node.putData(MDSarg(sign_twin));

131 try

132 current_node.addTag('sign_twin');

133 catch

134 end

135

136 current_node = dhihdTree.getNode('x_twin');

137 current_node.putData(MDSarg((x_twin)));

138 try

139 current_node.addTag('x_twin');
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140 catch

141 end

142

143 current_node = dhihdTree.getNode('y_twin');

144 current_node.putData(MDSarg((y_twin)));

145 try

146 current_node.addTag('y_twin');

147 catch

148 end

149

150 dhihdTree.write()

151 dhihdTree.close()
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Appendix D

STRUCTURAL ANALYSIS OF ZAP-HD ENDPLATES AND
OUTER ELECTRODE

This appendix explains the structural analysis employed in designing ZaP-HD’s inter-

changeable endwalls. Installation of an endwall to the end of the outer electrode enables

ZaP-HD to form on-axis Z-pinches with axially-uniform high current densities by providing

an on-axis current connection point. Because ZaP-HD aims to drive plasma currents up

to 500 kA, the induced mangetic pressure can impulsively load the endwall with tens-of-

thousands of pounds of force over a 100 µs duration.

Two endwalls are analyzed. A single hole design closely replicates an endwall from the

original ZaP experiment. This design (see Fig. D.1) includes a central hole to allow on-

axis plasma to flow through without stagnating. While this central hole does help reduce

stagnation near machine axis, velocity profile observations from ZaP indicate stagnation still

occurs off axis. A flow shear reversal occurs where, although the fastest plasma velocities are

initially at large radii, they eventually slow so that the fastest velocities are located on-axis.

A spoked endwall design (see Fig. D.2) is an attempt to alleviate this flow stagnation.

The analysis identifies worst case and best case loading scenarios and then identifies how

much plasma current the endwalls could survive for each case. The worst case scenario

occurs when the Z-pinch attachment to the endwall is completely off-center allowing nearly

all magnetic pressure, plasma pressure, and plasma momentum to push against the endwall.

The best case occurs when the plasma’s attachment is well centered allowing much of the

pressure to simply push plasma through the hole at the center of the endwall. If ZaP-HD

forms repeatable, on-axis pinches, the plasma current may be increased beyond the highest

survivable current for the worst case loading.



221

Figure D.1: The single hole endwall design closely matches an endwall used on the orignal
ZaP experiment. This view shows the endwall bolted to the downstream split ring on the
outer electrode. Red surfaces indicate Tungsten spray, and the orange plates are shields
covering a Rogowski coil used to measure the current flow through the central hole.
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Figure D.2: The spoked endwall design aims to alleviate flow stagnation. This view shows
the endwall bolted to the downstream split ring on the outer electrode. Red surfaces indicate
Tungsten spray, and the green and yellow plates are shields covering two Rogowski coils used
to measure the current flow through the central hole and through all holes respectively.
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D.1 Estimating the force on the endwall

Computing the cumulative force on the endwall requires theoretically predicting the state

of the ZaP-HD plasma. Adiabatic scaling relations are used to find the Z-pinch’s den-

sity, temperature, and diameter at an elevated plasma current. Applying these estimated

plasma parameters to Ampere’s law and ideal MHD force balance allows the determination

of magnetic field and pressure profiles. Integrating the pressure over the entire plasma-facing

endwall surface computes the worst case load, while integrating the pressure over the plasma-

facing surface excluding the central hole computes the best case. Conducting this analysis

for a range of elevated plasma currents generates plots of endwall loading versus plasma

current for each case. These plots are compared to a series of ANSYS simulations to select

the proper endwall geometry.

D.1.1 Scaling the Z-pinch from ZaP to ZaP-HD

The plasma parameters density, temperature, and pinch diameter are required to solve for

pressure profiles to integrate, but these parameters change with increased plasma current.

ZaP-HD’s main goal is to scale up plasma current, I, while maintaining constant linear

density, N . ZaP-HD’s parameters can be estimated for a range of plasma currents using the

adiabatic scaling relations (Eq. 1.7,1.8,1.9). Here, the subscripts correspond to two different

states. The initial state represents ZaP’s parameters: n1 = 6 × 1022 [m−3], T1 = 20 [eV ],

a1 = 1 [cm], and I1 = 50 [kA]. The second state represents ZaP-HD at a given current,

I2. Knowing the plasma parameters at a given current enables the determination of endwall

loading for that current.

D.1.2 Control volume analysis

Finding the cumulative endwall loading reduces to integrating pressure over the plasma-

facing endwall surface. This method arises from a control volume analysis of force balance in

the region near the ZaP-HD outer electrode endwall. Integrating the ideal MHD momentum
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equation (Eq. D.1) within a control volume yields the expression for net force on the volume

(Eq. D.2).

∂

∂t
ρ~v +∇ · T̃ = 0 (D.1)

~Fnet =

∫
−∇ · T̃ dV = −

∮
d~S · T̃ (D.2)

Here, ρ is the plasma mass density, ~v is the flow velocity, and T̃ is Maxwell’s stress tensor

(Eq. D.3). In the stress tensor, P is isotropic pressure. Ĩ is an identity tensor.

T̃ = ρ~v~v +

[
P +

B2

2µ0

]
Ĩ − ~B ~B (D.3)

A control volume is chosen surrounding the endwall as shown in Fig D.3. The integration

of Eq. D.2 is split into three parts corresponding to each surface of the control volume.

~Fnet = −
∫
1

d ~Sz · T̃ −
∫
2

d ~Sz · T̃ −
∫
3

d ~Sr · T̃ (D.4)

1. Surface 1 lies beyond the downstream side of the endwall. This analysis assumes this

surface experiences no plasma pressure and all magnetic field components on the surface

are zero, which is reasonable considering no major currents penetrate the surface.

2. Surface 2 experiences plasma pressure as it resides in the region containing the Z-

pinch. It also experiences significant azimuthal magnetic field. The analysis assumes

this surface does not see any radial or axial fields.

3. Surface 3 is outside the outer electrode (the current return path), so it does not

experience any fields or plasma pressure.

In summary, only surface 2 contributes to the net force on the control volume. Its

surface integral can be written as in Eq. D.5, which amounts to integrating pressure over the

endwall’s plasma-facing surface.
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Figure D.3: A cylindrical control volume encompassing the endwall is used to solve for the
net force on the endwall in the worst case.

~Fnet = −ẑ
∫ [

B2
θ

2µ0

+ P + ρv2z

]
2πrdr (D.5)

D.1.3 ZaP-HD pressure profiles

Computing a pressure profile requires assuming a current distribution to obtain a magnetic

field profile from Ampere’s law. Assuming two different current distributions, a skin current

and a uniform current, reveals the sensitivity of the endwall load to current distribution.

Eqs. (D.6) and (D.7) express the pressure profiles for a skin current and uniform current

respectively. Each pressure profile is the sum of magnetic pressure, static plasma pressure,

and kinetic plasma pressure. For the skin current, B(r) = 0 within the pinch radius and

B(r) = µ0I/2πr outside the pinch. For the uniform current, B(r) = µ0jr/2 inside the pinch

and B(r) = µ0I/2πr outside. The plasma density, n, and temperature, T , are assumed

uniform, mp is the mass of a proton, and vz is the bulk plasma velocity assumed to be a
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Figure D.4: Pressure profiles for a 500 kA plasma current. The top plot shows the pressure
for a uniform plasma current while the bottom plot shows the pressure for a skin current.
The profiles are identical beyond the radius of the plasma (0.005").

uniform 100 km/s within the pinch. These pressure profiles are plotted in Fig. D.4 for a 500

kA plasma current.

P (r) =
B(r)2

2µ0

+ 2nkT +mpnv
2
z (D.6)

P (r) =
B(r)2

2µ0

+
µ0j

2d2

4
+mpnv

2
z (D.7)

D.1.4 Integrating to find the applied force

Worst case loading

In the worst case, all of the plasma pressure pushes on the endwall. This loading is computed

by integrating the pressure profiles over all of surface 2 from the control volume analysis.
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Figure D.5: For off-axis pinches (the worst case loading scenario), the choice of current profile
significantly alters the scaling relation between load and current. The uniform current profile
scales to much higher endwall loads for a given current than does the skin current profile.

The integrations for skin and uniform currents analytically reduce to Eqs. (D.8) and (D.9)

respectively. Note that here d is the pinch radius, and D is the radius of the outer electrode.

Fskin =
µ0j

2π

4
d4 ln

D

d
+ 2nkTπd2 +mpnv

2
zπd

2 (D.8)

Funiform =
µ0j

2π

16
d4 +

µ0j
2π

4
d4 ln

D

d
+
πµ0j

2

4
d4 +mpnv

2
zπd

2 (D.9)

Plotting these forces for a range of plasma currents yielded Fig. D.5, which shows the

choice of current distribution has a significant effect on the estimated load.
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Figure D.6: For on-axis pinches (the best case loading scenario), the current profile does not
affect the scaling between load and current. This lack of sensitivity is expected because the
pressure profiles for the current profiles are identical beyond the radius of the pinch.

Best case loading

In the best case, the Z-pinch is centered on machine axis, so the largest plasma pressure does

not impinge upon the endwall. In this case, the pressure profiles were numerically integrated

over surface 2 excluding the area of the center hole. Because the pressure profiles at radii

beyond the pinch radius are identical, the scaling of applied force is the same for both current

distributions as shown in Fig. D.6.

D.2 Transient structural analysis in ANSYS

Knowing the expected endwall the loading, the structural analysis proceeds to determine

how the endwall assemblies react to such forces, and many transient structural simulations

are computed with ANSYS to optimize the endwalls’ geometries. These simulations solve

for the time evolution of von Mises stresses in various portions of the geometry based on
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prescribed loading and boundary conditions. Relying on the distortion-energy theory for

ductile materials [75], the analysis aimed to find a geometry that would keep the von Mises

stresses below the yield strength of 304 stainless steel by a reasonable safety margin.

D.2.1 ANSYS model set up

The ANSYS model is prepared to maximize simulation speed, minimize user input between

simulations, and maximize realism.

To reduce the size of the problem, the simulation applies symmetry boundary conditions

to a quarter of each endwall. Also, the use of a relatively coarse mesh is enabled by applying

the approximate pressure profile shown in Fig. D.7 (a) normal to the endwall’s plasma-

facing surface. Appreciable resolution of the pressure profile would require significant mesh

refinement at the expense of computational efficiency. Instead of a finely resolved profile,

a uniform pressure is applied to an annular area of the endwall beyond the radius of the

center hole. This area and pressure are chosen such that the total applied force matched

the theoretically estimated load for the plasma current under consideration. The applied

force is ramped up and down linearly as shown in Fig. D.7 (b) over the course of 80 µs to

approximate the timescale of ZaP-HD’s current waveform.

To minimize the required user input, endwall geometries are imported into ANSYS di-

rectly as .SLDASM files. Importing the geometries from this file format allows relatively easy

modifications: geometric changes made in SolidWorks can be refreshed into ANSYS. Unfor-

tunately, some updates to the SolidWorks geometries do break contacts previously defined

between the parts in ANSYS. These broken contacts sometimes need to be redefined.

Much of the realism in the model comes from selecting the proper contacts between

assembled parts. The various contacts applied are listed below.

• Split ring to endwall: The downstream split ring is designed to clamp into the

groove at the end of the outer electrode. During initial ANSYS simulations, the split

ring surfaces were bonded to the electrode groove, but this led to unrealistic bending
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caused by the split ring pulling radially away from the electrode’s outer surface. The

final simulations are conducted with the split ring surfaces frictionally contacted to

the groove, which allow the ring to detach from but not penetrate the outer electrode.

Unless otherwise noted, all frictional contacts utilize a friction coefficient of 0.5 to

represent the steel-on-steel interfaces. This change reduces stresses while making the

structural dynamics qualitatively more realistic.

• Outer electrode to endwall: The end of the outer electrode is designed to fit into

a circular groove machined in the endwall. The ID and OD of the outer electrode are

no separation contacted with their respective sides of the groove. Also, the end of the

outer electrode is frictionally contacted with the base of the groove in the endwall.

In this case, the frictional contact is used simply to prevent part interpenetration, so

the frictional coefficient for this contact is set to 0.002 to ease simulation convergence.

These contacts between the outer electrode and the endwall allow the two parts to

separate as axial pressure is applied to the system, but they also prevent the parts

from intersecting.

• Bolts to assembly: Multiple contact types are applied to the bolts. The bolt heads

are frictionally contacted to washers, which are frictionally contacted to the endwall.

This allows the bolt heads and washer to slip and move relative to one another and

relative to the endwall. The bodies of the bolts are no separation contacted with their

endwall through holes to prevent any penetration of the bolts into the endwall. Note

that a frictional contact was tried to achieve the same purpose, but it led to practically

identical results. The bolt threads are bonded to their split ring holes.

To improve the realism of the simulation, pre-tension is applied to the bolts. The magni-

tude of the pre-tension was estimated by estimating a likely bolt torque and then relating the

torque to bolt tension with Eq. D.10. Here, K = 0.18 is a friction coefficient for a lubricated

bolt and d is the bolt diameter. The applied bolt torque was estimated to be 25 ft-lbs based
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Figure D.7: (a) shows the spatial distribution of applied axial pressure on the plasma-facing
endwall surface. The pressure and annular area to which it is applied are selected to match
the expected cumulative applied load. Here, X is the radial component of a coordinate
system centered on machine axis. (b) shows the time evolution of the applied pressure. The
simulation is instructed to apply the specified fractions of the profile in (a) at each time
point. The linear ramp up starts well after the simulation’s start to ensure the transient
behavior of the bolt pre-tension does not affect the results.
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on physical experience (ie: how much force does it feel like we apply when we tighten the

endwall bolts on ZaP). Increasing bolt pre-tension increased stresses in all the parts in the

simulations.

F =
T

Kd
(D.10)

The pre-tension is applied as a load during the first time step of the simulation and then

is locked at all subsequent time steps. When applying pre-tension, ANSYS splits the bolts

along a user-defined plane. The split allows ANSYS to create two new elements on which to

apply external forces. After these forces are applied, the position of the two new elements

must be locked together to avoid the bolt halves from flying apart. Even though the load

is only defined for the first time step, it is applied as a constant throughout the rest of the

simulation. In transient simulations, it does take a finite amount of time for the pre-tension

to propagate through the length of the bolts. In these simulations on such short time scales,

the pre-tension actually takes a few time steps to fully disperse. This leads to spikes in the

bolt von Mises stresses early in time, which leads to overestimated stresses in the electrode

and split ring. This was found by initiating the applied pressure profile later in time (after

the pre-tension became steady) and comparing to simulations ran with the plasma pressure

profile initiated before the pre-tension stabilized. This explains why the stresses in Figs D.8

and D.9 are lower than in Figs D.10 and D.11.

Finally, the upstream side of the outer electrode section was set to a fixed boundary

condition.

D.2.2 ANSYS results

The time dependent solutions show the endwall assemblies ring in response to the impulsive

applied pressure. Each simulation proceeds just long enough in time to verify the vibrations

are damped, which ensures we observed the maximum resulting stresses. Iterations on the

endwall geometries progressed based on the computed stresses given in space and time.
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ANSYS tracks the time evolution of von Mises stresses in four different regions within

the geometry: the electrode, endwall, split ring, and bolts. Fig. D.8 shows how the single

hole endwall takes the initial load and transfers it to the bolts, which then pull on the split

ring and electrode. Stresses prior to 100 µ s result from bolt pre-tension. The endwall feels

the impulsive pressure first, at 100 µ s, and its maximum stress coincides with the peak in

the applied pressure around 150 µ s. One-hundred µ s after the endwall stress maximizes,

the bolt stress peaks, suggesting a propagation speed around 1200 m/s, which is on the

same order of the sound speed in 304 stainless steel. Fifty µ s after the peak bolt stress,

the electrode and split ring stresses peak simultaneously, which corresponds to a 1500 m/s

progagation speed. Here, the stresses in all components except the bolts remain below the

material’s yield strength. High strength bolts can be purchased to handle stresses higher

than the yield strength. Fig. D.9 shows the same temporal evolution occurs for the spoked

endwall, but larger stresses in the spoked endwall offset lower stresses in the electrode and

split ring.

A parametric study varying endwall thickness and applied force identified endwalls

1.75 inch thick could withstand loading from 450 kA plasma currents. First, an adequate

thickness was found by running many simulations at different endwall thicknesses for a plasma

current of 500 kA. Simulations with a 1.75 inch thickness produced stresses slightly above

304 SS’s yield strength for both the single hole and spoked endwalls. Increasing the thickness

further was deemed impractical, so this thickness was held constant in the remaining analysis

to hone in on exactly how much current the endwalls could handle.

The rest of the study varied applied force while holding endwall thickness at 1.75 inch,

which revealed more precisely the maximum plasma current the endwalls could withstand.

For instance, Fig. D.10 shows the stresses in a 1.75 inch thick single hole endwall, electrode,

and split ring increase linearly with the applied load. The electrode limits the strength of

the entire assembly as its maximum stress exceeds the yield strength at the lowest applied

load. That applied load (≈ 35000 lbf) corresponds to a plasma current of 475 kA for a skin

current according to Fig. D.5. This indicates for a worst case plasma pulse, the single hole
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Figure D.8: The max von Mises stresses in each component of the single hole endwall assem-
bly exhibit damped oscillations in time. Stresses before 100 µs are caused by bolt pre-tension.
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Figure D.9: The max von Mises stresses in each component of the spoked endwall assembly
exhibit damped oscillations in time.
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Figure D.10: For the single hole endwall, the maximum von-Mises stresses in the endwall,
electrode, and split ring each scale linearly with applied load. The horizontal black line
indicates the yield strength of 304 SS. This plot indicates the electrode limits the resilience
of the assembly, as its max stress exceeds the yield strength at the highest applied load.

endwall can survive a plasma current of 475 kA. Comparing the 35000 lbf applied load to

Fig. D.6 reveals that in the best case, ZaP-HD can run at currents in excess of 750 kA. Thus,

if operators can ensure well-behaved, on-axis plasmas, the single hole endwall assembly can

survive virtually any amount of current the ZaP-HD power supply can provide.

For a 1.75 inch thick spoked endwall, the same considerations apply to Fig. D.11. The

electrode limits the strength of the entire assembly as it yields at an applied load around

31500 lbf. In the worst case, the spoked endwall could handle currents up to 450 kA, and in

the best case it could handle any current the power supply can deliver.

ANSYS also solves for the stresses at all points in space. Knowing precisely where the

stresses peaked in each part drove modifications to the simulations and to the part geome-

tries. In many early simulations, max stresses occurred in strange places, which prompted
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Figure D.11: For the spoked endwall, the maximum von-Mises stresses in the endwall, elec-
trode, and split ring also each scale linearly with applied load. Again, the horizontal black
line indicates the yield strength of 304 SS. The electrode limits the resilience of the spoked
assembly, as its max stress exceeds the yield strength at the lowest applied load.
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Figure D.12: For the single hole endwall, the von Mises stresses in the endwall at the instant
of maximum stress.

changes to the contacts between parts to improve the model’s realism. Later, changes to

part geometries (ie: changing endwall thicknesses or enlarging radii) were made to minimize

stresses. Figs. D.12-D.15 show the distributions of von Mises stress in the final design of the

single hole endwall at the time instants when the maximum stresses are observed. Figs. D.16

- D.19 show the distributions for the final spoked endwall. Note that in both the single hole

and spoked designs, the maximum stresses occur in the electrode’s split ring groove.

D.2.3 Structural analysis of ZaP-HD outer electrode

Structural analysis of the endwalls reveals the electrode’s split ring groove yields before any

other part. However, this analysis models only a short section of the electrode, so a global

analysis of its integrity is required to comprehensively evaluate its strength.

To simplify the simulation, the model solely considers the electrode’s geometry instead

of examining an assembly of parts. Details like threaded holes and interferometry ports are
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Figure D.13: For the single hole endwall, the von Mises stresses in the bolts at the instant
of maximum stress.

Figure D.14: For the single hole endwall, the von Mises stresses in the electrode at the instant
of maximum stress.
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Figure D.15: For the single hole endwall, the von Mises stresses in the split ring at the
instant of maximum stress.

Figure D.16: For the spoked endwall, the von Mises stresses in the endwall at the instant of
maximum stress.
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Figure D.17: For the spoked endwall, the von Mises stresses in the bolts at the instant of
maximum stress.

Figure D.18: For the spoked endwall, the von Mises stresses in the split ring at the instant
of maximum stress.
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Figure D.19: For the spoked endwall, the von Mises stresses in the electrode at the instant
of maximum stress.

removed, but all magnetic probe holes are included because of their significant size relative

to the electrode rods. The model applies a radially outward, uniform pressure to the inner

diameter of the electrode equal to the magnetic pressure induced by the plasma current

at that radius. Unlike the endwall simulations where the axial force reaches the electrode

indirectly through the bolts and split ring, here the 35,000 lbf axial load is applied as a

uniform pressure directly to the downstream end of the electrode. Both loads are linearly

ramped up and down in time as in the endwall simulations.

The results show significant stresses initiate at the downstream end of the electrode and

then propagate at 4000 m/s upstream until they reflect off of the upstream end. After this

reflection, a complicated superposition of stresses proceeds. The max von Mises stress oscil-

lates erratically throughout the simulation, but it remains below the 304 SS yield strength

by a 1.7 safety margin. The maximum stresses occur in the rods around the magnetic probe

holes. The significant stresses seen previously in the split ring groove do not occur here
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Figure D.20: In the outer electrode, the maximum stresses occur in the rods around the
magnetic field probes. This solution results from linearly ramping up and down a uniform
radial magnetic pressure as well as a 35,000 lbf axial load applied as a uniform pressure on
the downstream end of the electrode. The maximum von Mises stresses remain below the
material yield strength by a healthy safety margin of 1.7.

because this model applies the axial force to the end of the electrode instead of the groove.

This analysis indicates the outer electrode will withstand the worst case load of a 475 kA

Z-pinch.
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