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Abstract

Density Characteristics of a Sheared-Flow Z-Pinch

Stuart Lee Jackson

Chair of the Supervisory Committee:
Associate Professor Uri Shumlak

Aeronautics & Astronautics

The ZaP Flow Z-Pinch experiment investigates the effects of sheared flow on gross plasma

stability. The sheared-flow Z-pinches produced are characterized by a quiescent period,

during which the Z-pinch exhibits low magnetic mode activity, high electron density on axis,

and other characteristics of stability. Measurements made with a holographic interferometer

are inverted using an Abel inversion and combined with measurements from a multi-chord

He-Ne interferometer to track the time evolution of the radial electron density profile. A Z-

pinch with a radius of 1 cm and an electron number density profile peaked at approximately

1017 cm−3 is observed during the quiescent period. The electron density drops as the

quiescent period ends. These results are in agreement with the time evolution of the density

profile from MACH2 simulations. The density profile is used to estimate temperature and

magnetic field profiles for the Z-pinch. Experimental parameters such as capacitor bank

energy and neutral gas injection are adjusted to investigate their influence on the density

and behavior of the Z-pinch. Results of these investigations show that lower capacitor bank

energy and injection of more neutral gas into the experiment lead to a longer quiescent

period.





TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The ZaP Flow Z-Pinch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation for Density Profile Measurement . . . . . . . . . . . . . . . . . . . 4

1.3 Previous Measurements of Density Profiles in Z-Pinches and Similar Plasma
Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Kadomtsev Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2: Experimental Diagnostics and Results . . . . . . . . . . . . . . . . . . 12

2.1 Magnetic Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 He-Ne Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Holographic Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Fast-Framing Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 3: Equilibrium Profile Calculation . . . . . . . . . . . . . . . . . . . . . . 69

3.1 Constant Current Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Current Density Proportional to Number Density . . . . . . . . . . . . . . . . 72
3.3 Limited Perpendicular Thermal Conduction with Uniform Heating . . . . . . 74

3.4 Constant Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Time Evolution of Equilibrium Profiles . . . . . . . . . . . . . . . . . . . . . . 85
3.6 Comparison with Kadomtsev Pressure Profile . . . . . . . . . . . . . . . . . . 86

Chapter 4: Simulation of Density Profile Evolution . . . . . . . . . . . . . . . . . . 88

4.1 Simulation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

i



4.4 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Time Evolution of Equilibrium Profile . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 5: Influence of Experimental Parameters . . . . . . . . . . . . . . . . . . 114

Chapter 6: Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 7: Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 8: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix A: Holographic Interferometry User’s Guide . . . . . . . . . . . . . . . . . 133
A.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2 Optical Configuration of the Holographic Interferometer . . . . . . . . . . . . 134
A.3 Loading the Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.4 Making the Holographic Interferogram . . . . . . . . . . . . . . . . . . . . . . 145
A.5 Developing the Holographic Interferogram . . . . . . . . . . . . . . . . . . . . 147
A.6 Reconstructing the Holographic Interferogram . . . . . . . . . . . . . . . . . . 148
A.7 Density Determination and Data Storage . . . . . . . . . . . . . . . . . . . . 149

Appendix B: Input File for MACH2 ZaP Simulation . . . . . . . . . . . . . . . . . . 152

Appendix C: IDL Procedure dense fin.pro . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix D: IDL Procedure analyze interferogram.pro . . . . . . . . . . . . . . . . . 182

Appendix E: IDL Procedure invert interferogram.pro . . . . . . . . . . . . . . . . . 204

Appendix F: Matlab Functions for Temperature Profile Calculation . . . . . . . . . 232
F.1 Constant Current Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
F.2 Current Density Proportional to Number Density . . . . . . . . . . . . . . . . 237
F.3 Limited Perpendicular Thermal Conduction with Uniform Heating . . . . . . 242
F.4 Constant Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

ii



LIST OF FIGURES

Figure Number Page

1.1 m = 0 “sausage” and m = 1 “kink” instabilities in a Z-pinch . . . . . . . . . . 2

1.2 ZaP Flow Z-Pinch experimental apparatus . . . . . . . . . . . . . . . . . . . . 3

1.3 Cartoons showing the formation of a ZaP Flow Z-Pinch. . . . . . . . . . . . . 5

1.4 Plasma current and normalized m=1 mode at axial location z = 0, with the
quiescent period indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Photos of Z-pinch emission showing a quiescent Z-pinch plasma during the
quiescent period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Normalized Kadomtsev pressure profile. . . . . . . . . . . . . . . . . . . . . . 10

2.1 Photographs of probes used to measure magnetic fields in the experiment. . . 13

2.2 Azimuthal magnetic fields measured by the eight probes of the azimuthal
array located at z = 0 and θ = 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 315o. 14

2.3 Average magnetic fields measured by the azimuthal magnetic probe arrays
in the assembly region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Magnitudes of the normalized m = 1 mode measured by the azimuthal mag-
netic probe arrays in the assembly region. . . . . . . . . . . . . . . . . . . . . 16

2.5 Normalized m = 1 mode at z = 0 and total plasma current, with the quiescent
period indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Azimuthal magnetic fields measured at various axial locations in the acceler-
ation region during a 6 kV and a 9 kV plasma pulse. . . . . . . . . . . . . . . 18

2.7 Current distribution in the acceleration region. . . . . . . . . . . . . . . . . . 19

2.8 The current distribution in the acceleration region can be determined using
the magnetic fields measured by the axial array of magnetic probes embedded
in the outer electrode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 He-Ne interferometer optical configuration. . . . . . . . . . . . . . . . . . . . 21

2.10 Drawing of the ZaP Flow Z-Pinch Experiment showing the axial locations
of the interferometer chords used to make measurements in the acceleration
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 Block diagram of the interferometer electronics on a panel in the screen room
and in a shielded box in the laboratory. . . . . . . . . . . . . . . . . . . . . . 23

2.12 Electrical schematic of the interferometer photodiode amplifier circuit. . . . . 25

iii



2.13 Electrical schematic of the interferometer photodiode amplifier’s power and
bypassing circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.14 Block diagram of mixer-splitter operation. . . . . . . . . . . . . . . . . . . . . 27

2.15 Mixer-splitter input and output signals over a short time interval, with the
40-MHz reference signal frequency apparent in the waveforms of all four signals. 30

2.16 Mixer-splitter input and output signals over a longer time interval, with the
influence of the phase shift visible. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.17 Mixer-splitter output signals before and after the 10 MHz low-pass filter. . . 33

2.18 Lissajous curves that result when the sine and cosine components of the phase
are plotted against one another. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.19 Determination of the chord-integrated electron density during a plasma pulse. 36

2.20 Chord-integrated electron number density measured at z = 0 and two impact
parameters, along with normalized m = 1 mode and total plasma current for
a 6 kV hydrogen plasma pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.21 Chord-integrated electron number density measured at z = 0 and two impact
parameters, along with normalized m = 1 mode and total plasma current for
a 9 kV hydrogen plasma pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.22 The length of the quiescent period decreases with increasing capacitor bank
voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.23 Chord-integrated electron number density measured at z = 61 cm and two
impact parameters, along with normalized m = 1 mode at z = 0 and total
plasma current for a 6 kV hydrogen plasma pulse. . . . . . . . . . . . . . . . 41

2.24 Chord-integrated electron number density measured at z = 61 cm and two
impact parameters, along with normalized m = 1 mode at z = 0 and total
plasma current for a 9 kV hydrogen plasma pulse. . . . . . . . . . . . . . . . 42

2.25 The end of the quiescent period is correlated with the exhaustion of plasma
in the accelerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.26 Chord-integrated electron density in the acceleration region during a 9 kV
hydrogen plasma pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.27 Normalized m = 1 mode, plasma current, and chord-integrated electron num-
ber density for the helium Z-pinch used to study the density profile during
arrival (Fig. 2.40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.28 Normalized m = 1 mode, plasma current, and chord-integrated electron num-
ber density for the helium Z-pinch used to study the density profile during
early formation (Fig. 2.40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.29 Normalized m = 1 mode, plasma current, and chord-integrated electron num-
ber density for the helium Z-pinch used to study the density profile during
late formation (Fig. 2.40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



2.30 Normalized m = 1 mode, plasma current, and chord-integrated electron num-
ber density for the helium Z-pinch used to study the density profile during
the middle of the quiescent period (Fig. 2.41). . . . . . . . . . . . . . . . . . . 49

2.31 Normalized m = 1 mode, plasma current, and chord-integrated electron num-
ber density for the helium Z-pinch used to study the density profile during
the late quiescent period (Fig. 2.41). . . . . . . . . . . . . . . . . . . . . . . . 50

2.32 Normalized m = 1 mode, plasma current, and chord-integrated electron num-
ber density for the helium Z-pinch used to study the density profile after the
quiescent period (Fig. 2.41). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.33 Optical arrangement of the single-pass holographic interferometer. . . . . . . 52

2.34 Holographic interferograms made before and after the laser was refurbished. . 55

2.35 Holographic interferograms made with and without plasma present. . . . . . . 55

2.36 Graphical depiction of each coefficient Aki as half the path length through a
cylindrical shell of plasma at a given impact parameter. . . . . . . . . . . . . 57

2.37 Chord-integrated electron density and radial electron density profile for a
hydrogen Z-pinch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.38 Holographic interferograms made using the single-pass holographic interfer-
ometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.39 Radial electron density profiles for hydrogen, 50% methane/50% hydrogen,
and helium Z-pinches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.40 Radial electron density profiles for helium Z-pinches during formation of the
Z-pinch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.41 Radial electron density profiles for helium Z-pinches during and after the
quiescent period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.42 Streak photo of the Z-pinch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.43 Photos of Z-pinch emission showing the arrival of the current sheet. . . . . . 66

2.44 Plasma current and normalized m=1 mode associated with the images cap-
turing the arrival of the current sheet. . . . . . . . . . . . . . . . . . . . . . . 66

2.45 Photos of Z-pinch emission showing the development of a possible kink in-
stability near the end of the quiescent period. . . . . . . . . . . . . . . . . . . 67

2.46 Plasma current and normalized m=1 mode associated with the images show-
ing the development of a possible kink instability near the end of the quiescent
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.47 Photos of Z-pinch emission showing the development of a possible sausage
instability near the end of the quiescent period. . . . . . . . . . . . . . . . . . 68

2.48 Plasma current and normalized m=1 mode associated with the images show-
ing the development of a possible sausage instability near the end of the
quiescent period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



3.1 Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch with the as-
sumption that the current density is constant. . . . . . . . . . . . . . . . . . . 71

3.2 Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch with the as-
sumption that the current density is proportional to the number density. . . . 73

3.3 Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch obtained using
the thermal conduction model. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch obtained using
the constant temperature model. . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Magnetic field profiles for helium Z-pinches during the middle of the quiescent
period and near the end of the quiescent period. . . . . . . . . . . . . . . . . 86

3.6 Comparison between the Kadomtsev pressure profile and the normalized pres-
sure profiles obtained from the experiment. . . . . . . . . . . . . . . . . . . . 87

4.1 Geometry used for the MACH2 simulation . . . . . . . . . . . . . . . . . . . . 89
4.2 Current and voltage across the insulator between the inner and outer elec-

trodes for the simulation and for a plasma pulse . . . . . . . . . . . . . . . . . 91
4.3 Contour plots at 10 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 93
4.4 Contour plots at 16 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 94
4.5 Contour plots at 20 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 95
4.6 Contour plots at 30 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 96
4.7 Contour plots at 37 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 97
4.8 Contour plots at 42 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 98
4.9 Contour plots at 46 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 99
4.10 Contour plots at 57 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 100
4.11 Contour plots at 60 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 101
4.12 Contour plots at 80 µs for the simulation with an initial mass density of

4.72× 10−4 kg/m3 and a capacitor bank voltage of 9 kV. . . . . . . . . . . . 102
4.13 Chord-integrated number density at various axial locations from the simula-

tion with an initial mass density of 4.72× 10−4 kg/m3 and a capacitor bank
voltage of 9 kV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vi



4.14 Chord-integrated number density at various axial locations from the simula-
tion with an initial mass density of 4.72× 10−4 kg/m3 and a capacitor bank
voltage of 6 kV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.15 Azimuthal magnetic fields at various axial locations in the acceleration region
for the 9 kV and 6 kV simulations. . . . . . . . . . . . . . . . . . . . . . . . . 108

4.16 Current distribution in the acceleration region for the 9 kV and 6 kV simu-
lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.17 Number density profile evolution from the simulation at 16, 30, and 37 µs,
corresponding to arrival and formation of the Z-pinch. . . . . . . . . . . . . . 110

4.18 Number density evolution from the simulation at 42, 57, and 60 µs, corre-
sponding to during the dense Z-pinch, late dense Z-pinch , and after the dense
Z-pinch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.19 Magnetic field profile evolution from the simulation at 42, 57, and 60 µs,
corresponding to during the dense Z-pinch, late dense Z-pinch , and after the
dense Z-pinch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.20 Temperature profile evolution from the simulation at 42, 57, and 60 µs, cor-
responding to during the dense Z-pinch, late dense Z-pinch , and after the
dense Z-pinch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 Mass injected into the experiment for the gas line pressures used in the ex-
perimental investigation of accelerator exhaustion. . . . . . . . . . . . . . . . 115

5.2 Quiescent period length at capacitor bank voltages from 5 to 9 kV for the gas
line pressures used in the experimental investigation of accelerator exhaustion.117

5.3 Quiescent period length and dense Z-pinch period length while decreasing
gas line pressure with a capacitor bank voltage of 7 kV. . . . . . . . . . . . . 118

5.4 The effects of wall conditioning are evident when the gas pressure is increased,
rather than decreased, between sets of pulses. . . . . . . . . . . . . . . . . . . 119

5.5 The time-averaged chord-integrated density during the quiescent period does
not show a clear trend with changing capacitor bank voltage. . . . . . . . . . 120

A.1 Optical configuration of the single-pass holographic interferometer with the
lengths of each section of the scene and reference beam paths indicated. . . . 135

A.2 Photograph of the optical configuration of the single-pass holographic inter-
ferometer with the scene and reference beam paths indicated. . . . . . . . . . 136

A.3 Optical configuration of the double-pass holographic interferometer with the
lengths of each section of the scene and reference beam paths indicated. . . . 138

A.4 Photograph of the optical configuration of the double-pass holographic inter-
ferometer with the scene and reference beam paths indicated. . . . . . . . . . 139

A.5 Optical configuration used to reconstruct holographic interferograms. . . . . . 148

vii



A.6 Photograph of the optical configuration used to reconstruct holographic in-
terferograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.7 Reconstructed images that result when the reconstruction laser beam is
diffracted by the holographic film. . . . . . . . . . . . . . . . . . . . . . . . . 150

viii



LIST OF TABLES

Table Number Page

1.1 ZaP Flow Z-Pinch typical operating parameters . . . . . . . . . . . . . . . . . 7

A.1 Darkroom processing of holographic film . . . . . . . . . . . . . . . . . . . . . 147

ix



GLOSSARY

ABEL INVERSION: a mathematical technique used to obtain profile information from

chord-integrated measurements of an axisymmetric, cylindrical object.

ACCELERATION REGION: the annulus between the inner and outer electrodes where gas

is ionized and accelerated by the Lorenz force towards the assembly region.

ASSEMBLY REGION: the cylindrical volume inside the outer electrode from the inner

electrode nose cone to the outer electrode end wall. The Z-pinch is formed along the

axis of the assembly region.

ELECTRON NUMBER DENSITY: the number of electrons per unit volume present at a

given location in the plasma.

HE-NE INTERFEROMETER: a device that uses a helium-neon (He-Ne) laser to measure

chord-integrated electron number density along one or more chords through a plasma.

HOLOGRAPHIC INTERFEROMETER: a device that uses holographic techniques to pro-

duce a two-dimensional map of the chord-integrated electron number density in a

plasma. This chord-integrated density is then used to determine the radial electron

number density profile.

m = 0 “SAUSAGE” INSTABILITY: one of two prominent classical MHD instabilities that

affect the Z-pinch. The “sausage” instability is an azimuthally symmetric density

perturbation that quickly grows and destroys the Z-pinch.

x



m = 1 “KINK” INSTABILITY: one of two prominent classical MHD instabilities that affect

the Z-pinch. The “kink” instability is an azimuthally asymmetric density perturbation

that quickly grows and destroys the Z-pinch.

MAGNETOHYDRODYNAMICS (MHD): a highly idealized and simplified model often used

to predict the macroscopic behavior of plasma configurations.

NORMALIZED m = 1 MODE: a Fourier component of the magnetic field measured by an

azimuthal array of eight magnetic field probes embedded in the outer electrode around

the Z-pinch, normalized by the average magnetic field measured by the probes. The

period of this normalized mode spans all eight probes. When multiplied by the di-

ameter of the outer electrode, its magnitude corresponds to twice the displacement of

the Z-pinch from the axis of the experiment.

QUIESCENT PERIOD: the period of time after the arrival of the plasma at the azimuthal

magnetic probe array where the magnitude of the normalized m = 1 mode of the

Z-pinch is below 0.2.

SHEARED-FLOW STABILIZATION: the theory that a Z-pinch or another inherently unsta-

ble plasma configuration can be stabilized by a gradient in the plasma flow. In the

case of a Z-pinch, a radial gradient in the axial velocity of dvz/dr > 0.1kVA has been

shown numerically to stabilize the Z-pinch against the m = 1 “kink” instability.

Z-PINCH: a plasma column with a current flowing through it in the axial (z) direction.

ZAP FLOW Z-PINCH: a basic plasma physics experiment designed to investigate the ef-

fects of sheared flow on gross plasma stability. The experiment consists of a coaxial

assembly region attached to a cylindrical assembly region where a sheared-flow Z-

pinch is formed. The Z-pinches produced exhibit characteristics of stability for over

one thousand theoretical instability growth times.

xi
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Chapter 1

INTRODUCTION

One of the earliest and most basic magnetic confinement concepts studied by fusion sci-

entists is the Z-pinch. A Z-pinch is a column of plasma with an axial current flowing through

it that creates an azimuthal magnetic field. The magnetic pressure from the azimuthal field

confines and compresses the column, creating a hot, dense plasma. Typically, a Z-pinch is

made by connecting a wire of tungsten or frozen deuterium between two electrodes. When a

large potential is applied across the electrodes, the wire vaporizes and then ionizes, forming

the Z-pinch.

Unfortunately, a static Z-pinch formed in this manner is susceptible to two types of

magnetohydrodynamic (MHD) instabilities. The m = 0 “sausage” mode occurs when the

plasma column begins to become thinner at any point along its length. Magnetic pressure

builds at this point, causing the column to become thinner still, until finally it breaks and

the plasma current is disrupted. The m = 1 “kink” instability occurs when the plasma

column begins to kink or bend. Magnetic pressure builds inside the bend, pushing it farther

out until the column is broken and the current is lost. Figures 1.1(a)–1.1(b) show the m = 0

“sausage” and m = 1 “kink” instabilities in a Z-pinch. These MHD instabilities usually

destroy the Z-pinch within tens of nanoseconds, limiting its usefulness as a fusion reactor

[11]. Z-pinches are commonly used in experiments where the production of a large amount

of x-ray radiation is desired [17].

Several methods have been proposed to reduce the destructive effects of MHD instabil-

ities on the Z-pinch [23, 26, 35]. One such method is sheared-flow stabilization. Numerical

linear stability analysis shows that a linear velocity shear of vz/a > 0.1kVA inhibits the

growth of the m = 1 mode [37]. Similar behavior has been shown through simulation for

the m = 0 mode [39]. This result is supported by sheared-flow stabilization experiments
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(a) (b)

Figure 1.1: m = 0 “sausage” and m = 1 “kink” instabilities in a Z-pinch. (a) m = 0
“sausage” mode. (b) m = 1 “kink” mode.

conducted on the ZaP Flow Z-Pinch. These experiments have produced Z-pinch plasmas

that exhibit characteristics of stability for over 1000 times the theoretical instability growth

time [38].

1.1 The ZaP Flow Z-Pinch

The ZaP Flow Z-Pinch experiment at the University of Washington is a plasma physics

experiment designed to investigate the behavior of a sheared-flow Z-pinch. The origins of

the experiment can be traced to sheared-flow stabilization theory and the Marshall gun

experiments of the 1950s and 1960s [37, 27].

The experimental apparatus, shown in Fig. 1.2, is composed of two coaxial, cylindrical

electrodes enclosed in a vacuum chamber [12]. The outer electrode is a 200 cm long, 20

cm inner diameter hollow copper cylinder with a copper end wall. This outer electrode end

wall has a 2 cm diameter hole in it to allow plasma to escape on the downstream side of the

Z-pinch. The inner electrode is a 100 cm long, 10 cm outer diameter hollow copper cylinder

that ends 100 cm before the outer electrode. A nose cone is attached to the end of the inner

electrode, extending its length slightly beyond 100 cm. The area between the electrodes

before the inner electrode ends is called the “acceleration region.” The space from the tip of

the inner electrode nose cone to the outer electrode end wall is referred to as the “assembly

region.”
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Figure 1.2: ZaP Flow Z-Pinch experimental apparatus.
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Hydrogen gas is puffed into the acceleration region between the two electrodes at a point

about halfway down the length of the inner electrode. A potential difference of 5 to 9 kV

is applied across the two electrodes, causing the gas to ionize. Current is carried between

the two electrodes by the plasma, causing a magnetic field to form behind the plasma.

The radial current and the azimuthal magnetic field interact to create a Lorentz force that

accelerates the plasma axially down the electrodes towards the assembly region.

One end of the forming Z-pinch attaches at the tip of the inner electrode as the other

end moves down the outer electrode and attaches to the end wall. The Lorentz force is now

directed radially inward towards the center of the plasma, confining and compressing the Z-

pinch. This formation process results in a flowing Z-pinch with axial velocities of 10 cm/µs

[38]. Figures 1.3(a)–1.3(d) are cartoons showing ZaP Flow Z-Pinch formation. Formation

of the flowing Z-pinch is followed by a 10-40 µs-long quiescent period, characterized by low

magnetic mode activity. Figure 1.4 is a plot of the plasma current and the normalized m=1

mode at the axial location labeled as z = 0 in Fig. 1.2. The quiescent period, defined as

where the magnitude of the normalized m=1 mode is less than 0.2, begins at 20 µs and

ends at 40 µs for the plasma pulse shown. Photos of plasma emission also indicate the

existence of a quiescent Z-pinch plasma during this time. Figures 1.5(a)–1.5(h) is a series

of images taken at axial location z = 0 along the Z-pinch at the times indicated during

the plasma pulse of Fig. 1.4. These images show a quiescent Z-pinch plasma during the

quiescent period. Table 1.1 lists typical operating parameters for the ZaP Flow Z-Pinch.

1.2 Motivation for Density Profile Measurement

The purpose of this dissertation is to describe the density characteristics of a sheared-flow

Z-pinch. Both the radial and axial profiles will be investigated, as well as their behavior over

time and under different experimental conditions. This information, when combined with

temperature measurements, can be used to determine the equilibrium profile of the sheared-

flow Z-pinch. This equilibrium profile can then be compared with theoretical predictions

and with the conditions required for a fusion reactor based on a sheared-flow Z-pinch. The

density measurements also give insight into the instabilities that affect the Z-pinch, since

the sausage and kink instabilities manifest themselves as density perturbations.



5

(a) (b)

(c) (d)

Figure 1.3: Cartoons showing the formation of a ZaP Flow Z-Pinch. (a) Hydrogen gas is
puffed between the inner and outer electrodes. (b) The gas is ionized and accelerated by
Lorentz forces. (c) Current flows between the two electrodes as the Z-pinch begins to form.
(d) Flowing Z-pinch is formed.
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Figure 1.4: Plasma current and normalized m=1 mode at axial location z = 0, with the
quiescent period indicated. Also shown as vertical lines are the times at which the first and
last of eight images shown in Figs. 1.5(a)–1.5(h) were made (Pulse 40115034).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.5: Photos of Z-pinch emission showing a quiescent Z-pinch plasma during the
quiescent period. The photos represent unfiltered visible light emitted by the plasma and
are made approximately 200 ns apart through the vacuum tank viewport and 2 in diameter
hole in the outer electrode at z = 0 (Pulse 40115034). (a) 47.7 µs. (b) 47.9 µs. (c) 48.1 µs.
(d) 48.3 µs. (e) 48.6 µs. (f) 48.8 µs. (g) 49.0 µs. (h) 49.2 µs.
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Table 1.1: ZaP Flow Z-Pinch typical operating parameters.

parameter symbol value

ion velocity vion 5–10 cm/µs

Alfvén speed vA 15 cm/µs

quiescent period length τq 10–40 µs

total temperature Te + Ti 150–200 eV

electron number density ne 1016–1017 cm−3

edge magnetic field Bedge 1–2 T

Z-pinch radius a 1 cm

Z-pinch length L 100 cm

peak current Ip max 150–280 kA

peak power Pp max 0.2–1 GW

capacitor charge voltage Vmb 5–9 kV

It is important to note that the density profile that can be measured using interferometric

techniques is the electron number density profile. The assumption made many times in this

document is that the shape of the electron number density profile is similar to the shape of

the ion number density profile. This assumption is made because charge separation is not

significant in a Z-pinch. It is possible that the electron and ion number densities are equal in

a hydrogen Z-pinch, because ionization of hydrogen produces equal numbers of positive ions

and electrons. For Z-pinches produced with helium, however, the electron number density

is likely to be up to twice the ion number density, and for a 50 % hydrogen/50 % methane

mixture, it may be between one and two times the ion number density. Impurity ions in

the plasma may further raise the ratio between the electron and ion number densities.
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1.3 Previous Measurements of Density Profiles in Z-Pinches and Similar Plasma
Configurations

Density profiles have been investigated in previous Z-pinch and plasma focus experiments.

Shiloh et al., used shadowgraphy and Abel inversion of holographic interferograms to study

the density profile of an imploding argon gas puff Z-pinch [36]. They obtained density

profiles that showed an initially hollow density distribution collapsing on axis over roughly

30 ns, sweeping up plasma as it imploded to form a high-density, peaked density profile

with a radius of 0.1 cm and a peak electron density of 1019 cm−3. Following the collapse,

the Z-pinch stagnated on axis and its overall radial contraction stopped. m = 0 sausage

density perturbations developed along the Z-pinch, and bursts of X-rays were emitted from

the more constricted sections of the Z-pinch as it was disrupted by the instabilities.

Holographic interferometry was used by Bailey et al., to study gas puff Z-pinches of

pure deuterium and deuterium-argon mixtures [4]. They found that the addition of a

small amount of argon resulted in a higher density Z-pinch with a longer lifetime. They

also determined that the initial gas density determined whether the Z-pinch pinched to a

minimum radius at or before the current maximum, resulting in a high-density or low-density

Z-pinch, respectively.

Qi et al., studied the density of a dense plasma focus and several imploding argon gas

puff Z-pinch experiments using shearing interferometry [31, 32]. Shearing interferometry was

better suited to the high-density plasmas studied than holographic interferometry because

of the large fringe shifts produced. A contour plot of electron density versus radial and

axial coordinates during implosion was obtained for Z-pinches on the Hawk pulsed-power

generator. This contour showed a hollow radial profile 75 ns before the X-ray emission

that occured after the Z-pinch stagnated on axis. A radial electron density profile was also

obtained on the higher-current Double Eagle pulsed power generator. A hollow profile was

observed 75 ns before X-ray emission, with a peak near the axis that may have been an

artifact magnified by the Abel inversion. Subsequent interferograms of both the Hawk and

the Double Eagle Z-pinches show further implosion of the plasma consistent with the density

profile evolution of Ref. [36].
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A three-frame holographic interferometer was employed by Zou et al., to make interfero-

grams of a single neon gas puff Z-pinch implosion at three separate times [42]. This process

was repeated on subsequent plasma pulses to track the time evolution of the Z-pinch. Abel

inversion was used to obtain radial velocity profiles at different axial locations for a single

interferogram, so that a contour plot of electron density versus radial and axial coordinates

was constructed. The contour obtained 363 ns before the final stagnation of the Z-pinch

shows a hollow density profile with a radius of approximately 1.8 cm and a peak electron

density of 3×1018 cm−3. Subsequent interferograms show further implosion consistent with

Ref. [36].

The previous density investigations discussed here focused on imploding gas puff Z-

pinches. The dynamic behavior of these Z-pinches is similar to the behavior expected of the

sheared-flow Z-pinches produced by ZaP during the Z-pinch’s initial assembly. Although

the equilibrium is the same, it is not clear what aspects of the imploding Z-pinch density

profiles and time evolution will carry over to the density of the sheared-flow Z-pinch during

the quiescent period. Because of its less dynamic nature, it is likely that the density profile

will conform to a theoretical steady-state equilibrium such as that proposed by Kadomtsev

[23].

1.4 Kadomtsev Profile

The two-dimensional Z-pinch equilibrium with flow is

ρu2
θ

r
=

∂p

∂r
+

B2
θ

µ0r
+

Bθ

µ0

∂Bθ

∂r
, (1.1)

where ρ is the mass density, uθ is the azimuthal velocity, p is the pressure, Bθ is the magnetic

field, which in a Z-pinch is purely azimuthal, r is the coordinate in the radial direction, and

µ0 = 4π × 10−7 H/m is the permeability of free space. It can be seen from Eq. 1.1 that the

Z-pinch equilibrium does not depend on the axial (z) component of the velocity [3].

In addition, according to classical MHD theory, a Z-pinch whose pressure profile does

not fall off too rapidly with increasing radius will be stable to the m = 0 “sausage” mode

shown in Fig. 1.1(a). The limit on how quickly the pressure can drop with increasing radius
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Figure 1.6: Normalized Kadomtsev pressure profile.

is given by the Kadomtsev pressure profile,

p = p0

(
β

0.8 + β

)5/2

(1.2)

r = a
(0.8 + β)1/4

β3/4
, (1.3)

where p0 is the pressure at r = 0, a is the characteristic radius of the Z-pinch, and β =

2µ0p/B2 is the local ratio of plasma pressure to magnetic pressure.

Fig. 1.6 shows the pressure profile that results when Eqs. 1.2–1.3 are evaluated over the

range β = {0.4, 1000}. A Kadomtsev pressure profile was assumed for the linear stability

analysis of Ref. [37] that showed that the m = 1 mode could be stabilized by the appropriate

velocity shear. Therefore it is reasonable that it be used as a basis for comparison with a

pressure profile derived from the measured density profile of a sheared-flow Z-pinch.

For this comparison, a pressure profile will be obtained from the measured density profile
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using the ideal gas law. In this case, the ideal gas law is

p = (1 + 1/Z)nkT , (1.4)

where n = ne = Zni is the electron density, Z is the effective ionization state and the ratio

of electrons to ions, k = 1.38× 10−23 J/K is Boltzmann’s constant, and T = Te = Ti is the

electron or ion temperature, which are assumed to be equal, in degrees Kelvin. The tem-

perature profile is obtained from the density profile using one of several Z-pinch equilibrium

models described in Chapter 3. This temperature is used along with the measured density

to evaluate Eq. 1.4 and obtain the pressure profile.
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Chapter 2

EXPERIMENTAL DIAGNOSTICS AND RESULTS

A suite of experimental diagnostics is used to characterize the behavior of the sheared-

flow Z-pinches produced by the ZaP Flow Z-pinch. Axial and azimuthal magnetic probe

arrays are used to measure magnetic fields in the experiment. Two interferometers—a

holographic interferometer and a multichord helium-neon (He-Ne) interferometer—are used

to measure the electron number density of plasmas produced. A fast-framing camera capable

of making both framed and streak images is used to record the plasma emission. The

operation of each of these experimental diagnostics is described in the following sections, as

well as the experimental results obtained.

2.1 Magnetic Probes

The probes used to measure magnetic fields in the ZaP experiment are made by winding thin

(AWG 32) copper wire ten times about a Kel-F form [12, 6]. The copper wire is insulated

by an enamel coating and wound in such a way that the lead at the end of the winding

ends up in the same place as the lead at the beginning. These leads are twisted to prevent

stray magnetic flux between them from causing erroneous readings. The wound probe form

is mounted inside a hat-shaped piece of stainless steel, with the top of the hat open except

for a piece of 0.003-inch-thick tantalum foil. The foil is stretched over the top of the hat

towards its brim and held on by a copper washer. The entire assembly is embedded in the

outer electrode, with the tantalum-covered top of the hat-shaped piece facing the plasma.

The probes are arranged in three azimuthal arrays of eight probes at z = 0, z = 35, and

z = 70 cm and one axial array running the length of the outer electrode. The probes in

the axial array are spaced nominally 5 cm apart, but their spacing is wider far upstream

near the insulator in the acceleration region. There is also a six-probe azimuthal array at

z = −25 cm. The arrangement of the magnetic probes is visible in Fig. 1.2. Each of the



13

(a) (b)

Figure 2.1: Photographs of probes used to measure magnetic fields in the experiment. (a)
View of the back sides of several magnetic probes from outside the outer electrode. (b)
Plasma-facing side of a magnetic probe before installation.

probes has a winding that is oriented to detect magnetic fields in the azimuthal direction.

The probes of the azimuthal arrays have a second winding capable of detecting fields in

the axial direction. Figure 2.1(a) is a photograph taken from outside the outer electrode

showing the back sides of several magnetic probes. The Kel-F form and two copper windings

of an azimuthal array probe are visible in the center of the photograph. Several axial array

probes are visible in the bottom part of the picture. Figure 2.1(b) shows the plasma-facing

side of a magnetic probe before installation. The stainless steel hat and copper washer are

visible, as well as the tantalum foil that protects the Kel-F form and copper windings from

the plasma. The probe shown has two windings—one to measure azimuthal fields and one

to measure axial fields. The twisted-pair leads for the two windings are coiled and secured

temporarily with aluminum foil in the photograph.

Each magnetic probe measures the change in magnetic flux as a voltage across the copper

windings. This voltage is transmitted to an integrating circuit in the ZaP experiment screen

room and recorded by a digitizer module mounted in a CAMAC (Computer Automated
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Figure 2.2: Azimuthal magnetic fields measured by the eight probes of the azimuthal array
located at z = 0 and θ = 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 315o (Pulse 30924047).

Measurement And Control) crate. Calibration factors for each probe are determined ahead

of time by passing a known current through a copper rod temporarily mounted on the axis

of the experiment. These calibration factors are used to obtain the magnetic field from the

integrated and digitized voltage.

Figure 2.2 shows the azimuthal magnetic fields measured by the eight probes of the

azimuthal array at z = 0 for a hydrogen plasma pulse with an initial capacitor bank voltage

of 6 kV. The fields measured by the azimuthal array can be used to describe the motion and

deformation of the Z-pinch in terms of its various mode components. The field measured

by each probe of the azimuthal array can be expressed in terms of its Fourier components,

B (θ) = C0 + [C1cosθ + S1sinθ] + [C2cos (2θ) + S2sin (2θ)] (2.1)

+ [C3cos (3θ) + S3sin (3θ)]

=
3∑

m=0

[Cmcos (mθ) + Smsin (mθ)] , (2.2)
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where Bm =
(
C2

m + S2
m

)1/2 is the magnitude of the mth Fourier mode component and θ

is the azimuthal location of the probe. The m = 0 magnitude does not depend on the

azimuthal angle and only the single coefficient B0 = C0 is necessary to describe it. Theta is

measured as a positive angle counter-clockwise about the z-axis from the azimuthal location

of the axial magnetic probe array. A matrix method described in Ref. [12] is used to

determine the various Fourier mode components. 2m + 1 probes are necessary to measure

the mth mode component, so eight probes are capable of resolving m = 0, 1, 2, and 3

modes. The m = 0 component in this case is just the average magnetic field measured by

the eight probes. The m = 1 component represents an asymmetric displacement of the Z-

pinch from the axis. The m = 2 and m = 3 components represent, respectively, a more oval

or triangular cross-section, rather than circular. When the m = 1 Fourier mode component

is normalized by the m = 0 component, or average magnetic field, it is proportional to the

displacement of the Z-pinch from the axis of the electrode,

Bm=1

Bm=0
=

2∆r

rwall
, (2.3)

where ∆r is the displacement of the Z-pinch and rwall = 0.0963 cm is the radius of the outer

electrode.

Figure 2.3 shows the average magnetic fields, or m = 0 components, measured by the

azimuthal magnetic probe arrays located at z = 0, z = 35, and z = 70 cm. Figure 2.4 shows

the magnitude of the m = 1 mode, normalized by the average magnetic field, or m = 0

component. The normalized m = 1 mode at all three locations shows a period of reduced

mode activity following the arrival of the current sheet. The quiescent period of the Z-pinch

is defined as the period of time after the current sheet arrival where the magnitude of the

normalized m = 1 mode is less than 0.2. This corresponds to a displacement of the Z-pinch

from the axis of less than 1 cm, approximately the radius of the Z-pinch. Figure 2.5 shows

the normalized m = 1 mode at z = 0 and the total plasma current, with the quiescent

period indicated. A horizontal dashed line at 0.2 is plotted for reference.

Figs. 2.6(a) and 2.6(b) show the azimuthal magnetic fields measured by the magnetic

probes in the acceleration region during a 6 kV and a 9 kV plasma pulse. The measured

fields rise sharply near the gas injection plane at z = −75 cm. The behavior of the two
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Figure 2.3: Average magnetic fields measured by the azimuthal magnetic probe arrays in
the assembly region at z = 0, z = 35, and z = 70 cm (Pulse 30924047).
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Figure 2.4: Magnitudes of the normalized m = 1 mode measured by the azimuthal magnetic
probe arrays in the assembly region at z = 0, z = 35, and z = 70 cm (Pulse 30924047).
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Figure 2.5: Normalized m = 1 mode at z = 0 and total plasma current, with the quiescent
period indicated. A horizontal dashed line at 0.2 is plotted for reference (Pulse 30924047).

sets of fields overall is similar. More insight into processes in the acceleration region can be

gained from the contour plots of the current distribution over time shown in Figs. 2.7(a)

and 2.7(b). In the figures, the current measured by each magnetic probe is normalized

by the total current. The result shows what percentage of the total current passes a given

magnetic probe along the outer electrode and then attaches downstream through the plasma

to return along the inner electrode and produce the magnetic field at the probe, as shown

in Fig. 2.8. The locations of the 90, 80, 70, 60, and 50 % lines are plotted as contours versus

time, showing the dynamics of the current distribution in the acceleration region. Most

of the current flows initially near the gas injection plane, but is quickly swept out of the

acceleration region in the current sheet. As the quiescent period begins, current spreads

back into the accelerator and remains there until it is swept out again at the end of the

quiescent period. During the quiescent period, half of the total current through the plasma

flows in the acceleration region. The current distribution also undergoes oscillations that

are more dramatic for a 9 kV plasma pulse than for a 6 kV pulse.



18

0 50 100

0

0.1

0.2

0.3

0.4

0.5

0.6

time (µs)

m
ag

ne
tic

 fi
el

d 
(T

)
z=−120 cm
z=−100 cm
z= −80 cm
z= −75 cm
z= −70 cm
z= −65 cm
z= −60 cm
z= −55 cm
z= −50 cm
z= −45 cm
z= −40 cm
z= −35 cm
z= −30 cm
z= −25 cm

(a)

0 50 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (µs)

m
ag

ne
tic

 fi
el

d 
(T

)

z=−120 cm
z=−100 cm
z= −80 cm
z= −75 cm
z= −70 cm
z= −65 cm
z= −60 cm
z= −55 cm
z= −50 cm
z= −45 cm
z= −40 cm
z= −35 cm
z= −30 cm
z= −25 cm

(b)

Figure 2.6: Azimuthal magnetic fields measured at various axial locations in the acceleration
region during a 6 kV and a 9 kV plasma pulse. (a) Magnetic fields at z = −120 cm, z = −100
cm, etc. during a 6 kV plasma pulse (Pulse 30924047). (b) Magnetic fields at z = −120
cm, z = −100 cm, etc. during a 9 kV plasma pulse (Pulse 40914027).
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(a)

(b)

Figure 2.7: Current distribution in the acceleration region, expressed as percentage of total
current passing an axial location along the outer electrode, attaching downstream through
the plasma to the inner electrode, and returning through the inner electrode. (a) Current
distribution during a 6 kV plasma pulse (Pulse 30924047). (b) Current distribution during a
9 kV plasma pulse (Pulse 40914027). The quiescent period is between the two dark vertical
lines.
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Figure 2.8: The current distribution in the acceleration region can be determined using
the magnetic fields measured by the axial array of magnetic probes embedded in the outer
electrode. The magnetic field at each probe is used to determine the current past that
probe, which is then normalized by the current past the probe located at z = −120 cm.
The result at each probe is the percentage of the total current that passes a given magnetic
probe along the outer electrode and then attaches downstream through the plasma to return
along the inner electrode and produce the magnetic field at the probe. The locations of the
90, 80, 70, 60, and 50 % lines are plotted as contours versus time in Figs. 4.16(a)–2.7(b).



21

REFERENCE BEAMS 

SCENE BEAMS 

BEAMSPLITTER 
VACUUM 

TANK 
ELECTRODES 

Z-PINCH 
PLASMA 

HE-NE LASER 

DETECTOR BOX 

MIRRORS 

BRAGG 
CELL 

Figure 2.9: He-Ne interferometer optical configuration. The He-Ne laser beam is split by
the Bragg cell into scene and reference beams, and 40 MHz is added to the frequency of
the reference beam. The scene and reference beams are then split into up to four separate
chords (only two are shown). The scene beam for each chord passes through the experiment,
while the reference beam does not. The two beams interfere at the detector, allowing the
chord integrated electron density along each chord to be obtained from the relative phase
shifts of the scene and reference beams.

2.2 He-Ne Interferometer

The He-Ne Interferometer is a multichord, heterodyne, quadrature, Mach-Zehnder inter-

ferometer [7, 21]. Parts of the system were inherited from the High Beta-Q Machine at

the University of Washington, in Seattle [34]. It is used to make time-dependent, chord-

integrated electron density measurements and records density information along two chords

at different axial locations or impact parameters.

2.2.1 He-Ne Interferometer Operation

The He-Ne interferometer optical configuration is shown in Fig. 2.9. An approximately 10

mW He-Ne laser with wavelength 632.8 nm is used with the multichord He-Ne interfer-

ometer. The He-Ne laser beam is split by a Bragg cell into scene and reference beams,

and 40 MHz is added to the frequency of the reference beam. The scene and reference

beams are then split into up to four separate chords. The scene beam for each chord passes

through the experiment, while the reference beam does not. The two beams interfere at

the detector, allowing the chord integrated electron density along each chord to be obtained
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Figure 2.10: Drawing of the ZaP Flow Z-Pinch Experiment showing the axial locations
of the interferometer chords used to make measurements in the acceleration region. The
interferometer chord located at z = −25 cm measures the density near the exit from the
acceleration region. The chord located at z = −65 cm measures the density just downstream
of the gas injection plane.

from the relative phase shifts of the scene and reference beams. The He-Ne interferometer

can be positioned with two or more chords at the same axial location and different impact

parameters to measure profile information in the assembly region, as in Fig. 2.9. It can also

be set up with chords at different axial locations to make measurements in the acceleration

region, as shown in Fig. 2.10

The He-Ne interferometer electronics are used to power the Bragg cell, detect and amplify

the amplitude of the laser light resulting from the interference of the scene and reference

beams, and determine the sine and cosine of the phase shift between the beams due to the

plasma. Figure 2.11 is block diagram of the interferometer electronics on a panel in the ZaP

experiment’s screen room and in a shielded box in the laboratory. A function generator is

used in the screen room to generate a sine wave with a frequency of 40 MHz. This reference

signal is then amplified and split. Half of the signal is attenuated and used to power the

Bragg cell, adding 40 MHz to the frequency of the reference beam. As described later, the

other half of the signal is used as a reference signal in measuring the sine and cosine of the
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phase shift.

The vibration of ultrasonic waves in the Bragg cell separates the He-Ne laser beam into

zeroth and first order components. The zeroth order beam is likely to be the brighter of the

two, so it is used as the scene beam, which may be attenuated on its way through the plasma

and the vacuum tank viewports. The Bragg cell vibration adds 40 MHz to the frequency of

the first order beam, which becomes the reference beam. The two beams are then split into

the separate chords of the interferometer, and the scene and reference beams of each chord

are steered together again at a photodiode detector box within the shielded box in the lab.

As shown in Fig. 2.11, the shielded box in the lab contains four photodiode detector

boxes for the four chords of He-Ne interferometry. Each detector box contains a photodiode,

biasing electronics, and a transimpedance amplifier. Electrical schematics of the photodiode

amplifier circuit and its power and bypassing circuit are shown in Figs. 2.12 and 2.13. The

photodiode and biasing electronics are also included in the amplifier circuit schematic. The

transimpedance amplifier is used to amplify the signal resulting from the interference of the

scene and reference beams. The amplifier circuit is designed for low-noise operation with a

35 to 45 MHz bandpass and a gain that is adjustable from 0.02 to 2 V/µA at 40 MHz. The

amplified signal is then carried by a coaxial cable to the screen room. The cables from all

four channels are run together with two power cables inside a copper braid for shielding to

a cable tray and then to the screen room.

The amplified signal from the lab is attenuated in the screen room, reducing the in-

fluence of electrical noise picked up on its way from the lab. As shown in Fig. 2.14, a

90-degree splitter is used to divide the detector signal into two components. The phase of

one component is shifted 90 degrees. The 40 MHz reference signal from the lab is split, but

not shifted, by a zero degree splitter and mixed with the two detector signal components.

This produces a two signals, one of which is the cosine of the phase shift between the scene

and reference beams, and the other of which is the sine of the phase shift between the scene

and reference beams. In addition to the sine and cosine components of the phase shift,

these two signals also have higher frequency components. Low-pass filters are used to filter

out these high-frequency components, leaving the sine and cosine of the phase shift to be

recorded by two channels of a Data Design Corporation TR3412 digitizer. An Interactive
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Figure 2.14: Block diagram of mixer-splitter operation. The amplified and attenuated
detector signal from the lab is split by a 90o splitter, and each component is mixed with
the 40 MHz reference signal. The products are then filtered to remove high-frequency
components and isolate the sine and cosine of the phase shift.

Data Language (IDL) procedure dense fin.pro, included in Appendix C, is used to deter-

mine the phase shift and the chord-integrated electron number density from the recorded

sine and cosine components.

Mathematically, the operation of the He-Ne interferometer is as follows. The scene and

reference beam electric fields at the detector are described by

us = Use
i[ω0t+∆φ(t)] (2.4)

ur = Ure
i(ω0+ωb)t, (2.5)

where ω0 is the laser light frequency, ωb is the reference frequency applied by the Bragg cell

(2π×40 MHz), and ∆φ(t) is the time-dependent phase shift caused by the electron density

of the plasma. The real parts of these fields are given by

us = Us cos [ω0t + ∆φ (t)] (2.6)

ur = Ur cos [(ω0 + ωb) t] . (2.7)

The intensity of the two beams when combined at the detector is the square of the sum of
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the two fields,

I = (us + ur)
2 (2.8)

= U2
s cos2 [ω0t + ∆φ (t)]

+U2
r cos2 [(ω0 + ωb) t]

+2UsUr cos [ω0t + ∆φ (t)] cos [(ω0 + ωb) t] . (2.9)

The identity

2 cosα cosβ = cos (α − β) + cos (α + β) (2.10)

can be used to rearrange the intensity, which becomes

I = (us + ur)
2 (2.11)

= U2
s cos2 [ω0t + ∆φ (t)]

+U2
r cos2 [(ω0 + ωb) t]

+UsUr {cos [ωbt + ∆φ (t)] + cos [(2ω0 + ωb) t + ∆φ (t)]} . (2.12)

All terms in the previous equation that contain the laser frequency ω0 are too high-frequency

to be correctly measured by the detector and are instead detected as their time-averaged

intensities. Terms involving the square of the cosine are time-averaged to one-half their

amplitudes, while other, unsquared cosine terms are time-averaged to zero,

cos2 α → 1
2

(2.13)

cos α → 0. (2.14)

This leaves

I =
1
2
(
U2

s + U2
r

)
+ UsUr cos [ωbt + ∆φ (t)] , (2.15)

which is the intensity measured by the detector—a sinusoidal function at the reference

frequency, ωb, with a time-dependent phase shift, ∆φ (t), due to the plasma electron density.

This signal is amplified and sent through the shielded cable to the screen room electronics.

In the screen room, the amplified signal from the detector box is attenuated and then

split by a 90o splitter into two components, π/2 radians out of phase, to eliminate what
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would otherwise cause a sign ambiguity as the phase passes through ±π radians,

Ac =
1
4
(
U2

s + U2
r

)
+

1
2
UsUr cos [ωb + ∆φ (t)] (2.16)

As =
1
4
(
U2

s + U2
r

)
+

1
2
UsUr cos [ωb + ∆φ (t) − π/2] (2.17)

=
1
4
(
U2

s + U2
r

)
+

1
2
UsUr sin [ωb + ∆φ (t)] , (2.18)

where the constant scale factors associated with amplifying and attenuating the signal have

been neglected. The 40-MHz reference signal that also went to the Bragg cell is amplified

and then split by a 0o splitter into two components, each described by

Ab =
1
2
Ub cos (ωbt) . (2.19)

A mixer is used to multiply each part of the split reference signal by one of the detector

signal components. Figures 2.15(a)–2.15(d) show the splitter input signals–the reference

signal and the detector signal–and the resulting mixer outputs. The 40 MHz reference signal

frequency is visible in all of the signals. Figures 2.16(a)–2.16(d) show the splitter inputs

and mixer outputs recorded over a longer time interval. The lower-frequency influence of

the phase shift is visible in the silhouettes of the detector signal and mixer outputs. The

signals shown were not obtained during a plasma pulse, so the phase shift in this case is

due to vibration of the interferometer optics, instead of the plasma electron density. This

vibration occurs over a time interval (4 ms) that is much longer than the plasma pulse (100

µs). It is accounted for in the IDL procedure used to obtain the chord-integrated density by

subtracting a high-order polynomial baseline from the measured phase shift. For the present

discussion of interferometer operation, however, it serves as a substitute for the phase shift
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Figure 2.15: Mixer-splitter input and output signals over a short time interval, with the
40-MHz reference signal frequency apparent in the waveforms of all four signals. (a) 40-
MHz reference signal splitter input. (b) Detector signal splitter input. (c) Unfiltered cosine
component of the phase shift mixer output. (d) Unfiltered sine component of the phase
mixer output.
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Figure 2.16: Mixer-splitter input and output signals over a longer time interval, with the
influence of the phase shift visible in the silhouettes of some signals. (a) 40 MHz reference
signal splitter input. (b) Detector signal splitter input. (c) Unfiltered cosine component of
the phase shift mixer output. (d) Unfiltered sine component of the phase mixer output.
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caused by the plasma density. The products of the mixers are

Acos∆φ = AcAb (2.20)

=
{

1
4
(
U2

s + U2
r

)
+

1
2
UsUr cos [ωb + ∆φ (t)]

}{
1
2
Ub cos (ωbt)

}
(2.21)

=
1
8
(
U2

s + U2
r

)
Ub cos (ωbt) +

1
4
UsUrUb cos [ωbt + ∆φ (t)] cos (ωbt) (2.22)

Asin∆φ = AsAb (2.23)

=
{

1
4
(
U2

s + U2
r

)
+

1
2
UsUr sin [ωb + ∆φ (t)] }{ 1

2
Ub cos (ωbt)

}
(2.24)

=
1
8
(
U2

s + U2
r

)
Ub cos (ωbt) +

1
4
UsUrUb sin [ωbt + ∆φ (t)] cos (ωbt) . (2.25)

These can be rewritten using the trigonometric identity described above and the trigono-

metric identity

2 sinα cosβ = sin (α + β) + sin (α − β) (2.26)

to contain terms that depend solely on the phase,

Acos ∆φ =
1
8
(
U2

s + U2
r

)
Ub cos (ωbt) (2.27)

+
1
8
UsUrUb {cos [∆φ (t)] + cos [2ωbt + ∆φ (t)]} (2.28)

Asin ∆φ =
1
8
(
U2

s + U2
r

)
Ub cos (ωbt) (2.29)

+
1
8
UsUrUb {sin [∆φ (t)] + cos [2ωbt + ∆φ (t)]} . (2.30)

Both mixer signals are filtered by 10 MHz low pass filters to remove the components at

one and two times the 40 MHz reference signal frequency. The time-averaged value of these

components is zero, leaving two signals that depend only on the sine and cosine of the phase,

Acos∆φ =
1
8
UsUrUb cos [∆φ (t)] (2.31)

Asin∆φ =
1
8
UsUrUb sin [∆φ (t)] . (2.32)

Elimination of the extraneous high-frequency components and isolation of the sine and cosine

components of the phase shift by the low pass filters is evident in the unfiltered and filtered
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Figure 2.17: Mixer-splitter output signals before and after the 10 MHz low-pass filter.
(a) Unfiltered mixer output signal containing high-frequency components in addition to a
low-frequency term that depends on the cosine of the phase shift. (b) Unfiltered mixer
output signal containing high-frequency components in addition to a low-frequency term
that depends on the sine of the phase shift. (c) Mixer output signal after the high-frequency
components have been removed by the low-pass filter, leaving the cosine of the phase shift.
(d) Mixer output signal after the high-frequency components have been removed by the
low-pass filter, leaving the sine of the phase shift.

mixer outputs shown in Figures 2.17(a)–2.17(d). The sine and cosine components can be

plotted as a circular Lissajous curve that is useful when aligning the interferometer and

running the experiment. In polar coordinates, the radius of the Lissajous curve corresponds

to the amplitude of the filtered signals, and the angle of each Lissajous point is the relative

phase shift measured by the interferometer. The radius remains relatively constant as

the angle varies with the phase shift over time. A typical Lissajous curve is plotted in

Fig. 2.18(a). When the adjustable detector gain is too high, artifacts in the filtered mixer

outputs are often visible in the shape of the Lissajous, which can become diamond-shaped

or have a variable radius. Figure 2.18(b) is an example of a Lissajous indicating that the

detector gain is too high.

After the filters, the sine and cosine components of the phase shift are digitized, and the
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Figure 2.18: Lissajous curves that result when the sine and cosine components of the phase
are plotted against one another. (a) Typical Lissajous curve. (b) Distorted Lissajous curve
indicating that the detector gain is set too high.
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phase shift is found in the IDL procedure mentioned above by taking the arctangent of the

quotient of the two signals,

∆φ (t) = arctan
(

Asinφ

Acosφ

)
(2.33)

=
1
8UsUrUb sin [∆φ (t)]
1
8UsUrUb cos [∆φ (t)]

. (2.34)

Figure 2.19(a) shows the sine and cosine components of the phase shift, digitized during

an actual plasma pulse. In finding the phase shift, the IDL procedure must also adjust the

offsets of the sine and cosine signals and correct any fringe jumps. It can also be set to

apply a minus sign to the sine component of the phase shift if the 40 MHz reference signal

is connected to the 90o splitter instead of the detector signal. This phase shift (in radians)

is then converted to the chord-integrated density using the result of Eq. 4.2 in Ref. [28],
∫

ne (t) dl (t) = 5.61× 1020∆φ (t)
[
m−2

]
, (2.35)

which assumes the plasma density is small compared to the cutoff density, ne � nc, an

appropriate assumption in this case [18]. The cutoff density is given by

nc ≡
(

2πc

λ

)2 meε0
e2

, (2.36)

where c is the speed of light, λ is the laser wavelength, me is the electron mass, ε0 is the

permittivity of free space, and e is the elementary charge. Figure 2.19(b) is the chord-

integrated electron density obtained during a plasma pulse using the sine and cosine signals

of Fig. 2.19(a).

2.2.2 He-Ne Interferometer Results

The multichord He-Ne interferometer was used to record the time evolution of the chord-

integrated electron number density in the experiment at various axial locations and impact

parameters. During the quiescent period, a highly pinched plasma is observed at or near

the axis of the experiment, and lower density is observed off-axis, as shown in Figs. 2.20(a)

and 2.20(b) for a 6 kV hydrogen plasma pulse. In this case, two chords of interferometry

were used, both located at axial location z = 0 cm, but at different impact parameters. One
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Figure 2.19: Determination of the chord-integrated electron density during a plasma pulse.
(a) Digitized cosine and sine of the phase shift. (b) Chord-integrated electron density
obtained by applying the IDL procedure dense fin.pro to the digitized sine and cosine of
the phase shift (Pulse 30924047).
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chord passes through the center of the cylindrical assembly region containing the Z-pinch,

at impact parameter y = 0 cm. The second is located slightly off-axis, at impact parameter

y = 2.5 cm. The arrival of the plasma at z = 0 cm is indicated by the high electron

number density along both chords beginning at 23 µs. The presence of a dense Z-pinch is

indicated by the drop in the off-axis density measured at y = 2.5 cm and the concurrent rise

in the density measured by the on-axis chord at y = 0 cm that occurs near the beginning

of the quiescent period. This density difference persists throughout the quiescent period,

indicating the presence of a dense Z-pinch at or near the axis of the experiment during the

quiescent period.

Figures 2.21(a) and 2.21(b) show the normalized m = 1 mode, total plasma current, and

chord-integrated density along two chords at z = 0 and y = 0 and 2.0 cm. The density is

high along both chords as the plasma arrives, as in the 6 kV case. With the higher capacitor

bank voltage, however, the separation between the two chords is not as well-correlated with

the beginning and end of the quiescent period.

Figure 2.22 shows the correlation between the quiescent period and the period of time

during which a dense Z-pinch is observed on the axis of the experiment. In this case,

the dense Z-pinch period begins when the chord-integrated density measured by the on-

axis interferometer chord is twice that measured by the off-axis chord. It ends when the

density along both chords drops. Because the chord-integrated density along the two chords

is nearly uniform during the arrival of the current sheet and formation of the Z-pinch

(see Fig. 2.20(b)), the dense Z-pinch period begins well after the arrival of the current

sheet. The lengths of the quiescent period and the dense Z-pinch period decrease with

increasing capacitor bank voltage. Both are so short at 9 kV that they are difficult to

reliably determine.

Interferometer chords positioned at z = 61 cm and impact parameters y = 0 and

y = 2.1 cm show the time evolution of the density profile farther downstream in the assembly

region, near the outer electrode end wall. Figures 2.23(a) and 2.23(b) show the normalized

m = 1 mode at z = 0, total plasma current, and chord-integrated electron density mea-

sured along two chords at z = 61 cm during a 6 kV hydrogen plasma pulse. The quiescent

period measured by the z = 0 azimuthal magnetic probe array is indicated in both figures.
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(a)

(b)

Figure 2.20: (a) Normalized m = 1 mode at z = 0 and total plasma current for a 6 kV ZaP
plasma pulse with hydrogen as the working gas. Magnetic mode activity is low during the
quiescent period, which extends from 27 µs to 68 µs. (b) Chord-integrated electron number
density measured at z = 0 and two impact parameters. One chord passes through the center
of the cylindrical assembly region containing the Z-pinch. The other is located 2.5 cm above
the center of the assembly region. Both chords are perpendicular to the axis of the assembly
region. The difference between the measurements at the two locations indicates the presence
of a highly pinched plasma at or near the axis of the experiment during the quiescent period
(Pulse 40630004).

The chord-integrated density along both chords is high from the time the plasma arrives at

z = 61 cm to well after the end of the quiescent period at z = 0 cm. Similar behavior is

observed for the 9 kV hydrogen plasma pulse in Figs. 2.24(a) and 2.24(b).
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(a)

(b)

Figure 2.21: (a) Normalized m = 1 mode at z = 0 and total plasma current for a 9 kV
hydrogen plasma pulse. (b) Chord-integrated electron number density measured at z = 0
and y = 0 and 2.0 cm (Pulse 40914031).

Interferometer measurements also show the acceleration of plasma along the electrodes

in the acceleration region towards the assembly region during formation of the Z-pinch.

Fig. 2.25(a) shows the normalized m = 1 mode and plasma current for the plasma pulse

whose chord-integrated electron number density is shown in Fig. 2.25(b). As shown in

Fig. 2.10, one interferometer chord measures the density near the exit from the acceleration

region, while the other is located just downstream of the gas injection plane. Figures 2.26(a)
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Figure 2.22: The length of the quiescent period decreases with increasing capacitor bank
voltage. The quiescent period is highly correlated with the time period during which a
dense Z-pinch is observed on the axis of the experiment.
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(a)

(b)

Figure 2.23: (a) Normalized m = 1 mode at z = 0 cm and total plasma current for
a 6 kV hydrogen plasma pulse. (b) Chord-integrated electron number density measured
at z = 61 cm and two impact parameters. One chord passes through the center of the
cylindrical assembly region containing the Z-pinch. The other is located 2.1 cm above the
center of the assembly region. Both chords are perpendicular to the axis of the assembly
region. The chord-integrated density along both chords is high from the time the plasma
arrives at z = 61 cm to well after the end of the quiescent period at z = 0 (Pulse 50223005).

and 2.26(b) show similar measurements made during a 9 kV hydrogen plasma pulse.

Just prior to a plasma pulse, hydrogen gas is injected by nine gas valves located at the

gas injection plane. One valve injects gas through eight channels in the inner electrode, and

the other eight valves inject gas through holes in the outer electrode. When the voltage is
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(a)

(b)

Figure 2.24: (a) Normalized m = 1 mode at z = 0 cm and total plasma current for a
9 kV hydrogen plasma pulse. (b) Chord-integrated electron number density measured at
z = 61 cm and y = 0 and 2.1 cm (Pulse 50125032).

applied to the electrodes, this gas is ionized, forming a plasma that is accelerated along the

electrodes by the Lorentz force, towards the assembly region [13]. The sharp rise in density

measured by both chords occurs as the current sheet passes first the chord closer to the

gas injection plane and then the chord at the exit of the accelerator. Both interferometer

chords show the continued presence of plasma in the accelerator throughout the quiescent

period, indicating that gas is being ionized and accelerated from the acceleration region
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(a)

(b)

Figure 2.25: (a) Normalized m = 1 mode and total plasma current for a 6 kV hydrogen
plasma pulse. (b) Chord-integrated electron number density measured at two axial loca-
tions. The interferometer chord located at z = −25 cm measures the density near the exit
from the acceleration region. The chord located at z = −65 cm measures the density just
downstream of the gas injection plane. The difference in arrival times of the plasma at the
two axial locations indicates acceleration of plasma along the electrodes in the acceleration
region towards the assembly region. The end of the quiescent period is correlated with the
exhaustion of plasma in the accelerator (Pulse 30924047).

into the assembly region, maintaining the flow in the Z-pinch. Depletion of plasma in the

acceleration region corresponds to the onset of large mode fluctuations and the end of the

quiescent period.

The helium-neon interferometer was positioned at axial location z = 0 and impact pa-
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(a)

(b)

Figure 2.26: (a) Normalized m = 1 mode and total plasma current for a 9 kV hydrogen
plasma pulse. (b) Chord-integrated electron number density measured at z = −25 cm and
z = −65 cm (Pulse 30911019).

rameters y = 0 and y = −1.5 cm during a density profile investigation conducted with the

holographic interferometer positioned at the same axial location. To avoid the holographic

interferometer optics, the beams of the He-Ne interferometer were aligned to pass through

the vacuum tank at a slight diagonal in the horizontal (x-z) plane. The time evolution

of the chord-integrated electron number density at the midplane of a 50 cm-long helium

Z-pinch was studied with the He-Ne interferometer during the investigation. A capacitor

bank voltage of 9 kV was used for the pulses. The two-chord He-Ne interferometer measure-
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ments shown in Figs. 2.27(b), 2.28(b), and 2.29(b) correspond to holographic interferometer

measurements made during arrival and formation of the Z-pinch. The corresponding nor-

malized m = 1 mode, total plasma current, and holography laser monitor are plotted in

Figs. 2.27(a), 2.28(a), and 2.29(a) for each pulse. The holography laser monitor in the

figures shows when each interferogram was made. The chord-integrated electron density

is approximately the same at y = 0 cm and y = −1.5 cm during arrival and late forma-

tion, when the interferograms of Pulses 30205010 and 30205018 were made. It is higher at

y = 0 cm during early formation, corresponding to the peaked profile obtained from the

interferogram of Pulse 30205014.

Figures 2.30(a)–2.32(b) show the normalized m = 1 mode, plasma current, holography

laser monitor, and chord-integrated electron number density from the two-chord He-Ne

interferometer for helium plasma pulses used to study the density profile during and after

the quiescent period. The chord-integrated electron density measured at y = 0 cm is much

higher than that measured at y = −1.5 cm during the middle of the quiescent period, when

the interferogram of Pulse 30204007 was made. Later in the quiescent period, when the

interferogram of Pulse 30204019 was made, the value of the chord-integrated density at

y = 0 drops, leading to a less-peaked density profile. The interferogram of Pulse 30204021

was made after the quiescent period, when the chord-integrated density at both y = 0 cm

and y = −1.5 cm is low. The decrease in the peak of the density profile late in the quiescent

period is typically sharper for helium than for hydrogen or hydrogen/methane.

2.3 Holographic Interferometer

The holographic interferometer uses the expanded beam of a pulsed ruby laser to make a

single-time measurement of the electron number density, in the form of a holographic inter-

ferogram [19]. It produces a two-dimensional map of the chord-integrated electron density,

as opposed to a single-point measurement. An Abel inversion is used to determine the

radial electron density profile based on the chord-integrated electron density. Holographic

interferograms are made at different times on successive plasma pulses to study the time

evolution of the density profile.
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(a)

(b)

Figure 2.27: Normalized m = 1 mode, plasma current, and chord-integrated electron number
density for the helium Z-pinch used to study the density profile during arrival (Fig. 2.40).
The holography laser monitor shows when the interferogram was made (Pulse 30205010).
(a) Normalized m = 1 mode and plasma current. (b) Chord-integrated electron number
density.
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(a)

(b)

Figure 2.28: Normalized m = 1 mode, plasma current, and chord-integrated electron number
density for the helium Z-pinch used to study the density profile during early formation
(Fig. 2.40). The holography laser monitor shows when the interferogram was made (Pulse
30205014). (a) Normalized m = 1 mode and plasma current. (b) Chord-integrated electron
number density.
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(a)

(b)

Figure 2.29: Normalized m = 1 mode, plasma current, and chord-integrated electron num-
ber density for the helium Z-pinch used to study the density profile during late formation
(Fig. 2.40). The holography laser monitor shows when the interferogram was made (Pulse
30205018). (a) Normalized m = 1 mode and plasma current. (b) Chord-integrated electron
number density.
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(a)

(b)

Figure 2.30: Normalized m = 1 mode, plasma current, and chord-integrated electron number
density for the helium Z-pinch used to study the density profile during the middle of the
quiescent period (Fig. 2.41). The holography laser monitor shows when the interferogram
was made (Pulse 302040007). (a) Normalized m = 1 mode and plasma current. (b) Chord-
integrated electron number density.

2.3.1 Holographic Interferometer Operation

The holographic interferometer used to measure the time evolution of the density profile

of the flowing Z-pinch was a single-pass system whose optical arrangement is pictured in
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(a)

(b)

Figure 2.31: Normalized m = 1 mode, plasma current, and chord-integrated electron number
density for the helium Z-pinch used to study the density profile during the late quiescent
period (Fig. 2.41). The holography laser monitor shows when the interferogram was made
(Pulse 30204019). (a) Normalized m = 1 mode and plasma current. (b) Chord-integrated
electron number density.
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(a)

(b)

Figure 2.32: Normalized m = 1 mode, plasma current, and chord-integrated electron number
density for the helium Z-pinch used to study the density profile after the quiescent period
(Fig. 2.41). The holography laser monitor shows when the interferogram was made (Pulse
30204021). (a) Normalized m = 1 mode and plasma current. (b) Chord-integrated electron
number density.
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Figure 2.33: Optical arrangement of the single-pass holographic interferometer.

Fig. 2.33. The expanded beam of a pulsed ruby laser is split by a beamsplitter into two

beams: a scene beam and a reference beam. The scene beam passes through the plasma

and hits the holographic film. The reference beam does not pass through the plasma and

hits the holographic film at an angle with respect to the scene beam (roughly 15 degrees).

The phase of the scene beam is changed through interaction with the plasma electrons as

it passes through the Z-pinch. This phase difference is recorded in the interference pattern

produced by the two beams at the holographic film.

Phase differences in the two beams may also be caused by windows and other imperfec-

tions in the optical setup, so two holograms are made at the same spot on the film. The

first hologram is made by the method described above, except prior to the plasma pulse,

with no plasma present in the vacuum chamber. This hologram records the phase difference

due to windows and imperfections. The second hologram is made during the plasma pulse.

It records the phase difference due to windows and imperfections, as well as the electrons

in the Z-pinch. When these two holograms are reconstructed using a beam to mimic the

original reference beam, the resulting interference pattern will be the result of the phase

difference due to the plasma electrons alone. This method of double-exposure holographic

interferometry creates a two-dimensional record of the chord-integrated electron number
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density in the plasma.

To aid in interpretation of the interferogram, a mirror in the reference beam is tilted

slightly between the two holographic exposures by passing a current through a wire attached

to the mirror mount, causing the wire to heat and lengthen. This introduces reference fringes

into the interferogram, an effect similar to the heterodyning technique used with the He-Ne

interferometer described earlier. The spatial frequency of the fringes results from the slight

difference in the angle between the scene and reference beams in the two exposures. It is

analogous to the temporal 40 MHz reference frequency added to the He-Ne interferometer

reference beam by the Bragg cell.

In addition to the beamsplitter and mirrors used to steer the scene and reference beams

onto the film, a lens is used to image the scene beam’s pass through the Z-pinch onto the

film. This lens serves three purposes. First, imaging the location of the plasma onto the

film helps to reduce the refractive effects of dirty windows, improving the quality of the

hologram [22]. Second, it allows an iris to be placed in front of the film to reduce the

amount of light from the plasma that hits the film. Third, the image is demagnified on the

film, increasing the energy density of the laser light to a level that will adequately expose

the film. A lens is included in the beam path of the reference beam for the second and third

reasons as well.

Reflections from the window must be prevented from reflecting into the laser cavity

or from interfering with the scene and reference beams at the holographic film. For this

reason, the mirror used to reflect the scene beam through the plasma is positioned slightly

downstream (towards the outer electrode end wall) of the z = 0 viewport. As a result, the

scene beam passes through the glass of the z = 0 viewports at a slight angle and the stray

reflection from the laser-side window hits the mirror mount.

A Korad K-1 pulsed ruby laser with a KQS2 Pockels cell is used to make the holo-

graphic interferograms on 35 mm Slavich PFG-01 holographic film. After both holographic

exposures are made for each interferogram on the film, it is developed for ten minutes in

Kodak Developer D-19, put into Kodak X-Ray Indicator Stop Bath for ten seconds, and

fixed using Kodak Rapid Fixer for five minutes, all in the dark in a developing tank. The

rest of the processing steps can then be done in light. The film is rinsed for five minutes,
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bleached in a diluted potassium dichromate solution to improve the diffraction efficiency of

the holograms, and rinsed for ten minutes.

Once processed, the hologram is reconstructed using a He-Ne laser to mimic the original

ruby laser reference beam. This reconstruction beam is diffracted by the interferogram as

it passes through the film at the same angle as the original reference beam. The resulting

interference pattern, the reconstructed holographic interferogram, is photographed using

Polaroid film and scanned into a computer at a resolution of 300 pixels per inch.

A significant degradation in the quality of the interferograms occured in moving from

the single-pass holographic interferometer to a double-pass setup used later. A great deal of

time and effort was spent to determine the source of this degradation, including removing

vacuum tank windows, changing mirrors and beamsplitters, adjusting beam path lengths,

switching power supplies, repairing the ground connection to the Pockels cell, cleaning

the polarizer stack in the Pockels cell, and refining the output beam from the laser by

adjusting the power supply settings, the iris size and location, and the optical alignment of

the components in the laser cavity. None of these efforts had a significant impact on the

quality of the interferograms. The quality was finally improved, however, after the laser

cavity was disassembled and cleaned. Several corroded bolts and a flashlamp connector were

replaced, and the electrical connections to the flashlamp were tightened. Some evidence of

arcing was discovered inside the housing. At the same time, the deionization and particle

filters in the laser cooling lines were replaced, and an unreliable connection between the

power supply and the high voltage output to the laser head was replaced. This high voltage

connector showed signs of arcing. Examples of holographic interferograms made before and

after the laser was refurbished are shown in Figs. 2.34(a)–2.34(b). Both interferograms are

baseline interferograms made with no plasma present and should be composed of straight,

vertical reference fringes.

Figs. 2.35(a)–2.35(b) show examples of interferograms made with and without plasma

present during the second holographic exposure. (Plasma was not present during the first

exposure of either interferogram.) The presence of the plasma causes a measurable fringe

shift in the interferogram of Fig. 2.35(b). This fringe shift can be normalized by the distance

between neighboring bright or dark fringes and expressed as the fringe order. The maximum
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(a) (b)

Figure 2.34: Holographic interferograms made before and after the laser was refurbished.
Both interferograms were made with no plasma present and should be composed of straight,
vertical reference fringes. (a) Low quality holographic interferogram made before the laser
was refurbished. (b) Higher-quality interferogram made after the laser was refurbished.
Placement of the beamsplitter was not optimized for the optical configuration used, so a
portion of the interferogram is cut off by the beamsplitter.

(a) (b)

Figure 2.35: Holographic interferograms made with and without plasma present. (a) No
plasma. (b) Hydrogen Z-pinch plasma (Pulse 20910027). Reference wires attached to the
vacuum tank are visible in both interferograms. The reference wires were attached 0.5 cm
above and below the center of the vacuum tank window for both interferograms, but the
vertical position of the scene beam was lower when the interferogram of the Z-pinch was
made.
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fringe shift in Fig. 2.35(b) is approximately one-half fringe width, or a fringe order of one-

half. The fringe order is proportional to the phase shift in the laser light as it passed through

the plasma and also proportional to the chord-integrated electron number density according

to the equation

f =
∆φ

2π
=

1
2λnc

∫
nedl, (2.37)

where f is the fringe order, ∆φ is the phase shift, ne is the electron density, λ is the ruby laser

wavelength, and nc is the plasma cutoff density, described by Eq. 2.36. This relationship is

used in the IDL procedure invert interferogram.pro, contained in Appendix E, to calculate

the chord-integrated electron number density based on the fringe shift in the interferogram.

The fringe shift is measured by the IDL procedure analyze interferogram.pro, contained in

Appendix D. Once the fringe shift and the chord-integrated density have been determined, a

discrete Abel inversion is used to obtain the radial density profile from the chord-integrated

density. This inversion is also performed by the IDL procedure invert interferogram.pro.

Reference [19] contains a more detailed explanation of this process.

The plasma is assumed to be radially symmetric, so that the chord-integrated number

density at a given impact parameter is given by the Abel transform equation,

Ne (y) = 2
∫ ∞

y

ne (r)

(y2 − r2)1/2
r dr, (2.38)

where Ne is the chord-integrated electron number density, ne is the electron number density,

y is the impact parameter of the chord and r is the distance of a point on the chord from the

center of the Z-pinch [40]. The “2” in front of the integral in this expression is a “4” when

the double-pass system is used instead of the single-pass system. If the plasma is modeled

as I concentric, cylindrical shells, the integral can be discretized and inverted to arrive at

the discrete Abel inversion formula,

nei =
1

Aii

(
1
2
Nei −

I−1∑

k=i+1

nekAki

)
. (2.39)

where nei is the number density across shell i and Nei is the chord-integrated number density

at the impact parameter corresponding to shell i. As shown in Fig. 2.36, the coefficients

Aki are half the path lengths through each cylindrical shell at each impact parameter,

Aki = (r2
k+1 − r2

i )
1/2 − (r2

k − r2
i )

1/2. (2.40)
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Figure 2.36: Graphical depiction of each coefficient Aki as half the path length through a
cylindrical shell of plasma at a given impact parameter.
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The shell widths are usually uniform, but can vary to account for points missed during

fringe localization.

In effect, using the Abel inversion method is equivalent to the following process. The

electron density of the outermost shell (shell I) is calculated by dividing the chord-integrated

density at the first chord by the path length through the shell at that impact parameter.

The electron density of the second outermost shell (shell I − 1) is calculated in a similar

manner using the chord-integrated density at the second chord, except there are two shells

involved. The contribution of the outermost shell can be calculated, since the electron

density and the path length through the outermost shell are known. This contribution is

then subtracted from the chord-integrated density to yield the chord-integrated density due

to the second outermost shell alone. This value is divided by the path length through the

second outermost shell to yield the electron density of that shell. This process is repeated,

working inward, until the innermost shell is reached and the electron density at every shell

has been determined. Each interferogram contains enough information to produce two radial

density profiles by this method; one is based on the lower part of the interferogram, and

the other is based on the upper part.

The location of the center of the shell model affects the results of the inversion method.

For this reason, the Abel inversion method is run several times, with the shell model centered

about a different point each time. The two radial density profiles that result at each center

are compared using the square root of the sum of the squares of the differences in the average

slopes of the electron densities in their ten innermost shells,

∆ =

{
9∑

i=0

[(
nei+1 − nei

rei+1 − rei

)

U

−
(

nei+1 − nei

rei+1 − rei

)

L

]2
}1/2

, (2.41)

where the subscripts U and L denote quantities calculated from the upper and lower portions

of the interferogram, respectively. The center where this quantity is smallest yields the most

symmetric shell model, and the resulting radial density profiles indicate the radial electron

density profile of the Z-pinch. Minimizing ∆ is essentially the same as setting the second

derivative of the electron density equal to zero across the axis (d2ne/dr2 = 0). This leads

to two density profiles that are symmetric about an axis located at a local maximum or

minimum in the density.
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Figures 2.37(a)–2.37(b) show the chord-integrated electron number density and radial

electron number density profile obtained from the bright fringe just to the left of the center-

most bright fringe in the holographic interferogram of Fig. 2.35(b). The error bars shown

for the chord-integrated density result primarily from smoothing data stored as pixels in

the interferogram. The error bars for the radial profile result when the errors in the chord-

integrated density are passed through the inversion method. They are particularly large

near r = 0 because the effect of smoothing the chord-integrated density is large near its

peak, tending to reduce the magnitude of the radial profile near the axis of the Z-pinch.

A single-pass optical setup was used to investigate the electron density profiles of 50

cm-long Z-pinches composed of hydrogen, a 50% methane/50% hydrogen mixture, and

helium. Examples of 50% methane/50% hydrogen and helium Z-pinch interferograms are

shown in Figs. 2.38(a)–2.38(b). The fringe shift due to the plasma electron density in

these interferograms can be compared to that of the hydrogen Z-pinch interferogram of

Fig. 2.35(b). As shown in Fig. 2.39, a Z-pinch formed with helium has a higher density

than a methane/hydrogen or pure hydrogen Z-pinch. This leads to a maximum fringe order

of about one fringe for a helium Z-pinch and a higher signal-to-noise ratio in the chord-

integrated density. As a result, features of the chord-integrated density and the radial

electron density profile are more discernible. For that reason, the investigation of the time

evolution of the electron number density profile of a helium Z-pinch was performed with the

single-pass holographic interferometer.

2.3.2 Holographic Interferometer Results

The holographic interferometer was used on successive helium plasma pulses to investigate

the time evolution of the radial electron density profile of 50 cm-long helium Z-pinches on

the ZaP experiment, rather than the 100 cm-long Z-pinches made using the experimental

configuration shown in Fig. 1.2. A capacitor bank voltage of 9 kV was used on the pulses,

with a single ignitron connected to four 170 µF capacitors in parallel. A higher capacitor

bank voltage decreases the length of the quiescent period but generally increases the tem-

perature and density in the Z-pinch. For that reason, the highest capacitor bank voltage
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(a)

(b)

Figure 2.37: Chord-integrated electron density and radial electron density profile for a
hydrogen Z-pinch, obtained from the holographic interferogram of Fig. 2.35(b). (a) Chord-
integrated density determined from the shift of a fringe in the interferogram. (b) Radial
electron density profile that results from Abel inversion of the chord-integrated density.
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(a) (b)

Figure 2.38: Holographic interferograms made using the single-pass holographic interferom-
eter. (a) 50% methane/50% hydrogen Z-pinch (Pulse 21029011). (b) Helium Z-pinch (Pulse
30204007).

Figure 2.39: Radial electron density profiles for hydrogen, 50% methane/50% hydrogen,
and helium Z-pinches (Pulses 20910027, 21029011 and 30204007).
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typically used when operating the experiment was used for the time survey. Several interfer-

ograms were made before, during, and after the quiescent period, on separate plasma pulses.

Figure 2.40 shows density profiles during formation of the Z-pinch near the beginning of

the quiescent period. These profiles were obtained during the plasma pulses whose He-Ne

interferometer measurements and normalized m = 1 mode is shown in Figs. 2.27(a)–2.29(b).

The peak in the holography laser monitor shown in the figures indicates when each interfer-

ogram was made. To within the resolution and view of the holographic interferometer, the

density profile is initially flat or zero as the plasma arrives at the axial location where the

holographic measurements were made (Pulse 30205010). The density profile becomes more

peaked during the early part of the Z-pinch’s formation (Pulse 30205014). During the latter

part of the formation process, the density profile becomes relatively flat or zero, indicating

that either the electron density is below the resolution of the holographic interferometer or

its edges are out of view (Pulse 30205018).

Figure 2.41 shows density profiles during and after the quiescent period of the Z-pinch.

These profiles were obtained during the plasma pulses whose He-Ne interferometer mea-

surements and normalized m = 1 mode is shown in Figs. 2.30(a)–2.32(b). The peak in the

holography laser monitor shown in the figures indicates when each interferogram was made.

A peaked profile was observed during the middle of the quiescent period (Pulse 30204007).

The density profile becomes less peaked late in the quiescent period (Pulse 30204019) and

flattens following the quiescent period (Pulse 30204021).

2.4 Fast-Framing Camera

The time evolution of the Z-pinch emission has been captured by an Imacon fast-framing

camera capable of taking either streak photos or individual frames 200 ns apart. Figure 2.42

shows a streak photo of a 5 kV hydrogen Z-pinch at z = 0 made through a 25 micron slit

at a scan rate of 1000 ns/mm. The vertical position of the Z-pinch, calculated from the

magnetic mode data, is plotted in red over the photo as y versus time. Prominent features

in the vertical position are used to scale the streak photo. The vertical dashed red line shows

the trigger time of the camera, and the solid blue lines indicate the beginning and end of

the quiescent period. The photo shown was made during a 5 kV hydrogen plasma pulse,
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Figure 2.40: Radial electron density profiles for helium Z-pinches during formation of the
Z-pinch (Pulses 30205010, 30205014, and 30205018).

with an f-stop setting of 3.5 and no filter. The arrival of the current sheet and eventual

formation of a discrete Z-pinch near the beginning of the quiescent period can be seen in

the photo. A discrete Z-pinch is visible until the end of the quiescent period, after which

the plasma emission is suddenly reduced. During the time period between the arrival of

the plasma and formation of the Z-pinch, the plasma emission is typically low and diffuse,

although at times what appears to be a wildly oscillating plasma column can be seen.

Figures 2.43(a)–2.43(h) are a series of framed images taken 200 ns apart during the

arrival of the current sheet at z = 0. The current sheet moves past the 5 cm diameter hole

in the outer electrode in four frames, allowing its velocity to be estimated at 60 km/s. The

associated normalized m = 1 mode, total plasma current, and trigger times for the first and

last images are shown in Fig. 2.44.

Figures 1.5(a)–1.5(h) in Chapter 1 are examples of images made during the quiescent
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Figure 2.41: Radial electron density profiles for helium Z-pinches during and after the
quiescent period (Pulses 30204007, 30204019, 30204021).

period showing the Z-pinch. Figures 2.45(a)–2.45(h) and Figs. 2.47(a)–2.47(h) were made

near the end of the quiescent period. They show what looks very much like classical MHD

kink and sausage instabilities developing as the mode activity grows near the end of the

quiescent period. The plasma current, normalized m = 1 mode, and camera trigger times

associated with these two sets of images are included in Figs. 2.46 and 2.48.



65

Figure 2.42: Streak photo of the Z-pinch at z = 0 made through a 25 micron slit at a scan
rate of 1000 ns/mm. The vertical position of the Z-pinch, calculated from the magnetic
mode data, is plotted in red over the photo as y versus time. Prominent features in the
vertical position are used to scale the streak photo. The trigger time of the camera is
indicated by the vertical dashed red line, and the solid blue lines indicate the beginning and
end of the quiescent period (Pulse 40219011).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.43: Photos of Z-pinch emission showing the arrival of the current sheet at z = 0.
The photos represent unfiltered visible light emitted by the plasma and are made approxi-
mately 200 ns apart through the vacuum tank viewport and 2 in diameter hole in the outer
electrode at z = 0 (Pulse 40108045). (a) 22.5 µs. (b) 22.7 µs. (c) 22.9 µs. (d) 23.1 µs. (e)
23.4 µs. (f) 23.6 µs. (g) 23.8 µs. (h) 24.0 µs.

Figure 2.44: Plasma current and normalized m=1 mode associated with the images captur-
ing the arrival of the current sheet. Vertical lines indicate the times at which the first and
last images were made (Pulse 40108045).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.45: Photos of Z-pinch emission showing the development of a possible kink insta-
bility near the end of the quiescent period. The photos represent unfiltered visible light
emitted by the plasma and are made approximately 200 ns apart through the vacuum tank
viewport and 2 in diameter hole in the outer electrode at z = 0 (Pulse 40127038). (a) 74.1
µs. (b) 74.3 µs. (c) 74.5 µs. (d) 74.7 µs. (e) 75.0 µs. (f) 75.2 µs. (g) 75.4 µs. (h) 75.6 µs.

Figure 2.46: Plasma current and normalized m=1 mode associated with the images showing
the development of a possible kink instability near the end of the quiescent period. Vertical
lines indicate the times at which the first and last images were made (Pulse 40127038).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.47: Photos of Z-pinch emission showing the development of a possible sausage
instability near the end of the quiescent period. The photos represent unfiltered visible
light emitted by the plasma and are made approximately 200 ns apart through the vacuum
tank viewport and 2 in diameter hole in the outer electrode at z = 0 (Pulse 40127040). (a)
74.2 µs. (b) 74.4 µs. (c) 74.6 µs. (d) 74.8 µs. (e) 75.0 µs. (f) 75.2 µs. (g) 75.4 µs. (h) 75.6
µs.

Figure 2.48: Plasma current and normalized m=1 mode associated with the images showing
the development of a possible sausage instability near the end of the quiescent period. Ver-
tical lines indicate the times at which the first and last images were made (Pulse 40127040).
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Chapter 3

EQUILIBRIUM PROFILE CALCULATION

The density and temperature profiles together characterize the equilibrium of the Z-

pinch. Quantities such as the pressure, magnetic field, and current density profiles can be

determined if the density and temperature profiles are known. Conversely, the temperature

and density profiles can be determined if two of the other quantities are known. The density

profile of the sheared-flow Z-pinch has been measured using holographic interferometry, but

the temperature must be calculated, based on reasonable assumptions, to yield an equilib-

rium pressure profile that can be compared to theoretical profiles such as the Kadomtsev

pressure profile of Sec. 1.4. The pressure profile that results from the measured density

profile will also serve as a prediction for future measurements of the equilibrium pressure

profile using a Thomson scattering diagnostic currently under development.

Four models were used to calculate the equilibrium profiles from the measured density

profile. The Matlab functions used to implement the models are included in Appendix F.

These models are described in the following sections, from the simplest model to the most

complex. The first model assumes a constant current density across the Z-pinch, and the

second assumes the current density is proportional to the electron number density. Uniform

heating across the Z-pinch balanced by limited perpendicular thermal conduction out of the

Z-pinch is used to solve for the Z-pinch equilibrium in the third model. Because thermal

conduction within the Z-pinch is found to be high, the fourth model assumes a constant

temperature profile. The fourth model yields physically believable results for all of the den-

sity profiles studied and is therefore used to calculate the time evolution of the equilibrium

profiles during the quiescent period. These results are then compared to the Kadomtsev

pressure profile.
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3.1 Constant Current Density

One of the simpler assumptions that can be made in determining the equilibrium profile

of the sheared-flow Z-pinch is the assumption that the current density is constant across

the Z-pinch. The average magnetic field measured by the probes of the azimuthal magnetic

probe array, Bwall, can be used along with Ampere’s law to calculate the current in the

Z-pinch, assuming all current past that point is contained in the Z-pinch,

∫
~B · ~dl = µ0I (3.1)

I =
2πrwallBwall

µ0
, (3.2)

where rwall = 0.0936 m is the radius of the outer electrode wall and the distance from the

probes embedded in it to the axis of the experiment. The permeability of free space is given

by µ0 = 4π × 10−7 H/m. The total current can then be divided by the area of the Z-pinch

to yield the current density,

j =
I

πa2
, (3.3)

where a is the radius of the Z-pinch, determined from the density profile.

This current density can be substituted into Ampere’s law to obtain the magnetic field

profile,

B (r) =
µ0rj

2
. (3.4)

Pressure is related to magnetic field in a Z-pinch by

dp

dr
= −Bθ (r)

µ0r

d

dr
[rBθ( r )] . (3.5)

The ideal gas law can be used to determine the temperature from the density and pressure,

T (r) =
p

(1 + 1/Z) nk
, (3.6)

where the pressure is assumed to be zero outside the Z-pinch, and the electron and ion

densities are assumed to be n = ne = Zni and the electron and ion temperatures are

assumed to be equal, T = Te = Ti. Z is the ionization state of the ions. Z = 1 is assumed

here for hydrogen, and Z = 2 is assumed for helium.
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Figure 3.1: Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch with the assump-
tion that the current density is constant. (a) Number density profile input into model. (b)
Magnetic field profile. (c) Temperature profile. (d) Pressure profile.

Figures 3.1(a)–3.1(d) show the radial number density profile for a hydrogen Z-pinch

and the associated magnetic field, temperature, and pressure profiles that result when the

current density across the Z-pinch is assumed to be constant. The number density from the

left half (r < 0) of Fig. 2.37(b) was used in this case. The resulting temperature profile is less

than satisfying, since it is lowest on the axis of the Z-pinch where it should be highest. The

temperature also goes to infinity at the edge of the plasma column. This occurs because the

constant current density leads to an increasing magnetic field which, according to Eq. 3.5,

must be balanced by a decreasing pressure gradient. Equation 3.6 can be rearranged and
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differentiated to show the contributions made by the density and temperature and their

derivatives to the pressure gradient,

dp

dr
= (1 + 1/Z) k

(
n

dT

dr
+ T

dn

dr

)
. (3.7)

The density gradient at the edge contributes little to the pressure gradient, so this balance

is achieved by the large increase in the temperature.

3.2 Current Density Proportional to Number Density

The current density profile could also be assumed to have the same shape as the electron

density profile,

j = Cn, (3.8)

so that the magnetic field profile in Eq. 3.4 would be calculated from the current density

profile,

B (r) =
µ0

r

∫ r

0

j
(
r′
)
r′dr′ . (3.9)

The constant C is obtained using the number density and the Z-pinch current described by

Eq. 3.2,

C =
I∫ 2π

0

∫ a
0 n(r)rdr dθ

. (3.10)

The Z-pinch radius a in this case is taken to be the radius where the density vanishes.

Equations 3.5 and 3.6 are then used to determine the pressure and temperature profiles.

Figures 3.2(a)–3.2(d) show the profiles that result if the current density profile is assumed

to be the same as the number density profile. This is equivalent to assuming the quantity

j/n is constant across the Z-pinch. The magnetic field profile rises steeply near the axis of

the Z-pinch before settling to a relatively constant value of 1.2 to 1.4 T. The temperature

profile is hollow, with an on-axis value of 140 eV. It reaches a maximum value of 225 eV near

r = 0.4 cm before dropping off in the lower-density region outside the core of the Z-pinch.

Several important plasma parameters are apparent from the constant j/n model. These

parameters can be compared to those observed in other laboratory plasmas to determine

if the results of the model are reasonable. The quantity C = j/n is often referred to as

the drift parameter. Its value in this case is j/n = 6.4 × 10−15 A-m, which is close to the
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Figure 3.2: Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch with the assump-
tion that the current density is proportional to the number density. (a) Number density
profile input into model. (b) Magnetic field profile. (c) Temperature profile. (d) Pressure
profile.
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typical value of 2× 10−14 A-m observed to coincide with optimum heating and confinement

in many laboratory plasma experiments [2, 29, 41]. The ratio of the electron drift speed to

the ion thermal speed is used in the Chodura model to determine the threshold at which

anomalous resistivity due to microinstabilities in the plasma becomes significant [9, 10].

The effect of these instabilities is to maintain the ratio of the two speeds to less than or

equal to a value of approximately three. The drift parameter can be used to calculate the

electron drift speed in the plasma from the relationship

vd = j/ (ne) , (3.11)

where e = 1.6022× 10−19 C is the elementary charge, which in this case yields a drift speed

of approximately 40 km/s. The ion thermal speed in the plasma is

vi,th =
(

kT

mi

)1/2

, (3.12)

where k = 1.6022 × 10−19 J/eV is the conversion factor from temperature in electron-

Volts to energy in Joules and mi is the ion mass. For hydrogen, the ion mass is mi =

1.6726 × 10−27 kg. The ion thermal speed at an average temperature of 100 eV is about

100 km/s. A ratio vd/vi,th = 0.4 is obtained for the hydrogen Z-pinch discussed here. This

is below the threshold value of three used in the Chodura model and is therefore reasonable.

The profiles obtained with the constant j/n model are more physically realistic than the

profiles obtained with constant current density, since the current density, number density,

and temperature all disappear at the edge of the Z-pinch. Several important plasma param-

eters involved in the model are in line with those for other laboratory plasmas. It is likely,

however, that the temperature gradient in the Z-pinch would be reduced by the effects of

thermal conduction, causing the profile to be less hollow and reducing the maximum tem-

perature. For that reason, the effects of thermal conduction are investigated by the model

described in the next section.

3.3 Limited Perpendicular Thermal Conduction with Uniform Heating

A more refined model of the Z-pinch equilibrium can be obtained by assuming that the

conduction of heat out of the Z-pinch determines the temperature profile. This model
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is based on a numerical model used by Scudder to calculate Z-pinch equilibrium profiles,

including the number density profile [33]. It assumes a steady-state Z-pinch equilibrium

where the Z-pinch is embedded in a low-temperature, low-density background plasma that

conducts heat away.

The thermal conduction time in the Z-pinch can be compared to the particle flow-through

time to assess the importance of thermal conduction and the validity of the model. The

cross-field (radial) ion thermal conduction time is given by Haines in terms of the much

slower cross-field electron thermal conduction time as

τκi⊥ =
(

me

mi

)1/2

τκe⊥ , (3.13)

where me = 9.1094 × 10−31 kg is the electron mass. The cross-field electron thermal con-

duction time is

τκe⊥ =
3
2

nka2

γ2
1κe⊥

, (3.14)

where γ1 = 3.83 and the cross-field electron thermal conduction coefficient is

κe⊥ = 0.126
T 5/2

(ωceτei)
2 (3.15)

for T = Te in units of electron-Volts. The electron gyrofrequency is

ωce =
eB

me
, (3.16)

and the electron-ion collision time is

τei =
12π3/2ε20m

1/2
e (kT )3/2

21/2 lnΛe4Zn
, (3.17)

with n = ne = Zni. The permittivity of free space is ε0 = 8.8542 × 10−12 F/m. The

appropriate value for the Coulomb logarithm in this case is ln Λ = 11. For a typical hydrogen

Z-pinch, approximate average values of the density, temperature, magnetic field, and radius

are n = 5 × 1022 m−3, T = 100 eV, B = 1 T, and a = 0.01 m. Plugging these values into

the above equations gives a cross-field ion thermal conduction time of 0.16 µs. The flow-

through time for a 50 cm-long Z-pinch with an axial velocity of 100 km/s is 5 µs. The density

measurements are made half-way down the length of the Z-pinch, so the plasma has 2.5 µs
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to equilibrate by thermal conduction. Since 2.5 µs represents sixteen thermal conduction

times, thermal conduction is fast enough to significantly affect the Z-pinch equilibrium.

For the thermal conduction model, the total power deposited into the plasma must be

balanced by the power conducted out of the Z-pinch,
∫

V

q̇indV =
∫

S

~q · ~dS . (3.18)

The power into the Z-pinch is calculated using the voltage between the inner and outer

electrodes (Vgap) and the total plasma current (Ip),

Pin = VgapIp. (3.19)

This quantity is an upper limit on the power deposited into the plasma. It includes ohmic

heating in the acceleration region, heating by adiabatic compression as the plasma leaves

the assembly region and collapses on axis, and ohmic heating in the Z-pinch. The ohmic

heating time for the Z-pinch can be compared to the particle flow-through time to assess

the importance of ohmic heating in the Z-pinch relative to the other sources of heat. The

ohmic heating time is given by

τOH =
1
8
αµ0a

2kT 3/2 (3.20)

= 2.69× 10−29a2T 3/2, (3.21)

where α = 1.1 × 103 and the temperature is again in units of electron-Volts [15, 16]. For

a typical ZaP experiment Z-pinch of radius a = 0.01 m and temperature T = 100 eV, the

ohmic heating time is 20 µs. Since the flow-through time of 5 µs is so much shorter than

the ohmic heating time required, the bulk of the heat necessary to reach a temperature of

approximately 100 eV must be added to the plasma through ohmic heating in the accelerator

and adiabatic compression.

The heat deposited into the plasma per unit volume is assumed to be constant across

the Z-pinch and given by

q̇in =
Pin

πa2l
, (3.22)

where a is the radius of the Z-pinch and l = 0.5 m is the length of the Z-pinch. The quantity

a is set to the value of the radial coordinate where the density drops to 1× 1022 m−3, which



77

is the approximate resolution of the holographic interferometer. The density outside this

radius is assumed to be a constant background of 1× 1022 m−3.

Eq. 3.18, expressed in differential form, is

q̇in = ∇ · ~q (3.23)

=
1
r

d

dr
(rq) . (3.24)

According to this equation, the heat deposited per unit volume must be balanced by the

divergence of the heat conducted radially out of the Z-pinch per unit surface area. This

equation can be integrated to obtain
∫ r

0
rq̇indr = rq (3.25)

r

2
q̇in = q. (3.26)

The heat flux, q, is given by Fourier’s Law of Heat Conduction,

q = −κ⊥
dT

dr
, (3.27)

where κ⊥ is the thermal conduction coefficient perpendicular to the magnetic field (in the

radial direction). The cross-field ion thermal conduction coefficient is used as the thermal

conduction coefficient, since the cross-field electron thermal conduction coefficient is smaller

by the square root of the ion-electron mass ratio.

The cross-field ion thermal conduction coefficient must be calculated for the case where

the product of the ion cyclotron frequency and the ion-ion collision time, ωciτi, is not

always large and thus finite Larmor radius effects cannot be neglected [33, 5]. The ion

gyrofrequency, ωci, is given by

ωci =
ZeB

mi
. (3.28)

The ion collision frequency, τi, is given by

τi =
12π3/2ε20m

1/2
i (kT )3/2

ln Λe4Z3n
, (3.29)

where ln Λ = 11 is the appropriate value of the Coulomb logarithm, the ion number density

is assumed to be given by ni = ne/Z = n/Z, and the ion and electron temperatures are

assumed to be equal, so that T = Ti = Te.
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The product ωciτi is much larger than one across most of the sheared flow Z-pinches

produced by the ZaP experiment using hydrogen. Near the axis of the Z-pinch, however,

where the magnetic field becomes small, the ion cyclotron frequency also becomes small,

and the product ωciτi becomes less than one. A similar situation could occur near the edge

of the Z-pinch, where the temperature and collision frequency become small. The product

ωciτi is also less than one across much of the helium Z-pinches because of the factor Z3

in the denominator of the collision time and the lower temperatures that result from the

higher measured electron densities.

Following the method of Braginskii [5], the thermal conduction coefficient is given by

κ⊥ =
nk2Tτi

Zmi

(
2x2

i + 2.645
∆i

)
(3.30)

= a1T
5/2

(
2x2

i + 2.645
∆i

) [
W

m eV

]
, (3.31)

where the quantities xi and ∆i are

xi = ωciτi (3.32)

∆i = x4
i + 2.70x2

i + 0.677, (3.33)

and the coefficient a1 is

a1 =
12π3/2ε20k

7/2

λe4Z4m
1/2
i

(3.34)

= 1.19× 10−12/
(
Z4m

1/2
i

) [
W

m eV7/2

]
. (3.35)

Using Eqs. 3.26–3.35, the temperature gradient can be written as

dT

dr
= − rq̇in

2a1T 5/2

(
∆i

2x2
i + 2.645

)
. (3.36)

The gradient in the magnetic field can be accounted for by combining Eqs. 3.5 and 3.7 and

rewriting the expression to yield

d

dr
(rB) = −µ0k(1 + 1/Z)r2

rB

(
n

dT

dr
+ T

dn

dr

)
. (3.37)

Equations 3.36 and 3.37 are the model equations.
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The equations are normalized, and a fourth-order Runge-Kutta method written in Mat-

lab is used to solve the system of equations for (rB) and T at each radial location, starting

near the axis and moving outward [14]. The radius is normalized by the wall radius, and

the number density is normalized by its maximum. The quantity (rB) is normalized by

(rwallBwall), obtained using the wall radius and the magnetic field at the wall described in

Sec. 3.1. The temperature is normalized by the temperature at the axis, which is chosen

arbitrarily at first. The initial value of the normalized temperature is one, and the nor-

malized (rB) is set to a very small initial value. The equations are solved across the entire

density profile, starting at a point a very small distance from the axis and moving outward.

The slight shift in the initial values of r and (rB) avoids problems in Matlab resulting from

division by zero at the axis. The on-axis temperature is adjusted and a Newton’s Method

routine is used to iterate the Runge-Kutta solver until the magnetic field at the edge of the

density profile matches the wall field scaled to that radius,

B(redge) = Bwallrwall/redge. (3.38)

The Runge-Kutta solver used to find the values of the temperature and (rB) has the

form

T̂i+1 = T̂i +
∆r̂

6
(F1 + 2F2 + 2F3 + F4) (3.39)

F1 = f
[
q̇in,i, r̂i, n̂i, T̂i, ˆ(rB)i

]
(3.40)

F2 = f

[
q̇in,i + q̇in,i+1

2
, r̂i +

∆r̂

2
,
n̂i + n̂i+1

2
, T̂i +

∆r̂

2
F1, ˆ(rB)i +

∆r̂

2
G1

]
(3.41)

F3 = f

[
q̇in,i + q̇in,i+1

2
, r̂i +

∆r̂

2
,
n̂i + n̂i+1

2
, T̂i +

∆r̂

2
F2, ˆ(rB)i +

∆r̂

2
G2

]
(3.42)

F4 = f
[
q̇in,i+1, r̂i+1, n̂i+1, T̂i + ∆r̂F3, ˆ(rB)i + ∆r̂G3

]
(3.43)
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ˆ(rB)i+1 = ˆ(rB)i +
∆r̂

6
(G1 + 2G2 + 2G3 + G4) (3.44)

G1 = g
[
q̇in,i, r̂i, ∆r̂i, n̂i, ∆n̂i, T̂i, ˆ(rB)i

]
(3.45)

G2 = g

[
q̇in,i + q̇in,i+1

2
, r̂i +

∆r̂

2
, ∆r̂i,

n̂i + n̂i+1

2
, ∆n̂i, T̂i +

∆r̂

2
F1,

ˆ(rB)i +
∆r̂

2
G1

]
(3.46)

G3 = g

[
q̇in,i + q̇in,i+1

2
, r̂i +

∆r̂

2
, ∆r̂i,

n̂i + n̂i+1

2
, ∆n̂i, T̂i +

∆r̂

2
F2,

ˆ(rB)i +
∆r̂

2
G2

]
(3.47)

G4 = g
[
q̇in,i+1, r̂i+1, ∆r̂i, n̂i+1, ∆n̂i, T̂i + ∆r̂F3, ˆ(rB)i + ∆r̂G3

]
. (3.48)

The functions f and g are Eqs. 3.36 and 3.37, rewritten in terms of the normalized variables,

r̂ = r/rwall, n̂ = n/n0, T̂ = T/T0, and ˆ(rB) = (rB)/(rwallBwall),

f
[
q̇in,i, r̂i, n̂i, T̂i, ˆ(rB)i

]
= − r̂q̇in

2a1T̂
5/2
i

(
∆i

2x2
i + 2.645

)
r2
wall

T
7/2
0

(3.49)

g
[
q̇in,i, r̂i, ∆r̂i, n̂i, ∆n̂i, T̂i, ˆ(rB)i

]
= −µ0k (1 + 1/Z) r̂2

i

ˆ(rB)i

{
n̂if

[
q̇in,i, r̂i, n̂i, T̂i, ˆ(rB)i

]

+T̂i
∆n̂i

∆r̂i

}
r2
walln0T0

(rwallBwall)2
, (3.50)

where ∆r̂i = r̂i+1 − r̂i and ∆n̂i = n̂i+1 − n̂i. These functions describe the gradients of T

and (rB) at each point, i, for which the values of r and n are known.

Figures 3.3(a)–3.3(e) show the input density profile and the magnetic field, temperature,

pressure, and current density profiles that result for a hydrogen Z-pinch with the thermal

conduction model. In general, the behavior of the profiles obtained is physically realistic,

but in many ways unlike the behavior of the models described earlier. The temperature

is highest at the axis and gradually drops as it approaches the radius, a, beyond which

no heat is applied. Outside this radius, the temperature remains constant. In this case,

a = 0.98 cm, the peak temperature is 95 eV, and the temperature falls to 71 eV at the edge.

The current density is highest in the core of the Z-pinch, where the electron number density

is highest. Its magnitude is approximately 1.2 × 109 W/m2 across much of the Z-pinch.

The current density fluctuates near the axis due to the slight offset applied to avoid the

singularity at r = 0 and is affected near r = 0.24 cm by a few missing points in the density
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Figure 3.3: Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch obtained using the
thermal conduction model. (a) Number density profile input into model. (b) Magnetic field
profile. (c) Temperature profile. (d) Pressure profile. (e) Current density profile.
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profile. It also becomes briefly negative near r = 0.5 cm as a consequence of the inflection

in the number density profile near that point. The magnetic field increases steeply to a

maximum value of 1.7 T over the region where the number density and current density are

highest. As these two quantities decrease, the magnetic field also decreases to a value of

1.2 T and then remains relatively constant over much of the Z-pinch. At the edge of the

region where the heat is applied, the magnetic field increases slightly before dropping off as

1/r. This slight increase is an artifact of the constant background density applied.

Although the model performed well when used with density profiles obtained from hydro-

gen Z-pinches, it failed to converge or produced physically unrealistic results when helium

Z-pinches were studied. This is due primarily to the thermal conduction coefficient values

obtained for helium, which were too low to conduct the applied heat out of the Z-pinch.

The next section describes a constant temperature model that approximates the flattening

effect that thermal conduction has on the temperature profile.

3.4 Constant Temperature

Cross-field thermal conduction is high enough to limit the temperature gradient across the

Z-pinch. Equilibrium profiles can be constructed by assuming the temperature profile is

uniform and determining its magnitude using the wall magnetic field. No assumption is

made about the heat deposited into or conducted out of the Z-pinch, only that thermal

conduction within the Z-pinch is high enough to flatten the temperature gradient in the

time it takes for the plasma to arrive at the axial location where density measurements

are made with the holographic interferometer. This is a reasonable assumption, since the

particle flow-through time is much longer than the thermal conduction time computed in

the previous section. Any conduction of heat out of the Z-pinch that may occur in the

experiment would tend to increase the on-axis temperature and the thermal gradient across

the Z-pinch. The temperature calculated here, therefore, represents both a lower limit on

and a reasonable estimate of the Z-pinch temperature, and the profiles obtained represent

reasonable estimates of the Z-pinch equilibrium profiles.

For a Z-pinch where the temperature profile is constant, the right-hand side of Eq. 3.36
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reduces to zero, making it unnecessary. Equation 3.37 becomes

d

dr
(rB) = −µ0k(1 + 1/Z)Tr 2

rB

dn

dr
, (3.51)

which is the model equation used.

The equations are normalized, and a fourth-order Runge-Kutta method is combined

with a Newton’s method to solve for the magnetic field profile and the on-axis temperature

in the same way as before. The Runge-Kutta solver used to find (rB) has the form

ˆ(rB)i+1 = ˆ(rB)i +
∆r̂

6
(G1 + 2G2 + 2G3 + G4) (3.52)

G1 = g
[
r̂i, ∆r̂i, n̂i, ∆n̂i, T̂ , ˆ(rB)i

]
(3.53)

G2 = g

[
r̂i +

∆r̂

2
, ∆r̂i,

n̂i + n̂i+1

2
, ∆n̂i, T̂ , ˆ(rB)i +

∆r̂

2
G1

]
(3.54)

G3 = g

[
r̂i +

∆r̂

2
, ∆r̂i,

n̂i + n̂i+1

2
, ∆n̂i, T̂ , ˆ(rB)i +

∆r̂

2
G2

]
(3.55)

G4 = g
[
r̂i+1, ∆r̂i, n̂i+1, ∆n̂i, T̂ , ˆ(rB)i + ∆r̂G3

]
, (3.56)

where the function g is Eq. 3.51, rewritten in terms of the normalized quantities, r̂ = r/rwall,

n̂ = n/n0, T̂ = T/T0, and ˆ(rB) = (rB)/(rwallBwall),

g
[
r̂i, ∆r̂i, n̂i, ∆n̂i, T̂ , ˆ(rB)i

]
= −µ0k (1 + 1/Z) T r̂2

i

ˆ(rB)i

∆n̂i

∆r̂i

r2
walln0T0

(rwallBwall)2
, (3.57)

where ∆r̂i = r̂i+1 − r̂i and ∆n̂i = n̂i+1 − n̂i.

Figures 3.4(a)–3.4(d) show the input density profile and the magnetic field, pressure, and

current density profiles that result for a hydrogen Z-pinch with the constant temperature

model. The profiles obtained are the most physically realistic and consistent of the four

equilibrium profile models used. The magnitude of the temperature is 68 eV. The current

density is highest in the core of the Z-pinch, where the electron number density is highest.

Its magnitude is approximately 1.0 × 109 W/m2 across much of the Z-pinch. The current

density fluctuates near the axis due to the slight offset applied to avoid the singularity at

r = 0 and is affected near r = 0.24 cm by a few missing points in the density profile. It also

becomes briefly negative near r = 0.5 cm as a consequence of the inflection in the number

density profile near that point. The magnetic field increases steeply to a maximum value of

1.4 T over the region where the number density and current density are highest. As these



84

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (cm)

el
ec

tr
on

 n
um

be
r 

de
ns

ity
(1

017
 c

m
−

3 )

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (cm)

m
ag

ne
tic

 fi
el

d 
(T

)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

radius (cm)

pr
es

su
re

 (
N

/m
2 )

(c)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

x 10
8

radius (cm)

cu
rr

en
t d

en
si

ty
 (

A
/m

2 )

(d)

Figure 3.4: Z-pinch equilibrium profiles obtained for a hydrogen Z-pinch obtained using the
constant temperature model. (a) Number density profile input into model. (b) Magnetic
field profile. (c) Pressure profile. (d) Current density profile.
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two quantities decrease, the magnetic field also decreases to a value of 1.0 T. It slowly rises

across the rest of the Z-pinch to a value of 1.2 T before dropping off roughly as 1/r where

the density becomes very low near the edge of the number density profile.

The temperature and magnetic field that result from the model are sensitive to the

gradient in the plasma density near the edge of the density profile. If a constant background

density of 1× 1022 m−3 is assumed instead of allowing the density to go to zero at the edge,

the results of the constant temperature model become essentially the same as the results

of the thermal conduction model, with the exception that the temperature is constant at

99 eV. This occurs because, where the constant density is assumed, the gradient in (rB)

becomes zero with the density gradient. From that point, the magnetic field begins to fall

off as 1/r, instead of continuing to increase according to the negative gradient in the density.

Since the temperature is set by matching the magnetic field at the edge of the density profile

to the wall field scaled to that radius, the temperature in the model is increased to increase

the gradient in (rB). This makes the magnetic field higher at smaller radius, so it can fall

off as 1/r to the edge and still match the scaled wall field.

Because it produced physically realistic, consistent results for both the hydrogen and

helium density profiles studied, the constant temperature model was used to calculate the

time evolution of the Z-pinch equilibrium profiles presented in the following sections.

3.5 Time Evolution of Equilibrium Profiles

Figure 3.5 shows magnetic field profiles for helium Z-pinches during the middle of the

quiescent period and late in the quiescent period. The model of Sec. 3.4, which assumes a

constant temperature across the Z-pinch, was used to calculate these profiles based on the

measured density profiles of Fig. 2.41 (Pulses 30204007 and 30204019). A magnetic field

profile was not calculated for the density profile obtained after the quiescent period.

The magnetic field profiles that accompany the measured density profiles during the

quiescent period show a magnetic field that increases mostly linearly to a maximum value

of approximately 1.2 to 1.3 T at a radius of 0.5 to 1.2 cm. Beyond that, the magnetic field

drops off and fluctuates around a value of about 1 T to the edge of the density profile. Near

r = 0.5 cm, the magnetic field profile during the middle of the quiescent period decreases
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Figure 3.5: Magnetic field profiles for helium Z-pinches during the middle of the quiescent
period and near the end of the quiescent period. These profiles were calculated using the
measured density profiles of Fig. 2.41 and the constant temperature model described in
Sec. 3.4. A temperature of 27 eV was obtained during the middle of the quiescent period
with the model, and a temperature of 60 eV was obtained near the end of the quiescent
period (Pulses 30204007 and 30204019).

sharply and then increases again due to a dip in the number density profile.

The temperature associated with the high-density helium Z-pinch observed during the

middle of the quiescent period is approximately 27 eV. The lower and wider density profile

near the end of the quiescent period results in a higher temperature of 60 eV.

3.6 Comparison with Kadomtsev Pressure Profile

As mentioned in Sec. 1.4, a Z-pinch with a pressure profile that falls off less steeply than

the Kadomtsev pressure profile will be stable to m = 0 perturbations. The Kadomtsev

pressure profile is plotted in Figure 3.6 along with two pressure profiles from the experiment.

Each of these experimental pressure profiles was obtained using the ideal gas law, Eq. 1.4, a
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Figure 3.6: Comparison between the Kadomtsev pressure profile and the normalized pres-
sure profiles obtained from the experiment using the constant temperature model described
in Sec. 3.4. The pressure profiles obtained during the middle of the quiescent period and
near the end of the quiescent period fall off too quickly to stabilize the m = 0 “sausage”
instability.

density profile measured using the holographic interferometer, and the temperature obtained

using the constant temperature model described in Sec. 3.4. Because the temperature is

constant, the shapes of the pressure profiles are identical to those of the density profiles used.

The pressure profiles are normalized by the on-axis pressure, and the radial coordinate is

normalized by the radius where the magnetic field reaches a maximum. Most of the Z-pinch

current flows within this radius, so it can be considered the characteristic radius of the

Z-pinch. Both pressure profiles fall off more rapidly than the Kadomtsev pressure profile

at most points and therefore do not stabilize the Z-pinch against the m = 0 “sausage”

instability.
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Chapter 4

SIMULATION OF DENSITY PROFILE EVOLUTION

A computational study of the density profile evolution was conducted using MACH2.

The purpose of the computational study was to was to model effects not captured by

the equilibrium profile calculations described in Chapter 3, such as the geometry of the

acceleration region.

MACH2 is a 2 1
2-dimensional resistive MHD solver [30]. All three components of the

simulation quantities are modeled, but may only vary in the r̂ and ẑ directions.

MACH2 accepts user input in the form of an input file that is divided into “namelists”—

lists of input variables divided by category. The contents of the input file are loaded into

the appropriate MACH2 variables, and the resistive MHD solver is used to advance the

simulation variables at each point in the simulation grid through time, applying additional

user-specified physics models such as thermal conduction, radiation, or material ablation, if

desired. The contents of the MACH2 input file used for one of the simulations is included

in Appendix B.

4.1 Simulation Geometry

The simulation geometry is shown in Fig. 4.1. The simulation grid is composed of seven

blocks. In the figure, the portion of the grid cells in each block is plotted in a different color

so that the boundaries of the blocks are apparent. The locations of the corners of the blocks

were specified in the MACH2 input file, in namelist “$ezgeom.”

4.2 Boundary Conditions

Two boundary conditions were set at most external boundaries of the blocks shown in

Fig. 4.1. Boundary conditions were not necessary at the border between two blocks, but

the number of grid points between the blocks was required to be the same. These boundary
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Figure 4.1: Geometry used for the MACH2 simulation, with the radial coordinate axis
scaled to show details of the simulation grid. A high-density gas is initialized in the block at
z = −0.75 m, and the nose cone and end wall hole are included. The simulation geometry
can be compared to the experimental geometry shown in Fig. 1.2.

conditions set the values of the various simulation quantities in the layer of ghost cells

created just outside the boundaries by MACH2. The first was a hydrodynamic boundary

condition, which was set to “wall,” to prevent mass flux across the boundary while placing

no constraint on the tangential velocity. Pressure and density are extrapolated from the

simulation block with the square of the cell radii to ghost cells. The second was a magnetic

boundary condition, which was set to “conductr,” causing rBθ to be linearly extrapolated

from the simulation block into each ghost cell.

More complicated boundary conditions were applied on the blocks along the axis (at

r = 0 in the figure), along the insulator at the far left of the simulation region (z = −1.2564

m in the figure), and at the hole in the end wall (z = 0.7899 m). Along the axis, the

hydromagnetic boundary condition was set to “axis,” which is the same as the “wall”

condition, except that the radial and azimuthal components of the velocity are set to zero.

The magnetic boundary condition was also set to “axis,” making Bθ and Br zero on the

axis by setting the ghost cell values equal to the negative of the values in the adjacent real

boundary cell. Bz is copied from the real cell to the ghost cell.

Along the insulator, a “flowthru” hydrodynamic boundary condition was used, allowing

the temperature and density in the ghost cell to be specified as 1 eV and the 1×10−7 kg/m3,

the same as the background density. This boundary condition puts no constraint on the
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velocity. An “insulatr” magnetic boundary condition is placed on Bθ , setting rBθ to the

value of the current applied at the boundary by the external circuit described in Sec. 4.3.

A “symmetric” boundary condition was set for the resistivity on this boundary, causing the

resistivity values to be copied from the real cells to the adjacent ghost cells.

At the hole in the end wall, a “flowthru” hydrodynamic boundary condition was also

used, with the same ghost cell temperature and density as along the insulator. This effec-

tively allows a vacuum to exist beyond the hole. “Symmetry” magnetic boundary conditions

were applied to Bθ and the resistivity, causing rBθ to be linearly extrapolated and the re-

sistivity to be copied into ghost cells.

4.3 Current Characteristics

A current is applied at z = −1.2564 m in Fig. 4.1, across the insulator boundary. The circuit

consists of an external 1.36× 10−3 F capacitor, an external 0.49184× 10−6 H inductor, and

the internal inductance calculated by MACH2 at each time step in the simulation region.

The value of the external capacitance matches the eight 170 µF capacitors connected in

parallel to the experiment. The capacitor’s initial voltage is initialized at 2 to 9 kV to

duplicate the charge applied to the capacitor banks in the actual experiment. Originally a

value of 1.106×10−6 H was calculated for the inductance of the circuit, but the current and

voltage waveforms associated with this inductance value did not match the experimental

current and voltage waveforms. The external inductance finally used in the simulations was

chosen empirically by comparing the current and voltage waveforms that would result from a

particular inductance value with the experimental current and voltage waveforms. MACH2

solves for the circuit current and voltage across the insulator boundary at each time step. It

is possible, instead, to specify a current waveform for the MACH2 simulation. The decision

was made to let MACH2 calculate the current so the current and voltage calculated in the

simulation could be compared to the current and voltage measured in the experiment.

Figs. 4.2(a) and 4.2(b) show the current and voltage across the insulator between the

inner and outer electrodes in the simulation, plotted along with the experimental current

and voltage between the inner and outer electrodes. The initial capacitor charge in both

cases is 9 kV. The rise time of the simulation current is similar to that of the experiment.
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Figure 4.2: Current and voltage across the insulator between the inner and outer electrodes
for the simulation and for a plasma pulse (Pulse 40914027). (a) Current. (b) Voltage.
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This rise time is largely set by the external inductance and capacitance. After about 15 µs,

however, the current waveforms diverge, with the simulation current peaking at a lower

value.

The voltage waveforms do not match as well as the current waveforms, although their

behavior after the voltage spikes at 55 µs are similar. The voltage and current waveforms

differ from their experimental counterparts during the first 2 µs of the simulation because

MACH2 does not model ionization.

4.4 Initial Conditions

The simulation was generally initialized with an initial mass density of 4.72×10−4 kg/m3 in

the block at z = −0.75 m, the region that contains the location that corresponds to the gas

injection plane in the experiment. This density was assumed to be uniform over the block

and corresponds to the mass typically injected into the experiment. The density over the

rest of the simulation grid was set to the background density, 1 × 10−7 kg/m3. The initial

temperature was set to 1 eV and limited to 200 eV or less throughout the simulation run.

Thermal diffusion was turned off in the simulation, as well. The other initial condition is

the capacitor bank voltage, which, as mentioned before, was set to 2–9 kV to duplicate the

experiment.

4.5 Simulation Results

Contour plots of number density, temperature, rBθ , and velocity at several times are shown

in Figs. 4.3–4.12 for a simulation initialized with a mass density of 4.72× 10−4 kg/m3 and

a capacitor bank voltage of 9 kV.

As the simulation begins, magnetic flux diffuses into the simulation region from the

insulating boundary at the back of the acceleration region towards the plasma as the plasma

expands. 10 µs into the simulation (Fig. 4.3), plasma is pushed along the electrodes in

the acceleration region towards the assembly region by Lorentz forces in the accelerator,

sweeping up mass along the way. A snowplow effect or blow-by instability develops as

the current sheet is accelerated, pushing the majority of the plasma against the outer

electrode [8]. A pocket of dense plasma begins to form against the outer electrode, eventually
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Figure 4.3: Contour plots at 10 µs for the simulation with an initial mass density of 4.72×
10−4 kg/m3 and a capacitor bank voltage of 9 kV. Magnetic flux diffuses into the simulation
region from the insulating boundary at the back of the acceleration region towards the
plasma as the plasma expands. Plasma is pushed along the electrodes in the acceleration
region towards the assembly region by Lorentz forces in the accelerator, sweeping up mass
along the way. A snowplow effect or blow-by instability develops as the current sheet is
accelerated, pushing the majority of the plasma against the outer electrode. A pocket
of dense plasma begins to form against the outer electrode, eventually extending from
z = −1.25 m to z = −0.75 cm.
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Figure 4.4: Contour plots at 16 µs for the simulation with an initial mass density of 4.72×
10−4 kg/m3 and a capacitor bank voltage of 9 kV. The plasma reaches the end of the
acceleration region and begins to collapse on axis, producing a hot spot at the tip of the
inner electrode nose cone. The plasma expands away from this hot spot, radially outward
towards the outer electrode and axially towards the outer electrode end wall.
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Figure 4.5: Contour plots at 20 µs for the simulation with an initial mass density of 4.72×
10−4 kg/m3 and a capacitor bank voltage of 9 kV. Plasma fills the assembly region, reaches
the end wall, and begins to circulate against the outer electrode. A high-density, high-
temperature region forms at the end wall and begins to propagate upstream as the plasma
bounces back off the end wall.
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Figure 4.6: Contour plots at 30 µs for the simulation with an initial mass density of 4.72×
10−4 kg/m3 and a capacitor bank voltage of 9 kV. The high-density, high-temperature
region continues to propagate upstream as the plasma bounces back off the end wall. The
position of the propagating wave is apparent from the discontinuities in all of the profiles
near z = 25 cm.
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Figure 4.7: Contour plots at 37 µs for the simulation with an initial mass density of 4.72×
10−4 kg/m3 and a capacitor bank voltage of 9 kV. The wave from the end wall passes
z = 0 cm and a hot, dense, 100 cm-long Z-pinch is formed along the axis.
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Figure 4.8: Contour plots at 42 µs for the simulation with an initial mass density of 4.72×
10−4 kg/m3 and a capacitor bank voltage of 9 kV. The wave from the end wall stalls at the
nose cone as it hits plasma that continues to be accelerated and leave the acceleration region.
The dense Z-pinch persists along the axis as it is fueled by plasma from the accelerator.
The Z-pinch also begins to cool.
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Figure 4.9: Contour plots at 46 µs for the simulation with an initial mass density of 4.72×
10−4 kg/m3 and a capacitor bank voltage of 9 kV. A dense shoulder develops outside the
Z-pinch.
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Figure 4.10: Contour plots at 57 µs for the simulation with an initial mass density of
4.72 × 10−4 kg/m3 and a capacitor bank voltage of 9 kV. The plasma in the acceleration
region is exhausted and the density of the Z-pinch drops as it is destroyed. The density of
the shoulder rises to a value comparable to that along the axis.
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Figure 4.11: Contour plots at 60 µs for the simulation with an initial mass density of
4.72×10−4 kg/m3 and a capacitor bank voltage of 9 kV. The wave from the end wall begins
to propagate into the exhausted acceleration region, reversing the direction of the velocity
vectors in the accelerator. The density along the axis continues to drop.
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Figure 4.12: Contour plots at 80 µs for the simulation with an initial mass density of
4.72 × 10−4 kg/m3 and a capacitor bank voltage of 9 kV. The wave from the end wall
reaches the insulator and the density along the axis continues to drop to the level of the
background density.
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extending from z = −1.25 m to z = −0.75 cm.

After 16 µs (Fig. 4.4), the plasma reaches the end of the acceleration region and begins

to collapse on axis, producing a hot spot at the tip of the inner electrode nose cone. The

plasma expands away from this hot spot, radially outward towards the outer electrode and

axially towards the outer electrode end wall.

At 20 µs (Fig. 4.5), plasma fills the assembly region, reaches the end wall, and begins

to circulate against the outer electrode. A high-density, high-temperature region forms at

the end wall and begins to propagate upstream as the plasma bounces back off the end

wall. The high-density, high-temperature region continues to propagate upstream at 30 µs

(Fig. 4.6) as the plasma bounces back off the end wall. The position of the propagating

wave is apparent from the discontinuities in all of the profiles near z = 25 cm. The wave

from the end wall passes z = 0 cm and a hot, dense, 100 cm-long Z-pinch is formed along

the axis at 37 µs (Fig. 4.7).

At 42 µs (Fig. 4.8), the wave from the end wall stalls at the nose cone as it hits plasma

that continues to be accelerated and leave the acceleration region. This sets up a standing

wave at the exit of the acceleration region, which helps to deflect plasma towards the axis.

The dense Z-pinch persists along the axis as it is fueled by plasma from the accelerator.

The Z-pinch also begins to cool. A dense shoulder develops outside the Z-pinch at 46 µs

(Fig. 4.9). 57 µs into the simulation (Fig. 4.10), the plasma in the acceleration region

is exhausted and the density of the Z-pinch drops as it is destroyed. The density of the

shoulder rises to a value comparable to that along the axis. At 60 µs (Fig. 4.11), the plasma

in the acceleration region is exhausted, and there is no longer a significant force opposing

the upstream propagation of the wave from the end wall into the acceleration region. The

wave begins to propagate into the exhausted acceleration region, reversing the direction of

the velocity vectors in the accelerator. The density along the axis continues to drop. After

80 µs (Fig. 4.12), the wave from the end wall reaches the insulator and the density along

the axis continues to drop to the level of the background density.

The simulation was benchmarked by comparing the chord-integrated density and mag-

netic probe measurements at various locations in the simulation to those measured in the

experiment. Figs. 4.13(a)–4.13(c) show the chord-integrated number density from the sim-
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ulation at z = −65 cm and −25 cm, z = 0 cm, and z = 61 cm, respectively. The simulated

chord-integrated density was calculated using the electron number density at each cell across

the simulation region and the Abel integral equation,

Ne (y) = 2
∫ ∞

y

ne (r) rdr

(y2 − r2)1/2
, (4.1)

where y is the impact parameter of the chord and r is the distance of a point on the chord

from the center of the Z-pinch [1, 19]. The closest cell to the desired axial location on each

row of the mesh was used, since the axial locations of the cells vary from row to row moving

outward from the axis. Figure 4.13(a) shows the simulated chord-integrated density along a

chord at z = −65 cm and another at z = −25 cm. The simulated chord-integrated density

rises sharply as the current sheet passes first z = −65 cm and then z = −25 cm. The large

rise in the simulated density well before the current sheet arrives at z = −65 cm occurs

because ionization is not modeled in the simulation. The particles in the simulation are

initialized as a plasma, instead of the neutral gas that is injected into the experiment. The

interferometer used on the experiment cannot measure neutral gas density and does not

detect the initial expansion of the neutral gas before the current sheet arrives. The arrival

of the current sheet at z = −25 cm in the simulation may also appear less sharp because of

the expansion of what would be neutral gas in the experiment.

Figure 4.13(b) shows the density along two chords at z = 0. The arrival of the plasma

at this location occurs around 20 µs. The drop in density along both chords after the

current sheet passes is followed by the separation of the measurements along the two chords,

indicating the presence of a dense Z-pinch at the axis of the simulation. After the voltage

spike at 55 µs, the density in the simulation slowly decreases, although the overall magnitude

of the simulation density remains high. The rise in the chord-integrated density at z = 61

cm over time is shown in Fig. 4.13(c).

Simulations were also run with initial capacitor bank voltages lower than 9 kV. The

simulated chord-integrated density at the same axial locations is shown in Figs. 4.14(a)–

4.14(c) for a 6 kV simulation with the same initial mass density.

Figures 4.15(a) and 4.15(b) show the azimuthal magnetic fields in the 9 kV and 6 kV

simulations at the locations of the magnetic probes in the acceleration region. The fields
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Figure 4.13: Chord-integrated number density at various axial locations from the simulation
with an initial mass density of 4.72 × 10−4 kg/m3 and a capacitor bank voltage of 9 kV.
(a) Simulated chord-integrated ion number density in the acceleration region along chords
at z = −65 cm and z = −25 cm. (b) Simulated chord-integrated ion number density in the
assembly region along chords at axial location z = 0 cm and impact parameters y = 0 cm
and y = 2 cm. (c) Simulated chord-integrated ion number density in the assembly region
near the end wall along chords at axial location z = 61 cm and impact parameters y = 0 cm
and y = 2.1 cm.
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Figure 4.14: Chord-integrated number density at various axial locations from the simulation
with an initial mass density of 4.72 × 10−4 kg/m3 and a capacitor bank voltage of 6 kV.
(a) Simulated chord-integrated ion number density in the acceleration region along chords
at z = −65 cm and z = −25 cm. (b) Simulated chord-integrated ion number density in the
assembly region along chords at axial location z = 0 cm and impact parameters y = 0 cm
and y = 2 cm. (c) Simulated chord-integrated ion number density in the assembly region
near the end wall along chords at axial location z = 61 cm and impact parameters y = 0
cm and y = 2.1 cm.
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rise sharply at the beginning of the simulation as they soak into the expanding plasma

upstream of the gas injection plane at z = −75 cm. More insight into modeling of the

acceleration region can be gained from the contour plots of the current distribution over

time shown in Figs. 4.16(a) and 4.16(b). In the figures, the current past each magnetic

probe location in the simulation is normalized by the total current. The result shows what

percentage of the total current passes a given magnetic probe along the outer electrode

and then attaches downstream through the plasma to return along the inner electrode and

produce the magnetic field at the probe, as shown in Fig. 2.8. The locations of the 90, 80,

70, 60, and 50 % lines are plotted as contours versus time, showing the dynamics of the

simulated current distribution in the acceleration region. Most of the current flows initially

near the gas injection plane, but is quickly swept out of the acceleration region in the current

sheet. As the Z-pinch forms, current spreads back into the accelerator and remains there

until it is swept out again as the Z-pinch is destroyed. During most of the simulation, half

of the total current through the plasma flows in the acceleration region.

4.6 Time Evolution of Equilibrium Profile

Density, magnetic field, and temperature profiles were obtained at various times during the

simulation with an initial mass density of 4.72× 10−4 kg/m3 and a capacitor bank voltage

of 9 kV. The time evolution of the density profile in the simulation at z = 0 during arrival

and formation of the Z-pinch is plotted in Fig. 4.17 at 16, 30, and 37 µs. The times shown

match the times for the contours in Figs. 4.4, 4.6, and 4.7 and can be compared to the

experimentally-measured density profiles in Fig. 2.40 during arrival and formation of the

Z-pinch. The time evolution of the density, magnetic field, and temperature profiles in the

simulation at z = 0 is plotted in Figs. 4.18–4.20 at 42, 57, and 60 µs, corresponding to

the time when a dense Z-pinch is present on the axis of the simulation, near the end of

that time, and after the dense Z-pinch has begun to fade. The times shown match the

times for the contours in Figs. 4.8, 4.10, and 4.11. They can be compared to the profiles

based on the experimentally-measured density during the middle of the quiescent period, at

the end of the quiescent period, and after the quiescent period shown in Figs. 2.41 and 3.5

and the temperatures calculated in Sec. 3.5. The density values in the cells closest to the
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Figure 4.15: Azimuthal magnetic fields at various axial locations in the acceleration region
for the 9 kV and 6 kV simulations. (a) Magnetic fields in the 9 kV simulation at z = −120
cm, z = −100 cm, etc. (b) Magnetic fields in the 6 kV simulation at z = −120 cm, z = −100
cm, etc.
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(a)

(b)

Figure 4.16: Current distribution in the acceleration region for the 9 kV and 6 kV simu-
lations, expressed as percentage of total current passing an axial location along the outer
electrode, attaching downstream through the plasma to the inner electrode, and returning
through the inner electrode. (a) Current distribution in the 9 kV simulation. (b) Current
distribution in the 6 kV simulation.
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Figure 4.17: Number density evolution from the simulation at 16, 30, and 37 µs, cor-
responding to arrival and formation of the Z-pinch. The times shown match the times
for the number density contours in Figs. 4.4, 4.6, and 4.7 and can be compared to the
experimentally-measured density profiles in Fig. 2.40 during arrival and formation of the
Z-pinch.

desired axial location on each row of the mesh were again used, as in the earlier case of the

chord-integrated density, since the axial locations of the cells vary from row to row moving

outward from the axis.

The density is low during early formation of the Z-pinch (25 µs), and rises as the Z-pinch

is formed. The density is peaked along the axis, but also develops a shoulder during early

formation (39 µs), which is low compared to the on-axis density during the dense Z-pinch

period (42 µs), when the peak density is 0.567×1017 cm−3. At the end of the dense Z-pinch

period, after the voltage spikes around 55 µs, the on-axis density drops as the density in

the off-axis shoulder rises (57 µs) and the Z-pinch gradually fades (60 µs).

The narrow magnetic field profile shows that most of the Z-pinch current flows near
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Figure 4.18: Number density evolution from the simulation at 42, 57, and 60 µs, correspond-
ing to during the dense Z-pinch, late dense Z-pinch , and after the dense Z-pinch. The times
shown match the times for the number density contours in Figs. 4.8, 4.10, and 4.11 and can
be compared to the experimentally-measured density profiles in Fig. 2.41 during the middle
of the quiescent period, at the end of the quiescent period, and after the quiescent period.
The peak density at 42 µs is 0.567× 1017 cm−3.

the axis. The peak magnetic field at 42 µs is 1.8 T, and drops as the dense Z-pinch fades.

The temperature profile is peaked and drops only slightly over time, with some small-scale

structure apparent at 42 µs. The peak temperature at 42 µs is 145 eV.
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Figure 4.19: Magnetic field profile evolution from the simulation at 42, 57, and 60 µs,
corresponding to during the dense Z-pinch, late dense Z-pinch , and after the dense Z-
pinch. The times shown match the times for the rBθ contours in Figs. 4.8, 4.10, and 4.11
and can be compared to the magnetic field profiles in Fig. 3.5 calculated from the measured
density during the middle of the quiescent period and at the end of the quiescent period.
The peak magnetic field at 42 µs is 1.8 T.
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Figure 4.20: Temperature profile evolution from the simulation at 42, 57, and 60 µs, cor-
responding to during the dense Z-pinch, late dense Z-pinch , and after the dense Z-pinch.
The times shown match the times for the temperature contours in Figs. 4.8, 4.10, and 4.11
and can be compared to the temperatures in Sec. 3.5 calculated from the measured density
during the middle of the quiescent period and at the end of the quiescent period. The peak
temperature at 42 µs is 145 eV.
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Chapter 5

INFLUENCE OF EXPERIMENTAL PARAMETERS

The influence of the capacitor bank voltage and the amount of neutral gas injected

on the behavior of the sheared-flow Z-pinch was studied in an effort to understand the

processes involved in its sustainment and destruction. The normalized m = 1 mode and

density measurements of Figs. 2.25(a) and 2.25(b) show that the end of the quiescent period

is correlated with the exhaustion of plasma in the accelerator. The amount of gas injected

initially into the experiment was used to test the theory that the depletion of gas in the

accelerator leads to the end of the quiescent period [20]. The capacitor bank voltage was

also changed to determine its effect on the length of the quiescent period and the density

of the Z-pinch.

The depletion of gas in the acceleration region is a gradual process. Some, but not all, of

the gas is picked up and entrained in the initial current sheet as it passes by on its way along

the space between the electrodes towards the assembly region. The rest of the gas is left

behind to be ionized over time and then accelerated out of the acceleration region and into

the Z-pinch. When more gas is injected into the acceleration region, it should take longer

for all of that gas to be ionized and pushed out of the acceleration region. The amount

of gas injected was controlled by changing the gas line pressure. As shown in Fig. 5.1,

the total number of particles injected increases with the gas line pressure. These values

were obtained experimentally by using each of five gas puff circuits individually to puff gas

into the experiment after closing a gate valve to shut off the experiment from the vacuum

pumps. The four outer gas puff circuits control two valves each that puff gas radially inward

through the outer electrode into the acceleration region. The inner gas puff circuit controls

one valve that puffs gas radially outward through the inner electrode into the acceleration

region. The ideal gas law and the volume of the experiment were then used to calculate the

total number of particles injected. Ten measurements were made for each gas puff circuit,
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Figure 5.1: Mass injected into the experiment for the gas line pressures used in the experi-
mental investigation of accelerator exhaustion. The mass injected increases with increasing
gas line pressure.
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and the five averages were added together to yield the values plotted versus line pressure

in the figure. The standard deviations for the five valves were added together to obtain the

error bar values shown.

Figure 5.2 shows the average quiescent period lengths, based on the normalized m = 1

magnetic mode, for at least ten plasma pulses taken at each gas line pressure. Measurements

were made while changing the pressure for sets of plasma pulses with bank voltages from

5 to 9 kV. Measurements were not made at several combinations of low pressure and high

voltage to avoid large voltage spikes and damage to the experiment. The error bars show the

standard deviation of the quiescent period lengths for each set of ten pulses. The length of

the quiescent period generally increases with gas line pressure, or total number of particles

injected. It decreases with increasing capacitor bank voltage.

Wall conditioning, however, also seems to play a part in the accelerator exhaustion and

the length of the quiescent period. Figure 5.3 shows the average quiescent period lengths

for ten plasma pulses taken at each gas line pressure with a capacitor bank voltage of 7 kV.

The gas line pressure was decreased between each set of ten pulses. The length of time

during which a dense Z-pinch is observed in the experiment using the two-chord He-Ne

interferometer is also plotted in the figure. Both the quiescent period and the dense Z-

pinch period grow longer as the gas line pressure is increased. A similar survey of gas line

pressures was conducted by increasing the gas line pressure between each set of plasma

pulses. Measurements at a gas line pressure of 2150 T were not taken in the second study.

The resulting quiescent period and dense Z-pinch period lengths are shown in Fig. 5.4.

The length of the quiescent period and the dense Z-pinch period no longer increase with

increasing gas line pressure, but instead remain relatively constant.

Although the length of the quiescent period decreases with increasing capacitor bank

voltage, the trend in the chord-integrated density of the Z-pinch is not clear. The time-

averaged chord-integrated density during the quiescent period measured by the on-axis chord

at z = 0 is shown in Fig. 5.5 for capacitor bank voltages between 5 kV and 9 kV. Several

lines are plotted—one for each gas line pressure used in the accelerator exhaustion study

described in the next section. The chord-integrated density does not exhibit a consistent

trend with changing voltage, although it is generally higher at higher gas line pressures.
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Figure 5.2: Quiescent period length at voltages from 5 to 9 kV for the gas line pressures used
in the experimental investigation of accelerator exhaustion. The quiescent period generally
becomes longer with decreasing voltage and increasing gas line pressure.
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Figure 5.3: Quiescent period length and dense Z-pinch period length while decreasing gas
line pressure with a capacitor bank voltage of 7 kV. The quiescent period length is based
on the normalized m = 1 magnetic mode at z = 0. The dense Z-pinch period length is
based on measurements made with the two-chord He-Ne interferometer at z = 0 cm. The
quiescent period and dense Z-pinch period become longer with increasing gas line pressure.
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Figure 5.4: The effects of wall conditioning are evident when the gas pressure is increased,
rather than decreased, between sets of pulses. The quiescent period and dense Z-pinch
period no longer increase with increasing gas line pressure, but instead remain relatively
constant. The dense Z-pinch period is also much shorter here than the quiescent period.
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Figure 5.5: The time-averaged chord-integrated density during the quiescent period does
not show a clear trend with changing capacitor bank voltage. The chord-integrated density
does exhibit an overall tendency to increase with increasing gas line pressure.
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Chapter 6

DISCUSSION AND CONCLUSIONS

Combining the experimental and computational results presented in the previous chap-

ters leads to a more thorough understanding of the behavior of the sheared-flow Z-pinches

studied. The simulation results shown in Figs. 4.13(a), 4.14(a), 4.15(a), 4.15(b), 4.16(a),

and 4.16(b) are for the most part consistent with the density and magnetic field measure-

ments in the accelerator shown in Figs. 2.26(b), 2.25(b), 2.6(b), 2.6(a), 2.7(b), and 2.7(a).

The timing of the current sheet’s passage and the magnitude of the chord-integrated density

are roughly the same. As mentioned earlier, the large rise in the simulated density shown

in Figs. 4.13(a) and 4.14(a) well before the current sheet arrives at z = −65 cm occurs

because ionization is not modeled in the simulation. The particles in the simulation are

initialized as a plasma, instead of the neutral gas that is injected into the experiment. The

interferometer used on the experiment cannot measure neutral gas density and does not

detect the initial expansion of the neutral gas before the current sheet arrives. Plasma is

left in the acceleration region after the passage of the current sheet to be accelerated into

the Z-pinch over time.

Figures 2.6(b) and 2.6(a) show the azimuthal magnetic fields measured by the magnetic

probes in the acceleration region. The sharp rise in the measured fields near z = −75 cm is

matched by the rise of the magnetic fields for the simulations, shown in Figs. 4.15(a) and

4.15(b). The behavior of the two sets of fields overall is similar, with the few differences

likely caused by the presence of an initial plasma and the simplification of the insulator

geometry in the simulation. More insight into modeling of the acceleration region can be

gained from the contour plots of the current distribution over time shown in Figs. 2.7(b),

2.7(a), 4.16(a), and 4.16(b). Most of the current flows initially near the gas injection plane,

but is quickly swept out of the acceleration region in the current sheet. As the quiescent

period begins, current spreads back into the accelerator and remains there until it is swept
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out again at the end of the quiescent period. During the quiescent period, half of the total

current through the plasma flows in the acceleration region. Oscillations in the accelerator

current density distribution that occur in the experiment during the quiescent period are

not matched by the simulation.

As the plasma leaves the acceleration region in the simulation, it collapses onto the

axis, forming a hot spot at the inner electrode nose cone that pushes plasma downstream

and radially outward. After an initial rise, the on-axis density downstream of the nose

cone near z = 0 drops. High-density plasma appears again later at this location when the

Z-pinch is formed. Although this bouncing of the density is an unexpected phenomenon,

its behavior is consistent with both the He-Ne interferometer measurements and the time

evolution of the density profile obtained with the holographic interferometer. Both of these

measurements show a high-density plasma on the axis of the experiment shortly after the

arrival of the current sheet that quickly drops in magnitude or disappears before forming a

more recognizable Z-pinch. The streak and fast-framing camera photos shown in Figs. 2.42–

2.43(h) are also consistent with the simulation results.

The time evolution of the chord-integrated electron density at z = 0 in the simulation,

shown in Figs. 4.13(b) and 4.14(b), appears to match the behavior of lower-voltage hydrogen

Z-pinches and the higher-voltage helium Z-pinches used in the density profile investigation

(Figs. 2.20(b) and 2.27(a)–2.32(b)). Formation of the Z-pinch occurs much more slowly in

the simulation than in higher-voltage (7 to 9 kV) hydrogen Z-pinches such as that shown

in Fig. 2.21(b). The high-voltage hydrogen Z-pinches often do not show a drop in density

between the arrival of the plasma and the formation of the Z-pinch and are very quickly

destroyed, often before the time in the simulation when the Z-pinch is formed. As shown

in Fig. 2.22, higher voltage leads to a shorter quiescent period, but it is likely that gas

starvation also plays a factor in the performance loss.

The correlation between the low magnetic mode activity during the quiescent period and

the presence of a dense plasma along the axis of the experiment shown in Fig. 2.22 supports

the notion that a dense, stable Z-pinch is formed and persists throughout the quiescent

period. Especially at lower voltages, this Z-pinch is free of the violent instabilities that

would be expected to characterize and quickly destroy an otherwise similar, non-flowing
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Z-pinch. The sudden end of the quiescent period and concurrent drop in density, however,

are not well-captured in the MACH2 simulation, where the Z-pinch slowly fades over time.

This may indicate that nonaxisymmetric instabilities not modeled by the simulation play a

part in this process. The fast-framing camera photos shown in Figs. 2.45(a)–2.47(h) support

the idea that instabilities are involved in the end of the quiescent period.

The simulation results support the idea that exhaustion of the gas in the accelerator

leads to the end of the quiescent period. This idea is also supported by the experimental

result that injecting more gas into the acceleration region leads to a longer quiescent period,

although wall conditioning appears to play a role in this behavior (see Chapter 5). The

simulation adds the additional insight that a wave created by plasma bouncing back from

the end wall may play a part in the processes leading to the end of the quiescent period.

The density profiles obtained during the middle of the quiescent period using the holo-

graphic interferometer at z = 0 bear some resemblance to the density profiles in the MACH2

simulation. Both are peaked on-axis with a shoulder at larger radius. The peak value of

the MACH2 number density profile is about one-fifth the value of the helium peak. Some

discrepancy is to be expected, however, since a fully ionized helium plasma will have twice

as many electrons as the hydrogen plasma simulated. A better comparison for the simu-

lation is with the magnitude of the hydrogen profile, which is only about a factor of two

greater. Free electrons from multiply-ionized impurity ions will also cause the magnitude of

the experimental electron number density to be higher than the simulated number density.

The electron density becomes less peaked in the experiment near the end of the quiescent

period, before dropping off completely after the quiescent period. As the Z-pinch in the

simulation is destroyed, the on-axis density drops while the density in the shoulder rises.

This behavior seems inconsistent with that of the experiment, but may not necessarily be

so, since the edge of the shoulder is beyond the view of the holographic interferometer. If

the low-density region outside the Z-pinch is not detected, the holographic interferometer

will interpret the high density at the edge of its view as zero density, which will be reflected

in the magnitude of the inverted profile. The He-Ne interferometer, however, measures a

very low chord-integrated density following the quiescent period. This result can be used

to assert that the density near the axis is zero or very nearly so.
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The magnetic field profiles that accompany the measured hydrogen and helium density

profiles during the quiescent period show a magnetic field that increases mostly linearly to a

maximum value of approximately 1.2 to 1.4 T at a radius of 0.5 to 1.2 cm. The magnitude of

the magnetic field is roughly the same during the middle of the quiescent period as it is near

the end. The associated temperatures range from 27 eV for a helium Z-pinch to 68 eV for

a hydrogen Z-pinch during the middle of the quiescent period. The lower and wider helium

density profile near the end of the quiescent period results in a temperature of 60 eV. These

values are reasonable estimates of the Z-pinch temperature calculated using the constant

temperature model of Chapter 3. They represent the lower limit on the temperature. The

temperatures calculated with the other models presented in the chapter for a hydrogen

Z-pinch are higher, 95–225 eV, and represent an upper bound on the temperature.

The magnetic field profiles in the simulation show a similar overall shape to those based

on the density measurements, although they tend to be more narrow. Their maximum values

are consistent with those in the experiment—0.8 to 1.8 T. Their time evolution, however, is

different, as the magnetic field is much higher during the middle of the quiescent period and

drops as the Z-pinch is destroyed. The temperature profiles in the simulation are peaked,

although some fine-scale structure is observed in the highest-temperature profile near the

axis. In contrast, a constant temperature profile was assumed in calculating equilibrium

profiles from the experimental density measurements. This assumption was made because

thermal conduction within the Z-pinch was determined to be high enough to limit the

temperature gradient. The magnitudes of the simulation profiles—100 to 150 eV—are

somewhat higher than the 27 to 68 eV temperatures calculated from the experimental helium

and hydrogen Z-pinches. The differences in the temperature profiles and their magnitudes

may be due to the fact that thermal conduction was turned off in the simulation. A limit

of 200 eV was set on the simulation temperature, limiting the temperature reached by the

plasma as it is compressed at the nosecone.

The pressure profiles obtained from the experimental density profiles and calculated

temperatures fall off more rapidly than the Kadomtsev pressure profile. This indicates

that the pressure profile of the Z-pinch does not stabilize it against m = 0 perturbations.

Another mechanism must be responsible for the stability of the Z-pinch against this mode,
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most likely the flow shear.

One of the most striking features of the MACH2 simulation results is the formation of a

region of recirculating current by the plasma that reaches the end wall. The plasma in this

region then expands, creating a wave that propagates back towards the acceleration region

as the Z-pinch is formed. This behavior may help explain the reversal in the flow shear

observed in previous work that occurs over the course of the quiescent period [13].

Whether or not this wave is formed in the experiment is difficult to verify, because diag-

nostic access is limited and more appropriate for viewing dynamic behavior that occurs near

the axis of the experiment. Also, the effect may be less pronounced in the experiment, since

the low-temperature plasma involved may recombine to form neutral gas. A comparison

of the average magnetic fields (the m = 0 mode amplitudes) at the three azimuthal arrays

located in the assembly region provides experimental evidence of this region of recirculating

current. Figure 2.3 shows the average magnetic fields measured by the azimuthal magnetic

probe arrays located at z = 0, z = 35, and z = 70 cm. Initially, the field at z = 0 is equal

to or slightly higher than the fields at the two downstream locations. This situation is not

surprising, since most of the current flowing in the assembly region will flow through the

Z-pinch to the end wall. A slightly higher field at z = 0 might indicate that some current is

attaching along the outer electrode before reaching the end wall, which is similar to what

occurs in the acceleration region. After some time, however, the magnetic field at z = 70 cm

rises above the z = 0 and z = 35 cm fields, opening up the possibility that a higher current

is flowing past that magnetic probe array due to a region of recirculating plasma against

the end wall. Some time later, the field at z = 35 cm also rises above the field at the

upstream array, finally followed by a rise in the magnetic field at z = 0 cm. This behavior

is consistent with the expansion of the recirculating region and upstream propagation of

the wave observed in the simulation. The existence of downstream fields at z = 35 and

z = 70 cm that are at times larger than the field at z = 0 is evidence that supports the idea

that a region of recirculating current is formed by the plasma that reaches the end wall.
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Chapter 7

FUTURE WORK

The investigation described in the preceding chapters focused on understanding the

character and evolution of a sheared-flow Z-pinch. Future work on the ZaP experiment

will continue to increase that understanding. Helium Z-pinches were used here to describe

the time evolution of the density profile because their high electron density provided ample

phase shift for determining the density profile. The phase shift for hydrogen Z-pinches with

the single-pass holographic interferometer was often too small to be reliably measured. A

double-pass holographic interferometer should be used to determine the time evolution of

the density profile for a hydrogen Z-pinch, since isotopes of hydrogen are of primary fusion

interest. The scene beam passes twice through the Z-pinch in the double-pass system,

increasing the phase shift to a more easily measured level. It may also be possible to

measure density profiles from pulses at lower capacitor bank voltages with the double-pass

system.

The two-chord He-Ne interferometer is capable of giving time-resolved, chord-integrated

density information on a single plasma pulse. It has been used to supplement the investiga-

tion of the time evolution of the radial profile performed with the holographic interferometer.

The He-Ne interferometer is being expanded to four chords, allowing an Abel inversion to

be used to determine a time-dependent density profile. This density profile will be less

accurate than the profile obtained from the holographic interferometer, because only four

chord-integrated measurements can be used in the inversion.

In addition, the chords of the He-Ne interferometer could be positioned to make mea-

surements at different axial locations in the assembly region. Positioning four chords at

z = 0 could allow short-wavelength axial density variations to be investigated. This would

allow measurement of the wavelengths of axial density gradients in the Z-pinch and indicate

the flow shear required for stabilization.
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Continued research will be conducted into how changes in experimental parameters affect

the behavior of the Z-pinch. The dependence of the density and length of the quiescent

period on the capacitor bank voltage and the amount of gas injected into the experiment

will be studied at higher gas line pressures. The limit on the gas line pressure is currently

set by the damage threshold of the turbopump. The turbopump inlet will be throttled

to eliminate this constraint. The total power input into the experiment will be increased

by adding additional capacitors and ignitrons to the capacitor banks. Injecting more gas

into the experiment while providing a longer, higher current waveform should extend the

quiescent period length and show if it is possible to maintain the Z-pinch indefinitely.

The inner electrode diameter will be increased to increase compression of the plasma

as it collapses on axis. This will increase the temperature of the Z-pinch and change its

equilibrium profile. Additional gas puff valves will be installed inside the new inner electrode

to allow better control of the neutral gas injected. Planned expansion of the outer electrode

will double the length of the Z-pinch and provide greater downstream diagnostic access.

Downstream density measurements can be used to characterize the Z-pinch density far

from the acceleration region.

Agreement between the simulation and the experiment could be improved by making

a few changes to the simulation. An experimental current waveform could be applied to

the MACH2 simulations, instead of allowing MACH2 to calculate the current using an ex-

ternal inductance, capacitance, and voltage and its own internally-computed inductance.

This would better model the effects of the pulse-forming network used to create a constant-

current waveform throughout much of the plasma pulse. The voltage across the insulator

output by MACH2 could still be used as a basis for comparing the electrical character-

istics of the simulation with those of the experiment. Ionization could also be added to

the MACH2 model. The dynamics of the current sheet and fluctuations in the accelerator

current distribution in the simulation may be brought more in line with experimental obser-

vations with ionization included. The behavior of the wave that bounces back from the end

wall in the simulation may also change when ionization and recombination are modeled in

the simulation. Thermal diffusion could also be turned on to capture the effects of thermal

conduction on the Z-pinch density, temperature, and magnetic field profiles.
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Chapter 8

SUMMARY

The ZaP Flow Z-Pinch is a basic plasma physics experiment designed to investigate the

effects of sheared flow on gross plasma stability. It produces sheared-flow Z-pinches that

exhibit characteristics of stability for over one thousand times the theoretical instability

growth time for a Z-pinch without sheared flow. The experiment consists of a coaxial

acceleration region attached to an assembly region where the Z-pinch is formed. MACH2

simulations show acceleration of the current sheet from the acceleration region into the

assembly region. As it leaves the acceleration region, the plasma collapses on axis and a

dense, hot Z-pinch is formed along the axis of the assembly region.

The Z-pinch persists throughout a 20 to 40 µs quiescent period, characterized by low

magnetic mode activity and high density on axis. Measurements made using a multi-

chord He-Ne interferometer during this period corroborate the existence of the high-density

plasma. The chord-integrated density is measured by a holographic interferometer and in-

verted to yield the radial electron density profile. The density profile for a hydrogen Z-pinch

is peaked at a number density on the order of 1×1017 cm−3 on the axis. An equilibrium pro-

file model is used to construct magnetic field profiles and determine the temperature based

on the density profile. The magnetic field for a hydrogen Z-pinch is approximately 1.4 T,

and the average temperature is about 68 eV. Measurements are made with the holographic

interferometer on successive helium plasma pulses to track the evolution of the Z-pinch

equilibrium profile over time.

Simulation results, He-Ne interferometer measurements, and an experimental investiga-

tion of neutral gas injection indicate that the Z-pinch is fueled during the quiescent period

by plasma from the accelerator. Depletion of plasma in the accelerator is associated with

the end of the quiescent period and the destruction of the Z-pinch.
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Appendix A

HOLOGRAPHIC INTERFEROMETRY USER’S GUIDE

This appendix serves as a guide to the practical aspects of making density measurements

on the ZaP Flow Z-Pinch using the holographic interferometer. Further information is

available in Ref. [19] and a journal article that, at the time of publication of this document,

is under review for publication in Review of Scientific Instruments.

A.1 Safety

The laser used to make interferograms with the holographic interferometer is a high-power,

pulsed ruby laser and must only be operated or maintained by trained personnel. Two people

must be present when operating the laser—it must not be operated alone. Light is emitted

from this laser at a visible wavelength detectable by the human eye, and it is bright enough

that even scattered light can cause permanent eye damage. Eye protection in the form of

goggles designed for ruby laser use must be worn when operating the laser inside the lab,

or the laser may be operated outside the lab without goggles if the laser light is contained

within the lab by the black cloth and the walls of the laboratory. The integrity of the black

cloth must always be checked before firing the laser, since it must be moved to access the

cable tray on top of the screen room or to look through the window outside the screen room

into the laboratory. Warning signs must be placed over the doorknobs on the doors at both

ends of the lab when the laser is in operation. The laser is interlocked to the laboratory

doors and the panic buttons through the ZaP interlock system and the Thomson/holography

remote control. Schematics of the ZaP interlocks, Thomson/holography remote control, and

holography laser power supply are located in the folder M:\ZaP Electronic Schematics. The

power supply contains high-voltage capacitors and electronics and must be treated with

care during operation and maintenance. The capacitors must be grounded and the power

supply must be unplugged prior to performing maintenance on the power supply or on the
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laser head or Pockels cell assembly.

A.2 Optical Configuration of the Holographic Interferometer

The holographic interferometer can be operated in single-pass or double-pass configurations.

The single-pass configuration provides sufficient phase shift when used to make density

measurements on helium Z-pinches, and it leaves enough room for the multichord He-Ne

interferometer to be used to make simultaneous density measurements at the holography

port. The double-pass configuration should be used when making density measurements of

hydrogen or 50 % hydrogen/50 % methane Z-pinches, which have lower electron densities

than helium Z-pinches. It provides twice the phase shift of the single-pass system, increasing

the signal-to-noise ratio in the fringe shift. On such low electron density plasmas, with the

single-pass system it is often difficult to differentiate between the phase shift due to the

plasma electron density and aberrations in the interferogram. The He-Ne interferometer

cannot be used with the double-pass system because it is blocked by the mirror that reflects

the scene beam back for its second pass through the plasma.

A.2.1 Single-Pass Holographic Interferometer

The single-pass holographic interferometer setup is shown in Fig. A.1. The length of each

section of the scene and reference beam paths in millimeters is included in the diagram. The

path lengths of the scene and reference beams are equal to within less than a centimeter.

The scene beam lens is positioned to image the Z-pinch onto the holographic film with a

1:2 image-to-object magnification ratio. The 305 mm focal length lens is located 915 mm

from the center of the 152.4 mm (12 in) diameter vacuum tank and 457.5 mm from the

holographic film. The reference beam lens is also positioned 457.5 mm from the holographic

film. Figure A.2 is a photograph of the single-pass holographic interferometer, with the

scene and reference beam paths indicated.

Max-R mirrors are used in the beam paths whenever possible. These mirrors are designed

to reflect as much of the ruby laser light as possible from their coated first surface when

positioned at the correct angle to the beam path. Net reflections from other surfaces are

minimized. The max-R mirrors only work properly at their design angle, usually 45o, so a
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Figure A.1: Optical configuration of the single-pass holographic interferometer with the
lengths of each section of the scene and reference beam paths indicated.

metal mirror is used in the tilting mirror location, where the angle of incidence of the laser

light is not 45o.

The expanded laser beam is brought above the height of the vacuum tank before being

split by the 50 % beamsplitter into the scene and reference beams. On the far side of the

vacuum tank, the reference beam is brought down to the level of the scene beam where

they interfere at the holographic film. This arrangement is similar to the scheme used with

the He-Ne interferometer and makes it easier to match the scene and reference beam path

lengths. Incidentally, turning the beam upward from the laser rail and then towards the

vacuum tank changes the polarization direction of the laser light from horizontal to vertical.

It should also be noted that the reference beam is reflected the same number of times as

the scene beam on its way to the holographic film, insuring that light from the same region

of the original, split beam hits the film in the same place for both beams. If one beam were

reflected an odd number of times and the other were reflected an even number of times,

then one of the beams at the film would be reversed with respect to the other, and light

from opposite sides of the original beam would be brought together at the film. Neither the

change in polarization nor matching the number of reflections was observed to affect the

interferograms produced.
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Figure A.2: Photograph of the optical configuration of the single-pass holographic interfer-
ometer with the scene and reference beam paths indicated.
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One important aspect of the optical setup does not appear in the diagram. The mirrors

and beamsplitter on the ruby laser rail side of the vacuum tank are positioned slightly

downstream of the center of the z = 0 viewports, and the optical components on the film

side of the vacuum tank are positioned slightly upstream. This causes the path of the scene

beam through the experiment to be slightly skewed, preventing normal reflections as the

laser passes through the viewport windows. The reflections that do result are not parallel to

the path of the laser through the vacuum tank, and diverge quickly enough to miss both the

laser cavity, in the case of back reflections, and the holographic film, for forward reflections.

A.2.2 Double-Pass Holographic Interferometer

The double-pass holographic interferometer setup is shown in Fig. A.3. The length of each

section of the scene and reference beam paths in millimeters is again included in the diagram.

The difference between path lengths in this case is 60 mm. Interferograms were also made

using a simpler double-pass system with a path length difference of 1750 mm, but their

quality was much lower than those made with the path lengths nearly equal. Figure A.4 is

a photograph of the double-pass holographic interferometer, with the scene and reference

beam paths indicated.

In the double-pass arrangement, the scene beam passes through the plasma, bounces

off a mirror, and passes through the plasma a second time before traveling through the

beamsplitter and hitting the holographic film. The double pass through the plasma (as

opposed to a single pass) is needed to increase the phase shift of the scene beam to a more

easily measurable level for a hydrogen or methane plasma. As in the single-pass setup,

a lens is used to image the plasma onto the film, but only the scene beam’s second pass

through the Z-pinch is imaged. The reference beam also has a lens in its beam path.

The mirrors and 50 % beamsplitter in the double-pass holographic interferometer act on

the ruby laser beams in the horizontal plane. The laser light remains horizontally polarized,

unlike in the single-pass system, where the beams are steered from the horizontal to the

vertical plane and the polarization direction of the light is shifted. As in the single-pass

system, the reference beam and the scene beam are both reflected an even number of times,
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Figure A.3: Optical configuration of the double-pass holographic interferometer with the
lengths of each section of the scene and reference beam paths indicated.
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Figure A.4: Photograph of the optical configuration of the double-pass holographic interfer-
ometer with the scene and reference beam paths indicated. An alignment guide consisting
of a wire cross mounted over a hole in a piece of sheet metal can be seen between the beam
expander and the beamsplitter. This guide would not be in the beam path during operation
of the holographic interferometer.
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so the same parts of the original, unsplit beam are matched at the film. The reference beam,

however, is reflected four times, while the scene beam is reflected only twice.

An extremely important detail shown in the diagram of the double-pass setup is the

slight misalignment of the scene beam’s first and second passes through the film. This

misalignment prevents laser light from being reflected off the beamsplitter and into the

laser cavity after the scene beam’s second pass through the plasma. Without it, reflection

of the energetic laser pulse back into the cavity could damage the laser rod. Damage did

occur on one occasion, necessitating replacement of the laser rod. To make this misalignment

easier, a three-inch diameter visible light beamsplitter was used as the beamsplitter. Only

a slight misalignment is necessary, however, and the visible light beamsplitter was replaced

by a two-inch diameter beamsplitter designed for use with ruby laser light. Interferograms

made with the ruby beamsplitter were of slightly higher quality than those made with

the beamsplitter designed for the wider range of wavelengths. When properly misaligned,

the reflection of the returning scene beam from the beamsplitter back through the beam

expander can be seen with the alignment laser as a focused spot that is blocked by the edge

of the etalon mount.

Reflections from the vacuum tank windows must also be prevented from reflecting into

the laser cavity or from interfering with the scene and reference beams at the holographic

film. The beamsplitter used to reflect the scene beam through the plasma is positioned

slightly downstream (towards the outer electrode end wall) of the z = 0 viewport. As a

result, the scene beam passes through the glass of the z = 0 viewports at a slight angle

and the stray reflection from the laser-side window hits the beamsplitter mount. The stray

reflection from the far-side window passes between the beamsplitter and the beam expander

and hits the lab wall.

Max-R mirrors are used whenever possible in the beam paths. The tilting mirror and

the scene beam mirror on the far side of the vacuum tank are both metal mirrors, since

the angle of incidence between the laser light and these mirrors is not 45o. One additional

metal mirror is used in the reference beam path because of a shortage of unblemished max-R

mirrors. It is important to use a max-R mirror as the last reference beam mirror, because

the beam is more focused at that point, resulting in a higher power per unit area that could
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damage the mirror.

A.2.3 Optical Alignment

The first step in setting up the holographic interferometer is to align the ruby laser. This

is achieved by using an autocollimator to line up the reflections from the etalon and rear

reflector with the front face of the ruby laser rod. It may be necessary to open up the iris

in the laser cavity during alignment. The manuals for the laser oscillator head and the

Pockels cell may be helpful, especially if the Pockels cell needs alignment [24, 25]. The

front and rear faces of the ruby rod, rear reflector, and etalon are not perfectly parallel,

so six spots will be visible in the autocollimator, as well as a constellation of reflections

from the polarizer stack in the Pockels cell. An index card can be used to block some of

the components to determine which reflections correspond to each optical component. After

using the autocollimator and removing it from the laser rail, the laser may be fired at Zap-It

paper a few times to fine-tune its alignment. Before firing the laser, check that the laser

cooler is on and providing adequate water flow, without bubbles, to the laser head. Bubbles

may be an indication that the cooler water level is low. Use the conductivity meter to check

that the resistivity of the water is greater than 105 Ω-cm. An oscilloscope can be used

to observe the laser pulse waveform recorded by the holography laser monitor photodiode

during the fine-tuning. After the laser is aligned, it is fired twice more—once at a piece of

Zap-It paper mounted at the end of the laser rail and once across the room at a piece of

Zap-It paper mounted on the drawers against the screen room wall. The alignment laser

pointer mounted behind the rear reflector is then adjusted to hit the centers of both the

ruby laser spot on the Zap-It paper and the one against the screen room wall. To avoid

damaging the alignment laser, it is always covered with either the laser monitor photodiode

or an index card when the ruby laser is fired. The ruby laser is then fired several times at

Zap-It paper, and the diameter and position of the iris in the laser cavity is adjusted based

on the resulting spots and the beam of the alignment laser to select the best part of the

beam. An iris diameter of 4 mm is typically used when making interferograms.

Once the ruby and alignment lasers have been correctly adjusted, the beam expander is
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mounted on the laser rail so that the beam of the alignment laser passes through the center

of the beam expander and hits the same Zap-It paper spot by the screen room as before. In

addition, the beam expander should be adjusted so that the diameter of the laser pointer

beam remains constant after it leaves the beam expander. It is correctly adjusted when the

lenses are 144 mm apart, placing the foci of the small f = 16 mm diverging lens and large

f = 160 mm converging lens at the same spot on the etalon side of the beam expander. The

various mounts available can then be used to position the optical components for either the

single or double-pass holographic interferometer shown in Figs. A.1 and A.3. Crosshairs

made of wire and mounted across a hole in a piece of sheet metal are placed at the exit of

the beam expander as an alignment guide.

For the double-pass holographic interferometer, the two-inch diameter 50 % ruby laser

beamsplitter is positioned on the end of the laser rail, slightly off of the rail’s axis using the

three-inch mirror mount, two-inch Delrin adapter, and aluminum platform with pontoons.

For the single-pass setup, a series of towers are used to mount the beamsplitter and mirrors

on the ruby laser side of the vacuum tank.

The scene beam is reflected through the vacuum tank along a slightly skewed path to

prevent normal reflections from the viewports from feeding back into the laser cavity or

reaching the holographic film. Wires are mounted horizontally one centimeter apart near

the centers of the viewports on either side of the vacuum tank. A Delrin mount is used to

mount the wires on the far side of the vacuum tank from the ruby laser, which will remain

in place after alignment to serve as reference wires in the interferograms. The shadow of

these wires in the laser beam on a circular piece of paper mounted over the next optical

component is used to ensure that the beam is level through the vacuum tank. If the vacuum

tank is level, corresponding wire shadows should overlap. If not, either the laser beam or

the vacuum tank is not level, and the beam should be adjusted until it is level and passes

through the center of the vacuum tank.

For the double-pass holographic interferometer, the mirror on the opposite side of the

vacuum tank is cantilevered off the He-Ne interferometer table and positioned to reflect the

scene beam back through the experiment. A circular piece of paper with a small hole near

its center is put over the mirror, and the mirror is positioned so that the hole is at the center
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of the shadow made by the alignment crosshairs in the beam. The return reflection from

the mirror on the other side of the vacuum tank will appear as a small square around the

crosshairs, and is easily distinguishable from other beams or window reflections. This return

reflection is misaligned so that it hits the beamsplitter a centimeter or two closer to the

beam expander than the original beam from the laser cavity. When properly misaligned, the

return beam will still be reflected into the beam expander, but a focused spot will appear

on the etalon mount, which prevents it from reaching the laser cavity and causing damage

to the ruby rod.

The scene beam is steered onto an index card held in the back of the camera at the

plane of the film. The reference beam path is aligned so that the reference beam hits the

card at about a 15o angle to the scene beam. The mirrors in the reference beam are aligned

by placing a circular piece of paper on one mirror, and a second circular piece of paper with

a hole cut in it on the previous mirror. The two mirrors are adjusted until the crosshairs

at the center of the square produced by the hole are centered on the paper over the second

mirror. This procedure is repeated until the entire beam path has been aligned. The tilting

mirror is particularly difficult to align because it is only capable of fine adjustment in one

plane, and must be coarsely adjusted in the other. A magnetic mount is often used with the

tilting mirror in the double-pass setup, so that the mount itself can be nudged or turned

slightly to make small adjustments.

During initial alignment of both the single-pass and the double-pass configurations,

the lenses and the irises that prevent light emitted by the plasma from hitting the film

are removed from the beam paths. The scene and reference beams are adjusted until the

shadows of the crosshairs in the two beams overlap on the index card at the film plane. A

second index card can be used to block a portion of either beam to check alignment. Once

the two beams are aligned, the lens for one of the beam paths is moved into place and

positioned so that it is normal to and centered in the beam. Its position is adjusted so that

the crosshairs in the imaged beam is still aligned with the crosshairs of the other, unimaged

beam at the film plane. The lens for the other beam path is positioned in the same way,

making sure it the crosshairs of the second beam is still aligned with the imaged beam of

the first.
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After the beams have been aligned, the alignment crosshairs and reference wires on the

side of the vacuum tank near the ruby laser are removed, along with other alignment aids

such as the index card at the film plane. The irises are positioned and re-cut from an index

card mounted over a larger hole in a piece of cardboard, if necessary. To protect the film from

stray light from the laser cavity, a second piece of cardboard is mounted perpendicular to the

irises on the laser-cavity side of the camera or the laser cavity is covered by cloth, making

sure not to bump any of the aligned optical components. The holography laser monitor

photodiode is mounted in front of the alignment laser and the tilting mirror electronics are

connected to the two ends of the hot wire on the tilting mirror mount. A multimeter is

connected in series with the wire and set up to read a current of approximately 0.35 A. An

extension cord is run from the tilting mirror electronics to a switchable power strip outside

the lab near the screen room. The black cloth covering the windows and separating the

laboratory from the screen room is checked for holes that might leak laser light outside the

laboratory and potentially result in eye damage.

A.3 Loading the Film

PFG-01 holographic film is used to make the interferograms. It is a red-sensitive emulsion

primarily intended for use with He-Ne lasers. It is made by the Slavich company outside

Moscow, Russia and distributed locally by Laser Reflections in Seabeck, Washington. The

film is reasonably priced—a 20 meter-long roll of 35 mm film costs $115, or thirty sheets of

approximately 35 mm square film cost $30. It is stored in a refrigerator to prolong its life.

A cool, dry storage environment is best for extending the shelf life of the film.

All handling of the film must be in complete darkness without a safelight, so the film is

loaded into the back of the camera in the holography darkroom located in the TIP lab next

door to the ZaP lab. Practically speaking, however, film leaders exposed to low light levels

in the laboratory become only slightly exposed. For roll film, approximately 1.5 in of space

is needed per interferogram on the film, so 12 in of roll film is cut to make 5 interferograms

and to provide space for leaders at the beginning and end of the film. The rest of the film

roll is immediately put away minimize the possibility that it might be accidentally exposed

to light. The end of the 12 in film section is taped to the spool of a 35 mm film canister,
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and the rest of the film is wound around the spool, emulsion side in. The emulsion side can

be determined by slightly moistening a finger and touching it to both sides of the film in

a spot near an end where no interferograms will be made. The slightly sticky side is the

emulsion side. After the spool is put into the canister and capped, the light may be turned

on.

A corner of the film leader is cut off, so the now trapezoidal leader can be tucked into

a clip on the film take-up reel of the camera. The camera is loaded and advanced in the

same manner as any other 35 mm camera. When loading the film, check that it does not

slip when the advance lever is turned. A remote shutter cable is used to open the shutter

and hold it open with one click. A second click will close the shutter. It is a good idea

to advance the film after loading it, turn off the lights, open and close the shutter, and

advance it again to ensure that an unexposed portion of the film is in position for the first

interferogram to be made.

When film squares are used, loading the film is more complicated. In the darkroom,

the film squares are removed from their box, and the box is wrapped up and put away to

prevent accidental exposure of the rest of the film to light. A paper cutter is used to cut

2 mm or so from the top edge of each square of film, which is actually a little more than

35 mm square and would not otherwise fit in the camera. Each square of film is labeled, in

order, with a number on a small sticker that can be used later for identification. The label

is placed in the upper right-hand corner of the emulsion side of the film, from the film’s

perspective. The first piece of film is taped to the camera body over the back of the shutter

opening where the film would normally sit. The camera back is closed. The other pieces of

film are placed, in order, into a dry developing tank. Once the developing tank lid is closed,

the light is turned on and both the tank and the camera are brought into the lab.

A.4 Making the Holographic Interferogram

Most steps involved in making holographic interferograms are included in Ref. [19]. A few

of the details, however, are related here.

Before making interferograms, the laser beam path is checked for obstructions, and

proper positioning of the irises is verified using the alignment laser pointer. The tilting
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mirror electronics are turned on and tested to see that a current of approximately 0.33–

0.36 A flows through the hotwire. The alignment laser is covered, and the ruby laser is

fired at a piece of Zap-It paper to verify its alignment and beam quality. When making

interferograms, the laser is usually set to a power supply voltage of 3.60–3.75 kV, a Pockels

cell voltage of 8.3 kV, a Pockels cell delay of 0.90 ms, and an iris size of 4 mm. The

holography laser remote control, part of the Thomson/holography laser remote control, is

typically used when firing the ruby laser and making interferograms. When making plasma

pulse interferograms, however, the fire plug in the back of the laser power supply must be

switched to allow the laser to be triggered by the 45 V trigger box on top of the laser.

This causes the laser to be triggered by the digital delay generators used to control the

experiment, rather than by the button on the remote panel. A trigger box with a 0.90 ms

or so delay can also be connected to the Pockels cell, or the internal trigger delay can be

used.

The laser keys are disconnected from the hazard lights in the lab and used to turn on

the laser power supply. The overhead lights, ionization gauge, and any other large lights

in the lab are turned off and the camera shutter is opened. The laboratory door is closed,

and the interlock system is energized. The laser is fired once to make the reference, non-

plasma holographic exposure. The power strip controlling the hotwire is turned on to move

the tilting mirror, and the second holographic exposure is made during the plasma pulse.

Typically for a 9 kV pulse, the charge button for the laser must be pushed as the capacitor

bank voltage on the experiment passes through 8.75 kV. When the laser is charged and

the capacitor bank voltage drops to 9 kV, the experiment is triggered and the holography

laser fires automatically according to the time set in the digital delay generator. After the

laser is fired and the capacitor banks on the experiment have been dumped, the camera

shutter is closed and the lights can be turned on or a flashlight can be used to record the

hotwire voltage. If sheet film is being used, the lights are turned off while the exposed film

is transferred to a dry developing tank and an unexposed square from the other developing

tank is taped into the camera. Regardless of the film type used, the film advance lever is

pushed, and the shutter is opened with the room lights off again. The film advance lever

advances roll film, but also winds the shutter. The hotwire is turned off, and the next



147

interferogram can be made.

A.5 Developing the Holographic Interferogram

The holographic interferogram is developed in a developing tank in the darkroom, with

the lights on for all steps except loading the film into the developing tank. Loading the

film roll onto the wire holder used with the developing tank can be tricky, and should be

practiced with an old piece of film, with light, beforehand. The sheets are easier to load,

and use a larger, black plastic developing tank. Once the developing tank is closed, the

lights can be turned on. The film is developed according to the steps in Table A.1. Many

Table A.1: Darkroom processing of holographic film.

Processing Solution Solution Used Processing Time

Developer Kodak Developer D-19 5 minutes

Stop Bath Kodak X-Ray Indicator Stop Bath 10 seconds

Fixer Kodak Rapid Fixer 5 minutes

Rinse water 5 minutes

Bleach potassium dichromate until barely visible

Rinse water 10 minutes

other developing schemes are also possible, and it would be worthwhile to switch to a more

environmentally safe bleach than potassium dichromate. None of the chemicals used, except

water, are allowed to be released to the sewer at the University of Washington. All can be

used again many times before they are exhausted. The shelf life of the concentrates and

powders used to make the darkroom chemicals is several years, up to ten in some cases. The

potassium dichromate solution has a long shelf life, as well, but the other working strength

solutions have a shelf life of only around three months.



148

Polaroid
film
&

camera

holographic
interferogramglass plate

lenses
identical
to lens in
reference

beam

microscope
objective

aperture

HeNe laser

beam
expander

camera
shutter

camera
iris

457.5 mm

610 mm
6.35 mm

Figure A.5: Optical configuration used to reconstruct holographic interferograms, including
important dimensions.

A.6 Reconstructing the Holographic Interferogram

After they are developed, the holographic interferograms are reconstructed and recorded on

instant black-and-white film, as described in Ref. [19]. The reconstruction setup is shown

in Fig. A.5. A few important dimensions are included in the diagram. The focal lengths of

the two lenses that make up the beam expander are shown. The pinhole used to spatially

filter the reconstruction beam is located at their mutual focal point, and the sum of their

focal lengths is the total length of the beam expander. The distance between the 305 mm

focal length lens and the holographic film in the reconstruction setup is the same as the

distance between the lens and the film in the holographic interferometer. Since the lenses

used to make the interferogram reversed the image of the scene beam at the film, in the

reconstruction setup, the interferogram is mounted in the same orientation as when it was

made. After the imaging optics, the resulting image is no longer reversed, and the black-and-

white photograph represents what would have been “seen” by an observer looking through

the back of the camera at the plasma in the experiment.

Figure A.6 is a photograph of the optical configuration used to reconstruct holographic

interferograms. A He-Ne laser is used to mimic the reference beam used to make the

interferogram. This beam is diffracted by the holographic film, producing the reconstructed

scene beam. Figure A.7 shows the reconstructed images that result when the reconstruction
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Figure A.6: Photograph of the optical configuration used to reconstruct holographic interfer-
ograms. A He-Ne laser is used to mimic the reference beam used to make the interferogram.
This beam is diffracted by the holographic film, producing the reconstructed scene beam.

laser beam is diffracted by the holographic film. The second image from the left, which

propagates normal to the film, is the virtual image of the reconstructed scene beam that is

recorded and used to determine the plasma density.

A.7 Density Determination and Data Storage

The methods used to measure the fringe shift and calculate the chord-integrated electron

density and the radial electron density profile are discussed at great length in Ref. [19], and

a more concise, up-to-date discussion is included in the RSI paper that is awaiting publi-

cation. The IDL routines analyze interferogram.pro and invert interferogram.pro, included

in Appendices D and E are used in that order to isolate the fringes in the scanned tagged

image format (TIF) of the reconstructed interferogram and to obtain the density. Although

a reduction in the error bars was anticipated when higher resolution was used to scan the

interferogram, this effect was not observed in practice. In addition, the higher resolution

resulted in more problems with missed points during fringe localization. The end result of
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Figure A.7: Reconstructed images that result when the reconstruction laser beam is
diffracted by the holographic film. The second image from the left, which propagates normal
to the film, is the virtual image of the reconstructed scene beam that is recorded and used
to determine the plasma density.
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the analysis are two data files containing the fringe coordinates, chord-integrated density,

and radial density profile, among other quantities, as IDL variables. The radial coordi-

nate, chord-integrated density, and density profile can be written to a text file by the IDL

procedure write holography ascii.pro. Another IDL procedure, write holography tree.pro is

currently under development to write these and other relevant quantities to the Zapmain

MDSPlus tree database. The raw interferograms and the associated data files are stored in

the folder

M:\Users\Archived Users\Stuart Jackson\ZaP\Holograms,

which contains an Excel spreadsheet called Catalog of Holograms.xls describing many of the

interferograms. The IDL procedures are stored in the folder

M:\Users\Archived Users\Stuart Jackson\ZaP\IDL\holography.

The black-and-white instant photos of the reconstructed interferograms can be found

in two red binders, labeled “Holograms I” and “Holograms II,” while the interferograms

themselves can be found in several labeled, small boxes in the holography reconstruction

area. The naming convention for plasma pulse interferograms is “YYYY MM DD NNN-H1”,

where “YYYY” is the four-digit year, “MM” is the two-digit month, “DD” is the two-digit

day, and “NNN” is the three-digit pulse number on the day. The interferogram named “2003

02 04 007-H1” was made on Pulse 30204007, for example. Baseline interferograms are not

made during a plasma pulse, so the “NNN” is dropped, and the “H1” is incremented as

baseline interferograms are made over the course of the day. The fourth baseline made on

February 4, 2003 is named “2003 02 04-H4”, for example. The reconstructed interferograms

are named by adding “-P1”, “-P2”, and so on to the name of the interferogram to indicate

if they were the first, second, or later photo taken of the reconstruction. The second photo

made of interferogram “2003 02 04 007-H1”, for example, is named “2003 02 04 007-H1-P2.”

Often several photos are made of a single reconstruction as the exposure is adjusted, and

different exposure levels may make different features apparent in the interferogram.



152

Appendix B

INPUT FILE FOR MACH2 ZAP SIMULATION

ZaP Experiment Simulation zap11.2h

zap11.2h

!

! filename izap11.2h

! 06/01/31 11.2h: volt=9.e3

! 06/01/31 11.2g: volt=8.e3

! 06/01/31 11.2f: volt=7.e3

! 06/01/31 11.2e: volt=6.e3

! 06/01/31 11.2d: volt=5.e3

! 06/01/31 11.2c: volt=4.e3

! 06/01/31 11.2b: volt=3.e3

! 06/01/31 11.2a: volt=2.e3

! 06/01/26 11.1b: volt=2.e3->3.e3

! 06/01/26 11.1a: volt=9.e3->2.e3

! 06/01/24 11.0b: volratm=0.8->0.1, courmax=0.8->5.

! 06/01/02 11.0a: roi(1)=1.879e-4->4.72e-4

! corrected initial density caused by using incorrect

! radius to calculate total mass injected

! to run, type: /usr/bin/nohup m2 -i input_file > output_file &

!

$contrl

! begin at t = 0

t = 0.,
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! initial and maximum timesteps

dt = 1.e-9,

!x dtmax = 2.e-7,

! run to 50 microseconds

twfn = 100.e-6, ! 10.1b 1e-9,

! ncycwfn = 40,

! cylindrical symmetry

cyl = 1.,

! physics simulation switches:

eoson = .true.,

! assume electron-ion equilibrium

tsplit = 0,

! multi material model

! con2on = .true.,

! no radiation

radiate = .false.,

radmodl = ’none’,

! external circuit

ciron = .true.,

! no thermal diffusion

thmldif = .false.,

anisot = .false.,

mgmodet = ’vcycle ’,

nthrmax = 200,

flxlmt = 0.4,

tdtol = 1.e-4,

tdrelax = 0.5,

! magnetic diffusion

bdiff = .true.,

! vcycle the magnetic diffusion solver
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mgmode = ’vcycle’,

ncorplv = 100, ! 6.0i 40

itmaxrd = 500, ! 6.0c 50

rdtol = 1.e-6,

rdrelax = 0.5,

aresfdg = 0.05,

jouhtmlt = 1.,

aresvac = 1.e0, ! 6.3f-i 2e8 6.2c 5e7; 6.0l 1e7; 6.0j 1e8; 5.6q 1e4

! rofanom = 1.e-7,

hallon = .false.,

magon = .true.,

! B-theta only

brbzon = .false.,

! itpot > 0 means the potential solver is used to cleanup the magnetic field

! by reducing the divergence while maintaining the current density

itpot = 0,

potrelx = 0.1,

hydron = .true.,

! Lagrangian problem requires fully time-advanced differencing

theb = 1.,

vldenf = 1.e-5,

volratm = 0.1, ! 11.0b 0.8,

! large courant multiplier to keep the vacuum from constraining dt

courmax = 5., ! 11.0b 0.8,

rmvolrm = 0.9,

! artificial viscosity multiplier

mu = 0.0,

eps = 1e-5, ! 9.0r 1.e-6,

! no shear material strength

strength = .false.,
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! construct an ideal mesh each cycle

meshon = .false.,

nsmooth = 4,

wrelax = 0.25,

nigen = 0,

niter = 5,

eqvol = 0.,

! use multi-grid for solving the diffusion equation

multgrd = .false.,

$end

$output

! output control -- need cgslib from LANL to make pictures

! terminal edits

intty = ’edits,10’,

! ncyctty = 1,

! write restart: outrestart

dtrst = 10.e-6, ! 9.5a 31.e-6,

! ncycrst = 1.e-6,

! tecplot output

poston = .false.,

tecon = .true.,

dtpost = 1.e-6, ! generates plot file every 1000 nanoseconds

tplot(9) = ’rbtheta’, ! 8.0e ’ni’,

tplot(10) = ’ni’, ! 8.0f ’ti’,

tplot(11) = ’te’, ! 8.0e ’pressure’,

tplot(12) = ’pressure’, ! 8.0e ’magp’,

! history plot of current versus time

ncychist = 1.e-6,

histnum = 6,

histpic = .true.,
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! hstnumfc = 0,

probtype(1) = ’rbzdot’,

histx(1) = 0.0900d0, ! 9.5a 0.0508d0,

histy(1) = -0.6500d0, ! 9.5a 0.d0,

probtype(2) = ’elecdens’,

histx(2) = 0.0900d0,

histy(2) = -0.6500d0,

probtype(3) = ’rbzdot’,

histx(3) = 0.0900d0,

histy(3) = -0.2500d0,

probtype(4) = ’elecdens’,

histx(4) = 0.0900d0,

histy(4) = -0.2500d0,

probtype(5) = ’rbzdot’,

histx(5) = 0.0900d0,

histy(5) = -0.0000d0,

probtype(6) = ’elecdens’,

histx(6) = 0.0000d0,

histy(6) = -0.0000d0,

! 2-D picture file: cpm2

! print 14 pictures every microsecond

! dtp = 0.5e-6,

! ncycp = 10,

! ncycpost = 10,

! fichfram = 14,

! plot(0) = ’pfs ’,

! plot(14) = ’ni’,

! kcon(1) = 5,

! print slice plots

! dtslic = 0.5e-6,
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! ncycslic = 2,

! ibdyslic = 4,

! lblkslic = 4,

! ijslic = 16,

! slice(1) = ’ni’,

! slice(4) = ’current’,

! sliccomp(4) = ’vectorx’,

! slice(5) = ’current’,

! sliccomp(5) = ’vectory’,

! slice(10) = ’density’,

! don’t draw internal block boundaries

! intbound = .false.,

! pltscale = ’none’,

! print letter labels on the contours

! clabpict = .false.,

! color-code vectors according the magnitude of the out-of-plane component

! mvecclr = -1,

! vsclmlt = 0.05,

! don’t show both sides of the axis

! pflip = .false.,

! frccl = .true.,

$end

$curnt

! external circuit model

! 8/9/01 6.3b changed circuit type from rlc

! so vars added are currvalu and currtime

! current and time values obtained from shot 10705008

! circtype(1) = ’linear’,

! currvalu(1,1) = 0,

! currtime(1,1) = 0.e-6,
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! currvalu(2,1) = 1.5e4,

! currtime(2,1) = 1.e-6,

! currvalu(3,1) = 4e4,

! currtime(3,1) = 2.e-6,

! currvalu(4,1) = 7e4,

! currtime(4,1) = 4.e-6,

! currvalu(5,1) = 1e5,

! currtime(5,1) = 7.e-6,

! currvalu(6,1) = 1.7e5,

! currtime(6,1) = 10.e-6,

! currvalu(7,1) = 2.15e5,

! currtime(7,1) = 12.e-6,

! currvalu(8,1) = 2.5e5,

! currtime(8,1) = 14.e-6,

! currvalu(9,1) = 2.6e5,

! currtime(9,1) = 17.e-6,

! currvalu(10,1) = 3.e5,

! currtime(10,1) = 27.e-6,

circtype(1) = ’rlc’,

volt = 9.e3, ! 11.2h 8.e3, ! 11.2g 7.e3, ! 11.2f 6.e3, ! 11.2e 5.e3,

! 11.2d 4.e3, ! 11.2c 3.e3, ! 11.2b 2.e3,

capac = 1.36e-3,

exind = .49184e-6,

$end

$ezgeom

! specify the geometry -- 7 logical blocks

! 05/02/17 added nosecone and adjusted other coordinates

! 05/06/16 10.1a: added end wall hole geometry

! 05/06/21 10.1e: got rid of block 8

nblk = 7, ! 10.1e 8,
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npnts = 18, ! 10.1e 20,

numarcs = 2, ! 10.0l 0,

pointx(1) = 0.0504, pointy(1) = -0.77675, ! 8.0a 0.0504,

pointx(2) = 0.0963, pointy(2) = -0.77625, ! 8.0a 0.0932,

pointx(3) = 0.0504, pointy(3) = -0.72325, ! 8.0a 0.0508,

pointx(4) = 0.0963, pointy(4) = -0.72325, ! 8.0a 0.0932,

pointx(5) = 0.0469, pointy(5) = -0.2315, ! 10.0g -0.2310

pointx(6) = 0.0504, pointy(6) = -0.2440, ! 8.0a 0.0508, -0.25,

pointx(7) = 0.0963, pointy(7) = -0.2440, ! 8.0a 0.0932, -0.25,

pointx(8) = 0.0430, pointy(8) = 0.7613, ! 10.1e 0.0469,

pointx(9) = 0.0504, pointy(9) = 0.7613, ! 9.0a 0.76,

pointx(10) = 0.0963, pointy(10) = 0.7613, ! 9.0a 0.76,

pointx(11) = 0.0504, pointy(11) = -1.2564, ! 9.0a -1.25,

pointx(12) = 0.0963, pointy(12) = -1.2564, ! 9.0a -1.25,

pointx(13) = 0.0216, pointy(13) = -0.1869, ! 10.0a -0.2440,

pointx(14) = 0.0102, pointy(14) = 0.7899, ! 10.1e 0.0216, 0.7613,

pointx(15) = 0.0000, pointy(15) = -0.1744, ! 10.0g -0.1764,

pointx(16) = 0.0000, pointy(16) = 0.7899, ! 10.0e 0.7613,

pointx(17) = 0.0494, pointy(17) = -0.2375,

pointx(18) = 0.0125, pointy(18) = -0.1778,

corners(1,1) = 3, 4, 2, 1,

corners(1,2) = 6, 7, 4, 3,

corners(1,3) = 9, 10, 7, 6,

corners(1,4) = 8, 9, 6, 5,

corners(1,5) = 1, 2, 12, 11,

corners(1,6) = 14, 8, 5, 13,

corners(1,7) = 16, 14, 13, 15,

arcs(1,1) = 6, 5, 17, ! 10.0g 0.75, ! 10.0e -0.5, ! 10.0d 0.0,

arcs(1,2) = 13, 15, 18, ! 10.0g 0.6667, ! 10.0f 1.3333,

arctype(1) = ’3point’, ! 10.0g ’2pt_dir’,
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arctype(2) = ’3point’, ! 10.0g ’2pt_dir’,

$end

$ezphys

! specify the global physics models

! moderate-density hydrogen

eosmodlg = ’idealgas’,

ang = 1,

awg = 1,

roig = 1.e-7, ! 10.1j 9.e-7,

tempig = 1., ! 6.4g 10 tempig = tflow(3,5)

icellsg = 16,

jcellsg = 16,

! initial fields are set to small values

bxig = 0.,

byig = 0.,

bzig = 0.,

! classical spitzer electrical resistivity

resmodlg = ’spitzer’,

etaming = 0.5,

etamaxg = 1.e8,

! vacuum anomalous resistivity

arsmodlg = ’vacuum ’,

! classical spitzer thermal conductivity

tcnmodlg = ’spitzer ’,

! allow negative energies because we have solid aluminum

siecoldg = -1.e99,

dirintpg = ’intp3t1 ’,

! use much of the ideal mesh

gdvlg = 0.,

! adapt on the density gradient
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! psdlagrg = .false.,

rofg = 1.e-10,

! turn hydro off in low-density cells

! rofrad = 1.e-2,

! rofanomg = 1.e-4,

rofvacg = 1.e-8,

! keep temperature below 0.2 keV

tecapg = 2.e2,

$end

$matmdl

matnam(1) = ’vacuum’,

sesanam(1) = ’h’,

an(1) = 1,

aw(1) = 1, ! 9.5a 2,

rofanom(1) = 1.e-8,

rofjoule(1) = 1.e-8,

rofsiecp(1) = 1.e99,

matnam(2) = ’plasma’,

sesanam(2) = ’h’,

an(2) = 1,

aw(2) = 1, ! 9.5a 2,

rofsiecp(2) = 1.e99,

$end

$inmesh

! specify block-specific initial data and boundary conditions

matnami(1) = ’plasma’,

jcells(1) = 4,
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roi(1) = 4.72e-4, ! 11.0a 1.879e-3,

hydbc(2,1) = ’wall’,

hydbc(4,1) = ’wall’,

magbc(2,1) = ’conductr’,

magbc(4,1) = ’conductr’,

matnami(5) = ’vacuum’,

jcells(5) = 32, !6.4a 16, 6.3e 4; 5.6r 8

hydbc(2,5) = ’wall’,

hydbc(4,5) = ’wall’,

magbc(2,5) = ’conductr’,

magbc(4,5) = ’conductr’,

! attach capacitor here

hydbc(3,5) = ’flowthru’, ! 10.1h ’wall’,

roflow(3,5) = 1.e-7, ! 10.1j 9.e-7, keeping equal to roig

tflow(3,5) = 1., ! 6.4g 10 tflow =tempig

magzbc(3,5) = ’insulatr’,

currcir(3,5) = 1,

rstbc(3,5) = ’symmetry’

matnami(2) = ’vacuum’,

jcells(2) = 32,

hydbc(2,2) = ’wall’,

hydbc(4,2) = ’wall’,

magbc(2,2) = ’conductr’,

magbc(4,2) = ’conductr’,

matnami(3) = ’vacuum’,

jcells(3) = 128, ! zap10.0z 64, ! zap9.0m 32,

hydbc(1,3) = ’wall’,
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hydbc(2,3) = ’wall’,

magbc(1,3) = ’conductr’,

magbc(2,3) = ’conductr’,

! boundary conditions for regions bordering nosecone

matnami(4) = ’vacuum’,

jcells(4) = 128, ! zap10.0z 64, ! zap9.2e 128,

icells(4) = 4, ! 10.0l 2,

hydbc(1,4) = ’wall’,

hydbc(3,4) = ’wall’,

magbc(1,4) = ’conductr’,

magbc(3,4) = ’conductr’,

matnami(6) = ’vacuum’,

jcells(6) = 128, ! zap10.0z 64, ! zap9.0m 32

icells(6) = 16, ! 10.0i 32,

hydbc(1,6) = ’wall’,

hydbc(3,6) = ’wall’,

magbc(1,6) = ’conductr’,

magbc(3,6) = ’conductr’,

matnami(7) = ’vacuum’,

jcells(7) = 128, ! zap10.0z 64, ! zap9.0m 32

icells(7) = 16, ! 10.0i 32,

hydbc(1,7) = ’flowthru’, ! 10.1e

roflow(1,7) = 1.e-7, ! 10.1m 9e-7, ! 10.1e keeping equal to roig

tflow(1,7) = 1., ! 10.1e keeping equal to tempig

! 10.1m probc(1,7) = ’contnutv’, ! 10.1f

hydbc(3,7) = ’wall’,
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hydbc(4,7) = ’axis’,

magzbc(1,7) = ’symmetry’, ! 10.1e

rstbc(1,7) = ’symmetry’, ! 10.1e

magbc(3,7) = ’conductr’,

magbc(4,7) = ’axis’,

$end

! $modtim

! modify simulation parameters when it reaches 32 us

! tmod = 31.0e-6, ! 9.4d 1.8e-6,

! $end

! $output

! write graphics output every 10 ns

! dtpost = 1.e-8,

! $end
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Appendix C

IDL PROCEDURE DENSE FIN.PRO

This appendix contains the source code for the IDL procedure dense fin.pro, written

by Raymond Golingo and Ted Shreve to obtain the chord-integrated electron number den-

sity of the plasma from the digitized sine and cosine of the phase shift measured by the

interferometer.

pro dense_fin

;

;getting shot

;

shot = mdsvalue(’$shot’)

;

; Conversion using 632.8nm for laser wavelength,

;eq 4.2 in Hermann Thesis

;

convert=5.61

;

;chord length of each view

;

l=dblarr(4)

l(0)=0.0938

l(1)=0.124

l(2)=0.145

l(3)=19.261

;
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;Setting initial noise end to I_P = 50000

;

Ip=mdsvalue(’\I_P’)

Tip=mdsvalue(’dim_of(\I_P)’)

ip=abs(dsmooth(ip,5,7))

Kip=min(where(ip gt 2e4))

If (kip eq -1) then kip=0

Noise_end = tip(kip)*1e6

Kip=max(where(ip gt 2e4))

If (kip eq -1) then kip=max(where(Tip gt 200e-6))

Plasma_end = tip(kip)*1e6 + 200

;

; Digital filter parameters

;

Flow=0

Fmid=.2

Fhigh=1

a=50

N_terms=13

Coeff_low = DIGITAL_FILTER(Flow, Fmid, A, N_terms)

Coeff_high= DIGITAL_FILTER(Fmid, Fhigh, A, N_terms)

;

; Magnitude of phi change to account for fringe jumps

;

jump=!pi

;

;Do loop for 2 chords

;
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for chord=1,2 do begin

;

;Getting time base, location, sin and cos values

;

if (chord eq 1) then begin

cos1=mdsvalue(’\digitizers::cos1’)

sin1=mdsvalue(’\digitizers::sin1’)

to=mdsvalue(’dim_of(\digitizers::cos1)’)

loc=mdsvalue(’\NE_1:HOLE_LOC’)

baseline=mdsvalue(’\ne_1:baseline’)

z=mdsvalue(’\ne_1:z_loc’)

endif else begin

cos1=mdsvalue(’\digitizers::cos2’)

sin1=mdsvalue(’\digitizers::sin2’)

to=mdsvalue(’dim_of(\digitizers::cos2)’)

loc=mdsvalue(’\NE_2:HOLE_LOC’)

baseline=mdsvalue(’\ne_2:baseline’)

z=mdsvalue(’\ne_2:z_loc’)

endelse

;

;added 21 April 2004 to fix minus sin introduced by new IF setup

;removed 23 June 2004 to remove minus sin with new IF setup

;

sin1=sin1

;

; Adjusting time base

;

to=to*1e6



168

;

;Get the array size

;

ndata=n_elements(cos1)

;

;Offset method

;

if ( shot ne baseline) then begin

mdsopen,’zapmain’,stremo(baseline)

if (chord eq 1) then begin

xpo=mdsvalue(’\ne_1:sin_offset’)

ypo=mdsvalue(’\ne_1:cos_offset’)

del_xpo=mdsvalue(’\ne_1:sin_offset:error’)

del_ypo=mdsvalue(’\ne_1:cos_offset:error’)

endif else begin

xpo=mdsvalue(’\ne_2:sin_offset’)

ypo=mdsvalue(’\ne_2:cos_offset’)

del_xpo=mdsvalue(’\ne_2:sin_offset:error’)

del_ypo=mdsvalue(’\ne_2:cos_offset:error’)

endelse

mdsopen,’zapmain’,stremo(shot)

endif else begin

xpo=total(sin1)/ndata

ypo=total(cos1)/ndata

del_xpo=sqrt(total((sin1-xpo)^2)/(ndata-1))

del_ypo=sqrt(total((cos1-ypo)^2)/(ndata-1))

sin1=sin1+1.

cos1=cos1+1.

endelse
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;

; Adjustment for center offset

;

xo=sin1-xpo

yo=cos1-ypo

;

; Rotating the coordinate system

;

theda_0=atan(total(xo(0:10))/11,total(yo(0:10))/11)

xo_t=xo

yo_t=yo

xo=xo_t*cos(theda_0)-yo_t*sin(theda_0)

yo=yo_t*cos(theda_0)+xo_t*sin(theda_0)

;

; Calculate the phase shift

;

y=atan(xo,yo)

;

; Calculate the phase shift with applying the digital filter

;

x_low=CONVOL(xo, Coeff_low)

y_low=CONVOL(yo, Coeff_low)

x_high=CONVOL(xo, Coeff_high)

y_high=CONVOL(yo, Coeff_high)

y_sm=atan(x_low,y_low)

to_sm=to

ndata_sm=n_elements(to_sm)

;

;Correction for VAX atan(0,0)
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n_xy_zero=where(((x_low eq 0) and (y_low eq 0)) and (to le 0))

y_sm(n_xy_zero)=y_sm(max(n_xy_zero)+2)

n_xy_zero=where(((x_low eq 0) and (y_low eq 0)) and (to ge 0))

y_sm(n_xy_zero)=y_sm(min(n_xy_zero)-2)

;

;getting the amplitude of the noise

;

x_high1=dsmooth(abs(x_high))+sqrt((del_xpo*cos(theda_0))^2 $

+(del_ypo*sin(theda_0))^2)

y_high1=dsmooth(abs(y_high))+sqrt((del_ypo*cos(theda_0))^2 $

+(del_xpo*sin(theda_0))^2)

;

;finding errors in psi

;

r_2=(x_low^2+y_low^2)>(del_xpo^2+del_ypo^2)

del_y=sqrt(((yo*x_high1)^2+(xo*y_high1)^2)/((r_2)^2))

del_y=del_y<(2*!dpi)

;

;Finding earliest vibration fringe jump

;

ave1=total(y_sm(1:50))/50.

n_time_m1=min(where(to_sm ge -1e-6))

ave2=total(y_sm(n_time_m1-50:n_time_m1-1))/50.

ave_slope=(ave2-ave1)/(to_sm(n_time_m1-25)-to_sm(25))

t_end_slope=to(25)+(2.5-abs(ave1))/abs(ave_slope)

;

; Finding region for vibration fits

;

k=min(where(to ge noise_end))
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pk=min(where(to ge plasma_end<t_end_slope))

;

; Accounting for fringe jumps after the plasma pulse

;

a=dblarr(ndata-pk)

b=dblarr(ndata-pk)

d=dblarr(ndata-pk)

a=(y(pk:ndata-2)-y((pk+1):ndata-1)) gt jump

b=(y(pk:ndata-2)-y((pk+1):ndata-1)) lt -jump

d=1.0*a-1.0*b

sum=dblarr(ndata-pk)

for I=long(1),ndata-1-pk do $

sum(I)=sum(I-1)+d(I-1)

y(pk+1:ndata-1)=y(pk+1:ndata-1)+2.0*!pi*sum(1:ndata-pk-1)

a=dblarr(ndata_sm-pk)

b=dblarr(ndata_sm-pk)

d=dblarr(ndata_sm-pk)

a=(y_sm(pk:ndata_sm-2)-y_sm(pk+1:ndata_sm-1)) gt jump

b=(y_sm(pk:ndata_sm-2)-y_sm(pk+1:ndata_sm-1)) lt -jump

d=1.0*a-1.0*b

sum=dblarr(ndata_sm-pk)

for I=long(1),ndata_sm-1-pk do $

sum(I)=sum(I-1) + d(I-1)

y_sm(pk+1:ndata_sm-1)=y_sm(pk+1:ndata_sm-1) $

+2.0*!pi*sum(1:ndata_sm-pk-1)

;

pk=min(where(to ge plasma_end))

;

;finding time for baseline

;
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nset=[where(to_sm le 2e-6),where(to_sm ge plasma_end)]

;

; Finding baseline and error

;

diag=INDGEN(5)*(5 + 1)

pder=[[replicate(1., n_elements(nset))],[to(nset)],[to(nset)^2], $

[to(nset)^3],[to(nset)^4]]

weight=1/(del_y(nset)^2)

alpha = transpose(pder) # (weight# (fltarr(5)+1.)*pder)

alpha_inv=invert(alpha)

drift_coeff=invert(transpose(pder) # pder) # (transpose(pder) $

# y_sm(nset))

sigma = sqrt( alpha_inv[diag] )

del_phi_vib=sigma(0)+to*sigma(1)+(to^2)*sigma(2)+(to^3)*sigma(3) $

+(to^4)*sigma(4)

del_phi_p=sqrt(del_y^2+del_phi_vib^2)

del_phi_p(0:20)=0

del_phi_p(ndata-21:ndata-1)=0

drift=drift_coeff(0)+to*drift_coeff(1)+(to^2)*drift_coeff(2) $

+(to^3)*drift_coeff(3)+(to^4)*drift_coeff(4)

y=y-drift

y_sm=y_sm-drift

;

; Modified Milroy code using Uri’s idea for accounting for fringe

;jumps (Jul 03)

;

nstart=min(where(to ge 0))

a1=fltarr(ndata)
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b1=fltarr(ndata)

a1(1:ndata-1)=(y(0:ndata-2)-y(1:ndata-1)) ge jump

b1(1:ndata-1)=(y(0:ndata-2)-y(1:ndata-1)) le -jump

d1=1.0*a1-1.0*b1

d1(0:nstart+100)=0

sumf=fltarr(ndata)

for i=long(1),ndata-1 do $

sumf(i)=sumf(i-1)+d1(i)

sumb=fltarr(ndata)

for i=long(ndata-2),0,-1 do $

sumb(i)=sumb(i+1)+d1(i+1)

phi_f=y+2*!pi*sumf

phi_b=y-2*!pi*sumb

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata-100) gt phi_f(ndata-100)) $

- 1.*(phi_b(ndata-100) lt phi_f(ndata-100))

count=long(0)

if cross gt 0 then begin

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

while (cross ne 0) and (count le 15) do begin

fringe=max(where(a_new(0:ndata-200)*cross gt -1*!pi))

new_sum=fltarr(ndata)

new_sum(fringe:ndata-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)
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a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata-100) gt phi_f(ndata-100)) $

- 1.*(phi_b(ndata-100) lt phi_f(ndata-100))

count=count+1

endwhile

endif else begin

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

while (cross ne 0) and (count le 15) do begin

fringe=max(where(a_new(0:ndata-200)*cross gt 1.*!pi))+1

new_sum=fltarr(ndata)

new_sum(fringe:ndata-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

cross=- 1.*((phi_f(0)-phi_b(0)) gt .001)

count=count+1

endwhile

endelse

y=-phi_b_new

;

;Modified Milroy code using Uri’s idea for accounting for fringe

;jumps w/filtered data (Jul 03)

;

a1=fltarr(ndata_sm)

b1=fltarr(ndata_sm)

a1(1:ndata_sm-1)=(y_sm(0:ndata_sm-2)-y_sm(1:ndata_sm-1)) gt jump

b1(1:ndata_sm-1)=(y_sm(0:ndata_sm-2)-y_sm(1:ndata_sm-1)) lt -jump
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d1=1.0*a1-1.0*b1

d1(0:nstart+100)=0

sumf=fltarr(ndata_sm)

for i=long(1),ndata_sm-1 do $

sumf(i)=sumf(i-1)+d1(i)

sumb=fltarr(ndata_sm)

for i=long(ndata_sm-2),0,-1 do $

sumb(i)=sumb(i+1)+d1(i+1)

phi_f=y_sm+2*!pi*sumf

phi_b=y_sm-2*!pi*sumb

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata_sm-100) gt phi_f(ndata_sm-100)) $

- 1.*(phi_b(ndata_sm-100) lt phi_f(ndata_sm-100))

count=long(0)

if cross gt 0 then begin

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

while (cross ne 0) and (count le 10) do begin

fringe=max(where(a_new(0:ndata_sm-200)*cross gt -1*!pi))

new_sum=fltarr(ndata_sm)

new_sum(fringe:ndata_sm-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata_sm-100) gt phi_f(ndata_sm-100)) $

- 1.*(phi_b(ndata_sm-100) lt phi_f(ndata_sm-100))
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count=count+1

endwhile

endif else begin

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

while (cross ne 0) and (count le 10) do begin

fringe=max(where(a_new(0:ndata_sm-200)*cross gt 1.*!pi))+1

new_sum=fltarr(ndata_sm)

new_sum(fringe:ndata_sm-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

cross=- 1.*((phi_f(0)-phi_b(0)) gt .001)

count=count+1

endwhile

endelse

y_sm=-phi_b_new

;

; forcing all densities to be positive

;

y(where(y le -.5)>0)=y(where(y le -.5)>0)+2*!pi

y_sm(where(y_sm le -.5)>0)=y_sm(where(y_sm le -.5)>0)+2*!pi

;

;forcing last point to be a fringe jump

;

y(ndata-1)=2*!pi

y_sm(ndata_sm-1)=2*!pi

;
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; Converting to density

;

y=y*convert

y_sm=y_sm*convert

del_phi_p=del_phi_p*convert

;stop

;

; Putting data unto the tree

;

build_string = ’build_signal(build_with_units($1*1e20,"m^(-2)"),’ + $

’*,(build_with_units($2*1e-6,"s")))’

build_string_sm = ’build_signal(build_with_units($1*1e20/’ + $

stremo(l(loc-1))+’,"m^(-2)"),’ + $

’*,(build_with_units($2*1e-6,"s")))’

build_string_with_err = ’build_signal(build_with_errors $

(build_with_units($1*1e20,"m^(-2)"), $3)’ + $

’*, (build_with_units($2*1e-6,"s")))’

mdsopen,’zapmain’,stremo(shot)

if (chord eq 1) then begin

mdsput, ’\ne_1’, build_string, y, to

mdsput, ’\ne_1:ne_1_sm’, build_string, y_sm, to

mdsput, ’\ne_1:ne_1_ave’, build_string_sm, y, to

mdsput, ’\ne_1:ne_1_sm_ave’, build_string_sm, y_sm, to

mdsput, ’\ne_1:fmid’, ’$’, Fmid

mdsput, ’\ne_1:jump’, ’$’, jump

mdsput, ’\ne_1:sin_offset’, ’$’, xpo

mdsput, ’\ne_1:sin_offset:error’, ’$’, del_xpo

mdsput, ’\ne_1:cos_offset’, ’$’, ypo
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mdsput, ’\ne_1:cos_offset:error’, ’$’, del_ypo

mdsput, ’\ne_1:error’, build_string, del_phi_p, to

endif else begin

mdsput, ’\ne_2’, build_string, y, to

mdsput, ’\ne_2:ne_2_sm’, build_string, y_sm, to

mdsput, ’\ne_2:ne_2_ave’, build_string_sm, y, to

mdsput, ’\ne_2:ne_2_sm_ave’, build_string_sm, y_sm, to

mdsput, ’\ne_2:fmid’, ’$’, Fmid

mdsput, ’\ne_2:jump’, ’$’, jump

mdsput, ’\ne_2:sin_offset’, ’$’, xpo

mdsput, ’\ne_2:sin_offset:error’, ’$’, del_xpo

mdsput, ’\ne_2:cos_offset’, ’$’, ypo

mdsput, ’\ne_2:cos_offset:error’, ’$’, del_ypo

mdsput, ’\ne_2:error’, build_string, del_phi_p, to

endelse

endfor

end

;

; Past comments and code

;

;

;--Made major changes for higher volage on 7 Feb 00

;--added double smooth 7 feb 00

; changed 24 apr 01 by RPG smo1 3->5 smo2 5->7

;--jump changed 24 apr 01 by RPG 4->!pi.;(changed 3 to 5,7 feb 00)

;--end of noise region in microseconds (deleted 7 Feb 99)

;[;noise_end=5]

;--Finding the center of the DC offsets (No longer used 7 Feb 99)
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; [;xpo=total(sin1(0:ndata-1))/ndata]

; [;ypo=total(cos1(0:ndata-1))/ndata]

; [;xp=sin1-xpo]

; [;yp=cos1-ypo]

; [;xpp=(total(xp^3+xp*yp^2)*total(yp^2) $

; -(total(yp^3+yp*xp^2))*total(xp*yp))$]

; [; /(2*(total(xp^2)*total(yp^2)-(total(xp*yp))^2))]

; [;ypp=(total(yp^3+yp*xp^2)*total(xp^2) -(total(xp^3+xp*yp^2)) $

; *total(xp*yp))$]

; [; /(2*(total(xp^2)*total(yp^2)-(total(xp*yp))^2))]

;

;--rotating the coordinate system, added 4jun02

;--Who knows?

; [;l=dblarr(4)]

; [;l(0)=0.0938]

; [;l(1)=0.124]

; [;l(2)=0.145]

; [;l(3)=19.261]

;--added to offset method 4jun02:

;[;sin1=fltarr(ndata)+1.;cos1=fltarr(ndata)+1. ]

;--removed from adjustement of offset: [;xpp=0;ypp=0]

;--changed 02 july 02 to use time before zero for vibration for

;setting phase shift to zero

; [;average=total(y(1:25))/25.0]

;---removed 4jun02 from setting phase shift to zero

; [;if ((ave1(0)-ave2(0)) gt 2) $]

; [;then ave2(0)=ave2(0)+(2*!pi)]

; [;if ((ave1(0)-ave2(0)) lt -2) $]

; [;then ave2(0)=ave2(0)-(2*!pi)]

;-- Removed jul 03:
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; -Accounting for fringe jumps (Thanks Richard Milroy)

; [;a=dblarr(ndata)]

; [;b=dblarr(ndata)]

; [;d=dblarr(ndata)]

; [;a=(y(0:ndata-2)-y(1:ndata-1)) gt jump]

; [;b=(y(0:ndata-2)-y(1:ndata-1)) lt -jump]

; [;d=1.0*a-1.0*b]

; [;d(0:K)=0]

; [;sum=dblarr(ndata)]

; -routine for moving backward in time

; [;for i=ndata-5,0,-1 do begin]

; [;sum(i)=sum(i+1)-d(i)]

; [;endfor]

; [;for I=1,ndata-1 do $]

; [;sum(I)=sum(I-1)+d(I-1)]

; -setting fringe jumps for noise regions to zero jumps

; [;sum(0:k)=0.0]

; [;y(1:ndata-1)=y(1:ndata-1)+2.0*!pi*sum(1:ndata-1)]

; -Acounting for fringe jumps in smoothed data

; [;a=(y_sm(0:ndata-2)-y_sm(1:ndata-1)) gt jump]

; [;b=(y_sm(0:ndata-2)-y_sm(1:ndata-1)) lt -jump]

; [;d=1.0*a-1.0*b]

; [;d(0:k)=0.0]

; [;sum=dblarr(ndata)]

; [;for i=ndata-5,0,-1 do begin]

; [;sum(i)=sum(i+1)-d(i)]

; [;endfor]

; [;for I=1,ndata-2 do $]

; [;sum(I)=sum(I-1) + d(I-1)]

; -setting fringe jumps for noise regions to zero jumps
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; [;sum(0:k)=0.0]

; [;y_sm(1:ndata-1)=y_sm(1:ndata-1)+2.0*!pi*sum(1:ndata-1)]

;
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Appendix D

IDL PROCEDURE ANALYZE INTERFEROGRAM.PRO

;Program to find fringes in holographic interferogram

;Input file is grayscale TIF image of interferogram, for example,

; 2003 01 23 009-H1-P2_cropped.tif

;Output file is interferogram data file, for example,

; 2003 01 23 009-H1-P2_cropped.dat, and contains IDL variables

; associated with the fringes in the holographic interferogram:

; top...................location of top reference wire in interferogram

; bottom................location of bottom reference wire in interferogram

; peaks_x...............array with horizontal device coordinates of bright

; fringes in columns (remember that the element

; located at column 1, row 3 in IDL is called by

; peaks_x[1,3])

; peaks_y...............array with vertical device coordinates of bright

; fringes in columns

; n_pks.................array containing number of points in each bright

; fringe

; straight_peaks_x......array with horizontal device coordinates of

; straight lines associated

; with bright fringes in columns

; troughs_x.............array with horizontal device coordinates of dark

; fringes in columns

; troughs_y.............array with horizontal device coordinates of dark

; fringes in columns
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; n_trghs...............array containing number of points in each dark

; fringe

; straight_troughs_x....array with horizontal device coordinates of

; straight lines associated with dark fringes in

; columns

; hologram_raw..........array containing brightness of each point in

; interferogram

;Stuart Jackson

;November 25, 2003

pro analyze_interferogram

;Open TIF image of holographic interferogram

hologram_raw=open_hologram(hologram_file=hologram_file)

;Crop interferogram

hologram_raw=crop_hologram(hologram_raw, n_columns=n_columns, $

n_rows=n_rows, noise=noise)

hologram=hologram_raw

window,1,xsize=(size(hologram))[1],ysize=(size(hologram))[2]

tv,hologram

window,10

num_row=(size(hologram))[2]/2

plot,hologram[*,num_row],title=’row ’+stremo(num_row),charsize=2, $

charthick=2,thick=2,xthick=2,ythick=2
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;Find y coordinates of reference wires

dummy=ref_wires(hologram,top,bottom)

;Make the sinusoidal fringe pattern into a square wave fringe pattern

hologram=dsmooth(hologram,3,5)

hologram=make_square(hologram,top,bottom)

window,11

plot,hologram[*,num_row],title=’row ’+stremo(num_row),charsize=2, $

charthick=2,thick=2,xthick=2,ythick=2

;Find "peaks" and "troughs"--centers of bright and dark fringes--in

;each row

hologram=digitize_hologram(hologram, n_columns, n_rows, noise, $

num_row=num_row)

wset,12

oplot,hologram_raw[*,num_row],thick=2

;Assign peaks to bright fringes, and assign troughs to dark fringes

peaks=make_fringes(hologram,n_columns,n_rows,fringe_x=peaks_x, $

fringe_y=peaks_y,200);,middle=210)

troughs=make_fringes(hologram,n_columns,n_rows,fringe_x=troughs_x, $

fringe_y=troughs_y,100);,middle=210)

;Count number of points in each fringe

fringes=count_fringes(peaks_x,peaks_y,n_pks)

fringes=count_fringes(troughs_x,troughs_y,n_trghs)

;Fit straight lines to fringes
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;straight_peaks_x=straight_one_side(peaks_x,peaks_y,n_pks)

;straight_troughs_x=straight_one_side(troughs_x,troughs_y,n_trghs)

straight_peaks_x=straight(peaks_x,peaks_y,n_pks)

straight_troughs_x=straight(troughs_x,troughs_y,n_trghs)

;Count number of bright and dark fringes

n_peaks=(size(peaks_x))[1]

n_troughs=(size(troughs_x))[1]

;Plot bright fringes and associated straight lines over raw hologram

window,3,xsize=(size(hologram))[1],ysize=(size(hologram))[2]

tv,hologram_raw

wset,3

for m=0,n_peaks-1 do begin

plots,peaks_x[m,0:n_pks[m]-1],peaks_y[m,0:n_pks[m]-1],color=2, $

thick=2,psym=3,/device

;xyouts,peaks_x[m,n_pks[m]-1],peaks_y[m,n_pks[m]-1],stremo(m), $

; color=2,charthick=2,/device

endfor

wset,3

for m=0,n_peaks-1 do begin

plots,straight_peaks_x[m,0:n_pks[m]-1],peaks_y[m,0:n_pks[m]-1], $

color=2,thick=2,/device

endfor

;Plot dark fringes and associated straight lines over raw hologram

window,4,xsize=(size(hologram))[1],ysize=(size(hologram))[2]

tv,hologram_raw



186

wset,4

for m=0,n_troughs-1 do begin

plots,troughs_x[m,0:n_trghs[m]-1],troughs_y[m,0:n_trghs[m]-1], $

color=7,thick=2,psym=3,/device

;xyouts,troughs_x[m,n_trghs[m]-1],troughs_y[m,n_trghs[m]-1], $

; stremo(m),color=2,charthick=2,/device

endfor

wset,4

for m=0,n_troughs-1 do begin

plots,straight_troughs_x[m,0:n_trghs[m]-1], $

troughs_y[m,0:n_trghs[m]-1],color=2,thick=2,/device

endfor

;Store variables in a file to be read by deconvolve_hologram

folder_index=strpos(hologram_file,’\’,/reverse_search)

extension_index=strpos(hologram_file,’.’,/reverse_search)

length=extension_index-folder_index

data_filename=strmid(hologram_file,folder_index+1,length-1)+’.dat’

print,’data_filename: ’,data_filename

save,top,bottom,peaks_x,peaks_y,n_pks,straight_peaks_x,troughs_x, $

troughs_y,n_trghs,straight_troughs_x,hologram_raw, $

filename=data_filename

end
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function open_hologram, hologram_file=hologram_file

;>>>>>>>>>>>>>>>Open and flip hologram_raw<<<<<<<<<<<<<<<<<<<<<<

;Open image

hologram_file=dialog_pickfile(file=’2002 10 29 011-H1-P1_cropped.tif’, $

path=’M:\Users\Stuart_Jackson\Zap\idl\holography’,$

title=’Select Hologram’)

print,’hologram_file: ’,hologram_file

hologram=read_tiff(hologram_file,image_index=0,order=order, $

planarconfig=planarconfig)

;IDL goes bottom to top,

;but TIF is stored top to bottom, so

;flip TIF over

hologram=reverse(hologram,2)

return, hologram

end

function crop_hologram, hologram, n_columns=n_columns, n_rows=n_rows, $

noise=noise

;>>>>>>>>>>>>>>>Crop hologram<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

;Figure out how many columns and rows are in image (before cropping)

hologram_size=(size(hologram))

n_columns=hologram_size(1)

n_rows=hologram_size(2)

farthest_left_edge=fix(n_columns/2)

farthest_right_edge=fix(n_columns/2)

bottom_edge=0
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top_edge=0

;Figure out where the edges of the uncropped hologram are

for y=0,n_rows-1 do begin

left_edge=0

right_edge=0

smoothed_row=hologram(*,y)

noise=max(smoothed_row(0:20))

left_edge=min(where(smoothed_row gt 2*noise))

right_edge=max(where(smoothed_row gt 2*noise))

if right_edge gt left_edge then begin

if bottom_edge eq 0 then bottom_edge=y

if farthest_left_edge gt left_edge then $

farthest_left_edge=left_edge

if farthest_right_edge lt right_edge then $

farthest_right_edge=right_edge

top_edge=y

endif

endfor

;Crop the hologram

hologram=hologram(farthest_left_edge:farthest_right_edge, $

bottom_edge:top_edge)

;Figure out how many columns and rows are in the hologram_smoothed

hologram_size=(size(hologram))

n_columns=hologram_size(1)

n_rows=hologram_size(2)

return, hologram
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end

function lowpass_filter, hologram, n_rows, noise, plot_row=plot_row

;*****Not used*****

;>>>>>>>>>>Filters hologram using lowpass filter<<<<<<<<<<

hologram_size=size(hologram)

hologram_lowpass=make_array(hologram_size[1],hologram_size[2],value=0)

for y=0,n_rows-1 do begin

row_raw=hologram[*,y]

left_edge=min(where(row_raw gt 2*noise))

right_edge=max(where(row_raw gt 2*noise))

if right_edge gt left_edge then begin

row_x=where(row_raw)

row=row_raw[left_edge:right_edge]

nl_row=n_elements(row)

if float(nl_row)/2 gt fix(nl_row/2) then begin

row=row[0:n_elements(row)-2]

nl_row=n_elements(row)

endif

row_x=row_x[left_edge:left_edge+nl_row-1]

row_fourier=fft(row)

x=[FINDGEN(nl_row/2),FINDGEN(nl_row/2)-nl_row/2]

x[nl_row/2:nl_row-1]=reverse(x[0:nl_row/2-1])

filter=1.0/(1+(x/40)^10)

row_lowpass=FFT(FFT(row,1)*filter,-1)
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if defined(plot_row) then begin

if y eq plot_row then begin

window,12

plot,row_raw

oplot,row_x,row_lowpass,color=2

window,13

plot,row_fourier

window,14

plot,filter

endif

endif

hologram_lowpass[left_edge:left_edge+nl_row-1,y]=row_lowpass

endif

endfor

return,hologram_lowpass

end

function make_square, hologram, top, bottom

;>>>>>>>>>>Makes square wave fringes out of sinusoidal fringes<<<<<<<<

middle_fraction=0.95

outside_fraction=0.75

fs=4

max_value=float(max(hologram))

print,’maximum value’,max_value

min_value=float(min(hologram))

print,’minimum value’,min_value

;Center of hologram is better exposed, so

; brightness in center must be higher to be set to max
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width=(size(hologram))[1]

height=(size(hologram))[2]

hologram_middle=hologram[width/fs:width-(width/fs),height/fs:height $

-(height/fs)]

hologram[width/fs:width-(width/fs),height/fs:height-(height/fs)]=0

hologram_middle[where(hologram_middle ge middle_fraction*max_value)] $

=255

;Top and bottom are dimmer, so

; brightness of top and bottom is set to max at a lower value

hologram[where(hologram ge outside_fraction*max_value)]=255

hologram[width/fs:width-(width/fs),height/fs:height-(height/fs)] $

=hologram_middle

;Values below brightness threshold are made zero

hologram[where(hologram ne 255)]=0

return,hologram

end

function ref_wires, hologram, top, bottom

;Asks user to select the location of the top and bottom wires in the

;hologram

wset,1

tv,hologram

print,’Click on location of top wire. ’

cursor,x,top,/down,/device

plots,[0,250],[top,top],color=3,/device

print,’Click on location of bottom wire. ’

cursor,x,bottom,/down,/device
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plots,[0,250],[bottom,bottom],color=3,/device

end

function digitize_hologram, hologram, n_columns, n_rows, noise, $

num_row=num_row

;>>>>>>>>>>>>>>>Digitize Peaks and Troughs<<<<<<<<<<<<<<<<<<<<<<

;Find peaks and troughs in each row, using peak_finder.

;Set the value of peaks to 200 and troughs to 100.

for y=0,n_rows-1 do begin

left_edge=0

right_edge=0

smoothed_row=hologram(*,y)

left_edge=min(where(smoothed_row gt 2*noise))

right_edge=max(where(smoothed_row gt 2*noise))

if right_edge-1 gt 0 then begin

if right_edge gt left_edge then begin

;if Y GE 370 THEN goto,OUT_OF_BOUNDS ;FOR PULSE 020910020

dummy=peak_finder(smoothed_row, peaks, troughs, row=y, $

num_row=num_row)

chk1=where(peaks ge left_edge)

if chk1[0] eq -1 then GOTO,OUT_OF_BOUNDS

chk=where(peaks lt left_edge)

if chk(0) gt -1 then peaks=peaks(where(peaks ge left_edge))

chk1=where(peaks le right_edge)

if chk1[0] eq -1 then GOTO,OUT_OF_BOUNDS

chk=where(peaks gt right_edge)

if chk(0) gt -1 then peaks=peaks(where(peaks le right_edge))

peak_count=n_elements(peaks)

chk1=where(troughs ge left_edge)

if chk1[0] eq -1 then GOTO,OUT_OF_BOUNDS
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chk=where(troughs lt left_edge)

if chk(0) gt -1 then troughs=troughs(where(troughs ge left_edge))

chk1=where(troughs le right_edge)

if chk1[0] eq -1 then GOTO,OUT_OF_BOUNDS

chk=where(troughs gt right_edge)

if chk(0) gt -1 then troughs=troughs(where(troughs le right_edge))

trough_count=n_elements(troughs)

smoothed_row=smoothed_row-smoothed_row

if peak_count gt 0 then smoothed_row(peaks)=200

if trough_count gt 0 then smoothed_row(troughs)=100

hologram(*,y)=smoothed_row

endif

endif else begin

OUT_OF_BOUNDS:

hologram(*,y)=0

endelse

endfor

return, hologram

end

function peak_finder, y, peaks, troughs, row=row,num_row=num_row

;>>>>>>>>>>>>>>>Finds peaks and troughs in row<<<<<<<<<<<<<<<

y_unsm=y

y_slope=float(y[1:n_elements(y)-1])-float(y[0:n_elements(y)-2])

;Makes an array named y_sl_sign based on the sign of the slope (y_slope)

;at each pixel:
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; negative slope-->value=-1

; zero slope-->value=0

; positive slope-->value=1

y_sl_sign=make_array(n_elements(y_slope),value=3)

y_sl_sign[where(y_slope gt 0)]=1

y_sl_sign[where(y_slope lt 0)]=-1

y_sl_sign[where(y_slope eq 0)]=0

zeros=where(y_slope eq 0)

pos_slope=where(y_slope gt 0)

neg_slope=where(y_slope lt 0)

;*****Finds peaks*****

;Finds pixels where the slope (y_sl_sign) changes from 1 to 0 or from

;0 to -1

peaks=where(y_sl_sign[1:n_elements(y_sl_sign)-1] lt $

y_sl_sign[0:n_elements(y_sl_sign)-2])+1

;Each element in peaks where the slope changes from 1 to 0 will be

; followed by an element where the slope changes from 0 to -1. To

; resolve this conflict in the peak location, the peak is placed at

; the pixel where the slope changes from 1 to 0 that is closest to

; halfway between the two conflicting elements of peaks.

; This is done in the next few lines by taking 1/2 the difference

; between the conflicting elements (one where the slope changes

; from 1 to 0 and one where the slope changes from 0 to -1),

; rounding down, adding that to the element where the slope changes

; from 1 to 0, and setting the element where the slope changes from

; 0 to -1 to this value.

; The element where the slope changes from 1 to 0 is then

; eliminated from peaks.
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;max k is set to original number of elements in peaks - 1

for k=0,n_elements(peaks)-1 do begin

;for loop exits when k is too big for reduced peaks array

if k lt n_elements(peaks)-1 then begin

if y_sl_sign[peaks[k]] eq 0 then begin

;takes 1/2 the difference of the two conflicting elements

avg=fix((peaks[k+1]-peaks[k])/2)

;sets the element where the slope changes from -1 to 0

;to this value

peaks[k+1]=peaks[k]+avg

;eliminates the point where the slope changed from 1 to 0

peaks=peaks[where(where(peaks) ne k)]

endif

endif else GOTO, EXIT_FOR

endfor

EXIT_FOR:

;*****Finds troughs*****

troughs=where(y_sl_sign[1:n_elements(y_sl_sign)-1] gt $

y_sl_sign[0:n_elements(y_sl_sign)-2])+1

for k=0,n_elements(troughs)-1 do begin

if k lt n_elements(troughs)-1 then begin

if y_sl_sign[troughs[k]] eq 0 then begin

avg=fix((troughs[k+1]-troughs[k])/2)

troughs[k+1]=troughs[k]+avg

troughs=troughs[where(where(troughs) ne k)]

endif

endif else GOTO, EXIT_FOR_2

endfor

EXIT_FOR_2:
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; Plots row, peaks, and troughs for selected row

if row eq num_row then begin

window,12,xsize=900

plot,y,title=’row ’+stremo(num_row),yrange=[-50,300],linestyle=2, $

charsize=2,charthick=2,thick=2,xthick=2,ythick=2

oplot,peaks,y[peaks],psym=7,symsize=2,thick=2

oplot,troughs,y[troughs],psym=7,symsize=2,thick=2

endif

end

function make_fringes, hologram, n_columns, n_rows, fringe_x=fringe_x, $

fringe_y=fringe_y, value, middle=middle

;>>>>>>>>>>>>>>>Assigns peaks (or troughs) in each row to bright

;(or dark) fringes<<<<<<<<<<<<<<<

if not defined( middle ) then middle=n_rows/2;+52

n_pts=n_rows/20

LINE_1: n_fringes=intarr(n_pts)

fringe_width=intarr(n_pts)

x=make_array(n_columns,/index)

y=make_array(n_columns,value=middle)

;Find the mean number of fringes and fringe width (distance between

; consecutive peaks or troughs) for n_pts rows in the middle of the

;hologram.

for n=0,n_pts-1 do begin

n_fringes[n]=n_elements(where(hologram[*,middle-n_pts/2+n] eq $
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value))

;Prevent subscripts from causing errors on rows with fewer than

;4 fringes

if n_fringes[n] ge 4 then begin

fringe_row=where(hologram[*,middle-n_pts/2+n] eq value)

fringe_width[n]=mean(fringe_row[1:n_fringes[n]-2] $

-fringe_row[0:n_fringes[n]-1])

endif

endfor

;Limit fringe width and number of fringes to rows with 4 or more

;fringes

fringe_width=fringe_width[where(n_fringes ge 4)]

n_fringes=n_fringes[where(n_fringes ge 4)]

;Find the mean number of fringes and the mean fringe width

n_fringes=round(mean(n_fringes))

fringe_width=round(mean(fringe_width))

;If the mean number of fringes equals the number of fringes in

; the middle row, put those x-values in the fringe storage matrix

; if not, move the middle up 10 rows and find the mean number of

; fringes again

;initialize the fringe storage matrix

fringes=intarr(n_fringes,n_rows)

current_fringes=intarr(n_fringes)

last_good_fringes=intarr(n_fringes)

fringes_middle=where(hologram[*,middle] eq value,ct)

if n_fringes eq ct then begin

fringes[*,middle]=fringes_middle

endif else begin

middle=middle+1
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GOTO,LINE_1

endelse

n_fringes=n_elements(where(hologram[*,middle] eq value))

;Use an array called current fringes to store the last set of

; good fringe values (initially the fringes in the middle row are used)

for m=0,n_fringes-1 do current_fringes[m]=fringes[m,middle]

;Store the x-coordinates of the fringes, starting from the middle row

; and going up.

;An array named current_fringes is used to store the last good x-values

; for each fringe in case a fringe is missed on a row.

for n=middle+1,n_rows-1 do begin

;Count the number of fringes in the active row

n_fringes_row=n_elements(where(hologram[*,n] eq value))

;Initialize arrays to store the distance between

; each of the fringes in the active row

; and the last good value of each of the fringes

; and the index of the minimums of these distances for each active

;fringe

fringe_diff=intarr(n_fringes_row,n_fringes)

fringe=intarr(n_fringes_row)

;Find the fringes in the active row

fringes_row=where(hologram[*,n] eq value)

;Find the distance between

; each of the fringes in the active row

; and the last good value of each of the fringes

; (which were stored in current_fringes)

for m=0,n_fringes_row-1 do begin

;Find the distances between the active fringe

; and the last good value of each of the fringes
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; (which were stored in current_fringes)

for k=0,n_fringes-1 do begin

fringe_diff[m,k]=abs(fringes_row[m]-current_fringes[k])

endfor

;Find the minimum of the distances

change=abs(min(fringe_diff[m,*],index))

;If this minimum value is reasonable, store its index (which is

; the fringe number that the active fringe should be assigned

; to) as fringe[m]

if change lt fringe_width/4 then begin

fringe[m]=index

;If a value has already been assigned to the desired fringe

; number (fringe[m]) for the active fringe,

; the active value is stored anyway

fringes[fringe[m],n]=fringes_row[m]

endif

endfor

;The x-values of the active fringes are stored as the last good

; values in current_fringes

; If a fringe was missed, its value is not stored in

;current_fringes

for m=0,n_fringes-1 do begin

if fringes[m,n] ne 0 then begin

current_fringes[m]=fringes[m,n]

endif

endfor

endfor

for m=0,n_fringes-1 do current_fringes[m]=fringes[m,middle]
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;Store the x-coordinates of the fringes, starting from the middle row

; and going down.

for n=middle,0,-1 do begin

n_fringes_row=n_elements(where(hologram[*,n] eq value))

fringe_diff=intarr(n_fringes_row,n_fringes)

fringe=intarr(n_fringes_row)

fringes_row=where(hologram[*,n] eq value)

for m=0,n_fringes_row-1 do begin

for k=0,n_fringes-1 do begin

fringe_diff[m,k]=abs(fringes_row[m]-current_fringes[k])

endfor

change=min(fringe_diff[m,*],index)

if change lt fringe_width/4 then begin

fringe[m]=index

fringes[fringe[m],n]=fringes_row[m]

endif

endfor

for m=0,n_fringes-1 do begin

if fringes[m,n] ne 0 then begin

current_fringes[m]=fringes[m,n]

endif

endfor

endfor

;Store the x and y values of the fringes in arrays

y=make_array(n_rows,/index)

fringe_y=intarr(n_fringes,n_rows)

fringe_x=intarr(n_fringes,n_rows)
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for m=0,n_fringes-1 do begin

points_to_keep=where(fringes[m,*] gt 0,n_keep)

fringe_x[m,0:n_keep-1]=(fringes[m,*])[points_to_keep]

fringe_y[m,0:n_keep-1]=y[points_to_keep]

endfor

fringes=1

return,fringes

end

function count_fringes,fringe_x,fringe_y,n_vals

n_fringes=(size(fringe_y))[1]

min_y=intarr(n_fringes)

max_y=intarr(n_fringes)

n_vals=intarr(n_fringes)

for m=0,n_fringes-1 do begin

fringe_y_ne_0=fringe_y[m,where(fringe_y[m,*] ne 0,vals)]

min_y[m]=min(fringe_y_ne_0)

max_y[m]=max(fringe_y_ne_0)

n_vals[m]=vals

endfor

end

function straight,fringe_x,fringe_y,n_vals,vacuum_upper=vacuum_upper, $

vacuum_lower=vacuum_lower

;>>>>>>>>>>>>>>>Fits a straight line to each fringe<<<<<<<<<<<<<<<
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;When both edges of Z-pinch are within field of view

;Two points used to fit straight line are

; mean of 10 points in upper half of fringe with least fringe shift

; and mean of 10 points in lower half of fringe with least

; fringe shift

if not defined( vacuum ) then vacuum=fix(0.75*max(n_vals))

n_fringes=(size(fringe_y))[1]

mins_array_y=intarr(n_fringes,11)

mins_array_x=intarr(n_fringes,11)

straight_x_vals=intarr(n_fringes)

straight_y_vals=intarr(n_fringes)

straight_fringes_x=fringe_y

lower=make_array(n_fringes,value=0)

upper=n_vals/2

for half=0,1 do begin

for m=0,n_fringes-1 do begin

fringe_y_act=fringe_y[m,lower[m]:upper[m]]

fringe_x_act=fringe_x[m,lower[m]:upper[m]]

ord=sort(fringe_x_act)

straight_x_vals[m] $

=mean(fringe_x_act[ord[0:fix(n_elements(ord)/10)]])

straight_y_vals[m] $

=mean(fringe_y_act[ord[0:fix(n_elements(ord)/10)]])

endfor

if half eq 0 then begin

straight_x_lower=straight_x_vals

straight_y_lower=straight_y_vals

lower=upper
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upper=n_vals-1

endif else begin

straight_x_upper=straight_x_vals

straight_y_upper=straight_y_vals

endelse

endfor

for m=0,n_fringes-1 do begin

slope=(float(straight_y_upper[m])-float(straight_y_lower[m])) $

/(float(straight_x_upper[m])-float(straight_x_lower[m]))

b=straight_y_upper[m]-slope*straight_x_upper[m]

straight_fringes_x[m,*]=1/slope*(fringe_y[m,*]-b)

endfor

return,straight_fringes_x

end
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Appendix E

IDL PROCEDURE INVERT INTERFEROGRAM.PRO

pro invert_interferogram

;Inverts chord integrated density data obtained from holographic

; interferogram to obtain radial electron density profile

;Input file is data file containing bright and dark fringes as IDL

; variables made by analyze_interferogram.pro, for example,

; 2003 01 23 009-H1-P2_cropped.dat

;Output file is electron density data file, for example,

; 2003 01 23 009-H1_p2_cropped electron density.dat, and contains

; IDL variables

; associated with electron density:

; integrated_density

; std

; electron_density

; baseline

; peak

; peak_n

; upper

; lower

; center

; top_region

; bottom_region

;
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;Stuart Jackson

;December 14, 2003

;Modified December 12, 2005

;Modified January 11, 2006 to allow for variable shell widths

; (in the event that points were not found along the fringe)

post=0 ;set post=1 for postscript plotting

peak=1 ;set peak=1 to deconvolve peak (trough otherwise)

peak_n=5 ;set peak_n=number of peak/trough to deconvolve

double_pass=0 ;set double_pass=1 for a double-pass interferogram

center_range=15 ;looks for center +/- center_range points about centroid

margin=0 ;pixel shift considered to be zero for finding edge of

;Z-pinch

iterate=1 ;set iterate=1 to iterate for center

upper=0 ;move top of straight fringe right upper pixels

lower=0 ;move bottom of straight fringe right lower pixels

;Open datafile.

data_filename=open_datafile()

restore,data_filename

;Plot interferogram with either light (peaks) or dark (troughs) fringes

;over it.

set_plot,’win’

window,0;,ysize=450

tv,hologram_raw

if peak eq 1 then begin

dummy=plot_peaks(peaks_x, peaks_y, n_pks, number=0, c=2, peak_n=peak_n, $

single=1, line=1)
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dummy=plot_peaks(straight_peaks_x, peaks_y, n_pks, c=2, peak_n=peak_n, $

single=1, line=1)

endif else begin

dummy=plot_peaks(troughs_x, troughs_y, n_trghs, number=1, c=2, peak_n=peak_n)

dummy=plot_peaks(straight_troughs_x, troughs_y, n_trghs, c=6, peak_n=peak_n)

endelse

;Get x and y values of selected fringe and an initial guess for the x and y

;values of the straight line.

if peak eq 1 then begin

y_values=float(peaks_y[peak_n,0:n_pks[peak_n]-1])

x_values=float(peaks_x[peak_n,0:n_pks[peak_n]-1])

straight_values_guess=float(straight_peaks_x[peak_n,0:n_pks[peak_n]-1])

endif else begin

y_values=float(troughs_y[peak_n,0:n_trghs[peak_n]-1])

x_values=float(troughs_x[peak_n,0:n_trghs[peak_n]-1])

straight_values_guess=float(straight_troughs_x[peak_n,0:n_trghs[peak_n]-1])

endelse

;x_values_orig, etc. variables are unsmoothed variables that will be

;subtracted

;later from the smoothed variables to produce an error estimate for

;error bars.

x_values_orig=x_values

y_values_orig=y_values

;Smooth fringe.

fringe=smooth_fringe(x_values,y_values,double_pass)

;Use the original straight values to estimate the pixel shift before
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;adjusting edges and shifting straight line to intersect fringe at

;edge points

pixel_shift=measure_shift(y_values,x_values,y_values,straight_values_guess)

;Find the edges of the shifted part of the pixel shift

dummy=find_edges(y_values,pixel_shift,top_edge,bot_edge,center=center, $

margin=margin)

;Find the indices of these edges

upper=max(where(y_values le top_edge))

lower=min(where(y_values ge bot_edge))

;Connect a line from the upper and lower edge values that will be

;subtracted from the fringe.

dummy=make_straight(y_values,x_values,y_straight_values,straight_values, $

upper=upper,lower=lower)

;Measure the pixel shift by subtracting the straight line from the fringe.

pixel_shift_orig=measure_shift(y_values_orig,x_values_orig, $

y_straight_values,straight_values)

pixel_shift=measure_shift(y_values,x_values,y_straight_values, $

straight_values)

;Check that the pixel shift is correct by adding it to the straight line

;and plotting it over the interferogram and original fringe.

!P.multi=0

wset,0

theta=atan((x_values(upper)-x_values(lower))/(y_values(upper)- $

y_values(lower)))

theta_orig=atan((x_values_orig(upper)-x_values_orig(lower))/ $
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(y_values_orig(upper)-y_values_orig(lower)))

;plots,straight_values,y_straight_values,color=4,/device

;plots,pixel_shift*cos(theta)+straight_values,-pixel_shift*sin(theta)+ $

; y_straight_values,color=4,/device

;Plot the original and smoothed fringes and straight lines.

window,1

!P.MULTI=0

plot,y_values_orig,x_values_orig,yrange=[min(straight_values), $

max(x_values)],xtitle=’impact parameter [pixels]’, $

ytitle=’horizontal coordinate [pixels]’,charsize=2, $

charthick=2,thick=2,xthick=2,ythick=2

oplot,y_values_orig,x_values_orig,color=5,thick=2

oplot,y_values_orig,x_values_orig,psym=3,color=2

oplot,y_values,x_values,thick=2

oplot,y_straight_values,straight_values,thick=2;,color=4

;Crop the fringe

top_region=fix(y_values(upper))

bottom_region=fix(y_values(lower))

print,’top edge’,top_region

print,’bottom edge’,bottom_region

dummy=crop_fringe(y_values_orig, pixel_shift_orig, top_region,

$bottom_region)

dummy=crop_fringe(y_values, pixel_shift, top_region, bottom_region)

dummy=crop_fringe(y_straight_values, straight_values, top_region,

$bottom_region)

;Show the edges over the interferogram.

wset,0
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dummy=plot_line(top_region,color=2,linestyle=2)

dummy=plot_line(bottom_region,color=2,linestyle=2)

;Calculate the uncertainty in the pixel shift by subtracting the

;unsmoothed values from the smoothed values.

std=abs(pixel_shift-pixel_shift_orig)

print,’max(std in pixels)’,max(std)

;Plot the cropped pixel shift over the uncropped pixel shift

;(both smoothed and unsmoothed), show where it

;was cropped, and print out where it was cropped.

wset,1

vline,top_region,linestyle=2,thick=2

vline,bottom_region,linestyle=2,thick=2

print,’pixel_shift at top_edge’,pixel_shift[where(y_values eq $

top_region)]

print,’pixel_shift at bottom_edge’,pixel_shift[where(y_values eq $

bottom_region)]

wset,1

;oplot,-pixel_shift_orig*sin(theta)+y_straight_values, $

; pixel_shift_orig*cos(theta)+straight_values,color=2

;oplot,-pixel_shift*sin(theta)+y_straight_values, $

; pixel_shift*cos(theta)+straight_values,color=4

;Find the fringe width (average distance between fringes).

fringe_width=find_width(straight_peaks_x)

;fringe_width=17.5

print,’fringe_width’,fringe_width

;Check that the fringe width is right by adding it to the straight
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;line and plotting it over the hologram.

;(It should roughly line up with the straight line associated with

;the next fringe.)

;wset,0

;plots,straight_values+fringe_width,y_straight_values,color=3,/device

;Calculate the fringe order by using the fringe width to normalize

;the fringe shift in pixels (pixel shift).

fringe_order=find_order(pixel_shift,fringe_width)

std=find_order(std,fringe_width)

;Find the chord-integrated density

integrated_density=find_integrated(fringe_order)

std=find_integrated(std)

print,’max(std in cm!u-2!n)’,max(std)

;Find the centroid of the chord-integrated density, which will be the

;initial guess used in iterating for

;the best center location for the inversion method shell model.

centroid=find_centroid(y_values, pixel_shift)

print,’centroid’,centroid

wset,0

dummy=plot_line(centroid,color=2,linestyle=2)

wset,1

vline,centroid,linestyle=2,thick=2

center_guess=centroid

;Iterate to find the best center for the shell model, i. e. run the

;inversion method a bunch of times with different centers.

center=center_guess



211

if iterate eq 1 then center=iterate_center(center_guess,center_range, $

y_values,top,bottom,pixels_per_cm,pixel_shift, $

integrated_density,std,double_pass)

print,’center’,center

;Show the center over the interferogram.

;wset,0

;dummy=plot_line(center,color=2,linestyle=2)

;Convert the impact parameter (vertical coordinate in the interferogram)

;to the radial coordinate in cm.

r_cm=conv_y(y_values,top,bottom,center,pixels_per_cm)

;Show the center over the pixel shift.

wset,1

vline,center,linestyle=2,thick=2

;Plot the fringe shift in pixels (pixel shift). Show the center.

window,2

plot,y_values,pixel_shift,yrange=[0,max(pixel_shift)], $

xtitle=’impact parameter [pixels]’, $

ytitle=’fringe shift [pixels]’,charsize=2,charthick=2,thick=2, $

xthick=2,ythick=2

vline,center,linestyle=2,thick=2

;Invert the chord-integrated density using the Abel inversion method

;to obtain the radial electron number density profile.

electron_density=deconvolve(r_cm, integrated_density,pixels_per_cm, $

std,double_pass)



212

;Plot the fringe order.

window,4

plot,r_cm,fringe_order,yrange=[0,max(fringe_order)], $

xtitle=’impact parameter [cm]’, ytitle=’fringe order’, $

charsize=2,charthick=2,thick=2,xthick=2,ythick=2

vline,0,linestyle=2,thick=2

;Create part of the name for the postscript and data files where the

;radial electron number density

;profile, etc. will be plotted or saved.

folder_index=strpos(data_filename,’\’,/reverse_search)

extension_index=strpos(data_filename,’.’,/reverse_search)

length=extension_index-folder_index

data_filename=strmid(data_filename,folder_index+1,length-1)

if post eq 1 then begin

;Create filename for postscript plot.

plot_filename=data_filename

if peak eq 0 then plot_filename=plot_filename+’_trough_’ $

+stremo(peak_n)+’_electron_density_plot.ps’

if peak eq 1 then plot_filename=plot_filename+’_peak_’ $

+stremo(peak_n)+’_electron_density_plot.ps’

;Set up for postscript plotting.

dummy=set_ps(plot_filename,mydevice,post)

endif

;Plot the radial electron number density profile (as a postscript,

;if directed to).

dummy=plot_density(electron_density, data_filename, post)

if post eq 1 then dummy=close_ps(mydevice,post)
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;Save the radial electron number density profile, etc.

if peak eq 1 then data_filename=data_filename+’ peak ’ $

+stremo(peak_n)+’ electron density.dat’

if peak ne 1 then data_filename=data_filename+’ trough ’ $

+stremo(peak_n)+’ electron density.dat’

save,filename=data_filename,integrated_density,std,electron_density, $

baseline,peak,peak_n,upper,lower,center,top_region,bottom_region

end

function open_datafile

;>>>>>>>>>>Open data and hologram files<<<<<<<<<<<<<<<<<<<<<<

; Open data file

data_filename=dialog_pickfile(file=’2002 10 29 011-H1-P1_cropped.dat’, $

path=’M:\Users\Stuart_Jackson\ZaP\IDL\holography’,$

get_path=filename,title=’Select Hologram Data File’)

return, data_filename

end

function set_ps, data_filename, mydevice, peak, peak_n, post

;>>>>>>>>>>Set postscript device options<<<<<<<<<<<<<<<<<<<<<

if post eq 1 then begin

mydevice = !D.NAME

; Set plotting to PostScript:

SET_PLOT, ’PS’

; Use DEVICE to set some PostScript device options:

if peak eq 1 then DEVICE, FILENAME=data_filename+’ peak ’ $

+stremo(peak_n)+’ electron density plot.ps’, /portrait, $
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ysize=25,xsize=35,yoffset=1.2,/bold,/color,scale_factor=0.5

if peak ne 1 then DEVICE, FILENAME=data_filename+’ trough ’ $

+stremo(peak_n)+’ electron density plot.ps’, /portrait, $

ysize=25,xsize=35,yoffset=1.2,/bold,/color,scale_factor=0.5

endif

end

function plot_peaks, peaks_x, peaks_y, n_pks, number=number, c=c, $

peak_n=peak_n, single=single, line=line

if not defined(number) then number=0

if not defined(c) then c=2

if not defined(single) then single=0

if not defined(line) then line=0

n_peaks=(size(peaks_x))[1]

if line eq 1 then begin

if single eq 0 then begin

for m=0,n_peaks-1 do begin

plots,peaks_x[m,0:n_pks[m]-1],peaks_y[m,0:n_pks[m]-1], $

color=c,thick=2,/device

if number eq 1 then xyouts,peaks_x[m,n_pks[m]-1], $

peaks_y[m,n_pks[m]-1],stremo(m),charsize=.5,/device

endfor

endif

if defined(peak_n) then begin

plots,peaks_x[peak_n,0:n_pks[peak_n]-1], $

peaks_y[peak_n,0:n_pks[peak_n]-1],color=2,thick=2,/device

if number eq 1 then xyouts,peaks_x[peak_n,n_pks[peak_n]-1], $
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peaks_y[peak_n,n_pks[peak_n]-1],stremo(peak_n), $

charsize=.5,color=2,/device

endif

endif else begin

if single eq 0 then begin

for m=0,n_peaks-1 do begin

plots,peaks_x[m,0:n_pks[m]-1],peaks_y[m,0:n_pks[m]-1], $

color=c,thick=2,psym=3,/device

if number eq 1 then xyouts,peaks_x[m,n_pks[m]-1], $

peaks_y[m,n_pks[m]-1],stremo(m),charsize=.5,/device

endfor

endif

if defined(peak_n) then begin

plots,peaks_x[peak_n,0:n_pks[peak_n]-1], $

peaks_y[peak_n,0:n_pks[peak_n]-1],color=2,thick=2, $

psym=3,/device

if number eq 1 then xyouts,peaks_x[peak_n,n_pks[peak_n]-1],$

peaks_y[peak_n,n_pks[peak_n]-1],stremo(peak_n), $

charsize=.5,color=2,/device

endif

endelse

end

function measure_shift, y_values, x_values, y_straight_values, $

straight_values

;>>>>>>>>>>Measures fringe shift in units of pixels<<<<<<<<<<

;Get sign of pixel shift

sign=(x_values-straight_values)/abs(x_values-straight_values)

;Set sign to zero where sign is NAN
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if (where(x_values-straight_values eq 0))[0] ne -1 then $

sign(where(x_values-straight_values eq 0))=0

pixel_shift=sign*sqrt((x_values-straight_values)^2 $

+(y_values-y_straight_values)^2)

return, pixel_shift

end

function crop_fringe, y_values, pixel_shift, top, bottom

;>>>>>>>>>>Crops fringe so that it only includes region selected<<<<<<<<<<

top_ind=where(y_values eq top)

top_ind=top_ind[0]

if top_ind eq -1 then y_from_top=min(abs(y_values-top),top_ind)

bottom_ind=where(y_values eq bottom)

bottom_ind=bottom_ind[0]

if bottom_ind eq -1 then y_from_bottom=min(abs(y_values-bottom),bottom_ind)

y_values=y_values[bottom_ind:top_ind]

pixel_shift=pixel_shift[bottom_ind:top_ind]

end

function plot_line, y, color=color, linestyle=linestyle, number=number

;>>>>>>>>>>Plot horizontal line<<<<<<<<<<

if not defined(color) then color=1

if not defined(linestyle) then linestyle=0

if not defined(number) then number=0

plots,[0,400],[y,y],color=color,linestyle=linestyle,thick=2,/device

if number eq 1 then xyouts,400,y,stremo(y),charsize=2,charthick=2, $

color=2,/device
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end

function find_centroid, y_values, pixel_shift

;>>>>>>>>>>Find centroid in pixels and center in cm $

of the plasma column<<<<<<<<<<

centroid=fix(y_values(min(where(y_values ge $

int_tabulated(y_values,float(pixel_shift)*y_values)/ $

int_tabulated(y_values,float(pixel_shift))))))

return, centroid

end

function find_edges, y_values, pixel_shift, top_edge, bot_edge, $

center=center, margin=margin

;>>>>>>>>>>Finds edges of Z-pinch<<<<<<<<<<

if not defined(center) then center=find_centroid(y_values,pixel_shift)

if not defined(margin) then margin=0

center_index=(where(y_values eq center))[0]

pos_edge=where(pixel_shift[center_index:n_elements(pixel_shift)-1] $

-margin le 0)

if pos_edge[0] eq -1 then top_shift $

=min(pixel_shift[center_index:n_elements(pixel_shift)-1], $

top_edge_index) $

else begin

top_edge_index=min(pos_edge)

top_shift=pixel_shift[center_index+top_edge_index]

endelse

top_edge=y_values[center_index+top_edge_index]
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if top_shift lt 0 then top_edge=top_edge-1

pos_edge=where(pixel_shift[0:center_index]-margin le 0)

if pos_edge[0] eq -1 then bot_shift=min(pixel_shift[0:center_index], $

bot_edge_index) $

else begin

bot_edge_index=max(pos_edge)

bot_shift=pixel_shift[bot_edge_index]

endelse

bot_edge=y_values[bot_edge_index]

if bot_shift lt 0 then bot_edge=bot_edge+1

end

function find_width, straight_fringes

;>>>>>>>>>>Calculate fringe width<<<<<<<<<<

; Determines fringe width by averaging distance between fringes

peaks_size=size(straight_fringes)

n_peaks=peaks_size[1]

avg=fltarr(n_peaks)

dif=make_array(n_peaks,n_peaks,value=0)

for n=0,n_peaks-1 do begin

avg[n]=mean(straight_fringes[n])

endfor

avg=avg[where(avg ne 0)]

peaks_size=size(avg)

n_peaks=peaks_size[1]
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tot=0

cnt=0

for m=0,n_peaks-1 do begin

for n=m+1,n_peaks-1 do begin

dif=(avg[n]-avg[m])/(n-m)

tot=tot+dif

cnt=cnt+1

endfor

endfor

avg_width=tot/cnt

return,avg_width

end

function conv_y,y_pixels,top,bottom,centroid,pixels_per_cm

;>>>>>>>>>>Converts y coords in pixels to cm<<<<<<<<<<

pixels_per_cm=float(abs(top-bottom))

centroid_cm=float(centroid)/pixels_per_cm

y_cm=float(y_pixels)/pixels_per_cm

r_cm=y_cm-centroid_cm

return,r_cm

end

function find_order, pixel_shift, fringe_width

;>>>>>>>>>>Determines fringe order from pixel shift<<<<<<<<<<

fringe_order=float(pixel_shift)/fringe_width
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return,fringe_order

end

function find_integrated, fringe_order

;>>>>>>>>>>Determines chord integrated density

;from fringe order<<<<<<<<<<

integrated_density=fringe_order*3.212e17

return,integrated_density

end

function std_compute, fcn, data

;>>>>>>>>>>Calculates standard deviation of data points

;from fit function<<<<<<<<<<

std=sqrt(1/float(n_elements(data))*total((data-fcn)^2))

return,std

end

function deconvolve, r_cm, integrated_density, pixels_per_cm, $

std,double_pass

;>>>>>>>>>>Deconvolves chord integrated density

;to yield radial density profile<<<<<<<<<<

; Divide chord integrated electron_density in half

n_rows=n_elements(integrated_density)

centroid=(where(r_cm eq 0))[0]

n_lower=integrated_density[0:centroid]

n_lower_error=std[0:centroid]

r_lower=abs(r_cm[0:centroid])
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n_upper=integrated_density[centroid:n_rows-1]

n_upper_error=std[centroid:n_rows-1]

r_upper=r_cm[centroid:n_rows-1]

for m=1,2 do begin

if m eq 1 then begin

bottom_edge=0

;no_shift=where(n_lower le 0)

;if no_shift[0] eq -1 then bottom_edge=0

;if no_shift[0] gt -1 then bottom_edge=max(no_shift)

size_a=centroid-bottom_edge+1

n_lower=n_lower[bottom_edge:centroid]

n_lower_error=n_lower_error[bottom_edge:centroid]

r_lower=r_lower[bottom_edge:centroid]

n_lower_reversed=reverse(n_lower)

n_lower_reversed_error=reverse(n_lower_error)

r_lower_reversed=reverse(r_lower)

;store number density for lower half of hologram

f_lower=fltarr(size_a)

;store number density errors for lower half of hologram

f_lower_error=fltarr(size_a)

r=[r_lower_reversed,max(r_lower_reversed)+1/pixels_per_cm]

endif

if m eq 2 then begin

top_edge=n_elements(n_upper)-1

;no_shift=where(n_upper le 0)

;if no_shift[0] eq -1 then top_edge=n_elements(n_upper)-1

;if no_shift[0] gt -1 then top_edge=min(no_shift)
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size_a=top_edge+1

n_upper=n_upper[0:top_edge]

n_upper_error=n_upper_error[0:top_edge]

r_upper=r_upper[0:top_edge]

;store number density for upper half of hologram

f_upper=fltarr(size_a)

;store number density errors for upper half of hologram

f_upper_error=fltarr(size_a)

r=[r_upper,max(r_upper)+1/pixels_per_cm]

endif

; Create coefficient matrix (A) and determine density of each shell

A=dblarr(size_a,size_a)

for j=1,size_a do begin

i=size_a-j

for k=i,size_a-1 do begin

A[k,i]=sqrt((r[k+1])^2-(r[i])^2)-sqrt((r[k])^2-(r[i])^2)

;A[k,i]=sqrt((k+1)^2-i^2)-sqrt(k^2-i^2)

;A[k-1,i-1]=2*(sqrt((k+1)^2-i^2)-sqrt(k^2-i^2))

;A[k-1,i-1]=2*((k+i)*sqrt((k+1)^2-i^2)-k*sqrt(k^2-i^2)-i^2 $

; *alog((k+1+sqrt((k+1)^2-i^2))/(k^2+sqrt(k^2-i^2))))

endfor

endfor

h=2

if double_pass eq 1 then A=2*A

if m eq 1 then begin

f_lower=invert(A)*1/2##n_lower_reversed

f_lower_error=sqrt((invert(A))^2*1/2##(n_lower_reversed_error)^2)

endif
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if m eq 2 then begin

f_upper=invert(A)*1/2##n_upper

f_upper_error=sqrt((invert(A))^2*1/2##(n_upper_error)^2)

endif

endfor

electron_density_lower=transpose(f_lower)

f_lower_error=transpose(f_lower_error)

electron_density_upper=transpose(f_upper)

f_upper_error=transpose(f_upper_error)

electron_density={Y_LOWER:reverse(abs(r_cm[bottom_edge:centroid])), $

LOWER:electron_density_lower, ERROR_LOWER:f_lower_error,$

Y_UPPER:r_cm[centroid:centroid+top_edge], $

UPPER:electron_density_upper, ERROR_UPPER:f_upper_error}

return,electron_density

end

function compare_deconvolutions, electron_density,n_pts=n_pts, $

slope=slope,mag=mag

;>>>>>>>>>>Sees if deconvolutions from bottom & top match

;at the center<<<<<<<<<<

if not(defined(n_pts)) then n_pts=4

max_density=max([electron_density.UPPER,electron_density.LOWER])

match1=sqrt(total((((electron_density.UPPER[1:n_pts+1]$

-electron_density.UPPER[0:n_pts]) $
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/(electron_density.Y_UPPER[1:n_pts+1]- $

electron_density.Y_UPPER[0:n_pts]) $

-(electron_density.LOWER[1:n_pts+1]-$

electron_density.LOWER[0:n_pts]) $

/(electron_density.Y_LOWER[1:n_pts+1] $

-electron_density.Y_LOWER[0:n_pts]))/max_density)^2))

match2=sqrt(total(((electron_density.UPPER[0:n_pts] $

-electron_density.LOWER[0:n_pts])/max_density)^2))

;match1=abs(mean((electron_density.UPPER[1:n_pts+1] $

; -electron_density.UPPER[0:n_pts]) $

; /(electron_density.Y_UPPER[1:n_pts+1] $

; -electron_density.Y_UPPER[0:n_pts])) $

; -mean((electron_density.LOWER[1:n_pts+1] $

; -electron_density.LOWER[0:n_pts]) $

; /(electron_density.Y_LOWER[1:n_pts+1] $

; -electron_density.Y_LOWER[0:n_pts])))

;match2=abs(mean(electron_density.UPPER[0:n_pts]) $

; -mean(electron_density.LOWER[0:n_pts]))

if defined(slope) then match=match1 else if defined(mag) $

then match=match2 else match=match1*match2

return,match

end

function iterate_center,center_guess,center_range,y_values,top, $

bottom,pixels_per_cm,pixel_shift,integrated_density,std, $

double_pass,plot_it=plot_it

;>>>>>>>>>>Iterates to find the center of the pinch<<<<<<<<<<

; Finds the center of the pinch by moving it +/-center_range
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; about the center guess. The center of the pinch is chosen

; as the row that minimizes the difference between the

; deconvolution from the top and the deconvolution from the bottom

; by comparison of the densities of the innermost shell of each

; deconvolution.

match=make_array(2*center_range+1,value=1e20)

if not defined(plot_it) then plot_it=1

for k=0,2*(center_range) do begin

center_guess_inx=min(where(y_values ge center_guess))

center=fix(y_values(center_guess_inx-center_range+k))

r_cm=conv_y(y_values,top,bottom,center,pixels_per_cm)

electron_density=deconvolve(r_cm, integrated_density,pixels_per_cm, $

std,double_pass)

if plot_it eq 1 then begin

if fix(k/10) eq float(k)/10.0 then begin

window,20+fix(k/10),xsize=1000,ysize=900

!p.multi=[0,4,10]

endif

x_range=[0,max(abs(r_cm))]

y_range=[min(pixel_shift),max(pixel_shift)]

plot,abs(r_cm[0:(where(r_cm eq 0))[0]]), $

pixel_shift[0:(where(r_cm eq 0))[0]], $

title=’lower row ’+stremo(center), $

xrange=x_range,yrange=y_range
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oplot,abs(r_cm[0:(where(r_cm eq 0))[0]]), $

pixel_shift[0:(where(r_cm eq 0))[0]],psym=4

plot,r_cm[(where(r_cm eq 0))[0]:(where(r_cm eq max(r_cm)))[0]], $

pixel_shift[(where(r_cm eq 0))[0]:(where(r_cm eq max(r_cm)))[0]], $

title=’upper row ’+stremo(center), $

xrange=x_range,yrange=y_range

oplot,r_cm[(where(r_cm eq 0))[0]:(where(r_cm eq max(r_cm)))[0]], $

pixel_shift[(where(r_cm eq 0))[0]:(where(r_cm eq max(r_cm)))[0]], $

psym=4

x_range=[0,min([electron_density.Y_LOWER,electron_density.Y_UPPER])]

y_range=[min([electron_density.LOWER,electron_density.UPPER]), $

max([electron_density.LOWER,electron_density.UPPER])]

plot,electron_density.Y_LOWER,electron_density.LOWER,xrange=x_range, $

yrange=y_range

oplot,electron_density.Y_LOWER,electron_density.LOWER,psym=4

plot,electron_density.Y_UPPER,electron_density.UPPER,xrange=x_range, $

yrange=y_range

oplot,electron_density.Y_UPPER,electron_density.UPPER,psym=4

endif

;print,center

match[k]=compare_deconvolutions(electron_density,n_pts=10,slope=1)

endfor

if plot_it eq 1 then !p.multi=0
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dummy=min(match,index)

center=fix(y_values(center_guess_inx-center_range+index))

return,center

end

function plot_density, electron_density, data_filename, post

if post ne 1 then window,3,xsize=1000,ysize=400

!P.MULTI=[0,2,1]

x_range=[0,min([electron_density.Y_LOWER,electron_density.Y_UPPER])]

y_range=[min([electron_density.LOWER,electron_density.UPPER]), $

max([electron_density.LOWER,electron_density.UPPER])]

plot,electron_density.Y_LOWER,electron_density.LOWER, $

xtitle=’r [cm]’,ytitle=’electron density [cm!u-3!n]’, $

title=data_filename, $

xrange=x_range,yrange=y_range

plot,electron_density.Y_UPPER,electron_density.UPPER, $

xtitle=’r [cm]’,ytitle=’electron density [cm!u-3!n]’, $

xrange=x_range,yrange=y_range

!P.MULTI=0

end

function close_ps, mydevice, post

if post eq 1 then begin

DEVICE, /CLOSE

SET_PLOT, mydevice

endif
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end

function make_straight, y_values, x_values, y_straight_values, $

straight_values, upper=upper, lower=lower

;Connects a line from the upper and lower edge values that will

;be subtracted from the fringe.

;Points on the line are located so that a perpendicular can be

;drawn from a point on the fringe to the associated point on the

;straight line (which could be tilted) with respect to IDL’s

;x and y axes.

slope=(y_values(upper)-y_values(lower))/(x_values(upper)- $

x_values(lower))

if finite(slope) then begin

b=y_values(upper)-slope*x_values(upper)

slopep=-1/slope

bp=y_values-slopep*x_values

straight_values=(bp-b)/(slope-slopep)

y_straight_values=slope*straight_values+b

endif else begin

;if the slope is NAN, make a vertical line

y_straight_values=y_values

straight_values=make_array(n_elements(y_values), $

value=x_values(upper),/float)

endelse

end

function smooth_fringe,fringe_x,fringe_y,double_pass
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;>>>>>>>>>>>>>>>Smooths fringe<<<<<<<<<<<<<<<

;First fills in missing points along the fringe by fitting a line

;between the two adjacent points, then smooths the fringe, and

;finally removes the filled-in points.

n_rows=n_elements(fringe_y)

diff=fix(fringe_y[1:n_rows-1]-fringe_y[0:n_rows-2])

last_inxs=where(diff gt 1)

;If points are missing, fill them in.

if last_inxs[0] ne -1 then begin

next_inxs=last_inxs+1

n_filled_pts=diff[last_inxs]-1

start_inxs=[0,next_inxs]

end_inxs=[last_inxs,n_elements(fringe_y)-1]

fringe_filled_y=fltarr(n_rows+total(n_filled_pts))

fringe_filled_x=fltarr(n_rows+total(n_filled_pts))

last_filled_inxs=fix(last_inxs+total(n_filled_pts,/cumulative) $

-n_filled_pts)

next_filled_inxs=fix(next_inxs+total(n_filled_pts,/cumulative))

start_filled_inxs=[0,next_filled_inxs]

end_filled_inxs=[last_filled_inxs,n_elements(fringe_filled_y)-1]

;Copy good points to filled array

for k=0,n_elements(start_inxs)-1 do begin

fringe_filled_y[start_filled_inxs[k]:end_filled_inxs[k]] $

=fringe_y[start_inxs[k]:end_inxs[k]]

fringe_filled_x[start_filled_inxs[k]:end_filled_inxs[k]] $

=fringe_x[start_inxs[k]:end_inxs[k]]

endfor

;Fill in missing points
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for k=0,n_elements(last_inxs)-1 do begin

slope=(fringe_x[next_inxs[k]]-fringe_x[last_inxs[k]]) $

/(fringe_y[next_inxs[k]]-fringe_y[last_inxs[k]])

b=fringe_x[last_inxs[k]]-slope*fringe_y[last_inxs[k]]

y_values=fringe_y[last_inxs[k]]+1 $

+make_array(n_filled_pts[k],/index,/float)

x_values=slope*y_values+b

fringe_filled_y[last_filled_inxs[k]+1:next_filled_inxs[k]-1] $

=y_values

fringe_filled_x[last_filled_inxs[k]+1:next_filled_inxs[k]-1] $

=x_values

endfor

endif else fringe_filled_x=fringe_x

;Smooth fringe

if double_pass eq 1 then fringe_filled_x $

=smooth(float(fringe_filled_x),7,/edge_truncate) $

else fringe_filled_x=smooth(smooth(float(fringe_filled_x),19, $

/edge_truncate),29,/edge_truncate)

if last_inxs[0] ne -1 then begin

;Remove filled-in points

for k=0,n_elements(start_inxs)-1 do begin

fringe_y[start_inxs[k]:end_inxs[k]] $

=fringe_filled_y[start_filled_inxs[k]:end_filled_inxs[k]]

fringe_x[start_inxs[k]:end_inxs[k]] $

=fringe_filled_x[start_filled_inxs[k]:end_filled_inxs[k]]

endfor

endif else fringe_x=fringe_filled_x
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fringe=1

return,fringe

end

function set_ps, data_filename, mydevice, post

;>>>>>>>>>>Set postscript device options<<<<<<<<<<<<<<<<<<<<<

if post eq 1 then begin

mydevice = !D.NAME

; Set plotting to PostScript:

SET_PLOT, ’PS’

; Use DEVICE to set some PostScript device options:

DEVICE, FILENAME=data_filename, /portrait,xsize=17,ysize=25, $

yoffset=1.2,/bold,/color

endif

end

function close_ps, mydevice, post

if post eq 1 then begin

DEVICE, /CLOSE

SET_PLOT, mydevice

endif

end
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Appendix F

MATLAB FUNCTIONS FOR TEMPERATURE PROFILE
CALCULATION

F.1 Constant Current Density

% NAME:

% temp_calc_const_j

%

% PURPOSE:

% This Matlab function calculates a temperature

% profile from the density profile of the Z-pinch.

% A constant current density is assumed.

%

% CATEGORY:

% Data analysis code

%

% CALLING SEQUENCE:

% temp_calc_const_j(datafile,pulse,helium)

%

% INPUTS:

% datafile: string that contains the name of the file

% containing the density profile

% pulse: the pulse number of the plasma pulse whose current

% and voltage is to be used to calculate the resistive

% heating into the plasma

%
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% OPTIONAL INPUTS:

% helium: set to one for a helium Z-pinch

%

% OUTPUTS:

% none

%

% EXAMPLE:

% temp_calc_const_j(’20910027_upper_rn.dat’,20910027)

% temp_calc_const_j(’30204007_upper_rn.dat’,30204007,1)

%

% MODIFICATION HISTORY:

% Written By: Stuart Jackson, 14 Feb 2006

function value=temp_calc_const_j(datafile,pulse,helium)

filepath=’M:\Users\Stuart_Jackson\ZaP\matlab\temp_calc\temp_calc_const_j\’;

filename=[filepath,datafile]

num=dlmread(filename);

r=num(:,1);

n=num(:,2);

%Establish values of constants

Z=1;

mp=1.6726e-27; %kg

mi=mp;

if nargin > 2

Z=2*Z

mi=4*mi %kg

end

mu0=4e-7*pi; %N/A^2

k=1.6022e-19; %J/eV
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%Initialize T and B arrays, setting T(r=0)=100 eV

% and B(r=0)=0 T

T=ones(length(r),1);

rB2=zeros(length(r),1);

%Find current through the Z-pinch

% at the time the hologram was made

[a,status] = mdsopen(’alfven.aa.washington.edu::zapmain’,pulse);

%holography laser monitor

holo=mdsvalue(’\holography_raw’);

%time base for holography laser monitor

t_holo=mdsvalue(’dim_of(\holography_raw)’);

%get holography time from holography laser monitor

[dummy,holo_time_inx]=max(holo);

holo_time=t_holo(holo_time_inx);

%get holography time from digitizer

t_digi=1.37e-6+mdsvalue(’\digitizers::zap_dg11_b:channel_4’);

%use the digitizer time if the monitor time is way off

if abs(t_digi-holo_time) > 0.1*t_digi

holo_time=t_digi;

end

holo_time

%m=0 mode at P0

m0=mdsvalue(’\m_0_p0’);

%time base for m=0 mode

tm0= mdsvalue(’dim_of(\m_0_p0)’);

%outer electrode wall radius

rwall=mdsvalue(’\r_wall’); %m

[dummy,m0_time_inx]=min(abs(tm0-holo_time));
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%find magnetic field at the wall

%at the time the hologram was made

Bwall=m0(m0_time_inx) %T

%find the current through the Z-pinch

Iz=2*pi*rwall*Bwall/(mu0) %A

%Z-pinch radius

n_edge_inx=min(find(n<=0));

if n_edge_inx

else

n_edge_inx=length(r);

end

r=r(1:n_edge_inx);

n=n(1:n_edge_inx);

a=r(n_edge_inx);

%current density

j=Iz./(pi.*a.^2);

%magnetic field

B=mu0.*r*j/2;

%find pressure, moving from P(a)=0 to P(0)

p=zeros(n_edge_inx,1);

for m=n_edge_inx:-1:2

p(m-1)=p(m)+(B(m)+B(m-1))./(mu0.*(r(m)+r(m-1)))...

.*(r(m).*B(m)-r(m-1).*B(m-1));

end

%temperature

T=p./(1+(1./Z).*n.*k);

figure(1)

plot(r./a,n./n(1),’k’)
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hold on

plot(r./a,B./B(length(B)),’r’)

hold on

plot(r./a,T./T(1),’b’)

plot(r./a,1./(r./a),’r--’)

axis([min(r./a) max(r./a) ...

min([min(n./n(1)),min(B./B(length(B))),min(T./T(1))]) ...

max([max(n./n(1)),max(B./B(length(B))),5])])

figure(3)

subplot(3,1,1)

plot(r,n,’k’)

axis([min(r) max(r) min(n) max(n)])

subplot(3,1,2)

plot(r,B,’r’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) min(B) max(B)])

subplot(3,1,3)

plot(r,T,’b’)

axis([min(r) max(r) min(T) 200])

hold off

%Store r,n,B, and T in that order to an output file

if findstr(filename,’_rn’)

output_filename=strrep(filename,’_rn’,’_rnBT’)

else

output_filename=[filepath,’output.dat’]

end
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dlmwrite(output_filename,[r,n,B,T])

end

F.2 Current Density Proportional to Number Density

% NAME:

% temp_calc_jpropn

%

% PURPOSE:

% This Matlab function calculates a temperature

% profile from the density profile of the Z-pinch.

% The shape of the current density profile is

% is assumed to be the same as the shape of the

% number density profile.

%

% CATEGORY:

% Data analysis code

%

% CALLING SEQUENCE:

% temp_calc_jpropn(datafile,pulse,helium)

%

% INPUTS:

% datafile: string that contains the name of the file

% containing the density profile

% pulse: the pulse number of the plasma pulse whose current

% and voltage is to be used to calculate the resistive

% heating into the plasma

%
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% OPTIONAL INPUTS:

% helium: set to one for a helium Z-pinch

%

% OUTPUTS:

% none

%

% EXAMPLE:

% temp_calc_jpropn(’20910027_upper_rn.dat’,20910027)

% temp_calc_jpropn(’30204007_upper_rn.dat’,30204007,1)

%

% MODIFICATION HISTORY:

% Written By: Stuart Jackson, 14 Feb 2006

function value=temp_calc_jpropn(datafile,pulse,helium)

filepath=’M:\Users\Stuart_Jackson\ZaP\matlab\temp_calc\temp_calc_jpropn\’;

filename=[filepath,datafile]

num=dlmread(filename);

r=num(:,1);

n=num(:,2);

%Establish values of constants

Z=1;

mp=1.6726e-27; %kg

mi=mp;

if nargin > 2

Z=2*Z

mi=4*mi %kg

end

mu0=4e-7*pi; %N/A^2

k=1.6022e-19; %J/eV
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%Find current through the Z-pinch

% at the time the hologram was made

[a,status] = mdsopen(’alfven.aa.washington.edu::zapmain’,pulse);

%holography laser monitor

holo=mdsvalue(’\holography_raw’);

%time base for holography laser monitor

t_holo=mdsvalue(’dim_of(\holography_raw)’);

%get holography time from holography laser monitor

[dummy,holo_time_inx]=max(holo);

holo_time=t_holo(holo_time_inx);

%get holography time from digitizer

t_digi=1.37e-6+mdsvalue(’\digitizers::zap_dg11_b:channel_4’);

%use the digitizer time if the monitor time is way off

if abs(t_digi-holo_time) > 0.1*t_digi

holo_time=t_digi;

end

holo_time

%m=0 mode at P0

m0=mdsvalue(’\m_0_p0’);

%time base for m=0 mode

tm0= mdsvalue(’dim_of(\m_0_p0)’);

%outer electrode wall radius

rwall=mdsvalue(’\r_wall’); %m

[dummy,m0_time_inx]=min(abs(tm0-holo_time));

%find magnetic field at the wall

%at the time the hologram was made

Bwall=m0(m0_time_inx) %T

%find the current through the Z-pinch

Iz=2*pi*rwall*Bwall/(mu0) %A
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%Z-pinch radius

n_edge_inx=min(find(n<=0));

if n_edge_inx

else

n_edge_inx=length(r);

end

r=r(1:n_edge_inx);

n=n(1:n_edge_inx);

a=r(n_edge_inx);

%current density

c=Iz./(2.*pi.*sum(n(1:n_edge_inx-1).*r(1:n_edge_inx-1)...

.*(r(2:n_edge_inx)-r(1:n_edge_inx-1))))

j=c.*n;

%magnetic field

B=[0;mu0./r(2:n_edge_inx).*cumsum(j(2:n_edge_inx)...

.*r(2:n_edge_inx).*(r(2:n_edge_inx)-r(1:n_edge_inx-1)))];

%find pressure, moving from P(a)=0 to P(0)

p=zeros(n_edge_inx,1);

for m=n_edge_inx:-1:2

p(m-1)=p(m)+(B(m)+B(m-1))./(mu0.*(r(m)+r(m-1)))...

.*(r(m).*B(m)-r(m-1).*B(m-1));

end

%temperature

T=p./(1+(1./Z).*n.*k);

figure(1)

plot(r./a,n./n(1),’k’)

hold on

plot(r./a,B./B(length(B)),’r’)
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hold on

plot(r./a,T./T(1),’b’)

plot(r./a,1./(r./a),’r--’)

axis([min(r./a) max(r./a) ...

min([min(n./n(1)),min(B./B(length(B))),min(T./T(1))]) ...

max([max(n./n(1)),max(B./B(length(B))),max(T./T(1))])])

figure(2)

plot(r,j)

hold on

plot(r,c.*n,’r’)

figure(3)

subplot(3,1,1)

plot(r,n,’k’)

axis([min(r) max(r) min(n) max(n)])

subplot(3,1,2)

plot(r,B,’r’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) min(B) max(B)])

subplot(3,1,3)

plot(r,T,’b’)

axis([min(r) max(r) min(T) max(T)])

hold off

%Store r,n,B, and T in that order to an output file

if findstr(filename,’_rn’)

output_filename=strrep(filename,’_rn’,’_rnBT’)

else
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output_filename=[filepath,’output.dat’]

end

dlmwrite(output_filename,[r,n,B,T])

end

F.3 Limited Perpendicular Thermal Conduction with Uniform Heating

% NAME:

% temp_calc_const_heat_wt

%

% PURPOSE:

% This Matlab function calculates a temperature

% profile from the density profile of the Z-pinch.

% Heat deposited into the plasma [W/m^3] is

% assumed to be constant across the Z-pinch

% (and not necessarily due just to resistive heating).

% Radial thermal conduction out of the plasma

% [W/m^2] must balance the heat put into the plasma.

% The cross-field thermal conduction coefficient

% is calculated so that the model is valid for

% arbitrary gyrofrequencies and collision times.

%

% CATEGORY:

% Data analysis code

%

% CALLING SEQUENCE:

% temp_calc_const_heat_wt(datafile,pulse,helium)
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%

% INPUTS:

% datafile: string that contains the name of the file

% containing the density profile

% pulse: the pulse number of the plasma pulse whose current

% and voltage is to be used to calculate the resistive

% heating into the plasma

%

% OPTIONAL INPUTS:

% helium: set to one for a helium Z-pinch

%

% OUTPUTS:

% none

%

% EXAMPLE:

% temp_calc_const_heat_wt(’20910027_lower_rn.dat’,20910027)

% temp_calc_const_heat_wt(’30204007_upper_rn.dat’,30204007,1)

%

% MODIFICATION HISTORY:

% Written By: Stuart Jackson, 2 Apr 2006

function value=temp_calc_const_heat_wt(datafile,pulse,helium)

filepath=’M:\Users\Stuart_Jackson\ZaP\matlab\temp_calc\...

temp_calc_const_heat_wt\’;

filename=[filepath,datafile]

num=dlmread(filename);

r=num(:,1);

%Move r=0 to r~0 to avoid the singularity at r=0

r(1)=0.001.*mean(r(2:length(r))-r(2:length(r)));

n=num(:,2);
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n_avg=mean(n);

n_bgnd=1e22;

bgnd_inxs=find(n<n_bgnd);

n(bgnd_inxs)=n_bgnd;

%edge_inx=length(r);

edge_inx=min(bgnd_inxs);

%edge_inx=min(find(n<n_avg));

%Establish values of constants

Z=1;

mp=1.6726e-27; %kg

mi=mp;

if nargin > 2

Z=2*Z;

mi=4*mi; %kg

end

me=9.1094e-31; %kg

eps0=8.8542e-12; %F/m

mu0=4e-7*pi; %N/A^2

k=1.6022e-19; %J/eV

lnL=11; %the Coulomb logarithm

%Calculate total heat into Z-pinch

[shot,status] = mdsopen(’alfven.aa.washington.edu::zapmain’,pulse);

%find power/volume into the Z-pinch

% at the time the hologram was made

%plasma current

ip=mdsvalue(’\i_p’);

%time base for plasma current

tip= mdsvalue(’dim_of(\i_p)’);
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%gap voltage

vgap=mdsvalue(’\v_gap’);

%time base for gap voltage

tvgap= mdsvalue(’dim_of(\v_gap)’);

%holography laser monitor

holo=mdsvalue(’\holography_raw’);

%time base for holography laser monitor

t_holo=mdsvalue(’dim_of(\holography_raw)’);

%get holography time from holography laser monitor

[dummy,holo_time_inx]=max(holo);

holo_time=t_holo(holo_time_inx);

%get holography time from digitizer

t_digi=1.37e-6+mdsvalue(’\digitizers::zap_dg11_b:channel_4’);

%use the digitizer time if the monitor time is way off

if abs(t_digi-holo_time) > 0.1*t_digi

holo_time=t_digi;

end

holo_time

%get index for plasma current at holography time

[dummy,ip_time_inx]=min(abs(tip-holo_time));

%get index for gap voltage at holography time

[dummy,vgap_time_inx]=min(abs(tvgap-holo_time));

%calculate total power into experiment at holography time

%(vgap and plasma current are both negative, but ip is

% stored as a positive current, so taking the absolute

% value of pgap makes the power positive)

vgap=vgap(vgap_time_inx)

ip=ip(ip_time_inx)

%--------------------------------------------------

%A different way of calculating ip
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%find current through the Z-pinch

%at the time the hologram was made

%m=0 mode at P0

m0=mdsvalue(’\m_0_p0’);

%time base for m=0 mode

tm0= mdsvalue(’dim_of(\m_0_p0)’);

%outer electrode wall radius

rwall=mdsvalue(’\r_wall’); %m

[dummy,m0_time_inx]=min(abs(tm0-holo_time));

Iz=2*pi*rwall*m0(m0_time_inx)/(mu0) %A

%--------------------------------------------------

pgap=abs(vgap.*ip)

%Pin=abs(vgap.*Iz)

%Set heat flux to pgap/(volume of a m-diameter,

% 0.5 m-long Z-pinch)

% a is the radius where the density drops

% below the resolution of the holographic

% interferometer

%qin=pgap./(pi.*a.^2.*0.5)

%set heat in per unit volume to one across the Z-pinch

qin=ones(length(r),1);

%set heat in per unit volume to zero where density

% drops to background value and beyond

qin(edge_inx:length(r))=0;

%use total power in to scale heat in per unit volume

c=pgap./(2.*pi.*0.5.*sum((qin(2:length(r))+qin(1:length(r)-1))./2 ...

.*(r(2:length(r))+r(1:length(r)-1))./2 ...

.*(r(2:length(r))-r(1:length(r)-1))))

qin=c.*qin;
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pin=(2.*pi.*0.5.*sum((qin(2:length(r))+qin(1:length(r)-1))./2 ...

.*(r(2:length(r))+r(1:length(r)-1))./2 ...

.*(r(2:length(r))-r(1:length(r)-1))))

qout=cumsum(2.*pi.*0.5.*sum((qin(2:length(r)) ...

+qin(1:length(r)-1))./2 ...

.*(r(2:length(r))+r(1:length(r)-1))./2 ...

.*(r(2:length(r))-r(1:length(r)-1)))) ...

./(2.*pi.*0.5.*(r(2:length(r))+r(1:length(r)-1))./2);

figure(6)

plot(r,qin,’o-’),xlabel(’radius’),ylabel(’heat in per unit volume’)

%Initialize arrays to hold Runge-Kutta terms

F=zeros(4,1);

G=zeros(4,1);

%Initialize normalized T and B arrays,

% setting T(r~0)=1 and B(r~0)=0.001

T=ones(length(r),1);

rB=zeros(length(r),1);

rB(1)=0.001;

%Normalize variables

n0=max(n);

n=n./n0;

r0=rwall;%r(edge_inx);%max(r);

r=r./r0;

%find magnetic field at the wall

%at the time the hologram was made

Bwall=m0(m0_time_inx); %T

%rB array is already normalized
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rB0=rwall.*Bwall;

%Iterate for T0 that matches 1/r to Bwall

nits=500;

delta_conv=0.01;

delta_array=zeros(nits,1);

T0_array=zeros(nits,1);

T0=70;

dT=0;

inx=length(r);

for t=1:nits

%T array is already normalized

T0=T0-dT

%terms used to normalize f and g

%fconst=r0.^2./T0;

fconst=r0.^2./(T0.^(7/2));

gconst=r0.^2.*n0.*T0./rB0.^2;

%set a flag to indicate radial location

% of first imaginary T or rB value

imag_flag=0;

F_array=zeros(length(r),4);

G_array=zeros(length(r),4);

for m=1:length(r)-1

%delta r

dr=r(m+1)-r(m);

%delta n

dn=n(m+1)-n(m);

%n(r(m)+h/2)
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ndr2=(n(m)+n(m+1))./2;

%q(r(m)+h/2)

qindr2=(qin(m)+qin(m+1))./2;

F(1)=calc_f(r(m),n(m),T(m),rB(m),qin(m),Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst);

G(1)=calc_g(r(m),dr,n(m),dn,T(m),rB(m),qin(m),Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst,gconst);

F(2)=calc_f(r(m)+dr./2,ndr2,T(m)+dr./2.*F(1),...

rB(m)+dr./2.*G(1),qindr2,Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst);

G(2)=calc_g(r(m)+dr./2,dr,ndr2,dn,T(m)+dr./2.*F(1),...

rB(m)+dr./2.*G(1),qindr2,Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst,gconst);

F(3)=calc_f(r(m)+dr./2,ndr2,T(m)+dr./2.*F(2),...

rB(m)+dr./2.*G(2),qindr2,Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst);

G(3)=calc_g(r(m)+dr./2,dr,ndr2,dn,T(m)+dr./2.*F(2),...

rB(m)+dr./2.*G(2),qindr2,Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst,gconst);

F(4)=calc_f(r(m+1),n(m+1),T(m)+dr./2.*F(2),...

rB(m)+dr./2.*G(2),qin(m+1),Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst);

G(4)=calc_g(r(m+1),dr,n(m+1),dn,T(m)+dr.*F(3),...

rB(m)+dr.*G(3),qin(m+1),Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst,gconst);

F_array(m,:)=F’;

G_array(m,:)=G’;

T(m+1)=T(m)+dr./6.*(F(1)+2.*F(2)+2.*F(3)+F(4));

rB(m+1)=rB(m)+dr./6.*(G(1)+2.*G(2)+2.*G(3)+G(4));
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end

B=rB./r;

B(1)=0;

figure(1)

plot(r,n,’k’)

hold on

plot(r,B./10,’r’)

hold on

plot(r,1./r./10,’r--’)

hold on

plot(r,T,’b’)

%if t==1

%axis([min(r) max(r) min(B) max(B)])

axis([min(r) max(r) -1 2])

%end

hold off

pause(1)

[inx,dummy]=min(find(imag(rB)~=0));

if inx

inx=inx;

delta=real(B(inx))-1./r(inx);

plot([r(inx),r(inx)],[0,10])

else

inx=length(r);

delta=real(B(inx))-1./r(inx);

plot([r(inx),r(inx)],[0,10])
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%delta=1;

end

delta_array(t)=delta;

T0_array(t)=T0;

if t>1

dT=delta./((delta-delta_old)./(T0-T0_old));

%dT=1;

if abs(delta)<delta_conv

disp([’converged to T0=’,num2str(T0)])

disp([’in ’,num2str(t),’ iterations’])

break

end

if t==nits

disp([’failed to converge’])

disp([’in ’,num2str(t),’ iterations’])

end

else

%dT=50;

dT=1;

end

T0_old=T0;

delta_old=delta;

end

figure(2)

subplot(2,1,1)

semilogy([1:t],abs(delta_array(1:t)),’v-’)

xlabel(’T iteration’),ylabel(’log(abs(delta))’)

subplot(2,1,2)

plot([1:t],T0_array(1:t),’v-’)
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xlabel(’T iteration’),ylabel(’T_0’)

r=r.*r0;

n=n.*n0;

T=T.*T0;

B=rB.*rB0./r;

B(1)=0;

figure(3)

subplot(3,1,1)

plot(r,n,’ko-’)

ylabel(’n’)

axis([min(r) max(r) 0 max(n)])

% hold on

% plot([min(r),max(r)],[n_avg,n_avg],’--’)

subplot(3,1,2)

plot(r,B,’ro-’)

ylabel(’B’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) 0 2])

subplot(3,1,3)

plot(r,T,’bo-’)

ylabel(’T’)

axis([min(r) max(r) 0 max(real(T))])

figure(4)

subplot(3,1,1)

plot(r,n,’ko-’)

ylabel(’n’)
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axis([min(r) max(r) min(n) max(n)])

subplot(3,1,2)

plot(r,real(B),’ro-’)

ylabel(’real(B)’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) -3 3])

subplot(3,1,3)

plot(r,real(T),’bo-’)

ylabel(’real(T)’)

axis([min(r) max(r) -200 200])

figure(5)

subplot(3,1,1)

plot(r,n,’ko-’)

ylabel(’n’)

axis([min(r) max(r) min(n) max(n)])

subplot(3,1,2)

plot(r,imag(B),’ro-’)

ylabel(’imag(B)’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) -3 3])

subplot(3,1,3)

plot(r,imag(T),’bo-’)

ylabel(’imag(T)’)

axis([min(r) max(r) -200 200])

%Store r, n, B, and T in that order to an output file
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if findstr(filename,’_rn’)

output_filename=strrep(filename,’_rn’,’_rnBT’)

else

output_filename=[filepath,’output.dat’]

end

dlmwrite(output_filename,[r,n,B,T])

end

function lnL=calc_lnL(r,n,T,rB,qin,Z,r0,rB0,T0,n0,mp,mi,me,eps0,mu0,k)

B_real=rB.*rB0./r0;

T_real=T.*T0;

n_real=n.*n0;

e=k;

LD=real((eps0.*k.*T_real./(n_real.*e.^2.*(1+Z))).^(0.5))

b0=abs(real(Z.*e.^2./(4.*pi.*eps0.*k.*T_real)))

lnL=log(LD./b0);

end

function f=calc_f(r,n,T,rB,qin,Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst)

%Calculates dT/dr

%e=k;

%lnL=calc_lnL(r,n,T,rB,qin,Z,r0,rB0,T0,n0,mp,mi,me,eps0,mu0,k)

%a1=12.*pi.^1.5.*eps0.^2.*k.^(7./2)./(lnL.*e.^4);

a1=1.19e-12./(Z.^4.*mi.^0.5); %W/(m eV^(7/2))

ti=calc_ti(r,r0,rB,rB0,T,T0,n,n0,Z,mp,mi,me,eps0,mu0,k,lnL);

xi=calcxi(r,r0,rB,rB0,T,T0,n,n0,Z,mp,mi,me,eps0,mu0,k,lnL);

di=xi.^4+2.70.*xi.^2+0.677;
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%Kp=n.*k.^2.*T.*ti./mi.*(2.*xi.^2+2.645./di);

if (r ~= 0)

%f=-r.*qin./(2.*Kp).*fconst;

f=-r.*qin./(2.*a1.*T.^(5/2)).*di./(2.*xi.^2+2.645).*fconst;

%f=-r.*qin./(2.*a1.*T.^(5/2)).*xi.^2./2.*fconst;

else

f=0;

end

end

function g=calc_g(r,dr,n,dn,T,rB,qin,Z,r0,rB0,T0,n0,...

mp,mi,me,eps0,mu0,k,lnL,fconst,gconst)

%Calculates d(rB)/dr

f=calc_f(r,n,T,rB,qin,Z,r0,rB0,T0,n0,mp,mi,me,eps0,mu0,k,lnL,fconst);

if (rB~=0)

g=-mu0.*k.*(1+1./Z).*r.^2./rB.*(n.*f+T.*dn./dr).*gconst;

else

g=0;

end

end

function xi=calcxi(r,r0,rB,rB0,T,T0,n,n0,Z,mp,mi,me,eps0,mu0,k,lnL)

B_real=rB.*rB0./r0;

T_real=T.*T0;

n_real=n.*n0;

e=k;

ti=calc_ti(r,r0,rB,rB0,T,T0,n,n0,Z,mp,mi,me,eps0,mu0,k,lnL);

wi=Z.*e.*B_real./mi;
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xi=wi.*ti;

end

function ti=calc_ti(r,r0,rB,rB0,T,T0,n,n0,Z,mp,mi,me,eps0,mu0,k,lnL)

B_real=rB.*rB0./r0;

T_real=T.*T0;

n_real=n.*n0;

e=k;

ti=12.*pi.^1.5.*eps0.^2.*mi.^0.5.*(k.*T_real).^1.5 ...

./(lnL.*e.^4.*Z.^3.*n_real);

end

F.4 Constant Temperature

% NAME:

% temp_calc_const_t

%

% PURPOSE:

% This Matlab function calculates equilibrium

% profiles from the density profile of the Z-pinch

% assuming a constant temperature across the Z-pinch.

% The magnitude of the temperature is adjusted until

% the edge field matches the wall field scaled to

% the edge radius.

%

% CATEGORY:

% Data analysis code

%

% CALLING SEQUENCE:
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% temp_calc_const_t(datafile,pulse,helium)

%

% INPUTS:

% datafile: string that contains the name of the file

% containing the density profile

% pulse: the pulse number of the plasma pulse whose current

% and voltage is to be used to calculate the resistive

% heating into the plasma

%

% OPTIONAL INPUTS:

% helium: set to one for a helium Z-pinch

%

% OUTPUTS:

% none

%

% EXAMPLE:

% temp_calc_const_t(’20910027_lower_rn.dat’,20910027)

% temp_calc_const_t(’30204007_upper_rn.dat’,30204007,1)

%

% MODIFICATION HISTORY:

% Written By: Stuart Jackson, 11 Apr 2006

function value=temp_calc_const_t(datafile,pulse,helium)

filepath=’M:\Users\Stuart_Jackson\ZaP\matlab\temp_calc...

\temp_calc_const_t\’;

filename=[filepath,datafile]

num=dlmread(filename);

r=num(:,1);

%Move r=0 to r~0 to avoid the singularity at r=0

r(1)=0.001.*mean(r(2:length(r))-r(2:length(r)));
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n=num(:,2);

% n_bgnd=1e22;

% bgnd_inxs=find(n<n_bgnd);

% n(bgnd_inxs)=n_bgnd;

%Establish values of constants

Z=1;

mp=1.6726e-27; %kg

mi=mp;

if nargin > 2

Z=2*Z;

mi=4*mi; %kg

end

me=9.1094e-31; %kg

eps0=8.8542e-12; %F/m

mu0=4e-7*pi; %N/A^2

k=1.6022e-19; %J/eV

lnL=11; %the Coulomb logarithm

%Find magnetic field at the wall

%at the time the hologram was made

[shot,status] = mdsopen(’alfven.aa.washington.edu::zapmain’,pulse);

holo=mdsvalue(’\holography_raw’);

%time base for holography laser monitor

t_holo=mdsvalue(’dim_of(\holography_raw)’);

%get holography time from holography laser monitor

[dummy,holo_time_inx]=max(holo);

holo_time=t_holo(holo_time_inx);

%get holography time from digitizer

t_digi=1.37e-6+mdsvalue(’\digitizers::zap_dg11_b:channel_4’);
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%use the digitizer time if the monitor time is way off

if abs(t_digi-holo_time) > 0.1*t_digi

holo_time=t_digi;

end

holo_time

%m=0 mode at P0

m0=mdsvalue(’\m_0_p0’);

%time base for m=0 mode

tm0= mdsvalue(’dim_of(\m_0_p0)’);

%get magnetic field at the wall

[dummy,m0_time_inx]=min(abs(tm0-holo_time));

Bwall=m0(m0_time_inx); %T

%outer electrode wall radius

rwall=mdsvalue(’\r_wall’); %m

%Initialize arrays to hold Runge-Kutta terms

F=zeros(4,1);

G=zeros(4,1);

%Initialize normalized T and B arrays,

% setting T(r~0)=1 and B(r~0)=0.001

T=ones(length(r),1);

rB=zeros(length(r),1);

rB(1)=0.001;

%Normalize variables

n0=max(n);

n=n./n0;

r0=rwall;%r(edge_inx);%max(r);

r=r./r0;
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%rB array is already normalized

rB0=rwall.*Bwall;

%Iterate for T0 that matches 1/r to Bwall

nits=25;

delta_conv=0.01;

delta_array=zeros(nits,1);

T0_array=zeros(nits,1);

T0=70;

dT=0;

inx=length(r);

for t=1:nits

%T array is already normalized

T0=T0-dT

%terms used to normalize g

gconst=r0.^2.*n0.*T0./rB0.^2;

for m=1:length(r)-1

%delta r

dr=r(m+1)-r(m);

%delta n

dn=n(m+1)-n(m);

%n(r(m)+h/2)

ndr2=(n(m)+n(m+1))./2;

G(1)=calc_g(r(m),dr,n(m),dn,T(m),rB(m),Z,mu0,k,gconst);

G(2)=calc_g(r(m)+dr./2,dr,ndr2,dn,T(m),rB(m)+dr./2.*G(1),...

Z,mu0,k,gconst);

G(3)=calc_g(r(m)+dr./2,dr,ndr2,dn,T(m),rB(m)+dr./2.*G(2),...
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Z,mu0,k,gconst);

G(4)=calc_g(r(m+1),dr,n(m+1),dn,T(m+1),rB(m)+dr.*G(3),...

Z,mu0,k,gconst);

rB(m+1)=rB(m)+dr./6.*(G(1)+2.*G(2)+2.*G(3)+G(4));

end

B=rB./r;

B(1)=0;

figure(1)

plot(r,n,’k’)

hold on

plot(r,B./10,’r’)

hold on

plot(r,1./r./10,’r--’)

hold on

plot(r,T,’b’)

%if t==1

%axis([min(r) max(r) min(B) max(B)])

axis([min(r) max(r) -1 2])

%end

hold off

pause(1)

[inx,dummy]=min(find(imag(rB)~=0));

if inx

inx=inx;

delta=real(B(inx))-1./r(inx);

plot([r(inx),r(inx)],[0,10])
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else

inx=length(r);

delta=real(B(inx))-1./r(inx);

plot([r(inx),r(inx)],[0,10])

%delta=1;

end

delta_array(t)=delta;

T0_array(t)=T0;

if t>1

dT=delta./((delta-delta_old)./(T0-T0_old));

%dT=1;

if abs(delta)<delta_conv

disp([’converged to T0=’,num2str(T0)])

disp([’in ’,num2str(t),’ iterations’])

break

end

if t==nits

disp([’failed to converge’])

disp([’in ’,num2str(t),’ iterations’])

end

else

%dT=50;

dT=1;

end

T0_old=T0;

delta_old=delta;

end

figure(2)

subplot(2,1,1)
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semilogy([1:t],abs(delta_array(1:t)),’v-’)

xlabel(’T iteration’),ylabel(’log(abs(delta))’)

subplot(2,1,2)

plot([1:t],T0_array(1:t),’v-’)

xlabel(’T iteration’),ylabel(’T_0’)

r=r.*r0;

n=n.*n0;

T=T.*T0;

B=rB.*rB0./r;

B(1)=0;

figure(3)

subplot(3,1,1)

plot(r,n,’ko-’)

ylabel(’n’)

axis([min(r) max(r) 0 max(n)])

% hold on

% plot([min(r),max(r)],[n_avg,n_avg],’--’)

subplot(3,1,2)

plot(r,B,’ro-’)

ylabel(’B’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) 0 2])

subplot(3,1,3)

plot(r,T,’bo-’)

ylabel(’T’)

axis([min(r) max(r) 0 max(real(T))])
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figure(4)

subplot(3,1,1)

plot(r,n,’ko-’)

ylabel(’n’)

axis([min(r) max(r) min(n) max(n)])

subplot(3,1,2)

plot(r,real(B),’ro-’)

ylabel(’real(B)’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) -3 3])

subplot(3,1,3)

plot(r,real(T),’bo-’)

ylabel(’real(T)’)

axis([min(r) max(r) -200 200])

figure(5)

subplot(3,1,1)

plot(r,n,’ko-’)

ylabel(’n’)

axis([min(r) max(r) min(n) max(n)])

subplot(3,1,2)

plot(r,imag(B),’ro-’)

ylabel(’imag(B)’)

hold on

plot(r,Bwall.*rwall./r,’r--’)

axis([min(r) max(r) -3 3])

subplot(3,1,3)

plot(r,imag(T),’bo-’)

ylabel(’imag(T)’)
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axis([min(r) max(r) -200 200])

%Store r, n, B, and T in that order to an output file

if findstr(filename,’_rn’)

output_filename=strrep(filename,’_rn’,’_rnBT’)

else

output_filename=[filepath,’output.dat’]

end

dlmwrite(output_filename,[r,n,B,T])

end

function g=calc_g(r,dr,n,dn,T,rB,Z,mu0,k,gconst)

%Calculates d(rB)/dr

g=-mu0.*k.*(1+1./Z).*T.*r.^2./rB.*dn./dr.*gconst;

end
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