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University of Washington

Abstract

Formation of a Sheared Flow Z-Pinch

by Raymond Golingo

Chair of Supervisory Committee:

Professor Uri Shumlak
Aeronautics & Astronautics

The ZaP experiment has been built to experimentally study the theoretical prediction that

sheared flows stabilize plasma instabilities. The experiment uses a coaxial accelerator region

coupled with an assembly region to generate Z-pinches with an embedded flow. Previous

experiments have seen pinch-like structures which persist while the current is maintained.

Theories model the initial plasma of these experiments. This dissertation describes the

design of the experimental hardware and diagnostics of the ZaP Flow Z-Pinch experiment at

the University of Washington. The plasma velocity is measured with passive spectroscopy.

A technique is developed to deconvolve the spectra to obtain axial velocity profiles. Z-

pinches which remain quiescent for 1000 instability growth times are measured. During the

quiescent period in the magnetic mode amplitude, a sheared flow is present. The shear

levels are consistent with the published theory. At the end of the quiescent period, the

velocity is uniform and below the value predicted by theory. The results are consistent with

the theoretical predictions. A deflagration mode in the accelerator supplies plasma to the

Z-pinch during the quiescent period. When the deflagration mode ends, the magnetic mode

activity increases. This mode of operation appears to only be limited by the gas injection

rate, pumping speed, and driving circuit, not instabilities.
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GLOSSARY

CCD: Spectrometer with a CCD on one exit slit and a PMT on the other. This spec-

trometer is presently being used as a survey spectrometer and monochrometer.

DEFLAGRATION MODE: A process in which neutral gas is ionized and then accelerated

in an expansion wave.

FWHM: Full width half max. The width of a Gaussian at half the maximum intensity.

HBW: Half band width. Half of width of a filter at half the maximum intensity.

ICCD: Spectrometer with an image intensified CCD. This spectrometer measures the

spectral intensities of 20 parallel chords through the plasma over a small time interval.

IDL: the Interactive Data Language. “IDL is an easy-to-learn, cross-platform appli-

cation that enables in-depth data analysis through industry-leading visualization.”-

Research Systems Inc.

IDS: Ion Doppler spectrometer. This spectrometer measures the time evolution of the

spectral intensities of one chord through the plasma.

IMACON: Imacon fast framing camera. The Imacon fast camera takes photos of the

plasma at different times.

IMPACT PARAMETER: shortest distance from the axis to a chord.

LASL EXPERIMENT: Los Alamos Scientific Labs. This abbreviation is used in place of

“studies conducted on coaxial guns at the Los Alamos Scientific Labs”
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MDSPLUS: a set of tools for performing data acquisition and analysis for pulsed experi-

ments.

MPC: Magnetoplasma compressor. Devices studied in Russia which are similar to coaxial

guns.

NORMALIZED MI : the normalized mode amplitude. The normalized mode is defined as

min (mi/max (m0, 0.01), 1.0).

PFN: Pulse forming network. The capacitor bank use to provide a constant current to

the experiment.

PMT: Photomultiplier tube.

QSPA: Quasi-steady state plasma accelerator. Experiments performed in Russia which

studied the steady state behavior of a coaxial gun.

QUIESCENT PERIOD: The time when all the normalized modes are below an empirical

value of 0.2.

SHEARED FLOW: differential axial velocity. When axial velocity, vz, is a function of the

radius.

TREE: MDSplus data structure. The data from an MDSplus is stored in a tree structure.

ZAP: The experiment at the University of Washington studying sheared flow stabiliza-

tion of Z-pinch instabilities.
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Chapter 1

INTRODUCTION

As the world’s energy reserves are depleted, new sources of power generation are needed.

Fusion energy could provide the world with a clean, unlimited supply of electricity. Before

fusion power plants can begin generating electricity, advances in plasma science and the

technologies involved with reactors must be made. One of these advances may be using

flows to help stabilize plasma confinement schemes. Theoretical calculations show sheared

flows may stabilize one of the simplest confinement schemes, the Z-pinch [58]. The ZaP

(Z-pinch) experiment at the University of Washington is studying the effect of sheared flows

on the stability of a plasma [57, 59]. This work discusses the formation of Z-pinches with a

sheared flow.

ZaP is designed similarly to coaxial gun experiments conducted at Los Alamos Scientific

Laboratory in the 1960’s, the “LASL experiment”. The goal of the LASL experiment was

to develop a coaxial gun to inject large amounts of plasma into a containment device [26]. It

formed pinch like structures which were stable for 100 µs under certain operating conditions.

The stability mechanism was not identified, though the authors theorized that the stability

could be maintained as long as there is material flow. A sheared flow may explain the pinch

stability.

While ZaP is similar to the LASL experiment there are many differences. The LASL gun

used the vacuum vessel for the outer electrode and fired into a large vacuum chamber. In

ZaP, the outer cylindrical electrode (distinct from the vacuum vessel) extends 50 cm beyond

the inner electrode and the Z-pinch attaches to an electrode end plate. ZaP uses modern

vacuum, manufacturing, computing, and diagnostic technology to improve operation over

that of the LASL experiment and to better understand the stability of the Z-pinch.
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1.1 Fusion Energy

One of the main purposes of studying magnetic confinement of plasma is energy generation.

The world has a finite reserve of fossil fuels, and there is a predicted energy shortage in the

middle of the 21st century. Fusion energy would provide the world with a new clean energy

source. There is enough fuel (D,T) on earth to meet our energy needs for earth’s lifetime.

The ash from fusion energy generation is safe, He. The high energy neutrons produced can

be used to create T or can be absorbed by materials that are not activated. Fusion must

keep its promise to be the cleanest energy source to be a viable energy alternative.

Fusion Reactions

Fusion is the process of combining of two low mass nuclei into a higher mass nucleus whose

mass is less than the sum of the original nuclei. One of the by-products of the reaction is

energy, given by Einstein’s famous equation, E = mc2. The reactions which are normally

seen in fusion reactor studies are

D +D
50%→ T (1.01MeV ) + p(3.02MeV )

50%→ He3(0.82MeV ) + n(2.45MeV )

D + T → He4(3.5MeV ) + n(14.1MeV )

D +He3 → He4(3.6MeV ) + p(14.7MeV )

T + T → He4 + 2n+ 11.3MeV

He3 + T
51%→ He4 + p+ n+ 12.1MeV

43%→ He4(4.8MeV ) +D(9.5MeV )

6%→ He5(2.4MeV ) + p(11.9MeV )

(1.1)

The most attractive is the D+T reaction, as it has the largest reaction cross section. One

of the by-products of this reaction is a 14.1 MeV neutron. The neutron can be used for T

production by using Li in the first wall. Since the D+D reaction also produces neutrons,

only H2 is used in ZaP.
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Lawson Criteria

A reactor is only attractive if there is net energy production. Before these reactions can

occur, particles must have enough energy to overcome the Coulomb barrier between them.

For this to occur, a plasma with number density (n), particle confinement time (τE), and

ion temperature (Ti) equal to the electron temperature (Te) must satisfy the Lawson criteria

[34]

nτE >
12

Qα

w
Ti
σv

W
m−3s (1.2)

where Qα is the α-particle energy and σv is the fusion cross section. The D+T reaction

cross section has a maximum at Ti ≈ 15 keV. Reactors which operate at this temperature
would then have to meet

βτE >
2.3

B2
(s T2) or

2µ0n(Te + Ti)τE > 2.3 (s T2) if β = 1

(1.3)

where β ≡ 2µ0n(Te + Ti)/B2 and B is the magnitude of the magnetic field. Ideal reactors

would have the largest β possible, to minimize the applied magnetic field. Stability con-

siderations place limits on β in most devices studied today. This requires τE to be large.

Relaxing the constraints on β would benefit future projects and reactor designs. One method

of showing the stability constraints can be relaxed is to stabilize a high β configuration, the

Z-pinch.

1.2 Z-pinches

Some of the first magnetically confined plasmas were Z-pinches [23]. The force balance of this

simple confinement scheme, is not affected by axial velocities. Static Z-pinches are unstable

to two MHD modes. Different methods have been used to stabilize these modes, which

limit the temperature and pressure. Recent theoretical predictions have shown sheared

flows may stabilize these modes. The simple geometry and well-documented instabilities

make the Z-pinch a good configuration to study the effect of sheared flows on stability.
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Figure 1.1: Z-pinches are a simple magnetic confinement scheme. A column of plasma (pink)
is confined between two electrodes (grey). A capacitor bank and switch (black) are used
to drive an axial current, J , through the column of plasma. The self-generated azimuthal
magnetic field, B, confines the plasma.

1.2.1 Z-pinch Equilibrium

A Z-pinch is one of the simplest magnetic confinement configurations. It consists of an axial

current where the self generated azimuthal magnetic field provides confinement, shown in

Fig. 1.1. Since it has a simple geometry, a flow through Z-pinch is ideal for the study of

sheared flow stabilization.

The Z-pinch equilibrium can be described with the MHD force balance equation.

∇P + ρ (v ·∇)v = J×B (1.4)

where P is the pressure, ρ is the density, v is the velocity, J is the current density and B is

the magnetic field. For a sheared flow Z-pinch the following assumptions can be made

v = [0, 0, vz(r)]

B = [0, Bθ(r), 0]

J = [0, 0, Jz(r)]

P = P (r) .

(1.5)
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The axial velocity has no effect on the equilibrium, since (v ·∇)v = 0. The pressure is

described by static Z-pinch equilibrium equation

d

dr

w
P +

B2θ
2µ0

W
+
B2θ
µ0r

= 0 . (1.6)

A solution of which, given by Bennett [19], is

Bθ =
µ0I0
2π

r

r2 + r20
rBθ

Jz =
I0
π

r20
(r2 + r20)

2

P =
µ0I

2
0

8π2
r20

(r2 + r20)
2

(1.7)

where I0 is the current through the Z-pinch and r0 is the characteristic radius. The equi-

librium in ZaP is more complicated than this simple relationship because the density must

vary along the z axis. At the end of the inner electrode the plasma is accelerated inward

adding 2-D effects to the equilibrium. Near the end wall electrode, the velocity stagnates

as mass accumulates over time. These effects are minimized at the midplane of the Z-pinch

where most of the measurements are made. The time evolution of a flow-through pinch has

been simulated with MACH2, a 2-D resistive MHD code [47]. Future work with MACH2

and new codes which model ionization in the accelerator will give a better understanding

of the equilibrium and sustainment of the Z-pinch.

1.2.2 Traditional Stabilization Methods

Although the Z-pinch equilibrium is an attractive configuration for fusion, Z-pinches are

unstable to the m = 0 and m = 1 modes, shown in Fig. 1.2 [22]. Many techniques; close

fitting walls, axial magnetic fields and pressure profile control; have been used to stabilize

Z-pinches. Each has had success in stabilizing the Z-pinch, but plasmas of thermonuclear

interest are difficult if not impossible to obtain with these techniques.

A close-fitting wall has been shown to stabilize the Z-pinch [58]. Arc jets are an example

of a device which uses close-fitting walls as one of its stabilizing mechanisms. The main

problem with the use of close-fitting walls is that the temperature of the plasma is limited

by the maximum temperature of the walls. The small area of the wall must take the
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Figure 1.2: Z-pinches are unstable to the sausage or m = 0 mode (left side) and the kink
or m = 1 mode (right side). The m = 0 mode is a symmetric necking of the plasma. The
m = 1 mode is an asymmetric bending of the plasma. The arrows show the direction of the
force on the plasma. The perturbations grow until the current is disrupted.

full heat load from the Z-pinch, limiting the maximum edge temperature. This in turn

limits the temperature in the core of the plasma. In a thermonuclear plasma, the required

temperature is about 10-20 keV. There are no materials which could withstand the heat

load from a plasma of this temperature.

Applying an axial magnetic field to the Z-pinch is another stabilization method which

has been used. An m = 0 mode would compress the axial magnetic field. An m = 1 mode

would try to bend the axial magnetic field. The tension in the field lines acts as a restoring

force on the plasma. The axial plasma current is limited by the stabilizing axial field

according to the Kruskal-Shafranov limit, setting an upper bound on the plasma pressure

[33, 54]. The confinement time of the plasma is also degraded with the application of an

axial magnetic field. Plasma is not confined along magnetic field lines. The axial magnetic

field provides a path along which plasma can leave the core. Wrapping the magnetic field

into a torus solves the confinement problem, but there still is a limit on the current.

The m=0 mode can be stabilized with a gradual pressure profile according to Kadomstev

[19]. The pressure must satisfy the relationship

−d lnP
d ln r

≤ 4γ

2 + γβ
. (1.8)

where γ is the ratio of specific heats and β = 2µ0P/B
2. While these plasmas are marginally
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stable to the m = 0 mode, the stability of the m = 1 mode is unaffected. This result is

important because the m = 0 mode cannot be stabilized with a vacuum boundary [52].

1.2.3 Sheared Flow Stabilization

A better method of stabilization would not limit the pressure nor temperature in the core

of the Z-pinch. Sheared flows can stabilize the sausage and kink mode without limiting

the pressure or temperature. The coherence of the mode is disrupted with a sheared flow.

In a static Z-pinch, the equilibrium is provided by the magnetic pressure B2/2µ0 on the

outer surface. A small decrease in the radius increases the magnetic pressure at that location

accelerating the edge inward. In a static pinch the edge continues to move inward disrupting

the current. If a sheared flow is present, a displacement of the edge of the plasma will move

into a region with a lower velocity. The axial translation of the displaced edge is slowed as

it moves inward. Faster moving plasma from behind the displacement fills in the volume

above the perturbation. The coherence of the displacement is disrupted, stabilizing the

mode. A uniform velocity shear of

dVz
dr
≥ 0.1kVA, (1.9)

where Vz is the axial velocity, k is the wave number and VA is the Alfvén velocity, would

stabilize the kink mode [58].

1.3 Outline of Work

The results from previous experiments are described in Chapter 2. The theories which

have been developed from other devices can be used to understand the plasma in the ZaP

experiment. The theoretical predictions which have lead to the ZaP experiment are also

discussed in this Chapter. The formation process used to create a sheared flow Z-pinch is

described in Chapter 3. Snowplow models, which describe the initial formation process,

are developed in this Chapter. The design of the major systems on the experiment are

described in Chapter 4. These systems include the vacuum, gas feed, energy storage and

safety systems. The diagnostic and analysis techniques are described in Chapter 5. A
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new technique to calculate the plasma properties from passive spectroscopy is described.

Chapter 5 shows the results from four studies done on the experiment. The discussion of the

results is in Chapter 6. The plasma characteristics are compared to the theories present in

the previous Chapters. A heuristic explanation of the formation and sustainment processes

is also presented. Chapter 7 discusses the conclusions from this work. Possible future work

on the ZaP experiment is presented in Chapter 8. Practical applications of a sheared flow

Z-pinch are discussed in the Chapter.

Appendix A discusses a technique to calculate the magnetic at the surface of a flux

conserver. The magnetic fields are found without calculating the image currents. Gas puff

studies used to find the optimum gas puff timings are shown in Appendix B. The codes used

to analyze the data are found in Appendix C.
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Chapter 2

PREVIOUS WORK

The study of sheared flow stabilization requires a unique machine to generate the flows

required to stabilize the MHD modes. ZaP uses a coaxial gun to initiate the Z-pinch plasma.

Different phases of the evolution of the plasma have been studied in other experiments.

Coaxial guns and plasma focus devices have developed the theories needed to explain the

acceleration of the current sheet and compression of the plasma near the inner electrode. A

period of MHD stability has been reported in these devices.

Z-pinch plasmas were some of the first plasmas to be studied. As shown in the previous

section, Z-pinches have a simple magnetic topology. Present research uses Z-pinches which

are pulsed, short-lived plasmas. The Rayleigh-Taylor instabilities have been mitigated by

using wire arrays. These Z-pinches are used as a sources of hot dense plasma, intensive

x-rays, and ultra high magnetic fields [44]. Since Z-pinches are a simple configuration, and

the instabilities are well understood, they make an ideal configuration to study sheared flow

stabilization.

Early work postulated that flows may stabilize a plasma [26]. The discovery of trans-

port barriers in tokamak plasmas renewed interest in plasma flows. The H-mode transport

barrier is the most studied. There is substantial evidence that the velocity shear is partially

responsible for the internal transport barrier [62]. The experimental evidence of flow sta-

bilization has lead to computer simulations which include the dynamics of the plasma [68].

The evidence that adding energy to a plasma can positively influence the behavior lead to

an increased interest in added flows to the MHD equations. New theoretical predictions

showed that the MHD modes which disrupt a Z-pinch can be stabilized with a sheared flow.

This prediction is presently being investigated by the ZaP experiment.
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2.1 Coaxial guns

Coaxial guns were designed to accelerate plasma to high velocities. They inject gas into

the annulus between the electrodes. A high voltage is applied to the electrodes with large

capacitor banks. The gas is ionized, forming a current sheet, which is accelerated out of

the gun. This work was done mainly by Marshall et al. at Los Alamos and Cheng at Santa

Clara [14, 37]. Coaxial gun research decreased in the USA in the early 1970’s. Morozov et al.

built and studied a magnetoplasma compressor in 1967 [42]. A steady state coaxial plasma

accelerator was studied in the late 1980’s to the early 1990’s at the Kurchatov Institute

Russian Research Center.

2.1.1 Los Alamos Studies

In 1959, Marshall discovered that he could pass a 200 kA current through the gun without

detaching material from the electrodes [37]. Two different plasmas were defined in the

gun, the “fast plasma” and the “slow plasma”. The fast plasma, which was entrained in

the current sheet, could be used to fuel other machines. A snowplow model was used to

describe this plasma. The slow plasma was pushed against the outer electrode during the

acceleration of the current sheet. A continuous flow-through pinch was a result of the slow

plasma leaving the annulus of the gun. The flow-pinch persisted in front of the gun for

about 100 µs, the energy storage time of the bank [26]. The stability mechanism for this

pinch was not found. This result, the flow-through pinch, has laid the groundwork for the

ZaP experiment.

Gun Dimensions

The Newton Marshall experiments were done in a 1 m diameter, 2 m long vacuum chamber

The inner electrode was a 1.02 m long 6.4 cm outer diameter copper tube. The outer

electrode was a 1.02 m long 17.1 cm inner diameter copper tube. The outer electrode was

removed for the snowplow studies done by T.D. Butler [9, 10]. An explosive valve was used

to inject gas into the annulus between the electrodes. The valve had a 3.3 cm3 plenum filled

to 500 psig. The 2800 µF capacitor bank was fired 400 µs after the valve was opened. It
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took the current sheet 15 µs to reach the end of the gun. The plasma was then free to empty

into the vacuum chamber. A stable pinch lasted for 100 µs after the current sheet imploded

on axis. The pinch had a number density of 1017 cm−3 and a temperature of 100 eV. The

pinch was stable under the appropriate operating conditions.

Models

Marshall et al. discovered a fast plasma is created and travels with the current sheet. This

plasma is what has been studied in plasma focus experiments and for injection into other

devices. The plasma was modeled as a snowplow by T.D. Butler et al. [11, 9, 10]. This

model uses a massless magnetic piston to accelerate the plasma. The current is in a thin

layer between the gas and the plasma. As the current sheet accelerates towards the exit of

the gun, a shock forms in front of it. Gas entering the shock is ionized and pushed towards

the outer electrode in a thin layer between the shock and the current sheet. This model is

explained in Sec. 3.2.2.

Marshall et al. further discovered a slow plasma is comprised of most of the gas admitted

from the valve. As plasma exits the gun it travels radially inward. A one dimensional model

was used to describe the plasma at this location of the gun. Flow along the axis was modeled

as a sink for the mass and magnetic flux. The treatment of the slow plasma was different

than Morozov’s treatment of a similar plasma. The possibility of shocks is not considered in

Morozov’s model. A shock was seen in the LASL experiment’s PIC simulations at the end

of inner electrode. Evidence of a shock at the end of the inner electrode was seen during

the experiment. While PIC simulations showed structures seen in the current sheet and

average properties of the pinch, they were not able to look at the structures inside of the

pinch because of limits on their cell size.

2.1.2 University of Santa Clara Studies

D.Y. Cheng was interested in accelerating plasma using coaxial guns [14]. He described

the plasma with another process which may be occuring in a coaxial gun. The plasma was

modeled similar to the combustion of a gas. The snowplow was described as a detonation
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process, where the maximum speed of the plasma was always slower than the speed of

the compression wave. He proposed using a deflagration process, where the deflagration

wave front travels in the opposite direction as the plasma. The plasma is accelerated in an

expansion wave. The final speed of the plasma is not limited by the speed of the compression

front.

A deflagration wave was created by charging the electrodes of the gun. Gas was then

puffed into the end of the gun. When the pressure was above the Paschen minimum, the

gas ionized forming a plasma. The plasma was accelerated to the muzzle of the gun in the

expansion wave. The process was sustained by continuously injecting gas into the breakdown

region. The directed energy of his plasma was 10 keV to 30 keV. His results could not be

confirmed by the LASL experiment.

2.1.3 Kurchatov Institute of Atomic Energy

The basic theory for plasma accelerators were formulated by A.I. Morozov et al. in 1959 [42].

Compressional flows were verified experimentally in 1967 in a magnetoplasma compressor

(MPC). Instabilities were found in the ionization zone and at the anode of these devices. A

two step quasistationary plasma accelerator (QSPA) was studied in the 1990’s. Theoretical

models were developed which explain the observed phenomena.

An MPC uses a coaxial gun with shaped electrodes [7]. The outer electrode is twice

as long as the inner electrode. An MPC operating with hydrogen in 1968 had a steady

compressional flow for 100 µs, comparable to the bank discharge time. The plasma had

ne ≈ 6× 1016 cm−3 and Ti ≈ Te ≈ 10 eV with a current of 300 kA.
The two step QSPA is a complicated machine, as seen in Fig. 2.1. In a two step QSPA,

plasma is injected into the annulus with an array of modified MPC’s. The accelerator is a

coaxial gun with shaped rod electrodes. “Current collecting pins” are used in the cathode

inner electrode. The anode outer electrode is surrounded by a dielectric screen to prevent

the spreading of the injected gas. A 5600 µF capacitor bank, charged to 10 kV, is used to

supply the current. The gun is fired into a large vacuum chamber.

The QSPA’s were designed to avoid problems seen in earlier devices. A rotational (spin)
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Figure 2.1: Diagram of the P-50 QSPA showing the geometry of the electrodes and the
input ionization chambers. The input chambers, shown on the left, are an array of MPCs
with solid electrodes. These inject plasma into a larger MCP which has rod electrodes. The
inner electrodes are shaped such that plasma exiting the MPCs is supersonic.

instability and a longitudinally oscillatory instability were observed in the ionization zone

in the one step QSPA. These instabilities do not occur in a two step QSPA because the gas

in preionized in the MPC’s. Another effect called “anode current creep” was also observed.

This leads to a strong attachment at the anode which is a feature of essentially all QSPA’s

with solid electrodes. It is caused by a depletion of ions near the anode. Using rod electrodes

where plasma passes through the electrodes lessens the “current crisis”. Erosion along the

electrode surfaces is caused by the ion current in the accelerator. Transformers are used as

ion emitters at the anode and as collectors at the cathode. This protects the electrodes and

provides a source of ions along the anode, solving the “current crisis” problem.

The velocity and compression of a plasma in a coaxial gun can be understood with the

MHD Bernoulli equation. The plasma is partitioned into narrow coaxial tubes bounded by
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streamlines ξ = const. The properties of the flow in each tube can be described with

W (ρ) +
v2

2
+ ρr2B2 = U = const (2.1)

whereW (ρ) =
$
(dP/ρ) [43]. In a constant radius channel the maximum velocity is given by�

2
D
c2T0/(γ − 1) + c2A0

i
, where cT0 and cA0 are the sound and Alfvén speed at the channel

entrance. A varying channel cross-sectional area is needed to accelerate the flow above

the signal speed, cs =
�
c2T + c

2
A. The critical section of the flow, where a subsonic flow

transitions to a supersonic flow, occurs near the minimum area of the channel. In devices

where the compression of the plasma is important, velocities above the signal speed must

be avoided to stop shocks from being generated. The maximum density ratio of an MPC is

given by

νmax ≡ ρmax
ρ0

=

}
(γ − 1)c

2
A0

c2T0

w
1 +

W0

c2A0

W]1/(γ−1)
(2.2)

These equations were used to design the MPC’s and QSPA’s.

Computer simulations of MPC’s and QSPA’s agree with the analysis from the MHD

Bernoulli equation. The plasma was modeled with magnetogasdynamics taking into account

the Hall effect [6]. Computer simulations using the two-fluid model including transport

properties modeled with Braginskii’s work have also been done [7]. The simulations have

shown that current vortices can form in the QSPA’s. Current vortices, measured on the

QSPA, are seen shortly after the plasma exits the gun and persist until the end of the shot

[65, 66]. Ionization processes have been included in the simulations by using Saha’s formula.

The longitudinally oscillatory instability was seen during these simulations.

2.2 Plasma Focus Devices

Plasma foci were first studied independently in the USA and the Soviet Union in the 1960’s

[70]. Mather discovered a dense high temperature plasma in front of the coaxial gun when

he operated under certain conditions [39]. When these devices operated with deuterium

they produced neutrons. The scaling for the neutron production is (Y ∼ E2), where Y is
the neutron yield and E is the energy in the capacitor banks.
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Plasma foci are normally small devices. The radius of the outer electrode is normally

less than 10 cm. The electrodes are less then 30 cm long. The capacitor banks are less than

100 µF. By keeping the external inductance low, less than 100 nH, the quarter period of the

current is 0.8 to 4 µs. Large peak currents, from 250 kA to 4 MA, are used to compress the

plasma in these devices. The focus lifetime is short, less than 100 ns. The main diagnostics

used on plasma focuses are voltage monitors, Rogowski coils, neutron and x-ray detectors.

Some experiments have also used magnetic probes, differential interferometry, and Schlieren

photography to understand the plasma. The other plasma quantities of interest are then

found using models of the plasma.

2.2.1 Formation

A plasma focus is formed with a coaxial gun. The inner electrode is the anode. The outer

electrode, the cathode, is about the same length as the inner electrode. The vacuum vessel

is filled with 0.5-10.0 mbar of deuterium or a gas mixture. A high voltage from a capacitor

bank is applied to the electrodes. The gas breaks down across the insulator forming a

current sheet which is accelerated by the J×B force to the muzzle of the gun. The current
sheet should reach the exit of the gun when the current peaks for maximum compression of

the pinch. The time at which the current sheet reaches the muzzle can be found with

ta =

w
4π2z20(b

2 − a2)ρ0
I20µ ln(b/a)

W1/2
(2.3)

where z0 is the length of the anode, I0 is the maximum current, a and b are cathode and

anode radii, and ρ0 is density.[35] There is current shedding as the current sheet travels

between the electrodes. Mathuthu reported 68.5% of the total current was in the focus of

his device [40]. The process of shedding current, as the current sheet travels along the inner

electrode, is a transition from the snowplow to deflagration description of the current in the

gun [69]. After the current passes the anode it collapses on axis with a zippering action

forming the plasma focus. This zippering action compresses the plasma to a high density

and temperature. During this time a plasma jet has been seen in front of the current sheet

[17]. The focus then goes unstable from the growth of the m = 0 mode in the pinch, or

from radiative collapse. Neutrons are produced during this time.
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2.2.2 Neutron Production

Plasma focus experiments are mainly looking at ways to produce neutrons and x-rays.

The neutrons are produced from two different mechanisms in the focus [13]. There are

thermal neutrons produced in the plasma and beam-target neutrons produced when jets

from the plasma impact a surface or medium. Various inner electrode shapes have been

tried. Zakaullah et al. found that a tapered electrode produced the most x-ray radiation

[70]. Lu has identified an unstable mode during the formation of a plasma focus using a

solid inner electrode [36]. This mode occured on 44% of his shots. The mode occurs when

the angle between the current sheet and the vertical electrode face is small. The neutron

production during the unstable shots is about half the production of neutrons on a stable

shot. This mode is not present when a hollow electrode is used.

Most of the neutrons are produced after the plasma focus has reached its maximum

compression and has gone unstable. A plasma focus in Germany, SPEED2, has found an

operating region where they can produce neutrons before maximum compression in a stable

pinch [31]. SPEED2 injects gas along the z axis. When argon is injected the plasma focus

forms micro pinches which can be explained with a radiative collapse model. The argon is

not fully stripped of its electrons and is able radiate energy locally cooling the plasma. As

the plasma cools, sausage instabilities form. When neon is used, a stable plasma column is

produced. This regime has been discovered in other experiments. The stabilizing mechanism

of the plasma is not understood. There may be a sheared flow stabilizing the column.

2.3 Z-pinches

The first Z-pinches were made in Holland by Martinus van Marum in 1790 [23]. He used

one hundred Leyden jars to explode a one meter long wire. The implosion of the J×B was
not postulated until 1905. The Bennett relation

8πNkT (1 + Z) = µ0I
2 (2.4)

where N is the density per unit length, T is the temperature, and I is the current through

the plasma, was derived in 1934. The declassification of the fusion program was triggered
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by Kurchatov’s lecture at Hartwell, where he identified an instability which leads to the

neutron production seen in Z-pinches. In 1958 Anderson confirmed Kurchatov’s results. Z-

pinch work today is concentrating on obtaining powerful pulsed soft x-rays to driven inertial

confinement fusion. They have also been used to produce neutrons, x-ray lasers, and study

radiative collapse.

Z-pinches are created in a number of ways. The space between two electrodes may

be filled with a uniform gas or frozen deuterium fibers. The onset of the Rayleigh-Taylor

instability can be delayed by placing a large number of wires in a single or double array

between the electrodes. A double shell puffed gas has been used to simulate a double wire

array has also been studied [63]. Regardless of how the Z-pinch plasma is formed, it normally

occupies a small volume, the initial Z-pinch radius is less than 4 cm and Z-pinch lengths are

less than 4 cm. The large energy densities of these plasma is obtained by using capacitor

banks with a quarter period of 200 ns to provide about 4 MA to the plasma.

In recent years, the wire array Z-pinch has been the most interesting because these Z-

pinches are an efficient way to produce powerful short pulsed x-rays. A wire array consists

of a large number (240) of thin (5 µm) wires. When the current is first applied each wire

explodes while the entire array begins to implode. During this time there are different types

of plasma, the coronal plasma can be modeled with the MHD equations, while the plasma

in the core is in the resistive regime. The plasma from the individual wires merge together

forming a conducting shell. The perturbation level of the m = 0 instability in the shell is

n−1/2 times the perturbation of level of a single wire where n is the number of wires. The

m = 0 mode continues to grow while the shell implodes onto the axis. When the Z-pinch

forms, most of the energy is in the kinetic energy of the ions. There is a rapid conversion

to thermal energy followed by a slower equipartition to the electrons. The Z-pinch becomes

unstable to the m = 0 mode shortly after this time.

2.4 E×B Shear

Transport barriers at the edge of tokamak plasma were first found in 1982 [68]. They

have also been found in the core of tokamaks. Since this time worldwide experimental
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and theoretical efforts have revealed new physics in the formation of these barriers. These

bifurcation states are achieved by adding energy into the core of plasma. The magnetic and

E × B flow shear increases, reducing the transport in the plasma. It is a rarity that the

addition of energy to a system decreases the energy transport of the system.

It appears that flow shear breaks up islands responsible for anomalous transport [28].

Low frequency turbulence is first suppressed across the core of the plasma [15]. High fre-

quency turbulence is then locally reduced in the internal transport barrier region. This

region moves outward until γE×B ≈ γmaxlin where γE×B is the characteristic rate for shearing

the turbulence and γmaxlin is the fastest linear growth rate of the dominant instability [62].

In this region, particle and energy transport are reduced.

2.5 Sheared Flow Stabilization

The stability of a Z-pinch is one of the first configurations studied when teaching students

linear stability. Theoretically it is easy to prove a static pure Z-pinch is unstable to the

m = 0 and m = 1 mode. The results from coaxial guns, plasma focus, and E × B shear

have shown the importance of plasma dynamics on the understanding and stability of the

magnetic configurations. The stability requirements for a Z-pinch plasma should change

when a flow is added. Stability analysis and computer simulations have shown that the

m = 0 and m = 1 modes can be stabilized in a Z-pinch with a sheared axial flow [58].

Although the equilibrium of the Z-pinch, Eq. 1.6, is unaffected when an axial flow is

added, the stability problem can no longer be solved analytically. The ideal MHD equa-

tions are linearized and combined to yield a set of coupled first order linear differential

equations. The growth rates are then found with shooting codes. Equilibria which satisfy

the Kadomtsev condition

−d lnP
d ln r

≤ 4γ

2 + γβ
(2.5)

where γ is the ratio of specific heats and β = 2µ0P/B
2, are used to stabilize the m = 0

mode. Shumlak and Hartman calculated the velocity shear needed to stabilize the kink

mode as a function of rwall/a, where rwall is the radius of the wall and a is the characteristic

radius of the pinch. When rwall/a = 4, the required shear is no longer a function of rwall/a.
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A uniform velocity shear of
dVz
dr
≥ 0.1kVA,

where Vz is the axial velocity, k is the wave number and VA is the Alfvén velocity, would

stabilize the kink mode [58]. Other authors have derived different sheared flow criteria

which would stabilize the sausage and kink modes [1, 16, 51, 60].
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Chapter 3

THE FORMATION PROCESS

Historically plasma accelerators have seen stable, pinch-like structures at the exit of the

device. It has been postulated that the flow in this structure may be responsible for the

stability. This observation leads to initiating a Z-pinch with an accelerator. This chapter

gives an overview of how ZaP uses the results from previous experiments to study sheared

flow stabilization. The project uses a coaxial accelerator coupled with an assembly region,

shown in Fig. 3.1, which has never been done before. As seen in the previous chapter, there

Figure 3.1: Diagram of the original configuration of ZaP experiment showing the major
components of the experiment. The acceleration region is 1 m long with gas puff valves
located at the midplane of the region. The inner electrode is a hollow pipe from the gas
puff valves to the assembly region. The original assembly region was 0.5 m long with a solid
endwall. The origin of coordinate system used in the experiment is placed at the midpoint
of the original Z-pinch (z = 0 is located at the Z-pinch midplane).

is a large amount of research which has been done on plasma guns and static Z-pinches. A
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focus of the experiment is studying the equilibrium and stability of a Z-pinch with a sheared

axial velocity. This section relates the results from other devices to explain formation of

the Z-pinch and identify processes in the accelerator important to the stability of the Z-

pinch. Section 3.1 describes the formation process. Models of the current sheet rundown

are discussed in Sec. 3.2.

3.1 Z-pinch Formation

ZaP uses a coaxial accelerator to form and accelerate the plasma, establishing a flow in the

Z-pinch. A conceptual representation of producing a flow in a Z-pinch is given in Fig. 3.2.

Gas is puffed at the midplane of the inner electrode. After a sufficient amount of time

the voltage is applied to the electrodes. The gas breaks down, forming a uniform current

sheet. The J ×B force accelerates the current sheet down to the assembly region. In the

accelerator, the leading edge of the current sheet forms a snowplow. The shape is given by

z ∝ −r2 since the forces are greater near the inner electrode. The neutral gas in front of
the current sheet is ionized in the shock. Although some of the plasma is entrained in the

current sheet, most of the plasma is pushed up against the outer electrode by the snowplow.

This is the description given by the LASL experiment for their coaxial gun studies and

plasma foci.

After the plasma reaches the end of the acceleration region, a Z-Pinch is formed in the

ZaP experiment. The LASL experiment let their plasma flow into a larger vacuum chamber.

The outer electrode on ZaP extends beyond the inner electrode. The connection region of

the current sheet along the inner electrode collapses on the axis at the end of the inner

electrode, as shown in Fig. 3.3. The current sheet continues collapsing while the connection

region along the outer electrode continues to travel along the outer electrode. The current

sheet reaches an end wall where the connection region collapses onto the axis of the machine,

forming a Z-pinch. It is difficult to imagine forming a Z-pinch with this process with out

an embedded flow.
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Figure 3.2: Conceptual drawing showing the initial steps in forming a sheared flow Z-pinch
are similar to the LASL experiments. The dashed line is the center line of the experiment.
The rest of the colors are described at the bottom of the frames. The first frame shows the
distribution of neutral gas just before the voltage is applied. The next two frames show
the breakdown of the gas after the voltage is applied and the initial rundown of the current
sheet. The velocity of the plasma is shown as black arrows.

3.2 Snowplow Models

During the initial phase of the experiment the plasma should behave similarly to the LASL

and plasma focus experiments. Two models may be used to describe the plasma in the

accelerator when it is a snowplow. The first model, developed by Karpov et al. [30] uses
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Figure 3.3: Conceptual drawing showing the final formation steps in ZaP are different than
the LASL experiments. The dashed line is the center line of the experiment. The rest of
the colors are described at the bottom of the frames. The first two frames show the current
sheet collapsing onto the axis of the machine as the current sheet travels along the outer
electrode. The final frame shows the current sheet after it has completely collapsed and
formed a Z-pinch. The velocity of the plasma is shown as black arrows.

the circuit parameters and the fill pressure to describe the total current and location of the

current sheet as functions of time. The second model, developed at LASL by Butler et al.,

describes the shape of the current sheet when the current is constant. These two models

are described in following two sections. Comparison of the models and the initial phases of

the ZaP experiment will be discussed in Sec. 7.1.
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3.2.1 Varying Current Snowplow

A snowplow model, where the current varies with time, was developed by Karpov et al.

[30]. The modified equation of motion

d

dt
(zż) +

γ − 1
2

ż2 =
µ0
2kρ

w
I

2πr

W2
(3.1)

where ρ is the density of the neutral gas, γ is the ratio of specific heats, k = ki/βi = constant,

ki is the plowing efficiency, and βi is the decrease of magnetic pressure due to the curvature;

and Kirchhoff’s equation

d

dt
[(L0 + L(t)) I] +R0I = V0 − 1

C0

8
Idt (3.2)

where L0, R0, and C0 are the inductance, resistance and capacitance of the driving circuit,

are used to describe the motion of the snowplow. L(t) is the change in the inductance as

the current sheet travels along the annulus. Separation of variables can be used when the

shape of the snowplow is given by z(r, t) = r0z1(r0, t)/r = r0z1(t)/r, where r0 is the radius

of the inner electrode. The variable inductance becomes

L(t) =
µ0
4π
bz1(t)

where b = 2 (r1 − r0) /r1 and r1 is the radius of the outer electrode. Equations 3.1 and 3.2
are then rewritten with the nondimensional parameters

τ =
t√
L0C0

, y = z1
µ0
4π

b

L0
,ϕ = I

√
L0C0
V0C0

to form

1

2

d2

dτ2
y2 +

γ − 1
2

w
dy

dτ

W2
= qϕ2 (3.3)

d2

dτ2
[(1 + y)ϕ] + p

dϕ

dτ
+ ϕ = 0 (3.4)

where

q =
C20V

2
0 b
2

2πr20ρL
2
0k

pµ0
4π

Q3
and

p = R0

5
C0
L0
.
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These equations are numerically integrated with the initial conditions

y(0) = ẏ(0) = ϕ(0) = 0

ϕ̇(0) = 1

using the second order accurate finite-difference operators

y(τn) = yn (3.5)

ϕ(τn) = ϕn (3.6)

ẏ(τn) =
1

2Pτ (yn+1 − yn−1) (3.7)

ϕ̇(τn) =
1

2Pτ (ϕn+1 − ϕn−1) (3.8)

ÿ(τn) =
1

Pτ2 (yn+1 − 2yn + yn−1) (3.9)

ϕ̈(τn) =
1

Pτ2 (ϕn+1 − 2ϕn + ϕn−1) . (3.10)

Substituting Eqs. 3.5 to 3.10 into Eqs. 3.3 and 3.4 and solving for yn+1 and ϕn+1, the

following equations are obtained

yn+1 =
−by +

�
b2y − 4aycy
2ay

(3.11)

ϕn+1 =

J
2 (1 + yn)−Pτ2

o
ϕn +

J
P
2Pτ − (1 + yn−1)

o
ϕn−1

1 + yn+1 +
P
2Pτ

(3.12)

where

ay = 2 +
γ − 1
2

by = −(γ − 1)yn−1
cy = −4y2n +

γ + 3

2
y2n−1 − 4Px2qϕn

An IDL routine, snow plow time.pro Sec. C.1.1, can be used to compare the location of the

current sheet and the total current to experimental data.

3.2.2 Snowplow Shape

The shape of the snowplow during a constant current discharge was described by Butler et

al. [9, 10]. In the shock frame the stationary equations of the shock layer for force balance,
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conservation of mass, momentum and energy are

0 =
B20r

2
0

2µ0r2
− ρu2 cos2 θ + σV 2

2πr

dθ

ds
(3.13)

d

ds
(V σ) = 2πruρ cos θ (3.14)

d

ds

D
V 2σ
i
= 2πru2ρ cos θ sin θ − 2πrδdP

ds
(3.15)

d

ds
(V ε) =

2πru

γ

ρ

2
cos θ
�
u2 cos2 θ + (u sin θ − V )2 − u2c

=
+

2πrδ

γ

dP

ds
(3.16)

where s is the arc length along the shock from the electrode, r0 is the electrode radius, B0

is the magnetic field at the electrode surface behind the current sheet, ρ is the mass density

of the gas ahead of the shock, u is the flow velocity of the undisturbed gas, θ is the angle

between the shock surface and the local radius, V is the velocity in the shocked layer along

the shock, σ is the mass per unit arc length (integrated around the center axis), ε is the

internal energy per unit arc length, uc is the velocity at which the kinetic energy of incoming

molecules equals the ionization energy, γ is the ratio of specific heats, δ is the thickness of

the shocked layer, and P is the pressure in the shock layer. The pressure in the shocked

layer is taken as the average of the pressure in the front and the back of the shock

P =
B20r

2
0

2µ0r2
+ ρu2 cos2 θ . (3.17)

The internal energy in the shock layer is related to the pressure by

P = nkT =
(γ − 1)ε
2πrδ

(3.18)

where ε/2πrδ is the internal energy per unit volume. The radial and axial position of the

shock can be found with

dr

ds
= cos θ (3.19)

dz

ds
= − sin θ (3.20)

This system of equations can be solved numerically starting at the singular point s = 0,

where δ = 0, v = 0, and σ = 0.
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Before solving the system of equations, Eq. 3.13 to Eq. 3.16 are written in non-dimensional

form. The snowplow has free slip boundary condition at the inner electrode, θ = 0 and

dθ/ds = 0. A consequence is
B0
2µ0

= ρu2. (3.21)

The following nondimensional parameters

sn =
s

r0
, rn =

r

r0

Vn =
V

u
, σn =

σ

2πr20ρ

zn =
z

r0
, Pn =

P
1
2ρu

2

δn =
δ

r0
, εn =

γε

2πr20
1
2ρu

2

uc n =
uc
u

can then be used along with Eq. 3.21 to rewrite Eq. 3.13 to Eq. 3.16 as

dθ

dsn
=

rn
σnV 2n

w
cos2 θ − 1

r2n

W
(3.22)

d

dsn
(σnVn) = rn cos θ (3.23)

d

dsn

D
σnV

2
n

i
= rn cos θ sin θ − rnδn

2

dPn
dsn

(3.24)

d

dsn
(εnVn) = rn cos θ

�
cos2 θ + (sinθ − Vn)2 − (uc n)2

=
+

rnδn
dPn
dsn

(3.25)

Pn =
1

r2n
+ cos2 θ (3.26)

dPn
dsn

= −2 cos θ
w
1

r3n
+ sin θ

dθ

dsn

W
(3.27)

δn =
γ − 1
γ

εn
rnPn

(3.28)

When the pressure, internal energy and the centrifugal force terms are disregarded in
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Eqs. 3.22 through 3.28, the remaining set of equations

cos2 θ =
1

r2n
d

dsn
(σnVn) = rn cos θ

d

dsn

D
σnV

2
i
= rn cos θ sin θ

have an analytic solution.

rn =
√
1 + 2sn (3.29)

zn =
1

2

p0
sn (2 + 4sn)− arcsinh

√
2sn

Q
(3.30)

σn = 2s2n

p0
sn (2 + 4sn)− arcsinh

√
2sn

Q−1
(3.31)

Vn =
1

2sn

p0
sn (2 + 4sn)− arcsinh

√
2sn

Q
(3.32)

While this set of equations describes the shape of the snow plow, the thickness and density

of the snowplow are lost.

The full set of equations are solved by expanding about the singular point at s = 0,

and using the leading terms to start the numeric integration scheme. The equations are

expanded about s = 0, where δ = 0, V = 0, σ = 0, and θ = 0, keeping only the leading

terms which are proportional to s
1/2
n . The following forms of solutions are assumed for θ,

σn, Vn, εn, and rn

θ = aθs
1/2
n (3.33)

σn = aσs
1/2
n (3.34)

Vn = aV s
1/2
n (3.35)

εn = aεs
1/2
n (3.36)

cos θ = 1 (3.37)

rn = 1 + sn (3.38)

The constants are found by substituting these solutions into Eqs. 3.22 to 3.28 and ignoring
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higher order terms since s ≈ 0. After some algebra the constants become

aθ =
2�

8
3 +

γ−1
3γ (1− u2c n)

(3.39)

aσ =
1�

8
3 +

γ−1
3γ (1− u2c n)

(3.40)

aV =

5
8

3
+
γ − 1
3γ

(1− u2c n) (3.41)

aε =
1− u2c n�

8
3 +

γ−1
3γ (1− u2c n)

(3.42)

This gives the first point above inner electrode. Once the parameters at this point are

found, a Runge-Kutta numeric integration scheme is used to determine the shape of the

snowplow. The shape of a snowplow is shown in Fig. 3.4, calculated with the IDL routine,

con cur sp dis.pro, Sec. C.1.2. The largest effect of changing the parameters is seen by

changing uc n. The thickness of the current sheet approaches 0 as uc n approaches 1. All of

the incoming particle’s kinetic energy is used to ionize the neutral gas resulting in a cold,

thin shocked region. ZaP does not presently have the capability to verify the shape of the

snowplow. The results are useful when comparing the time evolution of various diagnostics

in the acceleration region.



30

Figure 3.4: The shape and parameters of the snowplow are found using the analytic ex-
pression (black) and numeric integration (red). The blue curve in the top graph shows the
thickness of the snow plow.
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Chapter 4

DESIGN OF THE ZAP EXPERIMENT

The ZaP experiment is interested in studying fusion grade plasmas. The geometry of

the machine is set by the formation process described in the last chapter. The dimensions of

the electrodes have been chosen to be similar to the LASL devices, because of the similarity

to the initial stages of the formation process and the pinch-like structures which were seen.

Improvements in the design of the systems used on the ZaP experiment have been made

with the technology avaliable. The major components of the machine are shown in Fig. 4.1.

Figure 4.1: Diagram of the original ZaP vacuum chamber showing the major components
of the tank with the end flanges attached. The diagnostic ports on the top and bottom
of the machine are labeled. The large port in the assembly region is used for holography,
interferometry, and optical images of the Z-pinch. The two smaller ports on either side of
this port are used for internal probes. The port located to the right of the endwall is the
electrical feed through port. The unlabeled ports on the left side of the machine are used
for the vacuum system.



32

The design of the machine must allow for diagnostic access. Holes drilled in the elec-

trodes have a minimal impact on the rundown of the current sheet and formation of the

Z-pinch. Many of the planned diagnostics required multiple plasma pulses to conduct a

survey. Systems used in the experiment are reproducible, i.e. constant gas fills, little jitter

on the ignitron timing, etc. The down time between pulses has been kept to a few minutes

to ensure that surveys can be completed in a day. The rapid cycling of the experiment puts

an added pressure on the hardware. This goal has guided the design of most of the systems.

This chapter begins by describing the vacuum system. A vacuum of 10−8 torr has been

created in the vacuum chamber. The vacuum tank design also allows for diagnostic access

to the plasma. An interlock system on the vacuum system is used to protect the system

from operator error. Inside the chamber the electrodes supply the current to the plasma

and withstand interruptions of the Z-pinch without failing. The gas puff valves, which inject

neutral gas into the annulus are described in Sec. 4.2. Section 4.3 describes the multiple

capacitor bank configurations have been used to supply currents. A circuit diagram of

the ZaP experiment has found to model currents and voltages. Safety interlocks in the

lab prevent employees from being near the experiment while pulses are being taken are

discussed in Sec. 4.4. As the understanding of the experiment has increased many of these

systems have been modified and improved. Figure 4.2 shows the present configuration of

the ZaP vacuum tank and electrodes. The original design and changes made are described

in each section.

4.1 Vacuum System

The vacuum system consists of the vacuum tank, pumping system, electrodes and diag-

nostics inside the vessel. All of these parts are integrated together to achieve a low base

pressure of 10−8 torr. An interlock system is used to control the vacuum pumps and valves.

4.1.1 Creating a Low Ultimate Pressure

Most vacuum systems are able to generate a high vacuum with a roughing pump and a

turbomolecular pump. Normally a rough pump is used to create a vacuum of 10−3 torr
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Figure 4.2: Diagram of the present ZaP vacuum chamber showing the changes made to
the electrodes and vacuum chamber. The hollow inner electrode has been replaced with a
nose cone. The assembly region has been lengthened to 1.0 m with a 0.5 m outer electrode
extension. A hole has been added to the end wall to remove a possible stagnation point in
the plasma. A 0.75 m long extension has been added to the vacuum chamber.

that the turbo pump can operate in. The turbo pump then creates a high vacuum in

the chamber. In ZaP, the vacuum is created in the tank with three pumps. A Leybold

D60A mechanical pump is used create a vacuum in the rough lines. The pump does not

have throughput needed for helium glow discharge cleaning in the chamber. A Leybold

WA251 roots blower has been added to increase the throughput of the roughing system.

The addition of the roots blower has decreased the ultimate pressure of the rough lines to

10−4 torr. A Leybold TMP450 Turbovac then creates the vacuum in the chamber. The

lowest base pressure obtained in ZaP was 2× 10−8 torr.
Since gas is injected into the chamber each pulse, the pumping system must be able to

achieve the high vacuum in a short time. The pump down time was kept as short as possible

by keeping the conductance of the vacuum system much larger than the pumping speed of

the turbo pump. Four inch diameter copper tubing was used for the rough lines to keep the
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conductance of the roughing system larger than the pumping speed of the roughing pumps.

Low ultimate pressures, of 10−8 Torr, are achieved by using nearly all metal seals on

the chamber. All of the ports on the chamber, including the tank end plates, use copper

gasket conflat seals. All of the windows, electrical feedthroughs, gate valves, and pressure

gauges are welded on to conflate blanks. Most of these are standard parts which can

be purchased from various venders. The electrical feedthroughs consisting of three DB25

electrical feedthroughs are mounted on a 6 inch conflats were a special order item from ISI.

The only seals which do not use conflates are around the Alumina insulator. These seals

are made with Viton O-rings. The O-Rings are held in place with stainless steel pushers.

Every seal was checked with a helium leak checker.

Even in a completely sealed chamber, virtual leaks and outgasing can keep the pressure

high. Virtual leaks are caused by trapped volumes in the vacuum. The trapped volume can

be the empty space behind a bolt or space behind a weld. Air trapped inside this volume

slowly escapes into the vacuum, keeping the pressure high without showing up on a leak

check. To avoid virtual leaks, there must not be any trapped volumes inside the vacuum

chamber. All of the welds are made on the inside of the chamber to avoid virtual leaks

from the welds. To prevent a trapped volume from being created in the space between a

bolt and a threaded hole, the bolts either have a center hole or they have the threads on

one side ground down. Materials in vacuum can also outgas. Contaminants which adhere

to material surfaces slowly escape into the vacuum acting like a leak. Most of the materials

used in the vacuum chamber were chosen to avoid this problem. Without virtual leaks and

outgasing in the chamber, a high vacuum can be obtained.

When changes are made inside of the vacuum chamber, water and other impurities can

contaminate the surfaces in the chamber. Over pressurizing the chamber with dry nitrogen

while the port covers are removed will decrease the contamination of the surfaces. As the

contaminants sublimate, they will eventually be pumped out of the system. This process

is enhanced when the temperature of the tank is elevated. All of the materials in the ZaP

vacuum chamber are chosen such the tank temperature can be raised to 200 C with heat

tapes. Heat lamps and hot air guns are used to raise the temperature of components which

can’t be directly heated with heat tape. In the future, the electrode surfaces may be cleaned
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with He glow discharge cleaning.

4.1.2 Vacuum Interlock System

An interlock system is used on the vacuum system to prevent possible damage of the vacuum

hardware if the pumps are started out of sequence, or the wrong valve is opened. The

vacuum system controls when a pump can be started or a valve can be opened as shown in

the logic diagram, Fig. 4.3. This system can be bypassed by an experienced operator when

a potentially unsafe operation is needed. Additional protections are needed for the roots

blower, shown in Fig. 4.4. The most expensive pump on the system is the turbo pump.

This pump has the most safeguards as shown in Fig. 4.5. Most of the safeguards for this

pump cannot be overridden. The vacuum system runs 24 hours a day, seven days a week.

The interlock system protects vacuum components when no one is working in the lab. The

system shuts down the pumps and closes all of the valves whenever there has been a power

failure or the pressure in the roughing lines rises above 1 torr.

4.1.3 Vacuum Chamber

The vacuum chamber consists of a vacuum tank, endplates, and all of the diagnostic port

covers. The main vacuum tank is a 69 inch long, 304 stainless steel pipe with a 12 inch

diameter and a 0.187 inch wall thickness, shown in Fig. 4.1. This pipe is able to support

a one atmosphere pressure difference without deforming or degrading the vacuum. Half

nipples welded onto the pipe provide access for the vacuum and diagnostic systems. The

ports closest to the hot plate are used to pump out the chamber, to measure the pressure

and to supply dry nitrogen to the chamber. The three optical ports in the acceleration

region are used for interferometry. The windows on these ports are made of Pyrex. The set

of coaxial ports located on each side of the vacuum tank in the assembly region are covered

with Pyrex windows. Fused silica windows are presently located on these ports because

they can handle more power and be cleaned. These ports are used for interferometry and

holography. Two smaller ports, located on each side of the holography port on the left side

of the machine, are used for internal probes. The ports located on the top and bottom of the
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Figure 4.3: Flow chart of the logic used to design the vacuum interlocks for the valves on
the vacuum system. Valves G1 and G2 connect the cold trap to the rough line and the
vacuum tank. The turbo pump is connected to the rough lines through G3 and to the
vacuum chamber through HVV. The valves are normally disabled.
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Figure 4.4: Flow chart of the logic used to design the vacuum interlocks for the roughing
pumps.

tank are used for spectroscopy. These ports are covered with UV grade fused silica windows

so that measurements of the C V triplet at 227.7 nm can be made. Two 6 inch nipples

welded onto the side of the tank beyond the assembly region are used for the electrical

feedthroughs. An extension was added to the chamber on August 20, 2002 so that the outer

electrode could be extended. The extension is a 35.5 inch long, 304 stainless steel pipe with

a 12 inch diameter and a 0.187 inch wall thickness, shown in Fig. 4.2. The ports on the

extension serve the same functions as ports in assembly region of the main chamber.

The vacuum endplate at the assembly end of the tank has three optical access ports.

These ports are used to study the breakdown of the plasma when the outer electrode endwall

is removed. The vacuum endplate at the rundown end of the tank serves multiple purposes.

The endplate serves as the cold plate. The outer electrode and hot plate are supported

by this endplate. The inner electrode is insulated from the cold plate with an alumina
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Figure 4.5: Flow chart of the logic used to design the vacuum interlocks for the turbo pump.

sleeve. The o-ring pusher for the fat Viton o-ring around the outside of the insulator is also

mounted on this endplate.
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Inner Electrode

The inner electrode is a 4 inch outer diameter, 0.25 inch wall thickness copper pipe. This

size of pipe will not deform under the magnetic pressure nor will it sag appreciably when

4 feet of the pipe are cantilevered. The inner electrode is made of two pieces so that the

shape of the electrode in the acceleration region can be changed. The original electrode in

the acceleration region is an open-ended pipe with the assembly region end rounded. The

inner electrode gas manifold is located at the connection of the two pieces. The section in

the rundown region is sprayed with 0.010” of tungsten on the outer and inner surface. The

other piece was not sprayed because blisters along the electrode formed when it was brazed.

The blisters may have formed leaks along the electrode during the tungsten spraying process.

The inner electrode is connected to the hot plate with a brass split ring. The electrode was

centered by adding brass shims between the cold plate and G-10 spacers.

On August 17, 2002 the hollow inner electrode was replaced with a copper pipe with

a nose cone. The pipe is from the piece used to make the original inner electrode and is

tungsten sprayed. The end of the copper pipe has a threaded stainless steel insert which

allows for variable nose cone shapes to be tested. The present nose cone has a 30◦ angle

between the z axis and the face of the nose cone and a 1 inch radius at the z axis. Even

though the nose cone is tungsten sprayed, ablation at the Z-pinch contact point has been a

problem. A new design which uses graphite should mitigate this problem.

Outer Electrode

The outer electrode is made out of 7.583 inch inner diameter, 0.271 inch wall thickness

copper pipe. The magnetic pressure will not deform this pipe. Holes are machined for the

magnetic probes, outer gas puff, and optical access. The assemble region end of the pipe is

supported with electrical insulating stands. A endwall electrode is attached to a stainless

steel split ring at the assembly end of the electrode. A 500 kA current, uniformly distributed

in a 2 cm diameter Z-pinch, will generate 9 tons of force on each pulse. The stresses in the

endwall were calculated with ANSYS. When a static load was applied to the endwall, the

weakest point of the design was the bolts. The shear stresses of the endwall and bolts are
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Figure 4.6: ANSYS was used to do the stress analysis of the endwall. The highest shear
stresses (red) are on the bottom of the endwall and on the inner edge of the bolts. The
thickness of the endwall is chosen such that the bolts will not deform when a static load is
applied. The deflection is exaggerated. The contours are the shear stress in psi.

shown in Fig. 4.6. Increasing the thickness of the electrode, prevented the deformation of

the bolts in the simulation. The simulation showed that the bolts did not deform when a

dynamic loading was applied to the endwall electrode. A tungsten alloy insert is installed

at the Z-pinch attachment location on the end wall electrode. A hole was drilled behind

the insert to remove the trapped volume behind the insert. The inner surface of the outer

electrode and the plasma-facing surface of the endwall electrode were sprayed with 0.010

inches of tungsten to prevent sputtering.

Two changes have been made to outer electrode and endwall. On August 17, 2002, the



41

endwall was replaced with a similar endwall with a hole in the middle. The hole allows

plasma to exit the Z-pinch, avoiding a stagnation point which may have been terminating

the velocity shear. The hole is 3.2 inches on assembly side of the endwall and tapers down

to 0.8 inches on the endflange side of the endwall with rounded edges. On March 10, 2003,

a 20 inch extension was added to the assembly region of the outer electrode lengthening

the Z-pinch by 0.5 m. Holes are machined in the electrode for magnetic probes and optical

access. Both of these components have been sprayed with 0.010 inches of tungsten on all

plasma-facing surfaces to prevent sputtering.

4.2 Gas System

The hydrogen is puffed into the annulus between the electrodes with three fast valves.

Deuterium is not used in ZaP because the 14 MeV neutrons which would be produced would

restrict the access to the experiment. Bottled H2 is purified with an Resource Systems, Inc.

Hydrogen purifier. The maximum operating pressure of the purifier is about 150 psi which

limits the pressure of the gas system. The hydrogen is then fed into a gas board where

the line pressure is monitored. The gas board also allows for other gases to be used in the

experiment. Stainless stain and Teflon tubing is used to supply the valves with the gas.

Replacing the purifier with high pressure filters and Teflon tubing with a TFE 060 tube

would allow the gas pressure to be increased to 1000 psi.

Three fast solenoid valves are used to inject the gas into the gas distribution manifolds.

The inner electrode gas puff valve injects the gas into a 0.816 in3 plenum. The gas is then

injected into the annulus through eight equally spaced radial slots. One of the slots is

located at top dead center of the inner electrode. Two slower gas puff valves are used on

the outer electrode. Each valve injects the gas into a stainless steel tubing manifold which

is inserted into four holes of the eight gas injection holes in the outer electrode. The length

in the tubing between each hole and the valve is the same in insure the gas is injected at the

same time. Each valve injects gas into every other hole, one valve injects gas into the top,

bottom, and side holes while the other valve injects gas into the diagonal holes, uniformly

filling the annulus with hydrogen. The two slower valves were replaced with eight valves
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on May 2, 2002. The valves are identical to that used for the inner gas puff. These valves

inject gas directly into the eight holes located on the outer electrode. Two valves which are

opposite sides of the outer electrode are triggered with the same circuit. Better control of

the gas fill has been achieved with these valves.

All of these valves are triggered with circuits designed and built at the University of

Washington. The valve is over driven with 300 volts to increase its response time. Fiber

optics are used to trigger the circuit and rechargeable batteries are used to supply the power.

This is essential for the inner gas puff valve where the ground of the valve raises to the inner

electrode potential on each shot.

The original gas puff characterization related the dial setting of the valves to the total

gas injected into the vacuum chamber. The high vacuum valve was closed and the valves

were puffed. The pressure of the tank was recorded after a few minutes. This process was

repeated a number of times to improve the statistics. The time evolution of the gas pressure

injected by the valves was characterized by T. Shreve [55]. With the two calibrations, the

average neutral density in the accelerator is known. The time evolution calibration is used

to ensure that gas is still being injected into the accelerator during the plasma pulse. This

inhibits material from being liberated from the walls to supply the plasma with the need

charge carriers.

4.3 Energy Storage

The energy required for each pulse is stored in a capacitor bank. The bank consists of

groups of four or eight capacitors which are connected in parallel. Multiple groups can be

connected in parallel to the experiment to increase the stored energy. Six different bank

configurations have been used to supply the current to the experiment. The waveforms are

shown in this section.

ZaP uses 170 µF capacitors with an maximum charge of 10 kV and an inductance of

0.04 µH. Brass bars are used to connect the capacitors together. The voltage to the hot

plate is switched with D-size ignitrons mounted in brass tubes to reduce the inductance and

the noise from the switching process and reduce electromagnetic noise. When the maximum
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Figure 4.7: Electrical schematic showing the electrical parameters of each component of
the original capacitor bank. The dimensions used to calculate the values are also included.
The cold plate, hot plate, inner and outer electrodes are shown in red. The magenta lines
correspond to the location of plasma current for various switches used to model the total
current.

current exceeds 250 kA, the ignitors in the ignitron become wetted. This problem has been

solved by limiting the maximum current of each ignitron to less than 200 kA. Forty, 20 feet

long RG 217 can be used to connect the ignitron(s) to the hot and cold plates. Twenty

cables are presently installed because only one half of the ultimate number of capacitors are

being used. The cables are connected symmetrically around the hot and cold plates with

brass connectors, to ensure a uniform current.

The original capacitor bank configuration delivered an exponentially decaying, sinusoidal

current to the plasma. The circuit parameters of the original configuration are shown in

Fig. 4.7. These values were used to simulate the measured currents of calibration and

plasma pulses. One method of simulating the varying inductance of the experiment is to

trigger the switches shown in Fig. 4.7 at different times. The voltage measured in the

experiment cannot be modeled with this method. A better method is to use a variable
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Table 4.1: Capacitor bank configurations used in the ZaP experiment. Configurations 4-6
have had the inductance between each capacitor increased to create a pulse forming network
(PFN).

Configuration Capacitors Ignitrons T/4 µs

1 4 1 17.6

2 8 1 25.2

3 8 2 20.0

4 4 1 (PFN) 18.2

5 8 1 (PFN) 29.5

6 8 2 (PFN) 20.4

inductor to model the changing inductance from plasma dynamics. This requires the use

of a commercial version of SPICE. A pulse forming network was designed using SPICE.

Simulations showed that if two ignitrons were triggered at different times a large fraction

of the current would not go into the plasma. A better method of forming the flattop on

the current is to increase the inductance between the capacitors of each bank. The pulse

forming network, PFN, is presently providing a 30-40 µs flattop to the current. The PFN

was installed on February 6, 2003.

The six capacitor bank configurations which have been used are shown in Table. 4.1.

T/4 is the time for the current to go from 5 to 90 percent of the maximum current. These

times are similar when the same number of capacitors and ignitrons are used. The current

waveforms are different for the various configurations as shown in Fig. 4.8. The PFN

configurations have a lower peak current but longer half cycle times. The current has a

flattop with the PFN. Large disruptions of the current are not seen in all of these currents.

The variations in the waveforms are due to changes in the gas puff timings and the electrode

configuration. The voltage waveforms are shown in Fig. 4.9. The oscillations seen are from

plasma dynamics of the Z-pinch. The effect of changing inductance of the experiment is

evident in the voltage waveforms. Large voltage spikes, which would indicate instabilities,
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Figure 4.8: The various capacitor bank configurations generate different current waveforms.
The capacitor bank was charged to 5 kV for all of these pulses. The first two pulses of each
set are from pulses taken shortly after the configuration was installed. The last two are
from pulses just before the configuration was changed. In spite of all the waveforms used
in the experiment, large disruptions of the current are not seen.

are not seen on these pulses.

The waveforms scale with the charge voltage of the capacitor. The current sheet dy-

namics change the inductance of the experiment during a pulse. This changing inductance

should make the waveforms of the current and the voltage functions of the charge voltage

and gas puff timing. The maximum current scales linearly with the charge voltage, shown
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Figure 4.9: The voltage waveforms from the various capacitor bank configurations show the
circuit is not an RLC circuit. These are the same pulses used in Fig. 4.8. The large voltage
spike at 0 µs is from triggering the ignitron. The change in the waveforms and voltage
spikes, seen later in time, are from plasma dynamics.

in Fig. 4.10. The shape of the first quarter cycle of the current also scales with charge volt-

age. The waveform of the current changes on the higher energy pulses. The outer electrode

extension was installed on most of the PFN pulses. The voltage also scales with the charge

voltage, shown in Fig. 4.11. The magnitude of the voltage increases on higher energy pulses.

This is may from the increasing inductance as the Z-pinch compresses. The scaled bank
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Figure 4.10: The normalized current showing the independence of the current waveform
with changing capacitor charge voltage for each bank configuration. The current has been
normalized by the charge voltage of the capacitor bank. The charge voltage of each pulse
is indicated in the upper left plot. The pulses used of each plot were taken in the same
day as the first pulse used in Fig. 4.8. The current wave forms change when the inductance
associated with the vacuum region is comparable to the bank inductance.

characteristics show when plasma dynamics begin to have an effect on the circuit.

The original capacitor bank acted as a current source. The impedance of the bank was

larger than the impedance of the plasma. The PFN has added a flattop to the current.

Future changes to the capacitor bank will have to include the plasma dynamics as the
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Figure 4.11: The normalized voltage showing the dependence of the voltage waveform with
changing capacitor charge voltage for each bank configuration. The voltage has been nor-
malized by the charge voltage of the capacitor bank. The same pulses used in Fig. 4.10
are shown. The voltage waveforms are similar for low bank energies. As the bank energy
increases, an increase of the voltage magnitude is seen at 40 µs.

impedance of the plasma and the capacitor bank become comparable.

4.4 Safety Interlocks

A safety interlock system is used to prevent injuries in the lab while the experiment is

running. During a pulse life-threatening hazards are present in the lab. The voltages as-
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sociated with forming the Z-pinch are lethal. There is an eye hazard from the UV light

produced during a pulse and from the high power lasers used in interferometry and hologra-

phy. Safety stops and door interlocks enable anyone in the lab to shut down the experiment

without going near the machine. A personal safety switch is also used to stop the capacitor

bank from being charged whenever anyone enters the lab. The grounding rods and battery

chargers, which can damage the machine or power in the room, must be put away before

all the interlocks can be meet. When all of the interlocks are met the charging supply

for the capacitors can be turned on. Whenever an interlock is interrupted the capacitors

are discharged through dump resistors. A light on the interlock panel is turned on which

informs the operator of the fault. Relays are used on this system since the failure mode

can be controlled. On the charge and dump boards the relays are mounted upside down so

gravity will always pull the relay into a safe position. The RC time of the dump resistors

was chosen so that the capacitors were discharged before anyone could run to the capacitor

bank. The hot plate is grounded through the resistor which is used to measure the voltage

between the hot and cold plate. A closed circuit television provides the operator with a

final visual check for people in the lab before a pulse and allows the operator to look for

problems during and after a shot without being in the lab. This system has ensured the

safe operation of the experiment.
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Chapter 5

DIAGNOSTICS

The properties of the plasma must be measured to gain a physical understanding of the

Z-pinch. Measuring of the properties must not affect the plasma. Nonperturbing techniques

are used to measure the plasma properties in the ZaP experiment. These techniques measure

the properties at the edge of or along a chord through the plasma. Improvements have been

made with the reduction and analysis of the data from these techniques.

The data acquisition system is described first. Measurements of the current, voltage,

and emission are then described. Section 5.5 describes the surface magnetic field probes.

The measured magnetic fields are used to find the location of the Z-pinch and measures the

current density in the accelerator. The interferometer, which measures the chord integrated

density, is described in Sec. 5.6. Section 5.7 discusses the spectrometers, which are uses to

measure the velocity, used on the experiment. A deconvolution technique which calculates

the plasma parameters from the measured spectral intensities is derived at the end of the

section. Each section of this chapter is divided into the theory , hardware, and analysis of

the measurement.

5.1 Data Acquisition

MDSplus is used to set up data acquisition and store the data [61]. The initial pulses, num-

bered from 1 to 253, were taken with MDSminus. The naming convention for the MDSplus

pulses is YYMMDDXXX, where YY is the last two digits of the year, MM is the month,

DD is the day and XXX is the pulse number taken on the day. General techniques used

to reduce the noise on the diagnostics are discussed. Error analysis and noise calculations

common to most diagnostics are also discussed in this section.
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5.1.1 Hardware

ZaP uses two main data acquisition systems. Most of the data are taken with 20 MHz

digitizers in several CAMAC crates. A PC is used to take the spectroscopy data. ZaP is the

first experiment at the University of Washington to exclusively use MDSplus for its data

acquisition. MDSplus provides a set of tools for performing data acquisition and analysis

for pulsed experiments. The setup values, raw data, scale factors and analyzed data for each

pulse is stored in a tree structure (similar to “folders”. The tree is made up of nodes which

act like a file system. There are two types of nodes, children or branch nodes which are

used to define the structure of the tree and member nodes which contain the data. Member

nodes can also have members or children below them. Large amounts of data are easily

organized and accessed within this structure. The trees can be accessed and modified with

a GUI, “TRAVERSER”, or a command language, TCL.

There are three phases to a ZaP pulse; Init, Store, Analyze. All of these phases are

controlled by nodes in the tree. During the Init phase the digitizers are set up. The data

are read and written to the appropriate nodes during the Store phase. During the Analysis

phase, data reduction programs are run. Data from spectroscopy are added after it is

reduced with an IDL program.

All of the data in the tree can be accessed with the same routines. While pulses are

being taken, the data are checked with a plotting routine, DWSCOPE, which can monitor

up to 64 traces. Normally a number of scopes are used to view different aspects of the

plasma. IDL routines are also used to access and analyze the data.

5.1.2 Noise Reduction

ZaP is a coaxial machine with ideally no stray magnetic fields. Even though electromagnetic

noise should not be a problem on ZaP, ground loops are still avoided on the experiment.

The screen room ground is used as the reference ground potential. All grounds in the lab

are connected once and only once to the screen room. An easy test for ground loops is to

remove the ground and check for continuity with the screen room. If the continuity is not

broken or as a check of the hardware grounds, a ground loop chase is performed. An audio
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frequency oscillating magnetic field is driven around a ground strap. If there is a ground

loop, the changing flux through the loop generates a current along the ground loop. The

generated current in the loop can be picked up with a small coil amplified by a transistor

radio. Since the entire loop can be mapped with this process, the ground loop is broken at

an appropriate point.

Most of the noise seen on ZaP is electrostatic. Enclosing the hot plate in a Faraday

shield has helped to reduce the electrostatic noise. However better shielding is needed on

the interferometer system and the PMT’s. The coax cables for these devices are placed

inside a copper braid which is attached to the screen room. The electronics in the lab are

then placed in a conducting box attached to the braid. This effectively brings the screen

room out to the electronics which reduces the noise. Since the coaxial cable is enclosed by

the shield ground loops between the cables within the braid are not a problem.

Another method of reducing the electrostatic pick up is to use common mode filters on

the coaxial cables at the top of the screen room. The cables are wrapped 10 times around

five ferrite cores. Currents due to common mode electrostatic pick-up, which travel in the

same direction on the center conductor and the shield, are attenuated by the inductance of

the winding. Signal currents are not affected by the winding because they are in opposite

directions around the winding creating no net flux.

A brute force method of reducing the noise is to increase the signal level. If possible,

the signal levels generated in the lab are made larger than the digitizers can measure. The

noise pick up level is constant. Attenuators are used in the screen to decrease the signal

level to the maximum voltage of the digitizer. The noise level is effectively diminished to an

acceptable level. This last resort method has worked well with various diagnostics on ZaP.

5.1.3 Error and Noise Analysis

Every measurement has an associated uncertainty. These errors must be propagated through

the analysis of the data to find the error bars. Methods of finding the error bars are described

in Bevington [3]. The error, σave of an average is

σ2ave =
1

N − 1
3
(x− x̄)2 (5.1)
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where N is number of measurements, and x̄ is the average. When a function is given by

y = f(u, v), the error, σy, is

σ2y = σ2u

w
∂y

∂u

W2
+ σ2v

w
∂y

∂v

W2
+ σ2uv

w
∂y

∂u

Ww
∂y
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W
(5.2)

where σu and σv are the uncertainties in u and v and σuv = 0 when u and v are not

correlated. The terms used in these equations are discussed in the appropriate sections.

The digitizers record both the signal and noise in the signal. The electrostatic noise from

the experiment has a high frequency and is time dependent. All of the digitized information

is used in the analysis of the data when digital filters are used to calculate the signal and

the noise. A low pass filter is used to find the signal. The frequence of the filter, ffilter, is

diagnostic dependent. A high pass filter is then used to find the noise. The time variation

of the noise is found a 1/ffilter window of the amplitude of the high frequency data and Eq.

5.1. This method of finding the signal and uncertainty in the signal uses of all the recorded

data.

5.2 Rogowski Coils

A standard method measuring the current is with a Rogowski coil [27]. The coil measures

the flux from a changing current. The coils are made by wrapping a wire around a section

of RG58 cable with the shield removed. They are calibrated by comparing the current

measured with the coil to the current measured with a calibrated current transformer.

5.2.1 Theory

The Rogowski coil uses Ampere’s law-
B · dl = µ0I (5.3)

to measure the enclosed current, I. The coil consists of a form with a number of windings

per unit length, n, which is completely surrounds the current shown in Fig. 5.1. The coil

should either be back-wound or have the return wire come back through the coil to avoid

measuring changing fluxes through the enclosed area. The area of the coil and spacing
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Figure 5.1: The Rogowski coils have the return through the coil. The windings are shown
in black. The return wire, shown in red, is run back through the coil preventing a changing
flux through the enclosed area from affecting the measurement. It is also important that
both ends of the coil meet as shown.

between the turns are kept small to avoid large gradients in the magnetic field. A changing

current through the loop causes a changing flux through each turn of the coil. The changing

flux causes a voltage from the coil given by

V = nAµ0İ (5.4)

where n is the number of turns per unit length and A is the area of the winding. By

integrating the voltage, the digitized signal is proportional to the enclosed current.

The voltage can be integrated actively, passively or a combination of the two [49, 50].

Rogowski coils have an inductance and capacitance associated with them. The inductance

is given by

L = lµn2A (5.5)
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where l is the length of the coil. They can be made self-integrating with the proper termi-

nation. ZaP uses active integrators, DAFI’s, to integrate its signals. The Rogowski coils are

designed to remove any self integration, by adding a series resistor until the waveform from

the current transformer and the integrated Rogowski signal differ only by a scale factor.

5.2.2 Hardware

An easy method of making a Rogowski is to use coaxial cable as the form. The outer shield

of a RG58 cable of the desired length, 61 cm, of the coil is removed. The Rogowski coils

are made by wrapping 32 gauge wire around the exposed insulator. This gives an area of

6.7 mm2, n ≈ 4.3 mm−1 and L = 95 µH. The ends of the wire are soldered to the shield and
inner conductor of the RG58 cable which is inside the coils. Clear heat shrink is then used

hold the windings in place. The Rogowski is wrapped around the desired current as shown

in Fig. 5.1. The voltages induced from the fluxes through the straight section cancel each

other when the ends of the coil stop at the same location. The voltage is integrated in time

using a DAFI and digitized. The digitized signal is proportional to the enclosed current.

Rogowski coils are placed around the inner electrode, each ignitron, and outside the hole in

the endwall to measure the various total currents in the experiment.

5.2.3 Calibration

The Rogowski coils are calibrated using current transformers. The currents generated by

the ZaP experiment are larger than a current transformer can measure. Ten coaxial cables

are used to supply the current to the hot and cold plates. The current through one of the

cables can be measured by a current transformer. Three current transformers spaced at

equal angles around the hot plate are used to measure the current and check the symmetry

of the current at the hot plate. The three current transformers each measured the same

current indicating that the current is equally divided between the ten cables. The total

current through the inner electrode is then 10 times the current measured by each current

transformer. The calibration factor between the digitized voltage and enclosed current is

then found.
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Figure 5.2: The voltage between the hot and cold plates is measured with a known resistance
and a current transformer. The total resistance of the system is 500 Ω. This resistance is
much larger than the total plasma resistance. The current through the resistors is monitored
removing the need to made connections between the hot or cold plates and the screen room.

The Rogowski coils self-integrate when terminated with 50 Ω, τL/R = 1.9 µs. A phase

shift is seen between the current transformer signal and the Rogowski signal. Various values

of series resistance were tried. The phase shift and signal decrease with increasing resistance.

A series resistance of 1 kΩ removes the phase shift and increases the frequency response

without decreasing the signal to a low level.

5.3 Voltage Measurement

The voltage is measured by measuring the current through a known resistance across the

hot and cold plates. This method has the advantage that there are no connections between

the hot or cold plates and the screen room. Calibration of the system is done by charging

the hot and cold plates without making a plasma.

5.3.1 Hardware

The voltage measurement consists of a set of resistors and a current transformer. Four 500

Ω resistors are used. Two sets of two resistors in parallel are used in series giving a total

resistance of 500 Ω shown in Fig. 5.2. These are placed across the hot and cold plates. A

current transformer is then used to measure the current though the resistors. The current

through the resistors is small compared to the plasma current. The voltage from the current
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transformer is then digitized.

5.3.2 Calibration

The voltage measurement is calibrated by applying a known voltage between the hot and

cold plate. Ideally 10 kV can be applied between hot and cold plate without arcing. It was

decided to apply the voltage for a short time and then form a plasma to avoid the damage

which an arc would cause. The capacitor bank was charged to 2 kV. The gas puff timing

was adjusted such that there was a 50 µs delay between the triggering of the ignitron and

formation of a plasma. Initially, ringing is seen in the voltage measurement due to the

mismatch of the impedances of the cables and electrodes. The signal reaches a steady state

which corresponds the a voltage of 2 kV. The calibration factor is found with the data from

this time. A plasma is then formed protecting the experiment from an uncontrolled arc.

The scale factor from the empirical method agrees with a calculated scale factor. The

measured resistance of the system in 620 Ω. The scale factor of the current transformer is

0.05 V/A. A 10 dB attenuator is used to reduce the voltage at the digitizer. The calculated

scale factor, 39,129 V/V, is within a percent of the measured factor, 39,216 V/V.

5.4 Imacon Camera and Emission Monitors

Light from the plasma can provide information about the source of origination. There

are two main sources of light from ZaP, line radiation and bremsstrahlung. This section

discusses using the radiation to describe the shape and general characteristics of the plasma.

A detailed line radiation discussion is found in Sec. 5.7. These diagnostics are used to confirm

measurements made with other diagnostics.

5.4.1 Theory

Most of the light emitted from a plasma is from line radiation due to impurities. Electrons

in partially stripped ions or neutrals are excited by collisions with free electrons. When

they fall to a lower energy level photons are emitted with a wavelength, λ0, given by

λ0 =
hc

Ek − Ei (5.6)
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where Ek, Ei are the initial and final energy levels. An interesting line to monitor is the Hα

line at 656.28516 nm from neutral hydrogen. This line is emitted when neutral hydrogen

penetrates the plasma. The intensity of this line is the largest when the plasma is cold.

The heating and cooling of the plasma can be inferred from the time history of this line.

Pictures of the Hα line show the edge of the pinch.

Another source of radiation is bremsstrahlung radiation. This is from the “braking” of

the electrons when they collide with ions. The spectral power emitted into 4π sr per unit

frequency is given by [27]

4πj(ω) = neniZ
2

w
e2

4π60

W3
16π

3
√
3m2c3

w
2m

πT

W1/2
e− ω/T ḡ

^
W

rad
s m3

�
(5.7)

where all variables are in SI units, T is in joules and the Maxwell-averaged Gaunt factor, ḡ,

can be approximated by

ḡ =



√
3
π ln

eeeep 2TζmQ3/2 2mζω D4π60Ze2

ieeee : T U Z2Ry (Kramer)

√
3
π K0

D
ω̄
2T

i
exp
D
ω̄
2T

i
: T ( Z2Ry (Born)

√
3
π ln
eee 4Tζ ω

eee : T U Z2Ry (Born)

(5.8)

where K0 is the modified Hankel function and ζ = 1.78 is the reciprocal of Euler’s constant

[27]. The bremsstrahlung radiation is large when viewing a dense plasma. Photos of the

bremsstrahlung radiation show the shape of the emission from the Z-pinch.

5.4.2 Hardware

Filter scopes are used to monitor the radiation from a narrow wavelength region. A colli-

mator is used view plasma through one of the optic ports shown in Fig. 5.3. The collimator

consists of a piece of 1 inch thick Delrin rs, black plastic, with two 3.175 mm diameter

holes through it. Band pass filters are placed in front each hole to measure the Hα and

bremsstrahlung radiation. The Hα filter is centered at 656.5 nm with a 9.5 nm half band

width, HBW (Coherent Auburn Group, part number 35-3995). The bremsstrahlung filter

is centered at 630.2 nm with a 11.1 nm HBW (Coherent Auburn Group, part number 35-

3896). No line radiation is measured with the spectrometers in this region. Photodetectors
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Figure 5.3: The ray trace from the filterscopes is shown in a cutaway section of the ex-
periment (grey). The collimator (black) limits the view of the detectors (solid black) such
that the exposed copper of the outer electrode is not seen. Band pass filters, Hα (red) and
Bremsstrahlung (green) are used limit the wavelength region measured by each detector.
Both filterscopes view approximately the same region of plasma.

are used at the opposite side of the hole to measure the intensity of the light. These pho-

todetectors and electronics are identical to the detectors used on the interferometer, shown

in Fig. 5.4. The signal from each of these is then digitized. These measurements show the

arrival, heating and disruption of the Z-pinch.

The Imacon model 790 camera takes images of the plasma. The images are electronically

moved to different regions of a piece of film. The time between images, 500 ns, 1 µs, or

2 µs is specified by different modules. Photos are taken through various windows on the
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Figure 5.4: Shown is the electrical schematic of the photo detectors used on the ZaP exper-
iment. The detectors (EG&G SGD-100A) are biased with -90V to increase their linearity
and frequency response. Capacitors are used to reduce the noise of the detector and provide
a fast source of high current. The voltage is measured across R2.

vacuum tank. Different filters are used to view various regions of the plasma. An Hα,

610 nm high pass (wavelength) , and a “bremsstrahlung”, 500 nm to 600 nm, filter are used

on the camera. While these filters are not ideal, the main line radiation measured by the

Hα filter is Hα and the radiation measured from the ‘bremsstrahlung’ filter is not Hα. The

images are record on 3200 speed Polaroid 667 film. The photos provide information on the

initial breakdown of the gas and shape of the Z-pinch light emission throughout its various

phases.

5.5 Magnetic Surface Probes

Knowledge of the magnetic field provides information about the current sheet and the Z-

pinch. Surface probes along the outer electrode provide a means to measure the magnetic

field structure along the experiment on every plasma pulse. By keeping the design of

these probes simple, they are easily massed produced. The probes are calibrated insitu to

minimize wall effects. The calculation the current sheet characteristics, mode magnitude,

current density and Z-pinch location are discussed at the end of this section.
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5.5.1 Theory

A varying magnetic field can be measured with a coil of wire. The changing magnetic is

creates a voltage in the coil according to Faraday’s Law.[27]-
c
E · dl = −

8
s
Ḃ · ds (5.9)

By integrating the voltage with an analog integrator, the digitized voltage is

V0 =
NAB

RC
(5.10)

where V0 is the measured voltage, N is the number of turns of the probe, A is the area of

the probe, B is the average field over the area of the probe, and R, C are the resistance

and capacitance of the integrator. Surface mounted magnetic probes measure the magnetic

field which penetrates holes in the material walls. The attenuation of the magnetic field

from the walls was accounted for in the calibration of the probes. No corrections have been

made for the frequency response of the probes.

5.5.2 Hardware

One array of single winding (θ) and four arrays of double winding (θ, z) surface mounted

probes are used to measure Bθ and Bz on the ZaP experiment. These arrays are located on

the outer electrode. A linear array of single winding probes is located 22.5 degrees below

the horizontal plane on the −x side of the experiment. The probes are placed 5 cm apart

from z = −80 cm to z = 20 cm. Two additional probes are located at z = −120 cm and

z = −100 cm. The array is continued on the 50 cm extension with probes located 5 cm

apart from z = 35 cm to z = 70 cm. This array is used to measure the axial location and

distribution of the current sheet. Two azimuthal arrays of double winding probes are also

used on the original electrode. One of these azimuthal arrays is located at the center of the

pinch, at z = 0 cm. This array has eight probes located 45 degrees apart, and is used to

measure the mode activity at the center on the pinch. The other azimuthal array is located

at the exit of the acceleration region at z = −25 cm. This array is similar to the one located
at the center of the pinch except the probes at the top of the electrode have been removed to
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Figure 5.5: Shown is a cut away of two winding probe. The stainless steel hat is grey,
the copper ring is orange, the Kel-F form is red and the Ta foil is blue. The windings are
wrapped around the groves in the Kel-F form (not shown). The single winding form is
identical to the two winding form with the inner winding missing.

allow for interferometry access. The array at the muzzle is used to measure the symmetry

of the current sheet, as well as the location of the inner electrode attachment point. Two

additional azimuthal arrays, identical to the z = 0 cm azimuthal array, are located on the

50 cm extension at z = 35 cm and z = 70 cm.

All surface probe assemblies are identical to the one shown in Fig. 5.5. The probes have

10 turns of 32 gauge wire around a Kel-F rs form. The form is placed in a stainless steel hat.

Tantalum foil is stretched across the cup and held in place with a copper washer, protecting

the assembly from the plasma. The assembly is held into holes made in the outer electrode

with two silver plated through-holed bolts. The leads from the probes are twisted together

and connected to DB25 vacuum feedthroughs. The leads are held off the electrode with

stainless steel ‘telephone poles’ and the exposed leads are shielded from the plasma with

stainless steel boxes and stainless steel foil. The signals from the probes are integrated with

analog integrators (DAFI’s). The integrated signal is then digitized.
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Figure 5.6: Shown is a picture of the electrode extension with the calibration rod attached.
The linear array is on top of the electrode. The two azimuthal arrays can be seen near the
stainless steel split rings. Aluminum plates are used as end walls. The calibration rod can
be moved off the axis of the electrode by adjusting the blue nylon fitting. The header has
been designed to ensure that the currents entering the electrode are symmetric.

5.5.3 Calibration of the Probes

The single-winding probes were aligned and calibrated with an axial current at the center

of the outer electrode. A copper rod was used to simulate plasma. One end of the rod was

attached to the outer electrode as shown in Fig 5.6. An attempt was made to align the

probes by driving oscillating current through the rod. The probes could rotated by a few

degrees and measure the same flux, since the flux is proportional to the cosine of the angle

between the windings and the z axis. Aligning the probes visually, by lining up the wires on

the probe with a straight edge, parallel to the z axis, was found to be the most consistent

method. The calibration factors for converting the measured flux to magnetic field are then

found. The probes are connected to the data acquisition system. A known current is driven

through the rod. The scale factor between the measured flux and the magnetic field the

current would produce at the surface of the outer electrode is found for each probe. An IDL

routine, cal axial b cal fact 11214.pro Sec. 220, which finds the peak of the magnetic field,

and the peak of measured flux is used to find the scale factors for probe.

The two-winding probes are calibrated in a similar fashion [5]. Two sets of calibration
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data are needed to find the transformation matrix, ABθ
Bz

 =
A11A12
A21A22

Φθ
Φz

 (5.11)

where B is the magnetic field and Φ is the measured flux. The inverse ofA can measured by

applying a known magnetic field and measuring the fluxes. The magnetic fields are oriented

such that one of the fields is zero. One column of A−1 is then found. A perpendicular of

the magnetic field is then used to find the other column. Initially the theta windings are

oriented perpendicular to the minus z axis. This is done with a straight edge perpendicular

to the z axis. A known current is driven through the rod and the fluxes of both windings

were recorded. The theta windings are then oriented parallel to the z axis. A known

current is again driven through the rod and the fluxes of both windings are recorded. The

transformation matrix is then found.

Since the probes are located inside the outer electrode wall, the scale factors have a

frequency dependence. High frequency magnetic fields are attenuated by the electrode.

Presently in the experiment no corrections have been made for the frequency response of the

probes. A single scale factor, corresponding to the current frequency, is used. Simulations

are being performed in ANSYS and FEMLAB to model the frequency response. Future

calibrations which will measure the frequency response of the probes are being designed.

5.5.4 Reduction of Azimuthal Array Data

The azimuthal arrays can give the location of the plasma current. Interpretation of the

structures is simplified by looking at the magnitude of the Fourier components of the mag-

netic field. The normalized components can be related to the position of the plasma for a

constant displacement of the current along the z axis. When the displacement of the current

has a z dependence, the normalized mode amplitudes decrease.
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Calculation of the Fourier Components

The Fourier components of the magnetic field are found using a least squares fit. The

magnetic data are assumed to be of the form

Bθ (θi) =
3
j=0,m

aj cos (jθi) +
3
j=1,m

bj sin (jθi) (5.12)

where θi is the azimuthal location, in radians, of the probe. When a discrete number, n, of

measurements are made, equation 5.12 can be written as

B = AC (5.13)

where

A =



1 cos θ0 . . . cosmθ0 sin θ0 . . . sinmθ0
...

...
...

...
...

...
...

1 cos θi . . . cosmθi sin θi . . . sinmθi
...

...
...

...
...

...
...

1 cos θn . . . cosmθn sin θn . . . sinmθn


,

B =



Bθ (θ0)
...

Bθ (θi)
...

Bθ (θn)


and, C =



a0
...

ai
...

am

b1
...

bi
...

bm



.

The Fourier components at each time are then found with [64]

C =
D
ATA

i−1
ATB (5.14)
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where
D
ATA

i−1
AT is the pseudoinverse, A∗, of A. 2m+ 1 measurements are required to

resolve up to mode m. When the probes are evenly spaced around a circle (θi = i2π/n),

ATA is diagonal. Since A is only dependent on the geometry of the probes,
D
ATA

i−1
is

calculated once with an IDL code find mode array.pro Sec. C.2.3. The amplitude, mi, and

the phase, φi, of mode i are given by

mi =
�
a2i + b

2
i

φi = arctan(bi, ai)
(5.15)

The error in the components are given by

PC2j =
3
i=0,n

D
A∗i,jPBi

i2
(5.16)

An IDL code, mode calculation.pro Sec. C.2.4, is used to calculate the Fourier components

and put them into the MDSplus tree.

Calculation of the Position of the Plasma

The position of the current is related to the normalized m1 data. The normalized is defined

as

normalized mi ≡ min
w

mi

max (m0, 0.01)
, 1.0

W
. (5.17)

In a flux conserver, the current is modeled as a current along the z-axis which attaches to

the electrodes and a loop current inside the flux conserver which follows the displacements

and returns along the z axis. The magnetic field at the wall, B, is given by (see Appendix A)

B
(1)
⊥ = 0 (5.18)

B, = B
(0)
, + 2B

(1)
, (5.19)

where B(0) and B(1) are the magnetic field from the axial current and loop of current

respectively. For an infinitely long pinch displaced Pr in the θ = 0 direction the magnetic
field at the wall is given by

Bθ =
µ0I

2π

w
1

rwall
+ 2

rwall −Pr cos θ
r2wall − 2rwallPr cos θ +Pr2

1

rwall

W
(5.20)
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Figure 5.7: The normalized m1 is proportional to a constant axial displacement of the
Z-pinch. The black line is the normalized m1. The blue line is from Eq. 5.22. The red
diamonds are experimental values from moving the calibration rod off axis measuring m1.
The theoretical and measured values agree.

Which can be written as

Bθ =
µ0I

2π

1

rwall

w
1 + 2

Pr
rwall

cos θ

W
(5.21)

when Pr/rwall U 1. The normalized m1 is related to the displacement of the current by

m1

m0
= 2
Pr
rwall

(5.22)

Detailed calculations show that this relation is valid for Pr/rwall ∼ 0.5 as shown in Fig. 5.7.

When the displacements have an axial structure this relationship sets the lower bound

on the maximum displaced current. Shown in Fig. 5.8 are contours of normalized m1 for
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Figure 5.8: The normalized m1 is a function of the wavelength, k, and the amplitude when
the perturbation is one the half of a cycle. The perturbation moved towards the θ = 0
probe and is centered about the probe array. Notice that the normalized mode values
decrease for short wavelength perturbation. The upper limit of the normalized m1, for a
given displacement, is given by Eq. 5.22.

a single half wavelength perturbation of the current. The azimuthal array was placed at

the maximum displacement location. The magnetic field at each probe was found using

Eq. 5.18 for various k’s and maximum displacements of the perturbation. The amplitudes

of the modes are then found using Eq. 5.14. The contour plot shows that Eq. 5.22 gives a

lower bound on the displacement of the current. The measurement of the wavelength of the

modes is work being presently pursued with internal magnetic probes and a linear array of

photodiodes.
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5.5.5 Reduction of Axial Array Data

The axial array measures the z dependence of the azimuthal magnetic field. The axial

location of the current sheet of is found by determining when the magnetic field begins to

increase along the electrode. The velocity, acceleration, and mass of the current sheet can

then be found. With a few assumptions, which are valid in the acceleration region, the

radial current density at the outer electrode is measured at the outer electrode.

Current sheet velocity measurements

The location of the current sheet along the z axis is measured by finding the time the

magnetic field begins to increase. Once the location of the current sheet is known the

velocity and acceleration of the current can be calculated. The total mass of the current

sheet can also be estimated if the current sheet is assumed to be a thin washer of current

pushed by a magnetic piston. The washer is pushed by the magnetic pressure behind it and

accumulates mass as it ionizes the gas ahead of it. With the flat washer approximation, the

total impulse, Jimp, of the current sheet is given by

Jimp =

8 t

0

πr2wall

p
B
(−120)
θ

Q2
µ0

ln
rwall
rinner

dt (5.23)

where B
(−120)
θ is the magnetic field measured at z = −120 cm, rwall is the radius of the

inner electrode and rinner is the radius of the inner electrode. The mass of the washer, mcs,

is then given by

mcs =
Jimp
vcs

(5.24)

where vcs is the velocity of the current sheet measured with the magnetic probes. Included

is an IDL code, rundown vel.pro in Sec. C.2.2, which calculates velocity and mass of the

current sheet.

Current Density Measurements

The radial current density between two axial probes is proportional to the difference of the

magnetic field if the magnetic field is a function of r and z only. If the current is azimuthally
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symmetric, the magnetic field at each probe is given by

Bθ =
µ0Ienc
2πrwall

(5.25)

The only way for Ienc to be different between two probes is for part of the current to attach

to the wall. The average radial current density, Jr, is then given by

Jr =
I(2) − I(1)
2πrwallPz

=
B
(2)
θ −B(1)θ

µ0Pz

(5.26)

where B
(i)
θ is the azimuthal magnetic field at location i and Pz is the axial spacing of

the probes. This analysis is only valid in the acceleration region where kink modes in the

current are not seen. Another method of looking at the axial variation of magnetic field is

to plot the percentage of the total plasma current, I% which makes it past the probe

I% =
B
(i)
θ

B
(−120)
θ

(5.27)

where B
(−120)
θ is used instead of the plasma current because of the lack of frequency compen-

sation. This method allows one to monitor the current density in the accelerator, which is

proportional to ∂I%/∂z, and look for axial perturbations in the Z-pinch, shown in Fig. 5.9.

The horizontal line is placed at the end of the acceleration region. Below this line the current

density along the outer electrode is given by Eq. 5.26. The contours in this region may also

be thought of attachment locations of the current in the acceleration region. Above the line

all of the current is assumed to be in the Z-pinch, as discussed in Sec. 5.5.4. The contours

in this region are assumed to be from the radial motion of the Z-pinch. The contours in

this region after 40 µs are from the axial motion of a kink.

5.6 Interferometry

A standard method of measuring the electron density, ne, is with interferometry. The index

of refraction of a plasma is proportional to the line integrated density. ZaP uses a two chord

Mach-Zehnder interferometer inherited from the High Beta Q machine [53]. Improvements

have been made to the hardware and data analysis routines.
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Figure 5.9: The magnetic data normalized by the current showing the location of the current
in the accelerator and perturbations in the Z-pinch. The horizontal line is located at the end
of the acceleration region. The contour below this line are the axial attachment locations
of the radial current. Above this line, the contours show the location of perturbations in
the plasma.

5.6.1 Theory

Interferometry measures the index of refraction of a medium. The dispersion of relation of

a uniform cold plasma is governed by the Appleton-Hartree relationship.

N2 = 1− X(1−X)
1−X − 1

2Y
2 sin2 θ ± [( 12Y 2 sin2 θ)2 + (1−X)2Y 2 cos2 θ]1/2

X =
ω2p
ω2
, Y =

ωc
ω
, N =

kc

ω
,ωc =

eB0
me

,ωp =

w
nee

2

60me

W1/2 (5.28)
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where θ is the angle between the magnetic field and wave, ω is the frequency of the wave,

ωp is the plasma frequency, ωc is the cyclotron frequency, k is the wave number, B0 is

the magnitude of the magnetic field, N is the index of refraction, and ne is the electron

number density. For a magnetic wave propagating perpendicular to the magnetic field the

Appleton-Hartree relationship reduces to an ordinary wave.

N2 = 1−X = 1− ω2p
ω

(5.29)

This defines the index of refraction for a cold plasma.

An interferometer splits the beam of a laser into two beams. The scene beam is run

though the medium. The reference beam is run the same length as the scene beam around

the medium. The beams are then recombined. The difference in the index of refraction that

both beams see causes a phase difference, Pφ, in the light is given by

Pφ =
8
(kmedium − k0)dl =

8
(N − 1)ω

c
dl (5.30)

where kmedium, k0 are wave numbers in the medium and air. For light propagating perpen-

dicular to the magnetic field the phase lag reduces to

Pφ =
ω

c

8 ^w
1− ne

nc

W1/2
− 1
�
dl (5.31)

nc ≡ ω2m60
e2

(5.32)

where nc is the cutoff density. When the ne is small compared to nc the phase shift reduces

to

Pφ = ω

2cnc

8
nedl (5.33)

The change in phase is proportional to the line integrated density.

ZaP uses a heterodyne, quadrature, Mach-Zehnder interferometer. A heterodyne inter-

ferometer uses light with two different frequencies. When the beams are combined, a beat

at the difference of the frequency is created. Electronics at RF frequencies can then be

used. The beat is then compared to a reference beat. The phase between the beats is the

quantity of interest. By recording the phase in quadrature, the phase and the phase plus
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π/2, information is not lost when the phase goes through zero. Accurate plasma density

measurements are made with this technique [32, 8].

The system uses a Bragg cell, an acousto-optic modulator, to split the laser beam into

two beams with different frequencies. The unmodulated scene beam is passed through the

plasma. The modulated reference beam is directed around the chamber. The lengths of

both beams are keep the same to avoid problems due to the finite coherence length of the

laser. Similar optical components are used with each beam, keeping the plasma as the only

difference between the beams. The beams are then recombined with a beam splitter. The

recombined beam must be coaxial to ensure constructive and destructive interference of the

light from both beams across the detector. The intensity of the combined beam is given by

I = A2 +B2 + 2AB cos(2πfmodulatort+Pφ) (5.34)

where A and B are the intensity of the reference of scene and reference beams, and fmodualater

is the modulator frequency.

5.6.2 Hardware

Most of the hardware is from the interferometer used on the High Beta Q machine . The

laser has been replaced with a 7 mW HeNe laser, λ = 632.8 nm. A 40 MHz oscillator is

used to drive the Bragg cell. Half of the power from the oscillator is used as the reference

signal in the quadrature detectors. The Bragg cell splits the HeNe beam into two beams.

The reference beam has a 40 MHz shift in its frequency. Two chords are obtained by using

a 50/50 beam splitter to divide the reference and scene beams into two beams each [29].

Mirrors then guide the scene beams through various ports of the vacuum chamber, labeled

in Fig. 4.1. The reference beams are directed beside the scene beam and over the chamber.

A reference and a scene beam pair are then combined with a beam splitter. The light is

then focused onto a photo detector. Vibrations are keep to a minimum by mounting all the

optics on two optical tables on either side of the vacuum chamber. The tables sit on rubber

to dampen the vibrations.

The signals are then converted to sinPφ and cosPφ by an analog circuit. The pho-
todetectors are biased with -90 V with the circuit shown in Fig. 5.4. The signal from the
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Figure 5.10: A block diagram showing the major components of the interferometry system.
A 40 MHz oscillator is used to drive the Bragg cell and provides the reference signal to
the mixer/splitter boxes. The unshifted laser beam is used as the scene beam. The shifted
laser beam is used as the reference beam. A 40 MHz band pass amplifier, IF amplifier, is
used near the detectors. Low pass filters are used before the digitizers to remove the beat
frequency from the signals.

photodetector is amplified. The signals from the photodetectors and the oscillator are com-

bined in UW quadrature detectors [53]. The detectors output the sine and cosine of the

phase between the two signals. The 40 MHz beat is removed with a 10 MHz low pass filter.

The sinPφ and cosPφ are then digitized. The block diagram of the setup is shown in Fig.

5.10.

The photodetectors and IF amplifiers are housed in a shielded box. During a pulse,

the interferometer picks up electronic noise. To alleviate this problem an electrostatic

shield was place around the hot and cold plates. The noise during breakdown has been

significantly reduced. Electrostatic noise during the compression of the pinch has been

reduced by grounding power supplies for the IF amplifiers at the shielded box. The ground

loop introduced by connecting the grounds has not caused any problems since all of the
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leads are inside the copper braid which grounds the shielded box.

5.6.3 Data Analysis

The sine and cosine of the phase are converted to densities with an IDL routine, dense fin.pro

Sec. C.3.1. The digitized data, x and y is given by the circle

x = R cosφ(t) + x0

y = R sinφ(t) + y0

(5.35)

where R is the radius of the circle, φ(t) is the phase, and (x0, y0) the centers of the lissajou.

The center of the circle is found by blocking the beams and recording the signals from the

quadrature detectors setting the value R to 0. x0 and y0 can then be found. A least squares

fit was tried for the calculation of the offsets [53]. The method does not work when the

radius of the circle is a function of time as shown in Fig. 5.11. The noise which causes the

radius to change has been reduced on the signals. The least squares fit still has problems

finding the center when only a small arc of circle is recorded on a pulse. The measured

offsets are subtracted from x and y, moving the center of the coordinate system to the

center of the lissajou. The resulting signals are R sinφ(t) and R cosφ(t)

The phase is found with φ(t) =arctan(sinφ(t), cosφ(t)), arctan is an IDL routine which

returns φ from π to −π. The vibrations in the system cause the initial phase to be arbritrary.
A rotation of the coordinate system is done to set the initial phase to zero. To reduce the

high frequency noise of the sinφ(t) and cosφ(t) data a double smooth was applied to the

data. High frequency noise is removed from the data by smoothing and written to the

tree as a separate signal. The method described in Sec. 5.1.3, with ffilter = 10 MHz, is

presently being used to remove the noise from the interferometry data. The smoothed and

unsmoothed data were analyzed.

Vibrations in the optical system also cause a change in φ(t). The time scale of the

vibrations is much longer than any of the plasma time scales. The change in φ(t) due to

vibrations, φvib(t), during a pulse is assumed to be linear. A line is fit through φ(t) early in

time. As the length of the plasma pulse has increased, or if the mirrors are at the maximum

displacement, the linear assumption is no longer valid. Interferometry data should be taken
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Figure 5.11: The lissajou from pulse 726027 shows the radius varying with time. The start
time of each color is shown in the upper left corner. The noise from the ignitron triggering
can be seen in the blue trace. Electrostatic noise during the plasma pulse causes the radius
to be a function of time as shown in the cyan trace. The small changes in the red trace
show that the vibrations in the system are small.

long after the plasma pulse to measure φvib(t). Since φvib(t) can go through ±π late in time,
the fringe jump routine discussed in the next paragraph is used for the data after the plasma

pulse. A fourth order polynomial is then used for φvib(t). The fourth order polynomial has

been used after September, 2003. This is then subtracted from φ leaving only changes from

the plasma.

φplasma(t) = φ(t)− φvib(t) (5.36)

where φvib(t) is the change in φ(t) due to vibrations and φplasma(t) is the phase change from

the electron density.

When the φplasma(t) is close to ±π, a small change in the angle results in a change of
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φ(t) of approximately ±2π. This is referred to as a fringe jump. Phase changes are required
to be less than π during one digitizer time step. This sets the maximum frequency of the

interferometer to the Nyquist frequency. Any changes in the phase during one time step

greater than this are assumed to be caused from a fringe jump. When there is a fringe jump,

2π is added to, or subtracted from, φplasma(t) depending on the direction of the jump. The

rotation of the coordinate system reduces the number of fringe jumps which must be found.

Diffraction, noise in the system, or other light sources can cause the radius of the signal

to go to zero. When this occurs the phase information is often lost. The density at the end

of the plasma pulse often does not return to zero when this occurs. This problem is solved

by running the fringe jump algorithm forward and backward in time. The two phases, φfore

and φback, are then compared to each other. When they match, the phase information was

followed during the pulse and no corrections are made. When φback is greater than φfore, 2π

is added φ from the earliest time when φfore−φback is positive. φplasma(t) is then multiplied
by a conversion factor to get the line integrated density. The average density is calculated

assuming it is uniform across the acceleration region or inside of the pinch. The densities

are then written to the tree.

Interferometry Abel Inversions

When both chords of the interferometer are located at the same z location the local plasma

density can be found with an Abel inversion [27]. When the number density, n(r), is a

function of r only, chord integrated measurements, N(y), are given by

N(y) =

8 ∞
−∞

n(r)dx

= 2

8 ∞
y
n(r)

rdr0
r2 − y2

(5.37)

where a description of the variables is given in Fig 5.12. Abel solved Eq. 5.37

n(r) = − 1
π

8 ∞
r

N I(y)0
y2 − r2 dy (5.38)

where N I(y) is the derivative of N with respect to y. Since the integral goes to infinity, at

least one chord is needed outside of the plasma to measure when N(y) and N I(y) are zero.
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Figure 5.12: Line integrated data is deconvolved with an Abel inversion. The plasma
density, n(r), is a function of r. A chord of interferometry measures the line integrated
density,

$
n(r)dl along the blue line.

When the edge of the plasma is unknown, assumptions about the edge region must be used

to determine the radial density profile.

A simple model is used to estimate the average density in the pinch when two chords

are located at the same z location. A simple Abel inversion is used where the density is

assumed to be piecewise constant in each shell. The two regions are shown Fig. 5.13 The

measured line integrated densities, N1 and N2, are given by N1
N2

 =
 L11 L12

0 L22

 n1
n2

 (5.39)

The average density of the background and Z-pinch plasma are found multiplying the line

integrated densities by the inverse of the L matrix. This method is only valid when the

plasma is centered in the outer electrode. The ideas used in this inversion are expanded in

Sec. 5.7.5, where four parameters vary between each shell.
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Figure 5.13: The assembly region is divided into two sections. The plasma density is
assumed to be piecewise constant in each section. Chord 2 (green) only passes through the
outer region. Chord 1 (blue and cyan) passes through both regions. The average density in
each region are found using Eq. 5.13

5.7 Spectroscopy

On ZaP, passive spectroscopy is used to measure impurities, temperatures, and velocities

in the plasma. When the ion-ion equipartition time is small, the bulk plasma and the

impurities have the same properties [67]. The impurities emit line radiation with a spectral

intensity dependant on the characteristics of the impurities. The plasma parameters can

be calculated from the shape of the spectral intensity. Section 5.7.1 discusses the processes

which affect the shape of the spectral intensities.

Each spectrometer has its own unique character [46]. Three different spectrometers

are used to measure the spectral intensities on the ZaP project. The Jarrel Ash, CCD,

spectrometer measures both the time integrated spectral intensity through one chord of the

plasma over the entire pulse and the time evolution of a narrow region of the spectra. Initial

measurements of the plasma parameters using this spectrometer were used to design the
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ICCD spectrometer. The ion doppler spectrometer, IDS, measures the time evolution of

intensity for 16 wavelengths from one chord through the plasma. This spectrometer was on

loan from the Himeji Institute of Technology for two months [41]. The Acton Research Cor-

poration spectrometer with image intensified CCD, ICCD, measures the spectral intensity

of 20 chords though the plasma over a small time interval of the plasma pulse. The ICCD

spectrometer is used to measure radial profiles of the plasma parameters. Sections 5.7.2 to

5.7.4 describe the hardware, calibration and data analysis of each spectrometer.

Since the spectral intensities are chord averaged, a deconvolution is required to calculate

the local plasma parameters [20]. The process described in Sec. 5.7.1 cannot be simply

reversed. Section 5.7.5 describes the deconvolution technique used to calculate the local

plasma parameters in ZaP. This technique calculates the local plasma parameters and locates

the center of the Z-pinch based on a shell model.

5.7.1 Theory

Despite all of the precautions taken to keep the vacuum system clean, impurities, C, O, etc.,

are present in the plasma are typically partially ionized. Their ionization state, when plasma

is in coronal equilibrium, is described in Carolan’s paper [12]. The impurities radiate light

with a known wavelength. The wavelength of the light is shifted due to the ion’s motion.

Useful information is gained by measuring the details of the radiation from the impurities.

Passive spectroscopy uses light emitted from the impurities in the plasma to measure

various parameters. Bound electrons in the plasma are excited to higher levels by collisions

with electrons. When the electrons fall to a lower state a photon is emitted. The frequency

and wavelength of the photon from each transition is invariant in the particle’s frame of

reference given by Eq. 5.6. The wavelengths for various ions can be found online in the NIST

Atomic Spectra Database [38]. The abundance of impurities in the plasma can be measured

by monitoring the relative intensities of different ions and ionization states. The relative

intensity measurements are used as a qualitative measurement on the ZaP experiment.

The wavelength of the emitted photons is different in the viewing frame. The velocity

difference, vi, between the particle’s and the viewing frames of reference Doppler shifts the
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wavelength by

λmeasured = λ0

p
1− cos θvi

c

Q
(5.40)

where λmesured is the measured wavelength, λ0 is the emitted wavelength, and θ is the angle

between the velocity vector and viewing chord. Since the emitting particles have a thermal

distribution, the components of the velocity along the viewing chord will have a shape given

by distribution function, f(v). When the ions are in thermal equilibrium, f(v) is given by

f(v) =

w
Mi

2πkTi

W 3
2

exp

}
−Mi(v − vi)2

2kTi

]
(5.41)

where Mi is the ion mass, Ti is the ion temperature, and vi is the average ion velocity. The

local spectral emissivity, e(λ) due to the Doppler effect is given by

e(λ) =
E

√
2π
�

kTiλ20
mic2

exp

−(λ− λ0 + s · viλ0/c)2
2
kTiλ20
mic2

+Br (5.42)

where E is the emissivity, Ti is the ion temperature, mi is the ion mass, s is a unit vector

along the viewing chord, vi is the ion velocity, and Br is the level of the background

radiation. The difference between the wavelength of the centroid of the spectral intensity

and the emitted wavelength is related to the average speed of each species with Eq. 5.40.

The full width half max, FWHM, of the spectral intensity, PλFWHM , is related to the

temperature with

PλFWHM = 2λ0

5
2 ln(2)

kTi
Mic2

= 7.71× 10−5λ0
5
Ti
Mi

(5.43)

where Ti is in eV and Mi is in AMU.

The local spectral intensity shape can be affected by mechanisms other then Doppler

effects. Fine structure, pressure or Stark broadening, and Zeeman splitting are some of

the other mechanisms. Fine structure broadening is due to the internal structure of the

ion which leads to uncertainties in the energy levels. Fine structure broadening leads to a

widening and skewing of the line emission. This effect is much smaller than the doppler

broadening of the lines used for temperature measurements. The C IV line at 465.83 nm
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is widened by fine structure broadening. This line is only used for velocity measurements.

Pressure or Stark broadening is due to the electric fields from plasma electrons and ions.

Pressure broadening changes the line shape to a Lorentzian given by

I(λ) = I(λ0)
1

1 +
J
(λ0 − λ) 2πcτ/λ20

o2 (5.44)

where τ is the lifetime of the higher energy state. This effect is small for the lines used.

The magnetic fields splits the line according to the Zeeman effect

Pλ = gMµBBλ
2
o

c
(5.45)

The lines used on ZaP are not significantly broadened by these mechanisms.

The spectral intensities are measured along a chord through the plasma. The measured

spectra are chord integrated and can be affected by the optical depth, τ , of the plasma.

The spectral intensity of measured from a collection point through a chord in the plasma is

given by [21]

I(λ) =

8 τa

0
It(λ, τ)e

−τdτ (5.46)

where It(λ, τ) is the spectral intensity at location τ . When the plasma parameters do not

change, the optical depth is given by

τ(λ) = 1.5× 10−9λnlowerl
5
µEH
kT

(5.47)

where nlower is the number of ions in the lower energy state, l is the smallest dimension of

the plasma, µ is the atomic mass and EH is the excitation energy. The optical depth is

difficult to measure when the temperature varies along the chord and the number of ions in

the lower energy state is unknown. Integrating Eq. 5.46 by parts shows that the maximum

intensity of the plasma is governed by the plasma’s black body radiation level. The intensity,

I, given by

I(λ) =
2πhc2

λ5
1

exp
D
hc
λkT

i− 1 (5.48)

where T is the temperature at τ ≈ 1. When measured intensity approaches the blackbody
level, shown in Fig. 5.14, optical thickness effects become important. When the intensity of
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Figure 5.14: The spectral intensities from black body radiation are calculated for three
temperatures. The number of photons measured by the experiment does not approach
these levels.

the measured light is small compared to the blackbody level, the absorption of light can be

ignored.

The plasma is optically thin from the wavelength region used in ZaP. An optically thin

plasma simplifies the calculation of the plasma parameters. When the plasma is cylin-

drically symmetric, the intensity of each wavelength of light is given by Eq. 5.37. The

chord-integrated emissivity and velocity are found by fitting Gaussians to the measured

spectral intensities. These parameters are calculated with the assumption that the plasma

parameters are uniform along the chord.

The radiation is resolved into its spectral components using spectrometers. There are

many spectrometer configurations [46]. The two configurations used in ZaP spectrometers

are the Fastie-Elbert and Czerny-Turner. The Fastie-Elbert consists of a large spherical

mirror and a plane diffraction grating. The Czerny-Turner configuration uses two concave

mirrors and a piano grating. The spectrometers convolve the spectra with an instrument

function, Iinstrument, the spectral intensity measured by the spectrometer of a delta function.



84

Another term for the instrument function is the spectral response of the spectrometer. The

measured spectral intensity, Mi is given by

Mi(λ) =

8 Pλ
−Pλ

I(λ− λI)Iinstrument(λI)dλI (5.49)

where Pλ is the edge of the instrument function. The calculation of the plasma parameters
from the measured spectral intensities is discussed in each of the following sections.

5.7.2 CCD spectrometer

The first plasma made in the ZaP experiment was a He glow discharge. The spectra from

this discharge was recorded with the CCD spectrometer. The spectrometer is both a survey

spectrometer and monochrometer. The initial spectrum of the plasma was taken with the

CCD spectrometer. The results from the CCD spectrometer have been used to design the

ICCD spectrometer.

Hardware

Light from the plasma is gathered from one of two telescopes. The telescopes are focused

at the center of the machine, 100 mm (90 degree view) and 200 mm (35 degree view). Each

telescope is mounted on the appropriate optical port on the bottom of the machine which

view the Z-pinch at z=0. A fused silica fiber can be placed at seven spatial locations to

view different chords of the plasma. A telescope with an infinite focal length has also been

used. A ferroelectric liquid crystal, FLC, shutter can be placed inside this telescope. The

shutter can be gated down to 10 µs for time history studies. The shutter does not pass light

in the UV region.

The CCD spectrometer is 0.5 m Fastie-Elbert spectrometer. Three interchangeable grat-

ings, a fine (2360 g/mm blazed at 240 nm), medium (a 1180 g/mm blazed at 300 nm), and

a coarse (147.5 g/mm blazed at 300 nm) grating, have been used. The CCD spectrometer

has two exit planes. A CCD camera is located at one exit plane. The other exit plane

has a slit with a PMT behind it. The grating is rotated with a sine wave bar to center

different lines on the CCD spectrometer. Light from the grating is imaged on to a CCD.

The minimum exposure of the CCD spectrometer is 0.01 s, longer than the plasma lasts. A



85

swing out mirror is used to monitor the time evolution of one line on the CCD spectrometer.

The mirror has been replaced with a 50/50 beam splitter. Both the relative intensities of a

number of lines and the time evolution of one of those lines are measured every shot with

one instrument. An added benefit is the nonrepeatability associated with moving the swing

out mirror has been eliminated.

Calibration

The CCD spectrometer has a large amount of backlash in the wavelength adjustment dial.

It requires a wavelength calibration every time the dial is moved. Normally two lines from

one or two of the calibration lamps are present in the wavelength region. This allows the use

of the calibration feature of the Kestrel Spec control and acquisition software to calculate

the pixel to wavelength conversion. When two lines are not present, the spectrometer is

moved to a nearby region where two lines can be measured or known lines in a plasma pulse

can be used to get the wavelength calibration. With the coarse and medium gratings this

process could be used for all dial settings. The instrument function is the spectral intensity

from one of the calibration lines.

The calibration of the fine grating was more involved because the grating is rotated

when the dial is set to zero. Typically one calibration line can be seen on the fine grating.

Spectra of each calibration lamp was acquired from dial setting 2000 to 9200 in increments

of 100. Two successive dial settings, dial, were over plotted. Then a constant was added to

the x axis of the higher dial setting until similar peaks lined up with each other, shown in

Fig. 5.15. This was repeated for all dial settings with each calibration lamp. The constants

versus dial settings were then plotted, and a line was fit to the data.

cons = 4.96548 + 0.00808dial . (5.50)

The start pixel for each data set was then set to

pixel(dial) =

dial−2000
1003
i=0

4.96548 + 0.00808(2000 + 100i) . (5.51)

The relationship between wavelength and pixel is now known. From this the dispersion and
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Figure 5.15: Peaks in spectra from the CCD spectrometer fine grating calibration are aligned
by adjusting the x axis. The x axis is in pixels. A constant has been added to the x axis of
successive dial settings until the line emission agrees in pixel space.

center wavelength as a function of pixel are found.

pixelcenter(dial) = pixel(dial) + 375

λcen = 209 + 0.00898pixelcenter − 6.82× 10−09pixel2center
dλ

dpixel
= 0.00898− 1.364× 10−08pixelcenter

(5.52)

The center wavelength, dispersion and span were then plotted versus dial setting, shown

in Fig. 5.16. These charts are used to setup the CCD spectrometer. The final wavelength

calibration must be done with calibration lamps as described above because of the none

repeatability of the dial.

The PMT is aligned with a calibration lamp and an ammeter. The grating was rotated

until the largest current was seen. When the mirror was used, it was moved and a spectra

was taken on the CCD. The pixel of the maximum signal was recorded. During pulses

the desired line was set to that pixel. The mirror was moved into path of the light and

data were taken on the PMT. The mirror has been replaced with a beam splitter which

allows the CCD and PMT to both be used during a shot. The alignment of the PMT
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Figure 5.16: Shown are final calibration curves for the CCD spectrometer with the fine
grating. The black line shows the center wavelength verse dial setting and the magenta line
is the dispersion verses dial setting.

center wavelength on the CCD is well known because the beam splitter is not moved before

recording the spectra.

Data Analysis

Presently, the main use of the CCD spectrometer is line identification, impurity control,

and the time evolution of various ions. Data from the CCD spectrometer with the shutter

are used to find the plasma parameters with the method discussed above. These were used

to design the ICCD spectrometer. The CCD spectrometer does not have the spatial nor

temporal resolution of the ICCD spectrometer. Impurity lines are identified by comparing

the relative intensity measured line to the relative intensities found in the NIST database

[38]. When the measured relative intensities are proportional to the relative intensities from

the database, the ion is present in the plasma. Surveys of the impurity line radiation show

the main impurities are N, O, and C, see Fig. 5.17. Relative intensities between different
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Figure 5.17: The initial spectrum of the Z-pinch was taken with the CCD spectrometer.
The measured spectra from similar pulses are shown as solid lines. Impurity lines with
scaled relative intensities are shown as symbols. The level of the metal lines is small over
the entire plasma pulse.

ions are used as a qualitative measurement of impurity measurement. The intensity of the

line is proportional to the density of the ion. When the intensity of the C III line changes

between shots the average density of C III has changed accordingly. The metal content of

the plasma is monitored throughout a run day by comparing the intensity of the discrete

line radiation of useful impurities to the intensity of the “forest” lines from the metals.

When the intensity of the metal lines gets large, changes in the experiment setup are made

which decrease the metal content in the plasma.

Data from the PMT are used to measure the time evolution the impurity radiation from

one ion. Often the CCD spectrometer and ICCD spectrometer monitor the same line. The

CCD spectrometer provides information on the repeatability of the ion’s evolution between

pulses. It also provides a means to find the time window of the ion’s radiation. The time
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of peak emission and burn through are compared to coronal equilibrium [12].

5.7.3 IDS

The IDS spectrometer measures the time evolution of the intensity of 16 wavelengths

through one chord of the plasma. An array of 16 PMTs is used to measure the intensi-

ties. The calibration of the IDS spectrometer is done by sweeping a line across the PMT

array. Noise is picked up on the IDS spectrometer during voltage spikes. A data analysis

routine is used to evaluate the noise and calculate the plasma parameters.

Hardware

The IDS spectrometer was used on the Helicity Injected Torus experiment [41]. Light

for the IDS spectrometer was collected with the CCD spectrometer telescopes with slight

modifications made to hold the fibers. The spectrometer is a MC-100: Diffraction Grating

Spectrometer. This is a 1.0 m, Czerny-Turner spectrometer with a 1800 grooves/mm grating

blazed at 300 nm. Although the spectrometer has a wavelength range from 250 nm to 700

nm, measurements of the C III line at 229 nm have been made with this system. A

cylindrical lens is placed at the exit slit to increase the dispersion of the light. A 16 anode

PMT on a translator is used to measure the intensity of light in 16 wavelength regions.

The PMT is biased with 550 to 850 volts and the signals are terminated with 1 kΩ at the

digitizer.

Calibration

The IDS spectrometer can only measure one line at a time. The dispersion, relative intensity,

and instrument function are found by moving a known line across the PMT array at a known

rate and the voltages from the array are digitized. Various lines from a mercury lamp were

swept across the PMT array at 1 nm per second.

Since the light from the Hg calibration lamp is dimmer than the plasma, the termination

of the signals must be changed to 220 kΩ. The fastest speed on the grating motor is one

nanometer a second. At this speed a line is swept across all 16 channels in 0.5 seconds. The
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digitizers are set to their slowest rate to acquire all of the lines. A slower speed will increase

the number of peaks from the lamp increasing the accuracy of the calibration.

Acquisition of the calibration curves was aided by connecting a scope to channel 1 and

16. Using the motor control in reverse, the line of interest is moved past channel one.

The motor was started forward sweeping the line across the array and data acquisition was

triggered acquiring the curve. The spectrometer is sensitive to the entrance slit conditions,

wavelength, exit slit conditions and PMT location. Calibration curves for all of the operating

conditions were obtained.

The calibration lamp output a rectified 60 Hz sine wave. The FWHM of the instrument

function is equal to the dispersion between channels, shown in Fig. 5.18. A spline fit was

done through the local peaks of the data to calculate the amplitude, FWHM, and time

of each peak for each channel of the PMT, shown in Fig. 5.19. The peak voltages were

also fit to a Gaussian which compares well to the spline fit. The values from the spline fit

were then used to calculate the instrument temperature, relative intensities and dispersion

of the spectrometer. An IDL routine, IDS CAL4.pro Sec. C.4.1, was used to calculate

the calibration parameters. The instrument temperature is a function of slit width. The

dispersion and relative intensity are constant over the operating parameters.

The difference between the dial and the wavelength measured at channel 8 was found

with the aid of an ammeter. The dial was set below a known wavelength of the calibration

lamp. The ammeter was connected to channel eight. The fiber was then illuminated with a

mercury lamp. The dial was increased until the maximum signal was seen on channel. The

difference between the dial and the known wavelength is about 0.3 nm.

The dial did not have the desired accuracy for velocity measurements. With the 35◦

viewing angle a 0.01 nm shift corresponds to a velocity of 9156 m/s. To alleviate this

problem, only the fiber was moved during a survey. A correction factor, λdial, which set the

average velocity to zero during the quiescent period of the m1 mode on all 90
◦ pulses was

found. During this time interval the radial velocity of the Z-pinch is zero. This factor was

added to the wavelength until the dial was moved.
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Figure 5.18: The Hg line at 253.652 nm is swept across the PMTs to measure the calibration
factors. The instrument function measured with PMT 8 (black line) has a better resolution
than that measured with all of the PMTs (red line). The spectral intensity measure by each
PMT should be used to characterize the instrument function.

Data Analysis

The emissivity, velocity, and temperature are found from spectral intensities. The measured

spectral intensities have a time varying noise caused when dV/dt is large. The noise was

removed with the process described in Sec. 5.1.3. The frequency cutoff was set using the

integration time of the cables, 180 ns. The plasma parameters are found by fitting the

spectral intensities to Gaussians with a Marquardt method [3]. The IDL routine CURVEFIT

was not able to converge when there was a low signal nor when there were two peaks. A
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Figure 5.19: The shape of the instrument function is found by fitting different functions
to it. The black line is the raw data. The colored lines are from a spline fit (red), fit to
a Gaussian (green) and fit to a Lorentzian (blue). The instrument function is more like a
Gaussian then a Lorentzian. The calibration factors are found with the spline fit.

time of interest was defined during which the pinch was forming and before Tungsten lines

were seen by the IDS instrument. During this interval, only times where the minimum

signal was less then -5 mV were curve fits attempted. The Gaussian is given by

y = A0 exp

^
−0.5
w
λ−A1
A2

W2�
+A3 (5.53)

where A0 is the amplitude, A1 is proportional to the velocity, A2 is the FWHM, and A3 is

proportional to the background radiation. When the instrument function are Gaussian, the
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convolved spectra is a Gaussian with the A2 given by

A22 = FWHM
2
Doppler + FWHM

2
Instrument (5.54)

where FWHMDoppler is the FWHM from doppler broadening and FWHMInstrument is the

FWHM of the instrument function. The plasma parameters are given by

Amp = A0 (5.55)

vi =
c

cos 35 ◦
A1 − λ0
λ0

(5.56)

Ti =
mic

2

kλ20

D
A22 − FWHM2

Instrument

i
(5.57)

where Amp is the amplitude of the Gaussian. The errors in the plasma parameters, σAmp,

σvi , and σT i, are then given by

σAmp = σA 0 (5.58)

σvi =
c

cos 35λ0

�
σ2A 1 + σ2λ inst + σ2λ Dial (5.59)

σT i =
mic

2

kλ20

�
(2A2σA 2)

2 + (2FWHMInstrumentσInstrument)
2 (5.60)

where σA i are the errors returned from the curve fits, σλ inst is the error in the wavelength

of each PMT, σλ Dial is the error in λdial and σInstrument is the error in the instrument

FWHM. The amplitude, temperature, velocity and errors are calculated with an IDL rou-

tine, ids temp fin3.pro Sec. C.4.3, and written to the tree. Since the present diagnostics are

not able to measure the position of the Z-pinch with a high accuracy, only chord integrated

parameters are calculated for the IDS spectrometer.

5.7.4 ICCD spectrometer

The ICCD spectrometer measures the spectral intensities from 20 parallel chords through the

Z-pinch. The spectrometer is versatile; three gratings may be used, two fibers are attached

to different input slits, and the spectrometer has a wide wavelength range. Calibrations

must be done for all the possible combinations. The spectral intensities taken with the

ICCD camera are reduced with an IDL code and written to the tree. An IDL code then

determines which ions are present, calculates the chord integrated plasma parameters and

writes them to the tree.
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Hardware

The ICCD spectrometer uses two telecentric telescopes to collect light from the plasma [25].

The telescopes are located on the 90◦ and 35◦ ports on the bottom of the vacuum chamber.

Each telescope is focused at the center of the outer electrode at z = 0 cm. The light from

parallel chords through the plasma is focused onto fiber bundles. The magnification of the

telescopes is 0.5 and the étendue is 3×10−6 str cm2. Two sets of fiber bundles are used. The
first set consists of two identical bundles. Each bundle has 20 fused silica fibers spaced 0.62

mm apart. One bundles is mounted on the 35◦ and the other is one the 90◦ telescope. Each

one uses a separate entrance slit so that temperature or velocity measures can be made.

The second set, which consists of two different fiber bundles, is presently mounted on the

ICCD spectrometer. One bundle has 20 fused silica fibers spaced 0.89 mm apart and the

other bundle,the “Y” fiber bundle, has two groupings of ten fibers space 1.88 mm apart.

Each grouping can be placed on different telescopes for absolute velocity measurements or

stacked on top of each other for Zeeman splitting measurements. Filters can be used at the

fiber bundle face to stop second order lines from contaminating the spectra above 400 nm

or to measure different polarizations of light.

The spectrometer is a SpectraPro-500i made by Acton Research Corporation. This is

a 0.5 m, Czerny-Turner spectrometer. A swing out mirror is used to select which entrance

slit is used. Three gratings, 150, 240, and 3600 grooves/mm, are mounted on a turret in

the spectrometer. A PI-MAX intensified CCD camera made by Princeton Instruments is

used to record the spectra. A ST-133 controller with a programmable timing generator

(PTG) controls the camera. Typically the exposure time is 100 ns to 1 µs. The system is

operated with a PC running WinSpec which is fiber optically coupled to the spectrometer

and controller.

Calibration

The ICCD spectrometer calibration is the most involved. The calibration factors for 20

chords collected with two different fibers, resolved with 3 gratings over the entire wavelength

range must be found. Only the Cd lamp can be used to calibrate the ICCD spectrometer
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Table 5.1: Shown are the wave regions for the ICCD spectrometer calibration factors. The
first column is the Cd line used to find the calibration factors for the given wavelength
region.

Cd line (nm) Start λ (nm) End λ (nm)

228.8022 275

326.1055 275 340

361.0508 340 420

479.9912 420 520

576.215 520 600

643.847 600 675

686.4066 675

because none of the other lamps have a large enough region of uniform brightness. Each

fiber is positioned such that all of the chords view the uniform brightness region. At least

two spectra, over a 80 µs time interval at the peak of the brightness, are taken for each

wavelength region with each grating. The wavelength regions used for the calibration are

shown in Table 5.1 This process results in hundreds of images from which the calibration

factors are found.

The vertical input slit maps to a curved line on the ICCD image. Removing this curve

before each fiber is binned reduces the FWHM of the instrument function for each fiber.

The total intensity of each row is used to find the bins which are used for each fiber. Regions

of local maxima are the vertical location of each fiber. The location of the local minima is

found. Since the light from two adjacent fibers overlap near the local minima two to three

rows about the minima are not included in the bins. The curvature and bins are averaged

over the acquired calibration spectra. The curvature correction is then applied and the

rows are binned. The area of each spectral intensity, Afiber i, is then found. The relative

intensity for each fiber, reli is then

reli =
Afiber 10
Afiber i

(5.61)
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which relates all of the emissivities to fiber 10. The instrument function for each fiber is

the spectral intensity of the fiber normalized by the area. This process ensures that the

instrument function’s centroid is at the ideal wavelength and the instrument function has

a unit area. The instrument functions are asymmetric and chord dependant. The relative

intensities and instrument functions are again averaged over the acquired spectra. Every set-

ting requires a curvature correction, horizontal bin, relative intensity, and instrument func-

tion. The IDL codes, iccd 18sep01 cal 600.pro Sec. C.4.1 and save cal 18sep01 param.pro

Sec. C.4.1, are two example codes used to find the calibration values since sets must be

found every time the spectrometer is calibrated. When a calibration set is not consistent

with the sets which bracket it, the parameters used by the code are changed and the set

is recalculate. The final calibration sets are stored in an IDL data file in the spectroscopy

directory.

The calculation of the optical depth of the plasma and proper error analysis requires

that the number of collected photons is known. To accomplish this, a conversion from ICCD

counts to photons, βICCD, must be found.

I(counts) = βICCDI(photons) (5.62)

where I is the intensity. A calibrated standard was not avaliable to find this conversion

factor. Instead, βICCD is found using the fact that the uncertainty in the number of measured

photons, σI , is

σI(photons) =
0
I(photons) (5.63)

=
σI(counts)

βICCD
(5.64)

where I is the measured brightness. After some algebra βICCD becomes

βICCD =
σ2I (counts)

I(counts)
(5.65)

One method of finding βICCD is to use a region of the measured spectral intensity from each

pulse where there is no line emission to measure and I (counts) and σI(counts) [18].

The calibration factor was verified by taking a large number of spectra of a constant

light source (a bright LED) and measuring I (counts) and σI (counts). Since the ICCD
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image consists of a background and the desired spectra, a large number of background

(LED off) images are also taken to reduce error of the subtracted spectra. Various ICCD

spectrometer configurations were tested. Fifty spectra are taken for each configuration,

twenty background and thirty with the LED off. The average background image is

Bave =
1

N

3
i=1,N

Bi (5.66)

where Bave is the average background, 512x512 array, for N images. The uncertainty of the

background σB is

σ2B =
1

N − 1
3
i=1,N

(Bi −Bave)2 (5.67)

Once the background is found, the spectra, C from the LED is found.

Ci = Ai −Bave (5.68)

An average spectra Cave is found using Eq. 5.66. The uncertainty in Cave, σC , is found

using Eq. 5.67. The uncertainty from the background subtraction is removed withp
σcorrectedC

Q2
= σ2C − σ2B (5.69)

where σcorrectedC is the uncertainty from photon statistics. The intensity of each wavelength

found by summing across all fibers.

Ij =
3
i

(Cave)ij (5.70)

where j corresponds to the column (wavelength) and i corresponds to the row. The uncer-

tainty in I due to photon statistics becomes

σ2I =
3
i

p
σcorrectedC

Q2
ij

(5.71)

βICCD is found using Eq. 5.65. The result of a pseudo-calibration are shown in Fig. 5.20.

The value of measured βICCD agrees with the estimated value.

Image Reduction

The images taken by the ICCD spectrometer are converted into the spectral intensities of

the 20 chords. An image taken with the ICCD is shown in Fig. 5.21 An IDL code is used
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Figure 5.20: βICCD is found with the standard deviation and square root of the intensity of
an led. The calculated value of β agrees with the method described in [18].

apply the calibration factors. The images are read by IDL with READ PRINCETON, a

routine written at the University of Chicago, which reads the image and wavelength from

the WinSpec file. The curvature is removed from the image with the appropriate correction

and the rows are binned according to the chords. The binned data, relative intensity,

instrument function and calibration data are then written to the tree with IDL routines,

w iccd data pro.pro Sec. C.4.3, iccd reduce.pro Sec. C.4.3 repair iccd node.pro Sec. C.4.3,

and iccd save.pro Sec. C.4.3.

Surveys have identified impurities which can be used for passive spectroscopy. The

line radiation has been identified by comparing the relative intensity of multiple lines to

the NIST database. The lines used for passive spectroscopy are from wavelength regions

where other ions do not contaminate the line radiation. The level of the radiation, shown

in Fig. 5.22, is below the black body radiation level, shown in Fig. 5.14. This shows that

the plasma is optically thin which simplifies the analysis of the spectral intensities. The
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Figure 5.21: The image of the spectral intensities taken with the split fibers. The curvature
has been removed from this image. The bins are located between the horizontal lines.

line radiation also decreases with time. The gain of the ICCD spectrometer is adjusted to

maximize the number of counts.

Chord Integrated Parameters

The chord integrated plasma parameters are found using the measured spectral intensities.

Many different ions are used to measure the plasma parameters. Shown in Table 5.2 is a list

of the ions which are used to measure the plasma parameters. Since there are a large number
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Table 5.2: The ions which are used to find plasma parameters. The lines which are wide
have a w following the relative intensity. Lines which differ only by J have a * following
the relative intensity.

Ion λ (nm) Relative Intensity

B III 206.5776 550

206.7233 450

C III 229.687 800

C III 464.7418 600

465.0246 520

465.1473 375

C IV 465.83 200w

C IV 580.131 250

581.197 200

C V 227.089 40

227.727 5

227.792 20

C VI 343.369

C VI 529.1

He II 468.54 4

468.57 30

O III 326.0857 200

326.5329 300

326.7204 80

O III 375.4696 150

375.7232 80

375.9875 250

O IV 306.343 460

307.160 410

.

Ion λ (nm) Relative Intensity

O V 559.789 130

O V 278.101 1000

278.699 920

278.985 775

O VI 381.135

O VI 383.424

O VII 255.940

N III 268.218 250w

N III 409.736 250

410.339 200

N IV 638.075 150

N IV 264.562 250

264.619 300*

264.619 300*

264.698 350*

264.698 350*

264.698 350*

N IV 347.872 570

348.300 500

348.493 400

N V 298.078 150w

298.131 250w

299.843 60w

N VI 205.61

N VI 289.64
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Figure 5.22: The spectra of the Z-pinch are measured with the ICCD spectrometer. The
series taken on March 12, 2003 (upper) uses a 10 µs gate. The series taken on August 20,
2003 (lower) used a 20 µs gate. The intensity of the line radiation has decreased.

of different ions which are used an IDL routine, find iccd raw param SYIAH.pro Sec. C.4.3,

is used to determine which lines are present on a given plasma pulse. This routine looks

for spectral intensities near each unshifted wavelength which are greater than 10 times the

background noise level of the spectra.

When this condition is met the plasma parameters are found by fitting an instrument
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widened Gaussian to the spectral intensity. The instrument functions on the ICCD spec-

trometer are asymmetric. The spectral intensities of single lines are fit to

y =

8 Pλ
−Pλ

l
A0 exp

^
−0.5
w
λ− λI −A1

A2

W2�
+A3

M
Iinstrument(λ

I)dλI (5.72)

where the Ai’s are related to the plasma parameters, with a Marquardt method [3]. When

the line is a doublet, an additional Gaussian is added inside the brackets of Eq. 5.72.

y =

8 Pλ
−Pλ

l
A0 exp

^
−0.5
w
λ− λI −A1

A2

W2�

+RINISTA0 exp

^
−0.5
w
λ− λI −A1 +PλNIST

A2

W2�
+A3

M
Iinstrument(λ

I)dλI
(5.73)

where RINIST is the ratio of the relative intensities andPλNIST is the difference between the
central wavelengths from the NIST data base. A third Gaussian is added for triplets. Since

the same fit parameters are used for singlets, doublets and triplets, the plasma parameters

are found with

E =
√
2πA0 (5.74)

vi =
c

cos θ

A1 − λ0
λ0

(5.75)

Ti =
mic

2A22
kλ20

(5.76)

Br = A3. (5.77)

This method has the additional benefit that the fits are poor when other lines contaminate

the spectra. find iccd raw param SYIAH.pro uses IDL codes like iccd raw multi emis.pro

Sec. C.4.3 to calculate the plasma parameters and write them to the tree.

5.7.5 Deconvolution Technique

The calculation of the local plasma parameters involves deconvolving the measured spec-

tra [20]. Since the process described in Sec. 5.7.1 cannot be simply reversed, the following

procedure is used to find the local plasma properties. This section presents the relevant

assumptions for the model. The deconvolution technique and error analysis are then de-

scribed. The last section compares the results of the method to known profiles.
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Shell Model

A shell model is assumed to represent the plasma. The plasma is partitioned into discrete

shells where the local amplitude of the emissivity Aj , ion temperature Tj , and velocity vj

are constant in each shell [2]. The spectral intensity from shell j along the line of sight of

chord i is then described by

eij(λ) =
Aj√
2πwj

exp

^
−(λ− λ0 − |si · vj |λ0/c)

2

2 w2j

�
+Bj , (5.78)

where λ0 is the unshifted wavelength of the emitted line radiation, si is a unit vector in the

direction of the line of sight, wj is proportional to the FWHM of the spectral intensity, and

Bj is an offset of the spectra due to broadband radiation. The temperature is related to wj

by

w2j =
kTjλ

2
0

mic2
, (5.79)

where k is Boltzmann’s constant and mi is the ion mass. The shells are assumed to be

concentric circles, where the axis of the plasma coincides with the center of the shells. The

shell geometry for the 35◦ telescope is shown in Fig. 5.23. The outer radius of shell j is

given by rj = xchord(j) + δPr where xchord(j) is the impact parameter of chord j, Pr is
the spacing between chords and shells, and δ is the relative position of the viewing chord in

each shell. δ is set to 1 for the deconvolved profiles from the ICCD spectrometer. The outer

radius of shell 1 is set by the extrapolated zero crossing of the measured emissivity, usually

r1 = r2 +2Pr. The radiation measured by each chord is the sum of the contributions from

each shell that the chord intersects, shown in Fig. 5.23, when the plasma is optically thin.

The collected spectral intensity for chord i is given by

Ei(λ) =
3
j

eij(λ)Lij , (5.80)

where Lij is the length of chord i through shell j. The collected spectral intensity is widened

by the instrument function.

Mi(λ) =

8 Pλ
−Pλ

Ei(λ− λI)Fi(λI)dλI , (5.81)

whereMi is the instrument widened spectral intensity, Fi is the instrument function of chord

i measured during the calibration of the ICCD spectrometer and 2Pλ is the span of the
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Figure 5.23: The 35◦ view of a quarter of the plasma showing the chord and shell locations
when the plasma centered in the machine. The dashed lines are the sight lines of the 35◦

viewing telescope. The ovals are the outer edges of each shell when viewed from the 35◦

viewing telescope.

measured instrument function. Coma in the spectrometer causes the instrument function

to be asymmetric as shown in Fig. 5.24. The FWHM of the instrument function, measured

with the Cd I line at 228.8 nm, varies from 0.030 nm for the center chords to 0.047 nm for

the edge chord. The inclusion of the instrument function in the analysis causes the spectral

intensities to be a function of the impact parameter and the viewing chord even when the

angle between the velocity vector and the lines of sight of the chords does not change.
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Figure 5.24: The instrument function varies across the chords. Shown are the measured
instrument functions of chord 1 (black), chord 5 (red) and chord 10 (blue) using the Cd I
line at 228.8 nm. The width of the instrument function decreases for the central chords.

Deconvolution Procedure

The plasma parameter profiles cannot be accurately found by simply reversing the steps of

the previous section because of difficulties with the removal of the instrument function. Dif-

ferent methods of deconvolving the measured spectra have been tried [4, 48]. The methods

are able to deconvolve test spectral intensities as shown in Fig. 5.25. When noise consistent

with the experimental levels are added, the methods are not able to deconvolve the spec-

tral intensities as shown in Fig. 5.26. None of the methods have been able to remove the

instrument function from noisy data.

This difficulty precludes the use of Abel or matrix methods because the instrument

function must be removed before using these methods. Instead an instrument widened

Gaussian is defined for each shell

mij(λ) =

8 Pλ
−Pλ

eij(λ− λI)Fi(λI)dλI . (5.82)
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Figure 5.25: Shown are the results of removing the instrument function from simulated
spectral intensities. The original spectra (black) was widened with the instrument function
(green). The instrument function was then removed from the instrument widened spectra
(blue). The resulting spectra (red) from this process matched the original spectra.

An equation similar to Eq. (5.81) can be written as

Mi(λ) =
3
j

mij(λ)Lij . (5.83)

Since the length matrix Lij is triangular, back substitution can be used to find the plasma

parameters.

By viewing the plasma with telecentric telescopes, only the horizontal location of the

plasma affects the impact parameter of each viewing chord. The location is found by

iteratively deconvolving the data. Guesses for the center and the edge of the pinch are made,

which sets the geometry. The length matrix Lij is calculated and the plasma parameter

profiles for this geometry are then found.

The edge chord measures only the emission from the outermost shell. Let i = 1 be the

outermost chord and j = 1 the outermost shell. All of the terms L1j are zero except for
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Figure 5.26: Shown are the results of removing the instrument function from the spectral
intensities with noise. The original spectra (black) was widened with the instrument function
(green). Noise consistent with Poisson statistics was then added to the instrument widened
spectra (blue). The instrument function was then removed from the instrument widened
spectra. The resulting spectra (red) from this process does not match the original spectra.

j = 1. The measured spectral intensity of the outer chord is given by

M1(λ) = L11

8 Pλ
−Pλ

e11(λ− λI)F1(λI)dλI

= L11m11(λ) .

(5.84)

The plasma parameters for the outer shell are found with a least squares fit of an instrument

widened Gaussian toM1(λ)/L11 using a Marquardt method with equal weights given to each

point. The wings of the spectral intensity are given a greater weight when Poisson statistics

are used as weights in the fits, shown in Fig. 5.27. The physics which are being studied

affect the center of the line shape more than the wings. The fits are done with equal weights

for all values to capture the Gaussian’s parameters. Poisson statistics should be used for

line broadening which is Lorentzian in character.

The plasma parameters of the inner shells are determined by removing the contribution

from the outer shells and fitting an instrument widened Gaussian to the remaining data. Let
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Figure 5.27: The weights used in the fitting routines affect the fitted spectra. The black
curve is the measured spectra from pulse 726025 chord 1. The fitted spectra from Eq. 5.90
using constant weights (red) and Poisson statistics (green) show the largest intensities are
not being modeled with Poisson statistics. The effect is hard to see when Eq. 5.90 is used
with (blue) and without (cyan) Poisson statistics.

chord i be a chord in the plasma and shell j be the corresponding shell in the plasma. An

instrument widened Gaussian for the outer shell(s), 1 to j−1, contribution to the measured
spectral intensity Mouter

i is found with

M outer
i (λ) =

3
jI<j

mijI(λ)LijI , (5.85)

where mijI is calculated using the plasma parameters from the previous shells and Eq.

(5.82). The emission from the shell is given by removing the outer shells’ contribution

mij(λ) = max

w
Mi(λ)−Mouter

i (λ)

Lij
, 0

W
. (5.86)



109

The plasma parameters for shell j are found with a Marquardt method. This procedure is

repeated for each successive chord until the shell axis is crossed. Once the axis is crossed

the plasma parameters for the inner two shells are also found using the spectral intensities

measured by the next two chords. The deconvolution procedure is also repeated starting

from the other side, beginning at chord 20 and decreasing the chord index.

The two deconvolution procedures yield two profiles of the emissivity, ion temperature,

and ion velocity for the assumed geometry. The center of the plasma is found by adjusting

the guess of the pinch center until the emissivity and the velocity of the inner two shells

from the left and right deconvolutions converge.

Error Analysis

There are two main sources of error with this method, noise in the measured spectral

intensities and uncertainties in the calculation of the length matrix, which results from

the uncertainty in the pinch geometry. The data are fit with a Marquardt method with

equal weights given to each point. The actual uncertainty for each spectral intensity is

proportional to the square root of the intensity. When the actual uncertainties are used

as weights, the fitted spectra had a lower amplitude at the maximum measured spectral

intensity and fit the wings of the spectra.

The errors in the plasma parameters are found for each source of uncertainty. The

uncertainty of the measured spectra σMi(λ) is given by

σ2Mi(λ) =
�
βi
0
Mi(λ)

=2
+
�0
MBi

=2
, (5.87)

where βi is a multiplier for each chord found by measuring the standard deviation of the

spectra where there is no line radiation [18] and MBi is the level of the background of each

chord. The error in the spectral intensities of the inner shell σNmij(λ) due to noise in the

measured spectral intensities is given by

σ2Nmij(λ) =

}
σMi(λ)

Lij

]2
+

}
σNouter(λ)

Lij

]2
, (5.88)

where σNouter(λ) is the uncertainty from Mouter
i (λ) which is given by

σ2Nouter(λ) =
3
jI<j

l3
l

}
∂mijI(λ)

∂ajIl
σaNjIlLijI

]2M
(5.89)
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where ajIl is parameter l of shell j
I and σaNjIl is the error of ajIl due to the uncertainty in

the measured spectral intensities. Once the uncertainties at each wavelength are found, the

error of each parameter σaNjl can be found by taking the inverse of the curvature matrix.

The errors in the fit parameters are found by using the inverse of the curvature matrix

as described in Bevington [3]. If the parameters are not correlated, the curvature matrix is

diagonally dominant and the inverse is easy to calculate. The parameters used in Eq. 5.53

are correlated, seen in Fig. 5.28. The errors found using the inverse of the curvature matrix

are on the solid contours. The correct errors are found with the dashed lines on the plots.

The correlation of the terms causes the major axis of the ellipse to be off of the axes. Better

fitting functions are

y =
A0
A2
exp

^
−0.5
w
λ−A1
A2

W2�
+A3 or (5.90)

y =

8 Pλ
−Pλ

l
A0
A2
exp

^
−0.5
w
λ− λI −A1

A2

W2�
+A3

M
Iinstrument(λ

I)dλI (5.91)

because the correlation between parameters is reduced, seen in Fig. 5.29. The terms are

still correlated since the major axis of the ellipses is not along an axis. The correlation of

more than two terms is reduced since the two sets of curves are similar. Taking the inverse

of the curvature matrix correctly calculates the errors for Eq. 5.91. While the IDL routine

CURVEFIT applies the Marquardt method correctly, the errors found for each term are

incorrect when the terms are coupled. A separate routine is used to find the uncertainties

in the fits to Gaussians.

The uncertainties in the length matrix σGij are calculated using the uncertainty in the

center location, maximum shell radius, and the location of the chord through each shell.

The error σGmij(λ) due to the uncertainties in the geometry of the pinch is given by

σ2Gmij(λ) =

}
σGouter(λ)

Lij

]2
+

lJ
Mi(λ)−Mouter

i (λ)
o2

σGij

L2ij

M2
, (5.92)

where the uncertainty in the spectral intensity from the outer shells σGouter(λ) is given by

σ2Gouter(λ) =
3
jI<j

JmijI(λ)σGijI
o2
+
3
l

^
∂mijI(λ)

∂ajIl

2

σaGjIlLijI

�2 (5.93)
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Figure 5.28: Shown is χ projected onto Ai, Aj subspaces when the amplitude is used as a
fit parameter. The solid lines are contours of χ for fixed values of A W=i,j . The dashed lines
are the minimum value of χ for each Ai and Aj (A W=i,j are optimized for each Ai and Aj).
The nonlinearity of the parameters is seen in the differences between the two sets of curves.
The major axis is not aligned with either axis indicating that the terms are correlated. The
actual error is larger than the calculated error
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Figure 5.29: Shown is χ projected onto Ai, Aj subspaces when the area is used as a fit
parameter. The solid lines are contours of χ for fixed values of A W=i,j . The dashed lines are
the minimum value of χ for each Ai and Aj when AW=i,j are optimized for each Ai and Aj .
The nonlinearity of the parameters is seen in the differences between the two sets of curves.
The major axis is not aligned with either axis indicating that the terms are correlated. The
correct errors are calculated for this set of equations.
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where σaGjIl is the error of each parameter due to the uncertainty in the geometry. The error

of each parameter due to the uncertainties in the geometry is found with the same method

as with σaNjl.

The total error in each parameter σajl is

σajl =

5p
σaNjl

Q2
+
p
σaGjl

Q2
. (5.94)

The total errors in the fit parameters are then used to calculate the errors in the plasma

parameters, similar to Eq. 5.60. This method of finding the errors show the influence of

each uncertainty on each parameter.

Results of the Deconvolution Technique

The deconvolution process is tested with various synthetic profiles of emissivity, velocity,

and temperature. The local spectral intensity along each line of sight, e(r,λ), was found

using Eq. (5.42). The chord integrated spectral intensity for each wavelength, E(x,λ), were

found with

E(x,λ) = 2

8 R

x
e(r,λ)

rdr√
r2 − x2 . (5.95)

E(x,λ) was widened with the instrument function using Eq. (5.81). This process of gener-

ating synthetic spectral intensities tests the effect of assuming the plasma parameters are

a constant in each shell. Random noise, with a mean of zero and standard deviation of

1, is multiplied by σMi(λ), calculated using Eq.(5.87), and added to the synthetic spectral

intensities. The spectra were then deconvolved using the procedure described.

The agreement between the synthetic spectra and fitted spectral intensities is shown in

Fig. 5.30 The spectral intensities from the edge chord, shown in the top plot, is skewed from

the instrument function. The contribution from the outer shells is shown as the green line

in the bottom plot. The plasma parameters are found from a curve fit to the blue trace.

The fitted spectral intensity matches the synthetic shape.

Many synthetic profiles of emissivity, velocity and temperature were used to test the

technique. The errors due to the geometry were tested by setting the parameters to incorrect

values of the center and edge of the pinch. Different center locations had the largest effect on
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Figure 5.30: The deconvolution technique is able to recreate the spectral intensities. Shown
are the synthetic spectral intensities (black) and the spectral intensities from the deconvo-
lution technique (red). The contribution from the outer shells (green) has a complicated
shape. The skewness in the spectral intensity from the inner shell (blue) is from the instru-
ment function.

the plasma parameters in the central shells, which justifies using the inner shell parameters

to set the pinch geometry. The value of the parameters for the edge shells changed by

a small amount. Figure 5.31 shows a sample synthetic profile and the results from the

deconvolution technique. The appropriate δ is a function of the gradients in the profiles.

When there is a large gradient in the velocity, the measured temperature increases because

a velocity gradient within a shell will widen the spectral intensity. The error calculation

was verified by applying a large number of different noise sets to the spectral intensities

calculated with this profile, applying the deconvolution technique with geometries within

the uncertainties of the pinch geometry, and finding the average and standard deviation of

the plasma parameters. The calculated error bars of the plasma parameters are slightly

larger than the standard deviation found with the multiple deconvolutions.
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Figure 5.31: The deconvolution technique is able to reconstruct synthetic profiles. Results
of the deconvolution technique from the left (red) and from the right (blue) are similar to
the synthetic profiles (black). The profiles are centered between chord 11 and chord 12
to simulate a pinch not centered in the machine. Random noise has been added to the
integrated, instrument broadened data at levels consistent with the experimental noise.

This technique is used to find the local plasma parameters of spectra measured with

the ICCD spectrometer. Measuring the spectral intensities through twenty chords during

one time interval ensures the impurity content and location of the plasma are the same for

all twenty spectral intensities. This method only works when the edges of the Z-pinch are

seen. An IDL code, find iccd shell param SYIAH.pro Sec. C.4.3, is used to find local plasma
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parameters. A Gaussian fit is done to the line-integrated emissivity. If the entire FWHM of

the Gaussian is within the chords, find center SYIAH.pro Sec. C.4.3 is used to find plasma

parameters and the plasma location. The plasma parameters are then written to the tree.
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Chapter 6

RESULTS FROM THE ZAP EXPERIMENT

Many experimental configurations have been used on the ZaP experiment. Changes have

been made as the understanding of the Z-pinch has increased. The configuration of the

electrodes has been modified to increase the lifetime of the Z-pinch. These changes involve

a considerable amount of down time of the experiment, about a month. The capacitor bank

has been modified to increase the half-cycle time of the current and increase the lifetime

of the ignitrons. The magnitude of the current is controlled by varying the charge of the

capacitor bank. The capacitor bank can be changed quickly, under a day, and the voltage

can be varied from pulse to pulse. With each change, a study of reproducible discharges

is conducted. New gas puff timings are found which generate reproducible Z-pinches, see

Appendix B. Pulses with similar normalized m1, Eq. 5.17, characteristics at z = 0 cm are

then used to compare data taken at different times or locations. The results from four of

the studies are shown in this Chapter.

The first study conducted on the experiment looked at the breakdown of the neutral gas.

Asymmetries are seen in the initial breakdown of the gas. A uniform current sheet is then

seen in the acceleration region. The rest of the studies, discussed later, show the velocity

evolution of the Z-pinch. The next study, “the hollow inner electrode study,” shows the

results from the original experimental configuration. A stationary Z-pinch is seen during

the quiescent period in the normalized mode data. The first measurements of a sheared flow

Z-pinch were made during this study. Methane was added to the experiment to increase the

brightness of higher ionization states of carbon. The results from this study, “the methane

study,” show that plasma is heating during the quiescent period. A differential velocity

between the C ionization states is measured. The assumption that the impurities have

the same parameters as the bulk plasma was verified shortly after this study by using He.

The measured velocity profiles of He and C are similar. The last study, “the nose cone
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study,” uses lower energy pulses to monitor the time evolution of the velocity profile. The

local velocity evolution of C III is measured throughout the quiescent period. The results

presented in this Chapter will be discussed in the following Chapter. Each of these sections

describes the experimental configuration, the bank configuration and charge, and initial the

gas fill. The results from the acceleration region are then presented. Measurements of the

Z-pinch characteristics are then shown. The velocity profiles are at the end of each section.

6.1 Breakdown of the Neutral Gas

On a typical plasma pulse the breakdown of the neutral gas cannot be studied. Instead data

from the acceleration of the plasma are compared to breakdown studies initially performed

on the ZaP experiment. The breakdown of the gas was studied by operating without the

outer electrode endwall. Capacitor bank configuration 1 (see Table 4.1) was used to try to

end the current before the plasma made it out of the outer electrode. The bank voltage was

limited to 5 kV for this study. Only the inner gas puff valve was used for this study. The

Imacon was used to record images of the optical emission as the gas broke down and the

plasma as it formed. Shown in Fig. 6.1 is the most uniform breakdown of the neutral gas

recorded. The photos are taken through the port on the endflange of the vacuum chamber.

The dark circle in the center of the images is the inner electrode. Gas from four of the

eight neutral gas injection broke down on this pulse. Typically, gas from only one or two

of the injection ports initially breaks down. A uniform current sheet forms behind the

filament and is accelerated out of the annulus, Fig. 6.2. The uniform ring inside the inner

electrode is evidence of a uniform plasma sheet. The m1 mode amplitude at the exit of

the acceleration region agrees with the photos. The asymmetries in the breakdown process

have not adversely affected the experiment since a uniform current sheet is established in a

short time.

The impurity content of the plasma was studied with the CCD spectrometer. The metal

content of the plasma is small even though the current is always connected to electrodes.

The gas puff timing affects the impurity content, shown in Fig. 6.3. The metal content

increases when the initial conditions starve the plasma of charge carriers. The uniformity
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Discharge 243

Figure 6.1: The Imacon records images of the plasma of the plasma as it breaks down.
Pulse 243 is the most uniform breakdown measured on the ZaP experiment. Typically only
one of the eight possible regions of high density breaks down.

of the breakdown also increases with earlier gas puff timings. Since one of the requirements

in the ZaP experiment is to study fusion grade plasmas, it is important that appropriate

measures are taken to keep the impurity content low.

6.2 Hollow Inner Electrode Results

After the breakdown study was completed, the outer electrode endwall was installed. The

bank voltage was slowly increased. Sets of gas puff timings were found, which generated

reproducible Z-pinches. The results shown from this experimental configuration are from

January through October, 2000. The plasma was made with the hollow inner electrode, the

original outer electrode and the solid end wall. Hydrogen was used as the gas for this con-

figuration. The IDS data are taken in March, 2000. The inner gas puff valve was triggered
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Discharge 250

Time=  8.38 µs Time= 12.47 µs Time= 16.59 µs Time= 20.69 µs Time= 24.78 µs

Time= 10.41 µs Time= 14.53 µs Time= 18.63 µs Time= 22.72 µs Time= 26.81 µs

Figure 6.2: Asymmetric breakdowns are normally measured. Initially the breakdown is at
opposite sides of the inner electrode. As the filaments travel down the acceleration region
a uniform current sheet is formed. At 22.72 µs the halo inside the inner electrode shows a
uniform plasma sheet attached inside the inner electrode.

at -1.75 ms. The two original outer gas puff valves were triggered at -2.25 ms. Capacitor

bank 1 was charged to 9 kV for these pulses. The results from the ICCD spectrometer are

from July, 2000. The gas puff timings were -2 ms for the inner gas puff valve and -2.25 ms

for the outer gas puff valves. Capacitor bank 2 was charged to 8 kV for these pulses.

The current and voltage waveforms for the two banks are shown in Fig. 6.4. The initial

currents and voltages are similar for the two banks until 30 µs. During this time the

characteristics of both plasmas should be similar. The results in this section are from the

first 40 µs, when the waveforms are similar. Data from the other diagnostics are used to

show the similarities in the two configurations, IDS and ICCD spectrometer, during this

time.
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Figure 6.3: The spectra of the Z-pinch was taken with the CCD spectrometer taken during
the breakdown studies. Most of the spectra from 230 nm to 290 nm is line radiation from
tungsten. The spectra are from pulses with different gas puff timings. The tungsten content
decreases as the gas puff timings are moved earlier in time.

6.2.1 Acceleration Region

The plasma is formed at the gas injection region of the inner electrode. After the current

sheet forms, it is accelerated towards the assembly region by the J×B force. The current

increases during the acceleration phase, shown in Fig. 6.4. The position, velocity, and

acceleration of the current sheet at the outer electrode are measured by the axial magnetic

probe array. Shown in Fig. 6.5 are magnetic fields at 2 µs intervals for the two configurations.

The negative magnetic fields from 8 µs to 12 µs in the top plot are from filaments of current.

The location of the leading edge of the current sheet at the outer electrode is where the

magnetic field begins to increase from zero. The location where the field begins to remain

constant is the trailing edge. The current sheet exits the acceleration region earlier for the

first configuration’s pulses. The gas is puffed later and the current rises faster than on the

second configuration’s pulses.
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Figure 6.4: The initial plasma current (black) and electrode voltage (red) for pulse 726025
are similar to the plasma current (blue) and electrode voltage (green) for pulse 330018. The
waveforms change at 30 µs due to the lower capacitance of the bank on pulse 330018. The
shape of the waveforms show the experiment is not a simple RLC circuit.

The position and velocity of the leading edge on the current sheet along the outer

electrode are found with the magnetic fields, as described in Sec. 5.5.5. The velocity of the

current sheet for the two configurations are shown in Fig. 6.6. The velocity of the current

sheet is increasing for both configurations. A larger current sheet velocity is seen in the first

configuration. Less gas is in the acceleration region for this configuration.

Current filaments are measured with the azimuthal magnetic probe array at z = −25 cm.
Large mode activity seen during this time is due to asymmetries in the current sheet, shown

in Fig. 6.7. Filaments of current, which exit the accelerator ahead of the current sheet,

will cause the m1 and m2 modes to be larger than the m0 amplitude at the exit of the

acceleration region. The magnetic field ahead of the filament is positive on one side of the

electrode and negative on the other. The average magnetic field, m0, must be zero from

Ampere’s law. After the current sheet passes the array at z = −25 cm, the low normalized
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Figure 6.5: The magnetic fields measured by the axial array at 2 µs intervals show the
acceleration of the plasma. Negative magnetic fields are measured ahead of filaments, when
they are near the axial array.

mode amplitudes show the current is located on the z axis. The current then stays centered

in the inner electrode, validating the assumptions used to calculate the current density in

the accelerator.
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Figure 6.6: Shown are position (upper graph) and velocity (lower graph) of the leading edge
of the current sheet along the outer electrode. The pulse (black) from the first configuration
is accelerated more than from second (red).

6.2.2 Assembly Region

After the plasma exits the acceleration region, a Z-pinch is formed. The measurements of

the plasma properties are made at the midplane of the Z-pinch, z = 0 cm. Axial variations

in the Z-pinch should be small at this location. A quiescent period is seen in the normalized

magnetic mode activity. Photos of emission from the plasma show a stationary plasma dur-

ing this time. The plasma density is peaked on the axis of the machine. IDS measurements
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Figure 6.7: The normalized mode amplitudes at z = −25 cm are low for pulse 726025. The
large mode amplitude from 15 to 18 µs is from current filaments which exit the accelerator
ahead of the current sheet. From 20 µs on, the current is centered in the outer electrode at
this position.

show the plasma is heating during the quiescent period. A sheared flow is measured with

the ICCD spectrometer during the quiescent period.

Magnetic Field Measurements

The general character of the plasma pulse is described by the mode data. The average mag-

netic field and radial location of the Z-pinch are found with the azimuthal array of magnetic

probes at z = 0 cm. The amplitudes of the Fourier components for both configurations are

shown in Fig. 6.8. Initially, the average magnetic field, the m0 component, is 0.1 T. It then

rises to 0.25 T at 40 µs. m0 is larger than the other components. The mode amplitudes

have a similar character before 40 µs.

The radial location of the Z-pinch is found with the normalized mode data, Eq. 5.22.

The normalized modes are shown in Fig. 6.9. Both configurations have similar normalized

mode data for the first 40 µs. Large mode activity is measured early in time as the pinch

is forming. Asymmetries in the current sheet cause this behavior. Shortly after formation,

the normalized mode amplitudes decrease below an empirical value 0.2. The mode activity
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Figure 6.8: The magnetic mode amplitudes measured at the z = 0 array for the two
configurations are similar during the first 40 µs. The average magnetic field at the wall
varies from 0.1 T to 0.25 T during the initial stages of the Z-pinch. The magnitudes of the
other modes are lower than the average magnetic field, m0.

stays below this value for a period of time. The current in the Z-pinch is located within

1 cm of the axis of the machine during this time. The time when all the normalized modes

are below 0.2 is empirically defined as the quiescent period. During the quiescent period,

a Z-pinch is seen on the axis of machine. The amplitude and frequency of the normalized

modes then increases. At the end of the quiescent period, instability structures are seen in

the Z-pinch. Since the normalized mode data describes the behavior of the Z-pinch, it is

included as the bottom plot on most figures.

Emission Measurements

The behavior of the normalized modes are consistent with the images of the emission from

the Z-pinch. The size and shape of the Z-pinch is estimated with photos of the emission

from the plasma. The Imacon fast framing camera is used to measure the emission from
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Figure 6.9: The normalized mode from a typical pulse has a quiescent period. The quiescent
period is the time when all the normalized modes are below the horizontal line at 0.2. During
this time a pinch is seen in the experiment. When the amplitude and character of the mode
changes, instabilities are seen in the Z-pinch.

the plasma through one of the 2 inch holes in the outer electrode at z = 0 cm. Shown in

Fig. 6.10 are four photos taken with different Imacon timings. The images on each photo

are taken in 200 ns intervals. The upper left photo was taken during the formation of the

Z-pinch. The upper right photo shows a stationary Z-pinch at z = 0 cm during the quiescent

period. The size of the plasma seen in the photos are correlated with the density data. As

the mode activity increases, perturbations are seen in the Z-pinch, lower two photos. The

plasma can have an oscillation, lower left, or begin breaking up, lower right. The shape of

the perturbations agrees with the normalized mode data.

Density Measurements

Density measurements of the Z-pinch are made with both chords of the interferometer. Both

chords are located at z = 0 cm with different impact parameters, shown in Fig. 6.11. One
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Figure 6.10: Photos of the plasma taken with the Imacon show a stationary Z-pinch in the
machine. The images are taken through a 2 inch hole in the outer electrode. The order of
the images is bottom to top, left to right. The time between successive images is 200 ns.
The series of photos was taken during the IDS surveys. The upper left was taken shortly
after formation. The upper right was taken of the quiescent period and the bottom two are
taken late in the quiescent period.

chord is located through the center of the machine. The other chord is located 2 cm above

the axis of the machine. The lengths of both chords through the outer electrode are the

same. During the formation of the Z-pinch a uniform density is measured in the machine.

The density is peaked during the quiescent period. The average density in the center of

the machine is found with Eq. 5.39. The peaked density measurements are consistent with

the photos, which show a Z-pinch in the axis of the machine during this time. During the

increased mode activity, a uniform density is seen.
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Figure 6.11: The chord integrated densities through the midplane show a Z-pinch. Both
chords are located at z = 0 cm. Chord 1 is through the axis of the machine and chord 2 is
located 2 cm above the axis of the machine. During the quiescent period, a peaked density
is seen in the Z-pinch. The spikes in the data are from electrostatic noise on the signals.

IDS Measurements

The IDS system is used to measure the temporal evolution of the emission from different O

states. The spatial structure of the Z-pinch is obtained by moving the fiber between similar

pulses. The peak amplitude for different O states taken through various impact parameters

is shown in Fig. 6.12. The intensity of the O IV line at 306.343 nm increases after the pinch

forms and then decreases during the quiescent period. During the formation of the Z-pinch,

the maximum intensity of the O IV is off the z axis. The peak intensity then moves to the

center of the machine. As the intensity of the O IV is decaying, the intensity of the O V line

at 278.1 nm increases on the axis. The O V intensity reaches a maximum, and then decays

during which the O VI line at 381.135 nm increases in intensity. At this point the pinch

becomes unstable and the amplitude of the O V and O IV lines increases. The evolution

of the ionization states shows the plasma is being heated during the quiescent period.
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Figure 6.12: The spatial and temporal evolution of oxygen ionization states shows heating
of the Z-pinch. The amplitude of the O IV emission is peaked off axis early in time. As
the plasma heats, the amplitude of the O V increases on the axis of the experiment. Just
before the mode activity increases, a maximum is seen in the O IV emission.

The temperatures measured with passive spectroscopy can be anomalously high. The

evolution of the temperatures is shown in Fig. 6.13. Temperature measurements from IDS

give an upper limit for Ti. Plasma dynamics in the Z-pinch can also broaden the line
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Figure 6.13: Ion temperature measured with the IDS instrument showing the ion tempera-
ture is 100 to 150 eV.

radiation. The actual width of the line is governed by

Pλ2obs = Pλ2thermal +Pλ2dynamics (6.1)

where Pλobs is the measured FWHM, Pλthermal is the FWHM from Doppler broadening,

and Pλdynamics is the FWHM from plasma dynamics. During formation, the measured

FWHM will be from more than doppler broadening. The current sheet is traveling towards

and away from the telescope as the current sheet collapses. An axial velocity shear will widen

the line when viewed from 35◦. During the quiescent period, the temperatures of both ions

are about 150 eV. The temperature from coronal equilibrium and pressure balance agree

with this value.

The IDS spectrometer measures a high chord-integrated velocity during the quiescent

period of the mode data, shown in Fig 6.14. As the velocity decreases below 100 km/s the

mode activity increases. The O IV decreases faster than the O V. The higher temperature

seen when the plasma is viewed at 35 degrees suggests a nonuniform velocity. The actual

shear in the velocity cannot be measured with the IDS instrument. The variation in the
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Figure 6.14: Ion velocities measured with the IDS spectrometer show the O V velocity is
greater than the O IV velocity during the quiescent period. As the velocities decrease the
mode activity increases.

plasma location from pulse to pulse does not allow for a quantitative measurement of the

shear.

ICCD Spectrometer Measurements

The velocity shear is measured with the ICCD spectrometer. The evolution of the velocity

profiles is found by taking repeatable plasma pulses and changing the ICCD spectrometer

timing. The spectral intensities are measured over a 1 µs interval, shown as a blue trace in

the normalized mode plot. When the emissivity is peaked, the local plasma parameters are

found with the technique described in Sec. 5.7.5. The data were obtained one month and

10 days after the ICCD spectrometer was installed on the experiment.

The velocity is uniform during the formation of the Z-pinch. Shown in Fig. 6.15 is the

C III velocity profiles measured during the formation of the Z-pinch. The local plasma

parameters cannot be found since the chord integrated emissivity, shown in the top plot, is

uniform. The velocity (middle plot) of the plasma is uniform during this time. The C III
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Figure 6.15: The chord integrated emissivity and velocity profiles are uniform during forma-
tion. The spatially broad emissivity profile precludes the use of the deconvolution technique.
The plasma velocity during formation is uniform.

velocity is consistent with O IV and O V velocities during formation.

During the quiescent period, a velocity shear is measured in the Z-pinch. The velocity

shear is shown in Fig. 6.16. The chord integrated profiles are shown in black. The red traces

on the emissivity and velocity plots are calculated from the left side of the experiment. The

parameters calculated from the right are shown in blue. This velocity measurement is one

of the most publicized results of the ZaP experiment [57]. It shows a uniform velocity in the

center of the Z-pinch. The velocity drops to zero in a thin layer on the edge of the plasma.
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Figure 6.16: The plasma parameters measured with the ICCD spectrometer show a sheared
flow Z-pinch. The emissivity profile is peaked on the axis of the machine during this time.
The velocity shear is on the edge of the Z-pinch.

When the mode activity is high, the velocity and velocity shear are small, shown in

Fig. 6.17. The local plasma parameters cannot be found since the emissivity profile is

uniform. The velocity and the velocity shear are small during the increased mode activity.

6.3 Methane Results

The low impurity content in the plasma makes it difficult to measure the plasma parameters

using higher ionization states. The intensity of the line can be increased by doping the
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Figure 6.17: The velocity is low during increased mode activity. The local velocities could
not be calculated since the emissivity profile is broad at this time.

plasma with an impurity. During the study in September and October, 2002, methane was

added to the fill gas to increase the intensity of the C IV and C V lines. The plasma was

made with the inner electrode nose cone attached, the original outer electrode and the end

wall with the hole. A mixture of 50% hydrogen, 50% methane by pressure was used for this

configuration to increase the brightness of the C IV and C V lines. The gas puff timings

were -1.77 ms for the inner gas puff valve and -0.8 ms for all eight outer gas puff valves.

Capacitor bank 1 was charged to 9 kV for these pulses.

The current and voltage waveforms for the methane study are shown in Fig. 6.18. The
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Figure 6.18: The plasma current (black) and electrode voltage (red) for pulse 21009049 are
similar to the waveforms from the IDS study. The voltage waveform is decreases at 25—30 µs
similar to the pulses from second configuration of the hollow inner electrode.

currents and voltages are similar to the IDS study. The oscillations in the waveforms are

smaller than the pure H plasmas.

6.3.1 Acceleration Region

The behavior of the plasma is similar to the hollow inner electrode study. Two diagnostics

are used to measure this process. The axial magnetic field array measures the location of

the current sheet. The density of the current sheet is measured by the interferometer at

two axial locations.

Magnetic Field Measurements

The plasma is formed at the midplane of the inner electrode. After the current sheet forms,

it is accelerated towards the assembly region by the J ×B force. The position, velocity, and

acceleration of the current sheet at the outer electrode are measured by the axial magnetic

probe array. Shown in Fig. 6.19 are magnetic fields at 2 µs intervals. The current sheet exits

the acceleration region later than the hollow inner electrode studies. From the magnetic
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Figure 6.19: The position and velocity of the CH4/H2 current sheet are measured with the
axial array. The magnetic fields in 2 µs intervals are shown in the top plot. The position
(black) and velocity (red) of the leading edge of the current sheet along the outer electrode
are shown in the lower plot. The velocity is lower than the H only current sheets.

fields the position and velocity of the leading edge of the current sheet along the outer

electrode are found as described in Sec. 5.5.5. The acceleration of the current sheet is lower

in the methane studies even though the magnitude of the magnetic field is the same as the

hollow inner electrode studies. The density in the acceleration region is larger than the

density for the hollow inner electrode studies.

Density Measurements

The density in the current sheet is measured through two axial locations with the interfer-

ometer. The line-integrated densities from the minimum impact parameters at two locations

are shown in Fig. 6.20. The chord located at z = −65 cm (red) is located 10 cm downstream
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Figure 6.20: The density in the current sheet is measured with the interferometer. The
density is increasing as the current sheet travels down the accelerator.

of the gas puff valves. The chord located at z = −25 cm (black) is located at the exit of the

acceleration region. The spike in the density is the current sheet passing the axial location.

The density does not return to zero after the current sheet passes the axial location. The

line-integrated density is larger at the exit of the acceleration region. The neutral gas is

ionized and entrained in the current sheet.

6.3.2 Assembly Region

After the plasma exits the acceleration region, a Z-pinch is formed. The measurements of

the plasma properties are made at the midplane of the Z-pinch z = 0 cm. Axial variations

in the Z-pinch should be small at this location. A quiescent period is seen in the normalized

magnetic mode activity. The plasma density is peaked on the axis of the machine. The

CCD spectrometer’s measurements show the plasma is heating during the quiescent period.

A sheared flow is measured with the ICCD spectrometer during the quiescent period.
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Figure 6.21: The magnetic mode amplitudes measured at the z = 0 cm array are shown in
the top plot. The average magnetic field at the wall is 0.1 T as the Z-pinch forms. The
magnitude of the magnetic field increases later in the quiescent period. The normalized
mode is shown in the bottom plot. The quiescent period is similar to the hollow inner
electrode results. The amplitudes do not return to zero late in time. Noise, during the
increased mode activity, in the surface probe system causes the magnetic probe signals to
return to a nonzero value.

Magnetic Field Measurements

The general character of the plasma pulse is described by the mode data. The average

magnetic field and radial location of the Z-pinch is found with the azimuthal array of

magnetic probes at z = 0 cm. The amplitudes of the Fourier components are shown in

the top plot of Fig. 6.8. The average magnetic field, the m0 component, is similar to the

hollow inner electrode studies. The field is initially 0.1 T and then increases to 0.25 T.

The normalized mode data are shown in the bottom plot. Both configurations have similar

mode data for the first 40 µs. Large mode activity is measured early in time as the pinch

is forming. Asymmetries in the current sheet cause this behavior. Shortly after formation,

the normalized mode amplitudes decrease below 0.2. Few fluctuations of the normalized
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Figure 6.22: Shown are the chord integrated densities through z = 0 cm. Chord 1 is through
the axis of the machine and chord 2 is located 1.5 cm below chord 1. During the quiescent
period, a peaked density is seen in the Z-pinch.

mode amplitude are seen during this time. The plasma current is located within 1 cm of

the axis of the machine. During the quiescent period, a Z-pinch is seen on the axis of the

machine. The amplitude and frequency of the normalized mode amplitudes then increases.

At the end of the quiescent period, the amplitude of the oscillations in the magnetic mode

data is lower than the oscillations seen with the hollow inner electrode.

Density Measurements

Density measurements of the Z-pinch are made with both chords of the interferometer. The

two chords are located at z = 0 cm. One chord is located at the center of the machine and

the other chord is located 1.5 cm below the axis of the machine. The density measurements

are shown in Fig. 6.22. During the formation of the Z-pinch, a uniform density is measured in

the machine. The density is peaked during the quiescent period. The background density is

higher on the methane study than on the hollow inner electrode study. During the increased

mode activity, the difference between the two densities is lower.
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Figure 6.23: During the quiescent period the ionization state of C increases. The top plot
is from the telescope located at z = −10 cm. The bottom is from the telescope located
at z = 10 cm. The time of the peak emission of each ionization state increases with the
ionization level.

Emission Measurements

Heating is seen in the Z-pinch during the quiescent period. The evolution of the ion species

is evidence of plasma heating. The PMT on the CCD spectrometer is used to measure the

evolution of different ionization states of C at two locations, shown in Fig. 6.23. The peak of

the C III emission is during the formation of the Z-pinch. Later during the formation of the

Z-Pinch, the C IV emission peaks. A second peak of the C IV is seen during the quiescent
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Figure 6.24: The spectra from C III and C IV around 465 nm is complicated. The lines
from the two ionization states overlap each other in this region. The fitting routines are
able to reconstruct the measured spectral intensities.

period. Before the end of the quiescent period, a peak is seen in the C V emission. The

carbon burns through to a higher ionization state when the emission from higher ionization

states increases in this manner. The increase of ionization states is consistent with coronal

equilibrium.

ICCD Spectrometer Measurements

The velocity profiles of multiple ionization states of C are measured when methane is added

to the experiment. The C III and C V lines are separated in the 229 nm region. The

spectral intensities of the C III and C IV lines overlap in the 465 nm region, as shown

in Fig. 6.24. Another Gaussian has been added to Eq. 5.73. The emissivity, velocity, and
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Figure 6.25: The chord integrated emissivity and velocity profiles are uniform during forma-
tion. The spatially broad emissivity profile precludes the use of the deconvolution technique.
The plasma velocity during formation is uniform.

temperature of the C IV are independent fit parameters. The deconvolution technique is

able to reconstruct the spectral intensities in 465 nm region.

The velocity is uniform during the formation of the Z-pinch. Shown in Fig. 6.25 is the

C III velocity profile, measured during the formation. The local plasma parameters cannot

be found since the chord integrated emissivity is uniform. The C III velocity profile is

consistent hollow inner electrode velocities during formation.

During the quiescent period, a velocity shear is measured in the Z-pinch. Multiple

ionization states are used to measure the velocity shear during the quiescent period The
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Figure 6.26: The plasma parameters measured with the ICCD spectrometer show a sheared
flow Z-pinch. The chord-integrated profiles are shown as dashed lines. The local C III
parameters are found using the geometric factors from the C IV or C V deconvolution. The
velocity shear is on the edge of the Z-pinch.

velocity profiles of C III, C IV, and C V are shown in Fig. 6.26. The chord-integrated

profiles are shown as dashed lines. The C III emission is from the edge of the Z-pinch. A

hollow emission profile is seen in the C IV emission. The C V emission is from the center of

the Z-pinch. The velocity shear is the difference of the velocities of the ionization species.

The edge velocity, measured with C III is small. The higher ionization states show the

velocity is greater in the center of the Z-pinch. The exact magnitude of the velocity shear

is difficult to measure when multiple ionization species are used and the radial location of

the C III is not well defined.

When the mode activity is high, the velocity and velocity shear are small, shown in

Fig. 6.27. The velocity measure with C IV has decreased as the mode activity increases.

A smaller velocity shear is present at this time. After the mode activity has increased, the

velocity is not sheared. The emission profiles of C III and C V are similar during this time
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Figure 6.27: The velocity is low during increased mode activity. The local velocities for the
C IV could not be calculated since the emissivity profile is broad at this time. The velocity
of C V is less than the C III velocity.

and both velocities profiles are uniform. The C V velocity is smaller than the C III velocity.

The velocity profile may have been uniform before this time.

6.4 Direct Plasma Velocity Measurements

The assumption that the impurities and bulk plasma have the same properties was verified

by forming helium plasmas. The velocities of the bulk plasma and the impurities can be

measured by viewing the spectral region around wavelengths of 468 nm. Plasmas were

formed with helium in January and February, 2003. The gas puff timings were -2.4 ms

for the inner gas puff valve and -1.0 ms for all eight outer gas puff valves. The rest of the

configuration was the same as the methane study. The velocity of the bulk plasma, partially

ionized He, could then be measured.

The spectral intensities of the C III at 464.7418 nm, C IV at 46.83 nm, and He II at
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Figure 6.28: The velocity of the impurities are similar to the plasma velocity. The velocities
measured with C III (black) and C IV (red) are similar in magnitude and shape to the
velocity measured with He II (blue).

468.57 nm are measured on a single pulse with the ICCD spectrometer. The velocity of the

bulk plasma, He II, is similar to the impurities, C III and C IV, shown in Fig. 6.28. The

emissivity profiles are similar for all of the ions, top plot, and the velocity profiles, middle

plot, are similar. The impurities and the bulk plasma have the same parameters.

The absolute velocity is measured with the “Y” fiber. The velocities measured at two

angles to the z axis are shown in Fig. 6.29. The even chords, solid lines, view the plasma

at 35◦ to the z axis. A velocity of 50 km/s is measured through these chords. The odd
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Figure 6.29: The “Y” measures the absolute velocity of the impurities and the bulk plasma.
The fibers which view the plasma at 90◦ measure a low velocity (dashed line). The fibers
which view the plasma at 35◦ measure a velocity of 50 km/s (solid line). The velocities
measured with C III (black) and C IV (red) are similar in magnitude and shape to the
velocity measured with He II (blue). The absolute velocity is the difference between two
adjacent chords.

chords, dashed lines, view the plasma at 90◦ to the z axis. The measured velocity from these

chords is about zero, as expected. Two of the assumptions used in the velocity calculations

have been verified with the He plasmas. The impurities and the bulk plasma have the same

parameters.
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Figure 6.30: Shown are the plasma current (black) and gun voltage (red) for bank config-
uration 6 with a 5 kV charge. The driving wave forms are significantly different than the
other configurations.

6.5 Nose Cone Results

When multiple ion species are used to find the velocity profiles, large uncertainties in the

velocity shear arise. Decreasing the bank energy lessens the heating in the plasma. The

temporal evolution of the velocity profile can be measured when one ion species is used.

This experimental configuration was studied in September and October, 2003. The plasma

was made with the inner electrode nose cone, the outer electrode with the extension and the

end wall with the hole. Hydrogen was used as the gas for this configuration. The inner gas

puff valve was triggered at -1.77 ms. Eight outer gas puff valves were used; four triggered

at -0.8 ms and four triggered at -1.5 ms. Capacitor bank 6 was charged to 5 kV for these

pulses.

The current and voltage waveforms are shown in Fig. 6.30. The current and voltage

are constant for 30 µs with this configuration. The amplitude of the voltage and current

are lower than other configurations. The voltage does not have an increase in amplitude as
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seen in the other configurations. There are few spikes in the voltage with this experimental

configuration.

6.5.1 Acceleration Region

The plasma is formed at the midplane of the inner electrode. The J ×B then accelerates

the plasma towards the assembly region. Two diagnostics are used to measure this process.

The axial magnetic field array measures the location of the current sheet. The density of

the current is measured by the interferometer at two axial locations.

Magnetic Field Measurements

After the current sheet forms it is accelerated towards the assembly region by the J ×B

force. The current is increasing during the acceleration phase as shown in Fig. 6.30. The

position, velocity, and acceleration of the current sheet at the outer electrode are measured

by the axial magnetic probe array. Shown in Fig. 6.31 are magnetic fields at 2 µs intervals.

The current sheet exits the acceleration region later than the hollow inner electrode studies.

From the magnetic fields the position and velocity of the leading edge on the current sheet

along the outer electrode are found as described in Sec. 5.5.5. The velocity of the current

sheet is similar to the methane studies, though the magnetic fields, are lower than the other

studies.

Density Measurements

The density in the current sheet is measured through two axial locations with the interfer-

ometer. The line-integrated densities from the minimum impact parameters at two locations

are shown in Fig. 6.32. The chord located at z = −65 cm (red) is located 10 cm downstream
of the gas puff valves. The chord located at z = −25 cm (black) is located at the exit of the

acceleration region. The spike in the density is the current sheet passing the axial location.

The density does not return to zero after the current sheet passes the axial location. The

line-integrated density is larger at the exit of the acceleration region.
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Figure 6.31: The position and velocity of the current are measured with the axial array.
The magnetic fields in 2 µs intervals are shown in the top plot. The position (black) and
velocity (red) of the leading edge of the current sheet along the outer electrode are shown in
the lower plot. The velocity is lower than the hollow inner electrode current sheet velocities.

6.5.2 Assembly Region

After the plasma exits the acceleration region a Z-pinch is formed. The measurements of

the plasma properties are made at the midplane of the Z-pinch z = 0 cm. Axial variations

in the Z-pinch should be small at this location. A quiescent period is seen in the normalized

magnetic mode activity. Photos of emission from the plasma show a stationary plasma

during this time. The plasma density is peaked on the axis of the machine. Measurements

of the line emission show the C III is constant during the quiescent period. A sheared flow
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Figure 6.32: The density in the current sheet is measured with the interferometer. The
density is increasing as the current sheet travels along the annulus.

is measured with the ICCD during the quiescent period.

Magnetic Field Measurements

The general character of the plasma pulse is described by the mode data. The average

magnetic field and radial location of the Z-pinch is found with the azimuthal array of

magnetic probes at z = 0 cm. The amplitudes of the Fourier components are shown in the

top plot of Fig. 6.33. The average magnetic field, the m0 component, stays at 0.1 T for

50 µs during the pulse. The normalized mode data describes the behavior of the Z-pinch.

Large mode activity is measured early in time as the pinch is forming, shown in the bottom

plot. Asymmetries in the current sheet cause this behavior. Shortly after formation, the

normalized mode amplitudes decrease below an empirical value 0.2. The mode activity stays

below this value for over 40 µs. The plasma current is located within 1 cm of the axis of

the machine during this time. During the quiescent period, a Z-pinch is seen on the axis of

machine. The amplitude and frequency of the normalized mode amplitudes then increases.
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Figure 6.33: The magnetic mode amplitudes measured at the z = 0 cm array are shown in
the top plot. The average magnetic at the wall is 0.1 T as the Z-pinch forms. The magnitude
of the magnetic field increases later in the quiescent period. The normalized mode is shown
in the bottom plot. The quiescent period is longer than the other studies.

At the end of the quiescent period, the amplitude of the oscillations in the magnetic mode

data are seen.

Emission Measurements

The size and shape of the Z-pinch are estimated with photos of the emission from the

plasma. Pictures of optical emission show a uniform Z-pinch during the quiescent period,

shown in Fig. 6.34. The photos are taken through a 2 inch hole in the outer electrode at

z = 0 cm. The end wall is on the left side of the photo. Late in time a kink can be seen in

the pictures.

Radiation, emitted from the Z-pinch, is used to measure the plasma properties. The

filterscopes and CCD monitor the line and bremsstrahlung radiation on each pulse. The

characteristic emission from a pulse is shown in Fig. 6.35. The level of Hα is high at the
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Figure 6.34: Photos of the plasma taken with the Imacon show a column of plasma during
the quiescent period. A band pass filter from 500 nm to 600 nm has used for this pulse. A
kink can be seen at 37 µs.

Figure 6.35: The filter scopes and PMT are used to measure the temporal evolution of the
radiation. The Hα level is low during the quiescent period. The PMT is tuned to C III for
this pulse. The brightness remains constant throughout the quiescent period.
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Figure 6.36: The interferometer measures the density of the Z-pinch at z = 0 cm. As the Z-
pinch forms a uniform density is seen in the assembly region. During the quiescent period,
the density is peaked on the axis of the machine. At the end of the quiescent period, a
uniform density is seen.

beginning and end of the quiescent period. During the quiescent period, the amount of

neutral H in the Z-pinch decreases. The bremsstrahlung radiation level is highest after the

quiescent period. As instabilities form in the plasma, regions of hot, dense plasma form in

the assembly region, which emit the bremsstrahlung radiation. This mechanism accounts

for most of the neutron emission seen on static Z-pinches and plasma focus experiments.

This is the main reason ZaP does not use D2 as its working gas.

Density Measurements

Density measurements of the Z-pinch are made with both chords of the interferometer.

The two chords are located at z = 0 cm. One chord is located through the center of the

machine and the other chord is located 1.5 cm above the axis of the machine. The density

measurements are shown in Fig. 6.36. During the formation of the Z-pinch a uniform

density is measured in the machine. The density is peaked during the quiescent period.
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The average density in the Z-pinch remains constant during this time. During the increased

mode activity, a uniform density is seen.

Spectroscopy Measurements

The velocity profile throughout the lifetime of the Z-pinch is measured with the C III

line at 229.7 nm. The intensity of the C III remains constant, shown in Fig. 6.35. This

configuration also has some on the most repeatable mode characteristics. Unlike the other

studies, the C III emission remains peaked in the Z-pinch. The local plasma parameters

can be found during all stages of the Z-pinch.

The velocity is uniform as the Z-pinch forms. A uniform velocity is measured in Fig. 6.37.

The emissivity is low, but peaked, while the initial spike in the normalized m1 is decreasing

. The velocity is 100 km/s across the Z-pinch. This velocity profile is similar to the other

studies. As the activity in the modes decrease, a velocity shear begins to form, shown

in Fig. 6.38. The velocity in the middle of the Z-pinch has decreased at this time. The

edge velocity is still 100 km/s. The large fluctuations in the velocity from the right side

deconvolution is due to the low emissivity in this region. The emissivity profile is peaked

during this time.

During the quiescent period a sheared flow is measured. The ICCD data are taken in

the middle of the quiescent period in Fig. 6.39 The velocity profile is similar to Fig. 6.38.

The width of the emissivity profile has increased. The velocity profile evolves during the

quiescent period. Figure 6.40 is towards the end of the quiescent period. The edge velocity

has decreased to zero. The center velocity is still 50 km/s. The velocity shear has been

reversed between these two times.

The velocity shear decreases as the mode activity increases. The velocity profile, in

Fig. 6.41, was taken as the mode activity begins to increase. The edge velocity is zero at

this time. The velocity in the center of the plasma has decreased to 20 km/s. The velocity

profile is similar to the C IV profile in Fig. 6.27. The velocity profile in Fig. 6.27 is uniform.

This profile was taken during the increased mode activity. The evolution of the velocity

profile can be measured when the emission of C III across the Z-pinch is constant.
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Figure 6.37: Shown are the chord integrated and deconvolved profiles of the emissivity
and velocity from pulse 30910005. A uniform velocity, 100 km/s, is measured during the
formation of the Z-pinch.
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Figure 6.38: The plasma parameters measured with the ICCD show the beginning of the
sheared flow in the Z-pinch. The emissivity profile is peaked on the axis of the machine
during this time. The velocity shear is on the edge of the Z-pinch. The large fluctuations
in the velocity from the right side deconvolution is due to the low emissivity in this region.
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Figure 6.39: The plasma parameters measured with the ICCD show a flow profile of the
Z-pinch during the middle of the quiescent period. The emissivity profile is peaked on the
axis of the machine during this time. The velocity shear is on the edge of the Z-pinch.
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Figure 6.40: The plasma parameters measured with the ICCD show a sheared flow Z-pinch
at the end of the quiescent period. The emissivity profile is peaked on the axis of the
machine during this time. The velocity shear is on the edge of the Z-pinch.
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Figure 6.41: Shown is the velocity profile as the mode activity increases. The velocity shear
has decreased to a low level during this time.
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Figure 6.42: During the increased mode activity the velocity shear is low. A Z-pinch is still
seen in the emission profile. The velocity is finite, but uniform.
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Chapter 7

DISCUSSION OF RESULTS

Stationary Z-pinches are formed in the ZaP experiment. The breakdown of the neutral

gas causes asymmetries in the current sheet. These perturbations are responsible for the

initial mode activity. Multiple diagnostics have been used to show that the Z-pinch is located

on the axis of the machine. All of the studies have shown that a stationary Z-pinch persists

in the assembly region during the quiescent period in the mode activity. The diameter of

the Z-pinch, measured for the emission photos, is about 2 cm. The density data agrees

with this estimate. The walls do not stabilize the instabilities since rwall/a = 10. As the

magnetic pressure increases, higher ionization states are measured in the Z-pinch. During

the quiescent period, the velocity is sheared.

As the mode activity increases, perturbations are seen in the Z-pinch. Photos of the

emission from the plasma show that the perturbations measured by the magnetic field

array are mostly from kinks in the Z-pinch. The data from the interferometer also suggest

that kinks, not sausages, are the predominant mode. The density of the Z-pinch does not

decrease during the increased mode activity. The perturbations do not cause a catastrophic

failure of the total plasma current. The measured currents and voltages do not have large

spikes on the waveforms. The Z-pinches formed in the ZaP experiment are similar to the

“pinch-like structures which are stable under certain operating conditions” seen in the LASL

experiments.

The general behavior of the plasma for all of the configurations is similar. The first

section compares the experimental results to the snowplow models developed in Sec. 3.2.

The formation and acceleration of the plasma behaves like the snowplow model described

by other experiments. Changes in the driving circuit and gas fill have affected the speed

of the current sheet. After the current sheet collapses onto the axis of the machine, a

stationary Z-pinch is seen in the assembly region. The lifetime of the Z-pinch is orders of
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magnitude greater than the instability growth time. Section 7.2 compares the measured

flow shear to the theoretical value of 0.1kVA. The assumptions used to calculate k and

VA are discussed. The measured flow shear is greater that the theoretical threshold. The

last section extends the description of the formation process. A heuristic model has been

developed which explains how the flow in the Z-pinch is maintained.

7.1 Comparison to Snowplow Models

The behavior of the current sheet is consistent with snowplow models. The time-varying

current model described in Sec. 3.2, predicts the location of the current sheet and the

magnitude of the plasma current. The current sheet velocity is increasing as it travels along

the acceleration region. The density in the current sheet is also increasing as neutral gas is

ionized and entrained in the plasma, shown in Figs. 6.20 and 6.32. The arrival time of the

current sheet, measured with the interferometer, is ahead of the magnetic field measured at

the same axial location. Unlike most slug models, the snowplow model includes the shape

of current sheet.

The snowplow model from Sec. 3.2.1 describes the current sheet in the ZaP experiment.

The capacitance, inductance, and resistance of the capacitor bank, shown in Fig. 4.7, was

verified by matching the current from a calibration pulse to an RLC circuit. The fill density

profile of the accelerator is unknown. The total amount of gas injected into the annulus

can be estimated from the characterizations described in Sec. 4.2. The gas was assumed to

uniformly fill the accelerator region for this model. The plowing efficiency, ki, was set to one

and γ was equal to 1.4 for the simulations. The results from the time dependent model are

compared to pulse 20718030, shown in Fig. 7.1. The model predicts the magnitude of the

current and location of the current sheet. Varying the fill density changes the velocity of

the current sheet. The current is not affected until the current sheet exits the acceleration

region.

The behavior of the current and current sheet velocity agree with trends seen in the

model. The methane and IDS studies used the same capacitor bank with a higher fill

density in the methane studies. The currents for both studies were the same. Changing the
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Figure 7.1: The experimental position and current (black) agrees with the theoretical pre-
diction (colored lines). The three fill densities are consistent with the characterization.
Changing the fill density changes the velocity without significantly affecting the current.

speed of the current sheet by changing bank voltage does not affect the current. The initial

current waveforms in Fig. 4.10 are the same for different bank voltages. As the density

increases, the acceleration of the current sheet is reduced. The methane studies had a lower

velocity of the current sheet than the IDS studies. The current sheet shape, used in model,

is not consistent with the shape measured by the LASL group. The position and currents

agree, because the difference in the inductance of the two shapes is small and the inductance

of the capacitor bank is much larger than the annulus.
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Figure 7.2: Shown are velocity of the current sheet and interferometry data from two impact
parameters taken at z=-25 cm. The two sets of data are used to find the slope of the current
sheet.

The exact shape of the current sheet cannot be measured on the ZaP experiment. The

current sheet shape, shown in Fig. 3.4, does not change by a significant amount when the

initial conditions change. The slope of the current sheet can be found by looking at the time

difference between the two chords of interferometry and calculating the velocity with the

axial magnetic probe array, shown in Fig. 7.2. The velocity of the current sheet is 75 km/s

as it passes the axial location of the interferometry chords. The difference of the impact

parameters of the two chords is 2.02 cm, and the upper chord begins to measure a density

0.1 µs after the lower chord. The measured slope of 2.6 is steeper than the calculated slope of

LASL model. A radially decreasing distribution of neutral gas in the accelerator could also

explain the discrepancy between the current sheet shapes. The model assumes a constant
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current in the snowplow. It was verified, by removing the outer electrode and letting the

current sheet expand into a vacuum. In the ZaP experiment, the plasma is compressed

against the outer electrode.

7.2 Comparison to the Sheared Flow Theory

A sheared flow Z-pinch is formed in the ZaP experiment. While, many of the plasma

properties have been measured with the avaliable diagnostics, the pressure profile has not.

Assumptions can be made to calculate VA, the kink growth time, and the flow shear required

to stabilize kinks. The measured plasma parameters can then be compared to the theoretical

predictions.

7.2.1 Calculation of the Z-pinch Equilibrium and Stability

Presently, the equilibrium pressure profile has not been measured on the ZaP experiment.

The avaliable measurements are consistent with a stable, hot, dense Z-pinch in the center of

the machine. Since the Z-pinch can be made stable to m0 perturbations by controlling the

pressure profile and most of the perturbations seen in the Z-pinch are due to m1 activity,

the pressure profile is assumed to satisfy Eq. 1.8. Future work on the ZaP experiment will

include efforts to measure the pressure profile.

Verification of Eq. 1.9 requires the flow profile, k, and VA must be measured. The

flow profile has been measured for various experimental configurations. The Helium study

showed that the velocities measured with passive spectroscopy are similar to the bulk

plasma. Measurements of Alfvén velocities and k are not possible at this time. Estimates

of these two quantities can be made with measurements of the pinch radius, the magnetic

field at the wall, and the average density in the Z-pinch. The diameter of the Z-pinch, d,

is measured with the Imacon photos. The interferometry and ICCD data agree with this

estimate. The shortest wavelength, given by λ = d/2π, places the largest constraint on the

flow shear. By combining the pinch radius, the magnetic field at the wall, and assuming

all the current is flowing in the Z-pinch, the magnetic field at the edge of the pinch, Ba, is

known. This assumption can be verified by measuring the temperature and comparing the
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maximum plasma pressure, P0, and magnetic pressure

P0 =
B2a
µ0
, (7.1)

if the edge pressure is zero. If impurities in the Z-pinch are neglected, ni = ne, the average

density in the Z-pinch, ρ̄, is given by

ρ̄ = min̄e (7.2)

where mi is the mass of a proton and n̄e is the average number density in the Z-pinch. The

average density of the Z-pinch and the magnetic field at the edge of the Z-pinch are then

used to define the Alfvén velocity

VA =
Ba√
µ0ρ̄

(7.3)

The measured velocity shear is then compared to 0.1kVA.

7.2.2 Experimentally Measured Shears Agree with the Theory

The experiment is studying sheared flow stabilization of plasma instabilities. The velocity

shear has been correlated with the quiescent period. The mode activity is large when the

shear is small. The assumptions made in Sec. 7.2.1 are used to calculate the parameters of

the Z-pinch. The results from the hollow inner electrode and nose cone studies are summa-

rized in Table 7.1. The measured plasma parameters for the hollow inner electrode study are

averaged over the time interval which the ICCD data was taken on pulse 726025. The aver-

age plasma parameters from the quiescent period are used for the nose cone study. The two

configurations have similar characteristics in spite of the different electrode configurations

and capacitor banks.

The amount of velocity shear required to stabilize the ideal MHD modes is different for

various authors. The results during the quiescent period had large, local velocity shears.

The velocity shear from pulse 31014003, shown in Fig. 7.3, shows that the threshold may be

0.1kVA. The velocity shear is shown on the second graph. The shear is lower than 0.1kVA as

the mode activity increases. The chord-averaged velocity profile is similar in Fig. 6.27. Using

the formation process described in Sec. 3.1, the ZaP experiment has generated Z-pinches

which show static MHD instabilities are suppressed with sheared flows.
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Table 7.1: The plasma parameters from two of the studies are similar. Equation 7.2 is not
valid for the methane studies. In spite of the different bank energies used, the Alfvén velocity
and temperature of the Z-pinch are the same. dVz/dr is calculated using the velocity in the
center of the Z-pinch and assuming the velocity linearly decreases to zero on the edge. The
measured velocity shears are larger on the edge.

Parameter
Hollow Inner

Electrode Study

Nose Cone

Study

a (cm) 1 1

Bwall (T) 0.124 0.1

Ba (T) 1.24 1.0

ne (m−3) 3.2x1022 2x1022

(Ti + Te)calculated (eV) 240 250

(Ti)measured (eV) 100-150

VA (km/s) 150 150

0.1kVA (s−1) 4.7x106 4.7x106

dVz/dr (s−1) ≥1.0x107 ≥6.0x106

τgrowth (ns) 21 21

tquiescent (µs) 15-20 30-40

7.3 Deflagration Process

The formation process generates a Z-pinch with an embedded flow. The sheared velocity in

the Z-pinch has been correlated with the quiescent period in the magnetic modes. Another

process in the accelerator is ejecting plasma during the quiescent period. The flow in the

Z-pinch may be maintained by the deflagration process describe by D.Y. Cheng [14]. The

formation and sustainment process can be explained with a heuristic model. The model

and the experiment measurements leading to this description are presented in this section.

During the quiescent period, a source of plasma is needed at the end of the inner electrode

to drive the plasma velocity. The inner region of the Z-pinch is flowing during the quiescent

period. A sheared flow requires a source and sink of plasma at the ends of the Z-pinch to
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Figure 7.3: The velocity shear is below the threshold as the mode activity increases. The
horizontal lines on the second graph are at ±0.1kVA. The velocity shear is below the
threshold as the mode activity increases.

satisfy the continuity equation. There are two possible sources of plasma in the accelerator,

the slow plasma or the accelerator operating in a deflagration mode. A deflagration mode in

the accelerator injects plasma into the acceleration region at the end of the inner electrode.

The plasma is then entrained in the Z-pinch driving the velocity profile. Although other

sources of plasma may exist, the deflagration mode appears to be the driving mechanism

for the velocity shear.

7.3.1 Initial Breakdown

The initial formation process is the same as was described in Sec. 3.1. The breakdown of the

neutral gas is shown in Fig. 7.4. The initial gas fill in the annulus is shown in the top figure.

Changing the gas puff timings adjusts the initial density profile in the annulus. The voltage

is applied, breaking down the gas, and forming a uniform current sheet. The snowplow

model describes the acceleration of the current. The neutral gas in front of the current
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Figure 7.4: Shown is a heuristic picture of the initial steps in forming a sheared flow Z-pinch.
The dashed line is the center line of the experiment. The velocity of the plasma is shown
as black arrows. The rest of the colors are described at the bottom of the frames. The first
frame shows the distribution of neutral gas just before the voltage is applied. The second
frame shows the breakdown of the gas after the voltage is applied. The initial rundown of
the current sheet is shown in the last frame.

v

sheet is ionized in the shock and entrained in the current sheet. Plasma is also pushed up

against the outer electrode by the snowplow. Neutral gas is left behind the snowplow.
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Figure 7.5: Shown is a heuristic picture of the current sheet as it reaches the end of the
inner electrode and begins to form a sheared flow Z-pinch. The dashed line is the center
line of the experiment. The velocity of the plasma is shown as black arrows. The rest of
the colors are described at the bottom of the frames. The frames show the plasma (current
distribution) beginning to widen along the outer electrode.

7.3.2 Transition During Rundown

The current sheet widens as it travels towards the acceleration region. As the current sheet

travels towards the assembly region, the trailing edge begins to move in the −z direction,
shown in Fig 7.5. The widening of the current sheet is a transition from a snowplow to a

deflagration process during the rundown [69]. The amplitudes of the normalized mode at
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Figure 7.6: Shown are the current densities along the outer electrode at 5 µs and 10 µs
intervals along the outer electrode for the two configurations. The current sheet is wider
than the snowplow model prediction. The current density moves in the minus z direction.

z = −25 are small. The slope of the magnetic field along the outer electrode decreases as
the current sheet is traveling towards the assembly region. The radial current density along

the outer electrode is given by Eq. 5.26. Shown in Fig. 7.6 are the current densities along

the length of the accelerator. The first two times show a well defined current sheet. As the

current sheet travels along the accelerator, it begins to widen. The trailing edge remains

near the gas injection ports and then begins moving in the opposite direction of the J×B
force on the plasma. The current attachment along the outer electrode will only move in

the positive z direction if the slow plasma is the source. The attachment point may move

in the −z direction when the accelerator operates in a deflagration mode. This behavior is
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Figure 7.7: Shown is a heuristic picture of the final phases of the formation of a sheared
flow Z-pinch. The dashed line is the center line of the experiment. The velocity of the
plasma is shown as black arrows. The rest of the colors are described at the bottom of the
frames. The first frames show the zippering action of current sheet as it collapses forming
the Z-pinch. The last two frames show the final configuration of the Z-pinch. Plasma from
the accelerator is consistently being supplied to the Z-pinch.

indicative of a deflagration mode in the accelerator.

7.3.3 The Flow is Maintained during Quiescent Period

Once the current sheet reaches the end of the inner electrode the entire current sheet col-

lapses onto the axis. For this mode to exist plasma must be present in the acceleration



174

Figure 7.8: Plasma is measured upstream from the breakdown, during the quiescent period.
Shown are the line integrated densities for z = −25 cm (black), z = −65 cm (red), and
z = −85 cm (blue). During the quiescent period plasma is present at all locations. As the
plasma density decreases at z = −25 cm the mode activity increases.

region. This mode has current flowing in the acceleration region. The current cannot flow

if plasma is not present. Plasma is present in the accelerator, shown in Figs. 7.8 and 7.9.

The large, steep change in the density indicates that the snowplow passing that location.

The density then decreases to approximately zero, consistent with the snowplow model. As

the density increases, the mode activity at z = 0 cm decreases. The density stays elevated

throughout the quiescent period. As plasma density decreases the mode activity increases.

7.3.4 End of Quiescence is Correlated the End of the Deflagration

The quiescent period ends, when either the source or the sink at the ends of Z-pinch is not

able to maintain the flow in the Z-pinch, see Fig. 7.10. The plasma flow in the Z-pinch is

maintained by the deflagration process in the acceleration region. When the process ends,

instabilities are seen in the Z-pinch.

The plasma is being accelerated out of the acceleration region during the quiescent
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Figure 7.9: During the quiescent period plasma is present in the accelerator. Shown are the
line integrated densities for z = −25 cm (black) and z = −65 cm (red) from configuration
2. During the quiescent period plasma is present at both locations. As the plasma density
decreases the mode activity increases.

period. There is a J×B force on the plasma as shown in Fig. 7.11. The equations used to

generate these contours have been explained in Sec. 5.5.5. The partial of the contours with z

is proportional to the current density at the outer electrode normalized by the total current

in the acceleration region. The parabolic shape of the 10% contour from 0 to 20 µs shows the

leading edge of the current traveling along the outer electrode during the formation process.

The close proximity of all the contours show a narrow current sheet at this time. As the

current sheet travels along the outer electrode the current sheet widens as was shown in

Fig. 7.11. The 90% contour’s change in shape at 10 µs is due to the current sheet widening.

As the current sheet continues to widen, more contours deviate from the 10% contour. The

location of the current attachment points in the accelerator can be monitored with this

graph.

In the assembly region, the contours have a different interpretation. The assumptions

used to derive the current density calculation are not valid. All of the current in this region
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Figure 7.10: Shown is a heuristic picture of the final phases of the sheared flow Z-pinch.
The dashed line is the center line of the experiment. The velocity of the plasma is shown
as black arrows. The rest of the colors are described at the bottom of the frames. The first
three frames show the a deflagration mode supplying plasma to the Z-pinch. During this
time plasma is piling up on the end wall. The last frame shows the plasma going unstable
as the deflagration mode ends.

is assumed to be in the Z-pinch. The perturbations in the magnetic field are due to the

motion of the Z-pinch off the axis of the machine. The change in the magnetic field due to

displacements of the Z-pinch is explained in Sec. 5.5.4. Perturbations in the plasma toward

the axial array will increase the normalized magnetic field. The growth and motion of the

perturbations can be seen in the 20% contours from 40 to 45 µs, see Fig. 7.12. The entire
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Figure 7.11: Magnetic data normalized by the current showing the axial dependence of the
current. The horizontal line is at the end of the acceleration region. Below this line the
contours represent axial current attachment locations. Above the line the contours are used
to follow perturbations ion the Z-pinch. The horizontal lines indicate the beginning and
end of the quiescent period. The perturbations, the green contour at 35 µs, in the Z-pinch
are moving away from the acceleration region.

behavior of the plasma during a pulse can be understood with these two plots.

The quiescent period ends when the current density in the accelerator goes to zero.

During the quiescent period half of the total current is connected inside the acceleration

region. This implies there is a J×B force on the plasma in the accelerator. The ionization

front is between the 50% and 90% lines. The oscillations seen in Fig. 7.12 from 50 to 70 µs
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Figure 7.12: Contours of the magnetic field normalized by the current showing the axial
dependence of the current. The horizontal line is at the end of the acceleration region.
Below this line the contours represent axial current attachment locations. Above the line
the contours are used to follow perturbations ion the Z-pinch. The horizontal lines indicate
the beginning and end of the quiescent period. The mode activity increases as the current
exits the acceleration region.

may be from an oscillatory instability in the ionization region, described by Morozov [42].

The axial motion of these lines indicate the motion of the deflagration ionization front.

During the deflagration mod, plasma from the accelerator is being fed into the Z-pinch. As

the connection points move towards the assembly region, the mode activity increases. The

primary source of plasma is no longer driving the velocity shear.
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This model has been used to increase the length of the quiescent period. The gas puff

timings used in the nose cone studies were chosen to fill the acceleration region with neutral

gas. A static fill cannot be used since the current sheet will form at the insulator. All the

neutral gas would then be entrained in the current sheet, emptying the acceleration region

and slowing the current sheet. The pressure near the gas injection plane is then increased by

puffing four outer valves later in time. The breakdown of the gas occurs in the high pressure

region. The plasma then evolves as was described. These studies have the longest quiescent

periods. Filling the acceleration region behind the breakdown enables the deflagration to

be maintained. This heuristic picture can be used to design a steady-state Z-pinch.
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Chapter 8

CONCLUSIONS

The ZaP experiment is studying sheared flow stabilization of plasma instabilities. To test

this theoretical prediction, a unique machine has been built. The experimental hardware

has allowed for safe and steady operation, with a short turn around time between pulses. As

the understanding of the experiment has increased, modifications have been made, which

have increased the performance of the experiment.

A broad range of diagnostics are available on the experiment. The suite of diagnostics

measures the plasma parameters necessary to verify that ∂Vz/∂r ≥ 0.1kVA. Like most

projects, the ZaP experiment uses modern technology to improve existing diagnostic tech-

niques. New analysis techniques improve information gained from the diagnostics. Two

new methods are used to calculate the plasma properties. The magnetic field at the probes

from perturbations of the current are found without calculating the induced surface cur-

rents. A new technique is used to deconvolve spectral intensities. The assumptions have

been verified with experimental measurements. The impurities have the same parameters

as the bulk plasma. The present diagnostics have been improved to reliably measure the

plasma properties on every pulse.

One of the goals of the experiment is to study fusion grade plasmas. The initial conditions

of the experiment affect the performance of the experiment. The plasmas made in the

experiment are long lived and clean under certain operating conditions. The impurity and

neutral content of the Z-pinch is low. Throughout the quiescent period heating is seen

in the Z-pinch. The particle confinement time is consistent with coronal equilibrium. By

using various experimental configurations and driving circuits the lifetime of the Z-pinch

has been increased. With the present understanding and performance of the machine, the

temperature and lifetime of the Z-pinch can be increased.

A heuristic understanding of the experiment has increased the performance of the ex-
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periment. The behavior of the acceleration region agrees with previous experiments. The

Z-pinch formation process is consistent with the model. A stable Z-pinch is on the axis

of the machine throughout the quiescent period and a sheared flow is present during this

time. The deflagration process in the accelerator maintains the flow in the Z-pinch. When

the deflagration mode and flow decrease, instabilities are seen in the Z-pinch. Operational

changes using this model have increased the lifetime of the Z-pinch.

The effect of flow shear stabilization has been correlated on the experiment. The evolu-

tion of the plasma in the experiment has two periods of high mode activity. During these

periods, the velocity in the plasma is uniform. A sheared flow is measured during the qui-

escent period. Exact comparisons to the theory are not possible at this time, since the

equilibrium pressure profile is unknown, stability thresholds for the velocity profile cannot

be found. The behavior of the plasma is consistent with the theory described in Ref. [58].
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Chapter 9

FUTURE WORK

The ZaP experiment has used a sheared flow to sustain an otherwise unstable config-

uration. The main study has not been completed. More work needs to be done to verify

that the measured sheared flows stabilize the sausage and the kink mode in the Z-pinch.

This requires new diagnostics, which can measure the pressure profile. While the present

study continues, applications of the experiment beyond the basic physics study should be

investigated. The applications can help guide the direction taken on the ZaP experiment.

They can also lead to new devices which may ultimately become an economic source of

electricity.

9.1 Improvements on the ZaP Experiment

Future work on the ZaP project will include measuring the pressure profile. The diagnostics

presently used either measure chord integrated data and use deconvolution methods to cal-

culate the plasma parameters. The pressure profile can be measured locally with Thomson

scattering. Initial work has been performed on this system. Another method of measuring

the pressure profile is with Zeeman splitting. More analysis of the data from this measure-

ment is needed since it is a chord integrated measurement and the effect is small. Once the

pressure profile is known, simulations of the Z-pinch can then determine the sheared flow

threshold.

Another diagnostic which would aid with parameter studies is a multi chord IDS system.

Presently the time evolution of the velocity profile is obtained by taking ICCD data at

different times on the pulses throughout a day of operation. The evolution of the velocity

profile is then found using pulses with similar mode characteristics. A multi-chord IDS

system would significantly decrease the number of pulses required to obtain a time history

of the radial velocity profile, which presently takes about 50-60 pulses. This system would
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measure evolution of the velocity profile throughout the entire pulse. The velocity shear

threshold could be obtained for multiple experimental configurations with this diagnostic.

9.2 Applications

Studying sheared flow stabilization of plasma is important for the fusion effort. The most

important aspect of this research is the additional understanding of basic plasma physics

that is gained. A sheared flow Z-pinch will simplify the design of a reactor, since there are no

externally applied fields. The weight savings and inherent flow also make this configuration

an attractive high thrust, high specific impulse, Isp, thruster. These applications need

scaling information to determine the operating parameters of the devices. Studies are needed

on steady state Z-pinches, which approach fusion conditions.

9.2.1 Nuclear Power Plant

The main purpose for studying magnetic confinement of plasma is energy generation. A

sheared flow Z-pinch is an attractive configuration for a fusion power plant. The flow through

Z-pinch is a high beta machine. All of the magnetic energy is used to compress the plasma.

There are no external magnetic fields needed for confinement nor stability. Conceptual

designs for a reactor have been done by C.W. Hartman et al. and A.A. Newton et al.

[45, 24]. A 10 keV plasma with a number density of 1026 m−3 would have to be at least 1 m

long, the present length of the Z-pinch in ZaP. Fueling would come from plasma streaming

in from the acceleration region and fusion would occur in the Z-pinch. The hole placed in

the center of the end wall electrode allows the high energy ash to be naturally exhausted

from the confinement region. Since the plasma is moving at a high velocity, a segmented

MHD generator could be used at the exit to slow the plasma and generate electricity. This

is one of the few configurations which could use the hot ash directly to generate electricity.

Other configurations must first remove the ash through a vacuum pump or use the coolant

from the walls to generate electricity. The hot gas from the sheared flow Z-pinch can also

be used to run steam generators.
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9.2.2 Space Thruster

ZaP could also be made into a high specific impulse and large thrust rocket. Z-pinches have

many advantages over other magnetic confinement devices. Z-pinches are linear devices

without external magnetic fields. The lack of externally applied magnetic fields reduces the

mass of the system compared to other magnetic confinement devices. The greatest problem

with this design has always been gross instabilities. ZaP is attempting to solve this problem

by verifying the stabilizing effect of sheared flows.

The extension of the ZaP experiment to a thruster has been studied by U. Shumlak [56].

The endwall would be replaced with a nozzle. The bulk of the plasma in the Z-pinch moves

away from the inner electrode with a high velocity. Aneutronic fuels could be completely

burned in a 1.5 m to 18 m long Z-pinch. The portion of the plasma which enters the

inner electrode would be used in an energy converter to supply power to the thruster. The

large thrust and high specific impulse from such a thruster, may make manned deep space

exploration possible.

9.2.3 Steady State Operation

The ZaP experiment has been funded as a basic physics experiment. It has applications

to fusion energy and space propulsion. This could require steady state operation. The

present model of the phases of the experiment show that steady state operation of this

configuration is possible. Shown in Fig. 9.1 is a diagram of how the experiment can run in

steady state. Neutral gas is constantly flowing into the acceleration region. A deflagration

mode will supply plasma to the Z-pinch. The stability is provided by the sheared flow. The

pressure is maintained by supplying a constant current to the experiment. The plasma is

then exhausted through the end wall. This mode of operation is only limited by the gas

injection rate, pumping speed, and driving circuit, not instabilities.
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Figure 9.1: A sheared flow Z-pinch can be run in steady state. The deflagration mode is
sustained by constantly injecting neutral gas into the acceleration region. Current in the Z-
pinch would provide the containment. The Z-pinch is stabilized with the generated sheared
flow.
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Appendix A

MAGNETIC FIELD IN A FLUX CONSERVER

A.1 Introduction

Often in magnetically confined plasma experiments, magnetic probes measure the magnetic

field at the surface of a flux conserver. The magnetic field for an ideally located plasma

current is well understood. When the plasma current is displaced, the magnetic field tries

to penetrate the conducting walls. Surface currents are created in the walls, which keep the

flux constant. The fields measured at the wall are a sum of the fields from the plasma current

and the surface currents. While the magnetic field at the wall from the plasma current is

easily calculated, the calculation of the magnetic field from the surface currents in the wall

is difficult due the coupling of the currents and the magnetic field. A simple relationship

between the surface magnetic field and the plasma current is derived. This relationship

does not require the calculation of the surface currents, saving time when analyzing surface

magnetic measurements.

On the ZaP experiment, a Z-pinch is formed inside a copper tube. The magnetic field

is measured at various locations along the wall. When the plasma current is located on the

z axis, the surface magnetic field, Bθ, is given by Bθ = µ0Ip/2πrwall where Ip is the plasma

current and rwall is the wall radius. The Z-pinch moves on time scales faster than the soak

through time of the copper. As the plasma moves, surface currents are created along the

wall which keep the normal component of the magnetic field zero. The total magnetic field

for the displaced current is measured by the magnetic probes in the wall. Relating the

measured magnetic fields to the displacement of the current is time consuming when the

distribution of the surface currents is calculated. It can be shown that the surface magnetic

field can be calculated by using the magnetic field of unperturbed current and the magnetic

field of a loop of current which models the perturbation. With this method, the distribution
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Figure A.1: Shown are the skin depth of copper (black) and stainless steel (cyan) for the
frequency range of the ZaP experiment. The horizontal lines are the thicknesses of the
tank (blue) and the outer electrode (orange). The vertical line corresponds to the slowest
frequency of the experiment. Since the skin depth is smaller than the thickness of the outer
electrode, the electrode acts as a flux conserver.

of the surface currents do not need to be found to understand the measured magnetic fields.

This method is described in the next section. The A.3 section shows the agreement of

the method when the surface current is found for different types of displacements. The A.4

section shows comparisons with experiments. The final section is the conclusion.

A.2 Theory

As kinks form along the Z-pinch the current is displaced from the z axis. This changes the

magnetic field along the outer electrode. The magnetic field changes on time scales faster

than the soak through time of the copper electrode, show in Fig. A.1. The large frequencies

justify the perfect flux conserver assumption used in this analysis.

The perturbation of the current is modeled as an axial current and as a loop of current,

which follows the perturbation and returns along the z axis in the opposite direction as the
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Figure A.2: A loop of current (red) used to model the perturbation to the Z-pinch. The
axis are shown as black lines. Projections of the current onto the planes are shown as green
lines.

axial current, shown in Fig. A.2. The magnetic field at the inner surface of the wall, Bwall,

is given by

Bwall = B
(0)
wall +B

(1)
wall +B

(2)
wall (A.1)

where B(0) is the magnetic field from the axial current, B(1) is the magnetic field from the

loop current and B(2) is the magnetic from surface currents, j(2), on the wall. The wall

subscript has been dropped since all of the fields are measured at the wall. The boundary

conditions, B.C., at the wall for a perfect conductor are

B
(1)
⊥ +B

(2)
⊥ = 0 B.C. 1: at the wall of the flux conserver (A.2)

B(1) +B(2) = 0 B.C. 2 : outside the flux conserver (A.3)

The magnetic field at any location along the electrode can be found by drawing an Amperian

loop around an element of the induced wall current. The surface current is centered in the

element, shown in Fig. A.3. Using the B.C.s and letting the thickness of the element goto
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Figure A.3: Shown is an edge view of an element of the outer electrode with the magnetic
fields. The element is black, j(2) is red, B(1) is blue and B(2) is magenta. The arrows show
the direction of the fields. The current is placed in the center of the element. Th magnetic
fields are calculated at the corners of the element.

zero, B(2) can be written in terms of B(1)

B
(2)
⊥ = −B(1)⊥ (A.4)

B
(2)
, = B

(1)
, (A.5)

The total magnetic field inside the wall is now found without calculating the surface currents

B, = B
(0)
, + 2B

(1)
, (A.6)

B⊥ = B
(0)
⊥ (A.7)

. B
(1)
, is found with the Biot-Savart law.

A.3 Calculation of the Surface Currents

Equation A.7 is verified by calculating the surface magnetic fields, including the surface

currents from simulated displacements. The outer electrode is divided into elements shown

in Fig. A.3. The current is placed in the center of the element and the magnetic field is

calculated at the corners. The thickness of the element is kept larger than the maximum

spacing of the currents to remove localized concentrations of the magnetic field caused when

the current is discretized. The displaced currents are defined such that the original magnetic
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and the perturbed magnetic field decouple. Ampere’s law can be written as

∇×
p
B(0) +B(1) +B(2)

Q
= µ0

p
j(0) + j(2)

Q
(A.8)

where j(0) is the original surface current of the wall and j(2) is the additional surface current

of the wall needed to keep the flux constant. Since the B(0) and j(0) terms cancel, the B(2)

terms are unknown and derivatives with respect to r are infinite for a thin surface current,

the surface currents are found iteratively using Eq. A.8. The (0), (2), and d/dr terms are

neglected giving

Pj(2) = 1

µ0
∇×B(1)r (A.9)

where Pj(2) is the additional surface current added at each iteration. Since B.C. 2 is not
used, it serves as a check that the calculated surface currents are correct. Two types of

displacements are studied, a constant displacement of the current away from the axis and

sinusoidal perturbations along the axis.

A.3.1 Constant Displacements

A straight current, located of the off the axis of the electrode, will change the magnitudes

of the return surface current but not the direction. The electrode is divided into infinitely

long strips of width ds = rwall dθ. The resulting surface magnetic field is then given by

B(j) =
3
i

µ0I
(i)
p
−y(ij)î+ x(ij)ĵ

Q
2π (rij)2

(A.10)

where B(j) is the magnetic field at node j, I(i) is the current at location i, and x(ij), y(ij),

r(ij) are the x, y, and total distances from the current to the node respectively. The surface

current for the next iteration, I
(i)
(n+1), is given by

I
(i)
(n+1) = I

(i)
(n) +

2ds

µ0rwall

w
dBr
dθ

W(i)
(n)

(A.11)

The magnetic field is calculated with an IDL code, find b wall.pro Sec. C.2.5. The calculated

magnetic field is shown in Fig. A.4. The theoretical magnetic field, dashed blue line, agrees

with calculated magnetic field, black line. The magnetic field normal to and outside of the

electrode is zero.
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Figure A.4: The magnetic fields are calculated for a constant displacement of the current
off axis. The different magnetic fields are defined in Eq. A.1. The calculated magnetic field
from the code and the estimated magnetic field from Eq. A.6 are identical.

A.3.2 Sinusoidal Displacements

When the displacement of the current has a z dependence, axial magnetic fields and az-

imuthal surface currents are generated. The current is assumed to have the displacement,

shown in Fig. A.2, given by

x(z) = A cos

w
ntwistπ

z − ls
l0

W
cos

w
noscπ

z − ls
l0

W
(A.12)

y(z) = A sin

w
ntwistπ

z − ls
l0

W
cos

w
noscπ

z − ls
l0

W
(A.13)

where A is the maximum radial displacement, ls is the starting location of the perturbations,

l0 is the total length of the perturbations, ntwist is the number of azimuthal cycles, and nosc

is the number of oscillations. The current loop is completed with the current returning

along the axis. The parameters which describe the perturbation in Fig. A.2 are A = 0.05,

ntwist = .5, nosc = 1, ls = 0.15, and l0 = 0.30. B(1) is used as the initial guess of the

magnetic field. The surface current is found with Eq. A.9. The radial magnetic field from

the perturbation and the surface currents needed to cancel the radial field are shown in
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Figure A.5: The radial magnetic fields at the outer electrode are found using the Biot-Savart
law. The surface currents which cancel B⊥ are the arrows.

Fig. A.5. The total magnetic field at the wall is given by Eq. A.8. This process is repeated

until Br = 0. The total magnetic field from finding the surface currents and using Eq. A.6

are shown in Fig. A.6. The differences in the two fields are from Br not going completely

to zero and the size of the elements.

A.4 Experimental Verification

The magnetic field of an off-axis current is measured using the calibration rod. After the

probes are calibrated the rod is moved off the axis. The procedure used to calibrate the

probes is repeated. The magnetic field of a known displacement is then measured. The



201

Figure A.6: Shown are the magnetic fields calculated for the displacement of the current
shown in Fig. A.2 at the wall. The solid contours are magnetic fields calculated using the
surface currents. The total magnetic field from the loop and surface currents are shown as
dashed lines. The total tangential field is approximately twice the tangential field from the
loop of current alone.

results are shown in Fig. A.7. The calculated magnetic fields from Eq. A.7 agree with the

measured fields as the calibration rod is displaced.

A.5 Conclusion

This magnetic field can be found at the surface of a flux conserver without calculating

the surface currents. This result has been verified computationally and experimentally. Not

having to calculate the surface magnetic fields leads to a great saving of computational time.
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Figure A.7: Shown are the magnetic fields for an off-axis current. The colors correspond
to the theoretic values. The symbols are the average magnetic field at each probe for four
pulses. The displacement of the rod is shown in the upper right corner. The error bars are
smaller than the symbols.

The method enables the quick calculation of the magnetic field measured at the probes for

any perturbation of the current.
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Appendix B

GAS PUFF STUDIES

The reproducible Z-pinches with a long quiescent period are only formed with the proper

initial conditions. A survey of gas puff timings was performed from March 12, 2003, to May

5, 2003, to characterize the behavior of the machine. The outer electrode extension was just

added and the current was driven with the pulse forming network. The number of 9 kV

pulses taken at each gas puff timing are shown in Fig. B.1. At least four pulses were taken

at each setting. Large changes in the settings were avoided throughout a day of running

to keep wall conditions similar. Additional pulses were taken at many of the settings to

improve the statistics of regions where surveys may be conducted.

The snowplow model predicts that the final velocity of the current will decrease when

the neutral density in the accelerator is increased. By puffing the valves earlier in time,

the arrival time of the current sheet at the z = 0 cm azimuthal array should be later.

The calculation of velocity of the current sheet at the exit of the accelerator is affected by

filaments. Since 441 pulses are used for this study, the arrival time at the z = 0 cm array,

shown in Fig. B.2, is used to measure the velocity. As expected, the velocity of the current

sheet is decreases. The outer gas puff valves timing has a larger effect on the velocity. The

slopes of the 18 and 19 µs contours are less than 45 degrees. As the gas puff timing is moved

earlier in time, gas escapes from the accelerator. The velocity of the current sheet has a

maximum at the -1.7 ms inner gas puff and -1.0 ms outer gas puff timing. As the gas puff

timings are moved earlier, the current sheet velocity increases.

This survey was conducted to evaluate the performance of the machine as the gas puff

timings were changed. Two of the many ways used to characterize the Z-pinch are shown

in Fig. B.3. The repeatability of the pulses has been related to the plasma current for this

experimental configuration. The top contour shows that at the extreme of the gas puff

timings the plasma current is not reproducible. Small differences of the plasma current are
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Figure B.1: The number of 9 kV pulses taken at each set of gas puff timing are shown. The
eight outer valves were all puffed at the same time. The gas puff settings in the upper right
corner should be avoided. The plasma is starved of current carriers for this gas puff setting.

measured for the normal operation region. Another method of characterizing a pulse is to

look at the current exiting the hole in the outer electrode endwall. Increases in this current

have been correlated to longer quiescent periods. Current exiting the endwall is also needed

when characterizing end losses. The bottom contour shows optimal timings, which can be

used for end loss studies.

The length of the quiescent period is one of the main figures of merit of the experiment.

The average length of the quiescent period from two of the azimuthal arrays are shown
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Figure B.2: The arrival time of the current sheet at the z = 0 cm array is shown. This time
represents final velocity of current, the current forms at z = −75 cm at 0 µs on all of the
pulses. Earlier gas puff timings slow the current sheet.

in Fig. B.4. Although this seems scattered, there are trends which guide the operation

of the machine. The first being, the timings with the longest quiescent periods do not

generate the most repeatable pulses. The settings with the longest quiescent periods often

generate Z-pinches with two different behaviors of the mode amplitudes. In one type of

pulse, the mode amplitudes are similar to Fig. 6.9. In the second type of pulse, the mode

amplitude does not change character until the current has significantly decreased, similar to
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Figure B.3: Shown are contours of the repeatability of the plasma current and the total
number of coulombs exiting the end during the first half cycle of the current. Desirable
characteristics are shown in red. The reproducibility of the driving current indicates timings
where the Z-pinches have a similar behavior. The total coulombs exiting the endwall are
measured with a Rogowski coil. It has been correlated with the length of the quiescent
period.

Fig. 6.33. When the pulses are not reproducible, surveys which rely on multiple pulses may

give ambiguous results. The experiment often uses gas pulse settings which do not create

the longest quiescent periods for this reason.
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Figure B.4: Shown are the average quiescent periods at the z = 0 and z = 35 arrays. The
standard deviations of the quiescent periods are also shown. The red contours indicate
longer quiescent periods and more repeatable pulses.
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Appendix C

IDL CODES

The large amounts of data and pulses on the ZaP experiment require analysis codes.

The codes included in this chapter are used to reduce the data in the trees or to calculate

theoretic predictions. All the codes are written in IDL because MDSplus can automatically

run IDL codes during a pulse. Most of the subroutines needed for the codes are included

or may be written similar to the included samples. The functions which are not included

in this work, i.e. data, stremo, etc., are presently stored in a repository at the University of

Washington. These functions are specific to reading the data from the trees or are used for

plots of the data. They may be obtained by contacting the author or the Plasma Dynamics

Group at the University of Washington. Since the codes run without user intervention, the

results from them should always be verified. Each section in this appendix describes the

codes and the methods to verify the analyzed data.

C.1 Snowplow Codes

The codes in this section are used to calculate the location of the current sheet, the cur-

rent and the shape of snowplow. The theoretical predictions are described in Sec. 3.2.

snow plow time.pro calculates the location of the current sheet and compares it to the the-

oretical prediction. The shape of the snowplow is calculated with con cur sp dis.pro.
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C.1.1 snow plow time.pro

pro snow_plow_time,shot,ps=ps,V_mb=V_mb

default,shot,20718030

default,ps,0

default,v_mb,9

if ps eq 1 then begin

SET_PLOT, ’PS’

DEVICE, FILENAME=’snow_plow_’+stremo(shot)+’.ps’, /color, $

/portrait,ysize=10,yoffset=1.2

!p.thick=3

!x.thick=3

!y.thick=3

!p.charthick=2

!p.charsize=1

!p.multi=0

endif

n_el=321

dela_t=2.17e-3

P=3.54E-01

gamma=1.4

R0=0.01

C0=0.00068

L0=0.000000543

V0=v_mb*1000.

k=1

mu0=4*!PI*0.0000001

n_total=5e19

r_inner=0.05

r_outer=0.1
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l_inner=1.0

m=2*1.67E-27*4.5

bb=2*(r_outer-r_inner)/r_outer

rho_0=n_total*m/(l_inner*!PI*(r_outer^2-r_inner^2))

P_calc=R0*sqrt(C0/L0)

q_calc=(C0^2*V0^2*bb^2/(2*!PI*r_inner^2*rho_0*L0^2*k))*(mu0/(4*!PI))^3

q=q_calc

tau=findgen(n_el)*dela_t

a=fltarr(n_el)+(3.+gamma)

b=fltarr(n_el)

c=fltarr(n_el)

phi=fltarr(n_el)

y=fltarr(n_el)

phi(1)=dela_t

for i=2,n_el-1 do begin

b(i)=-2*(gamma-1)*y(i-2)

c(i)=-8*y(i-1)^2+(3+gamma)*y(i-2)^2-8*dela_t^2*q*phi(i-1)^2

y(i)=(-b(i)+SQRT(b(i)^2-4*a(i)*c(i)))/(2*a(i))

phi(i)=(4*(1+y(i-1))*phi(i-1)-2*(1+y(i-2))*phi(i-2)+ $

P*dela_t*phi(i-2)-2*dela_t^2*phi(i-1))/ $

(2*(1+y(i))+dela_t*P)

endfor

dy_dt=fltarr(n_el)

d2y_dt2=fltarr(n_el)

eqn1=fltarr(n_el)

eqn1a=fltarr(n_el)

eqn1b=fltarr(n_el)

eqn2=fltarr(n_el)

for i=1,n_el-2 do begin
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dy_dt(i)=(tau(i+1)-tau(i-1))/(2*dela_t)

d2y_dt2(i)=(tau(i-1)^2-2*tau(i)^2+tau(i+1)^2)/dela_t^2

eqn1(i)=d2y_dt2(i)/2+(gamma-1)*dy_dt(i)^2/2-q*y(i)^2

eqn1a(i)=((1+y(i))*phi(i)-2*(1+y(i))*phi(i)+ $

(1+y(i-1))*phi(i-1))/dela_t^2

eqn1b(i)=(phi(i+1)-phi(i-1))/(2*dela_t)

eqn2(i)=eqn1a(i)+P*eqn1b(i)+phi(i)

endfor

t=tau*SQRT(L0*C0)

loc=y*(mu0*bb/(4*!PI*L0))^(-1)

cur=phi*V0*C0/sqrt(L0*C0)

;get shot data

ss,shot

ip=data(’sigadd(\i_rf_ign,\i_lf_ign)’,xaxis=t_ip)

b_name=[’\b_n120’,’\b_n100’,’\b_n80’,’\b_n70’, $

’\b_n65’,’\b_n60’,’\b_n55’,’\b_n45’,’\b_n40’,’\b_n35’, $

’\b_n30’,’\b_n25’,’\b_n20’,’\b_n15’,’\b_n10’,’\b_n5’,’\b_p0’, $

’\b_p5’,’\b_p10’,’\b_p15’,’\b_p20’]

n_probe=n_elements(b_name)

n_time=n_elements(t_ip)

b_all=fltarr(n_time,n_probe)

arrive=fltarr(n_probe)

z_probe=findgen(n_probe)*5.-90

z_probe(0)=-120

z_probe(1)=-100

z_probe(where(z_probe ge -75))=z_probe(where(z_probe ge -75))+5

z_probe(where(z_probe ge -50))=z_probe(where(z_probe ge -50))+5

for i=0,n_probe-1 do begin

b_temp=data(b_name(i),xaxis=t_temp)
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b_all(*,i)=interpol(b_temp,t_temp,t_ip)

arrive(i)=t_ip(min(where((dsmooth(b_all(*,i),3,5) ge $

.03*max(dsmooth(b_all(*,0),3,5))) and $

(t_ip ge arrive((i-1)>0)))))

endfor

!p.multi=[0,1,2]

plot,t*1e6,loc*100-75, $

ytitle=’Z (cm)’, $

title=’Varing Current, Snowplow Model’

oplot,(arrive-2.5e-6)*1e6,z_probe,co=2

plot,t*1e6,cur*1e-3, $

ytitle=’I (kA)’, $

xtitle=’Time (!4l!3s)’

oplot,(t_ip-2.5e-6)*1e6,ip*1e-3,co=2

xyouts,.7,.04,’Pulse=’+stremo(shot),/normal

xyouts,.8,.84,’Theory’,/normal

xyouts,.8,.81,’Experimental’,/normal,co=2

!p.region=0

if ps eq 1 then begin

device,/close

SET_PLOT, ’win’

!p.thick=1

!x.thick=1

!y.thick=1

!p.charthick=1

!p.charsize=1.5

!p.multi=0

endif

!p.multi=0

end
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C.1.2 con cur sp dis.pro

pro con_cur_sp_dis

ps=1

if ps eq 1 then begin

SET_PLOT, ’PS’

DEVICE, FILENAME=’con_cur_sp_dis.ps’, /color, $

/portrait,ysize=10,yoffset=1.2

!p.thick=3

!x.thick=3

!y.thick=3

!p.charthick=2

!p.charsize=1.2

!p.multi=0

endif

default,uc,0.

default,gamma,5./3. ;Ideal MHD

!p.multi=[0,1,3]

for ii=0,0 do begin

uc=ii*.2

uc=.1

ds=.001

pi=!dpi

npts=1.6/ds+1

s=dindgen(npts)*ds

r_anal=SQRT(1+2*s)

z_anal=(1/2.)*(SQRT(s*(2.+4.*s))- $
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alog(sqrt(2*s)+SQRT(1+2*s)))

sig_anal=2*s^2/(2.*z_anal>ds)

V_anal=2.*z_anal/(2*s>ds)

plot,-z_anal,r_anal,yra=[1,2],xra=[-1,0.2], $

ytitle=’r!dn!n’, $;xtitle=’z!dn!n’,

title=’Snowplow Shape’

;initializing arrays

r=dblarr(npts)+1.

z=dblarr(npts)

th=dblarr(npts)

sig=dblarr(npts)

V=dblarr(npts)

eps=dblarr(npts)

delta=dblarr(npts)

P=dblarr(npts)

;initial point

a_V=sqrt(8./3.+(1-uc^2)*(gamma-1)/(3.*gamma))

a_e=(1.-uc^2)/a_V

a_s=1./a_V

a_t=2.*a_s

sqrt_ds=sqrt(ds)

r(1)=(1+ds)

th(1)=a_t*sqrt_ds

z(1)=ds*sin(th(1))

sig(1)=a_s*sqrt_ds
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V(1)=a_V*sqrt_ds

eps(1)=a_e*sqrt_ds

P(1)=cos(th(1))^2+1./(r(1)^2)

delta(1)=((gamma-1)/gamma)*(eps(1)/(r(1)*P(1)))

;runge-kutta method

for i=long(1),npts-2 do begin

;first

r_t1=r(i)

z_t1=z(i)

th_t1=th(i)

sig_t1=sig(i)

V_t1=V(i)

eps_t1=eps(i)

P_t1=P(i)

delta_t1=delta(i)

sigV_t1=sig_t1*V_t1

sigV2_t1=sig_t1*V_t1^2

epsV_t1=eps_t1*V_t1

k1_t=ds*(r_t1/(sig_t1*V_t1^2))*(cos(th_t1)^2-1/(r_t1^2))

k1_sv=ds*(r_t1*cos(th_t1))

dp_ds=-2*cos(th_t1)*(1/(r_t1^3)+sin(th_t1)*k1_t/ds)

k1_sv2=ds*(r_t1*cos(th_t1)*sin(th_t1)-(r_t1*delta_t1/2.) * dp_ds)

k1_ev=ds*(r_t1*cos(th_t1)*(cos(th_t1)^2+ $

(sin(th_t1)-V_t1)^2-uc^2)+r_t1*delta_t1*dp_ds)

k1_r=ds*cos(th_t1)

k1_z=ds*sin(th_t1)
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sigV_t2=sigV_t1+k1_sv/2.

sigV2_t2=sigV2_t1+k1_sv2/2.

epsV_t2=epsV_t1+k1_ev/2.

r_t2=r_t1+k1_r/2.

z_t2=z_t1+k1_z/2.

th_t2=th_t1+k1_t/2.

sig_t2=sigV_t2^2/sigV2_t2

V_t2=sigV2_t2/sigV_t2

eps_t2=epsV_t2/V_t2

P_t2=cos(th_t2)^2+1./(r_t2^2)

delta_t2=((gamma-1)/gamma)*(eps_t2/(r_t2*P_t2))

;second

k2_t=ds*(r_t2/(sig_t2*V_t2^2))*(cos(th_t2)^2-1/(r_t2^2))

k2_sv=ds*(r_t2*cos(th_t2))

dp_ds=-2*cos(th_t2)*(1/(r_t2^3)+sin(th_t2)*k2_t/ds)

k2_sv2=ds*(r_t2*cos(th_t2)*sin(th_t2)-(r_t2*delta_t2/2.) * dp_ds)

k2_ev=ds*(r_t2*cos(th_t2)*(cos(th_t2)^2+ $

(sin(th_t2)-V_t2)^2-uc^2)+r_t2*delta_t2*dp_ds)

k2_r=ds*cos(th_t2)

k2_z=ds*sin(th_t2)

sigV_t3=sigV_t1+k2_sv/2.

sigV2_t3=sigV2_t1+k2_sv2/2.

epsV_t3=epsV_t1+k2_ev/2.

r_t3=r_t1+k2_r/2.

z_t3=z_t1+k2_z/2.

th_t3=th_t1+k2_t/2.
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sig_t3=sigV_t3^2/sigV2_t3

V_t3=sigV2_t3/sigV_t3

eps_t3=epsV_t3/V_t3

P_t3=cos(th_t3)^2+1./(r_t3^2)

delta_t3=((gamma-1)/gamma)*(eps_t3/(r_t3*P_t3))

;third

k3_t=ds*(r_t3/(sig_t3*V_t3^2))*(cos(th_t3)^2-1/(r_t3^2))

k3_sv=ds*(r_t3*cos(th_t3))

dp_ds=-2*cos(th_t3)*(1/(r_t3^3)+sin(th_t3)*k3_t/ds)

k3_sv2=ds*(r_t3*cos(th_t3)*sin(th_t3)-(r_t3*delta_t3/2.) * dp_ds)

k3_ev=ds*(r_t3*cos(th_t3)*(cos(th_t3)^2+ $

(sin(th_t3)-V_t3)^2-uc^2)+r_t3*delta_t3*dp_ds)

k3_r=ds*cos(th_t3)

k3_z=ds*sin(th_t3)

sigV_t4=sigV_t1+k3_sv

sigV2_t4=sigV2_t1+k3_sv2

epsV_t4=epsV_t1+k3_ev

r_t4=r_t1+k3_r

z_t4=z_t1+k3_z

th_t4=th_t1+k3_t

sig_t4=sigV_t4^2/sigV2_t4

V_t4=sigV2_t4/sigV_t4

eps_t4=epsV_t4/V_t4

P_t4=cos(th_t4)^2+1./(r_t4^2)

delta_t4=((gamma-1)/gamma)*(eps_t4/(r_t4*P_t4))

;fourth
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k4_t=ds*(r_t4/(sig_t4*V_t4^2))*(cos(th_t4)^2-1/(r_t4^2))

k4_sv=ds*(r_t4*cos(th_t4))

dp_ds=-2*cos(th_t4)*(1/(r_t4^3)+sin(th_t4)*k4_t/ds)

k4_sv2=ds*(r_t4*cos(th_t4)*sin(th_t4)-(r_t4*delta_t4/2.) * dp_ds)

k4_ev=ds*(r_t4*cos(th_t4)*(cos(th_t4)^2+ $

(sin(th_t4)-V_t4)^2-uc^2)+r_t4*delta_t4*dp_ds)

k4_r=ds*cos(th_t4)

k4_z=ds*sin(th_t4)

sigV_t=sigV_t1+(k1_sv+2*k2_sv+2*k3_sv+k4_sv)/6.

sigV2_t=sigV2_t1+(k1_sv2+2*k2_sv2+2*k3_sv2+k4_sv2)/6.

epsV_t=epsV_t1+(k1_ev+2*k2_ev+2*k3_ev+k4_ev)/6.

r(i+1)=r_t1+(k1_r+2*k2_r+2*k3_r+k4_r)/6.

z(i+1)=z_t1+(k1_z+2*k2_z+2*k3_z+k4_z)/6.

th(i+1)=th_t1+(k1_t+2*k2_t+2*k3_t+k4_t)/6.

sig(i+1)=sigV_t^2/sigV2_t

V(i+1)=sigV2_t/sigV_t

eps(i+1)=epsV_t/V(i+1)

P(i+1)=cos(th(i+1))^2+1./(r(i+1)^2)

delta(i+1)=((gamma-1)/gamma)*(eps(i+1)/(r(i+1)*P(i+1)))

endfor

oplot,-z,r,co=2

oplot,-z+.5*delta,r,co=4

oplot,-z-.5*delta,r,co=4

oplot,-z_anal,r_anal

plot,-z_anal,V_anal,xra=[-1,0.2],yra=[0,.8], $

ytitle=’V!dn!n’, $;xtitle=’z!dn!n’,

title=’Snowplow Tangential Velocity’
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oplot,-z,V,co=2

plot,-z_anal,sig_anal,xra=[-1,0.2], $

xtitle=’z!dn!n’,ytitle=’!4r!3!dn!n’, $

title=’Snowplow Density’

oplot,-z,sig,co=2

endfor

print,delta(0:10)

!p.region=0

if ps eq 1 then begin

device,/close

SET_PLOT, ’win’

!p.thick=1

!x.thick=1

!y.thick=1

!p.charthick=1

!p.charsize=1.5

!p.multi=0

endif

!p.multi=0

end
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C.2 Magnetic Probe Codes

The magnetic probes have been described in Sec. 5.5. The calibration factors for the mag-

netic probes are found with cal axial b cal fact 11214.pro. This code finds a scale factor

between the maximum probe signal and the maximum magnetic field the current would

produce at the wall. rundown vel.pro is used to find the location velocity and mass of the

current sheet. The method to calculate these parameters were discussed in Sec. 5.5.5. The

axial position of the current sheet is not correctly found when a filament is ahead of the

current sheet. The current sheet velocity from pulses with large negative initial magnetic

fields should be compared with similar to pulses. The pseudoinverse for the magnetic mode

calculation is found with find mode array.pro. The angle of each probe is entered into phi.

The pseudoinverse for various maximum m’s is then printed to the screen. The calculations

can be checked by using evenly spaced probes and ensuring that the matrix is diagonal.

mode calculation.pro is used to calculate the Fourier components of the magnetic fields.

The pseudoinverse for the given probe geometry is then entered into mode calculation.pro to

save time. The iterative calculation of the wall magnetic fields is made with find b wall.pro.

The method used to calculate the fields is described in Sec. A.3.2. The code can take over

24 hours to run on a PC.

C.2.1 cal axial b cal fact 11214.pro

pro cal_axial_b_cal_fact_11214,xra=xra, $

cal_fact_fast=cal_fact_fast, $

cal_fact_slow=cal_fact_slow, $

ps=ps

default,ps,0

mydevice = !D.NAME

if ps eq 1 then begin

charsize=.5

SET_PLOT, ’PS’
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DEVICE, FILENAME=’cal_fact_11214.ps’, /portrait, /color, $

ysize=25,yoffset=1.2

!p.multi=[0,2,3]

endif

default,xra,[-0.2e-3,0.8e-3]

t_end=2e-4

b_name=[’n120’,’n100’,’n80’,’n75’,’n70’,’n65’,’n60’,’n55’, $

’n50’, ’n45’,’n40’,’n35’, n30’,’n20’,’n15’,’n10’, $

’n5’, ’p5’,’p10’,’p15’,’p20’]

n_probe=n_elements(b_name)

fast_clock_data=[[11214009,11214001,4], $

[11214010,11214001,4], $

[11214019,11214021,2], $

[11214020,11214021,2], $

[11214026,11214022,1], $

[11214027,11214022,1]]

slow_clock_data=[[11214011,11214012,4], $

[11214013,11214012,4], $

[11214017,11214014,2], $

[11214018,11214014,2], $

[11214029,11214028,1], $

[11214030,11214028,1]]

fast_clock_shot=transpose(fast_clock_data(0,*))

fast_clock_base=transpose(fast_clock_data(1,*))

fast_clock_cap=transpose(fast_clock_data(2,*))

n_shot_fast=n_elements(fast_clock_shot)



222

slow_clock_shot=transpose(slow_clock_data(0,*))

slow_clock_base=transpose(slow_clock_data(1,*))

slow_clock_cap=transpose(slow_clock_data(2,*))

n_shot_slow=n_elements(slow_clock_shot)

cal_fact_fast=fltarr(n_probe,n_shot_fast)

cal_fact_fa_sm=fltarr(n_probe,n_shot_fast)

cal_fact_slow=fltarr(n_probe,n_shot_slow)

for j=0,n_shot_fast-1 do begin

ss,fast_clock_shot(j)

r_wall=data(’\r_wall’)

i_p=data(’sub_baseline_string("\\i_lf_ign_l", $

’+stremo(fast_clock_base(j))+’)’,xaxis=time_i)

i_p=i_p*(2e-7)/r_wall

i_p_sm=dsmooth(i_p)

max_i_p=max(abs(i_p))

max_i_p_sm=max(abs(i_p_sm))

plot,time_i,i_p_sm,xra=xra, $

title=’shot=’+stremo(fast_clock_shot(j))+’ fast’

for i=0,n_probe-1 do begin

probe_raw=data(’sub_baseline_string( $

"\\b_’+b_name(i)+’:raw", $

’+stremo(fast_clock_base(j))+’)’, $

xaxis=time_probe)

n_raw=n_elements(probe_raw)

n_0=min(where(time_probe ge 0))

n_end=min(where(time_probe ge (t_end < $

time_probe(n_raw-1))))
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n_max=n_0+min(where(abs(probe_raw(n_0:n_end)) eq $

max(abs(probe_raw(n_0:n_end)))))

probe_raw_sm=dsmooth(probe_raw)

n_max_sm=n_0+min(where(abs(probe_raw_sm(n_0:n_end)) eq $

max(abs(probe_raw_sm(n_0:n_end)))))

cal_fact_fast(i,j)=max_i_p/probe_raw(n_max)

cal_fact_fa_sm(i,j)=max_i_p_sm/probe_raw(n_max_sm)

oplot,time_probe,probe_raw_sm*cal_fact_fa_sm(i,j),color=2+i

if ps ne 1 then $

xyouts,.8,.9-.02*i,b_name(i),/normal,color=2+i $

else xyouts,.5,.9-.03*i,b_name(i),/normal,color=2+i

endfor

endfor

for j=0,n_shot_slow-1 do begin

ss,slow_clock_shot(j)

r_wall=data(’\r_wall’)

i_p=data(’sub_baseline_string("\\i_lf_ign_l", $

’+stremo(slow_clock_base(j))+’)’,xaxis=time_i)

i_p=i_p*(2e-7)/r_wall

max_i_p=max(abs(i_p))

plot,time_i,i_p,xra=xra, $

title=’shot=’+stremo(slow_clock_shot(j))+’ slow’

for i=0,n_probe-1 do begin

probe_raw=data(’sub_baseline_string( $

"\\b_’+b_name(i)+’:raw", $

’+stremo(slow_clock_base(j))+’)’, $

xaxis=time_probe)

n_raw=n_elements(probe_raw)

n_0=min(where(time_probe ge 0))



224

n_end=min(where(time_probe ge (t_end < $

time_probe(n_raw-1))))

n_max=n_0+min(where(abs(probe_raw(n_0:n_end)) eq $

max(abs(probe_raw(n_0:n_end)))))

cal_fact_slow(i,j)=max_i_p/probe_raw(n_max)

oplot,time_probe,probe_raw*cal_fact_slow(i,j),color=2+i

if ps ne 1 then $

xyouts,.8,.9-.02*i,b_name(i),/normal,color=2+i $

else xyouts,.5,.9-.03*i,b_name(i),/normal,color=2+i

endfor

endfor

print,’slow’

print,cal_fact_slow

print,’fast’

print,cal_fact_fast

print,’smooth’

print,cal_fact_fa_sm

cal_fact_ave=fltarr(n_probe)

cal_fact_sm=fltarr(n_probe)

err_cal_fact_ave=fltarr(n_probe)

err_cal_fact_sm=fltarr(n_probe)

for i=0,n_probe-1 do begin

cal_fact_ave(i)=total(cal_fact_fast(i,*))/n_shot_fast

cal_fact_sm(i)=total(cal_fact_fa_sm(i,*))/n_shot_fast

err_cal_fact_ave(i)=total((cal_fact_fast(i,*)- $

cal_fact_ave(i))^2)

err_cal_fact_sm(i)=total((cal_fact_fa_sm(i,*)- $

cal_fact_sm(i))^2)
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endfor

print,cal_fact_ave,sqrt(err_cal_fact_ave)/ $

(cal_fact_ave*sqrt(n_shot_fast))

print,cal_fact_sm,sqrt(err_cal_fact_sm)/ $

(cal_fact_sm*sqrt(n_shot_fast))

if ps eq 1 then begin

DEVICE, /CLOSE

SET_PLOT, mydevice

!p.multi=0

endif

end
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C.2.2 rundown vel.pro

pro rundown_vel,shot,vel_65_25=vel_65_25,vel_65_45=vel_65_45, $

vel_45_25=vel_45_25, $

t_rundown=t_rundown,v_rundown=v_rundown, $

mass_rundown=mass_rundown, $

t2_rundown=t2_rundown,v2_rundown=v2_rundown, $

mass2_rundown=mass2_rundown,ps=ps,p_ps=p_ps

default,shot,21205036

default,ps,0

default,p_ps,0

ss,shot

b_n120=data(’\b_n120’,xaxis=time_120)

b_n65=data(’\b_n65’,xaxis=time_65)

b_n55=data(’\b_n55’,xaxis=time_55)

b_n45=data(’\b_n45’,xaxis=time_45)

b_n35=data(’\b_n35’,xaxis=time_35)

b_n25=data(’\b_n25’,xaxis=time_25)

sm_b_n120=dsmooth(b_n120,17,19)

sm_b_n65=dsmooth(b_n65,17,19)

sm_b_n55=dsmooth(b_n55,17,19)

sm_b_n45=dsmooth(b_n45,17,19)

sm_b_n35=dsmooth(b_n35,17,19)

sm_b_n25=dsmooth(b_n25,17,19)

arrive_n120=time_120(min(where $

((sm_b_n120 ge .05*max(sm_b_n120)) and $

(time_120 ge 0))))
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arrive_n65=time_65(min(where $

((sm_b_n65 ge .05*max(sm_b_n65)) and $

(time_65 ge arrive_n120+.05e-6))))

arrive_n55=time_55(min(where $

((sm_b_n55 ge .05*max(sm_b_n55)) and $

(time_55 ge arrive_n65+.05e-6))))

arrive_n45=time_45(min(where $

((sm_b_n45 ge .05*max(sm_b_n45)) and $

(time_45 ge arrive_n55+.05e-6))))

arrive_n35=time_35(min(where $

((sm_b_n35 ge .05*max(sm_b_n35)) and $

(time_35 ge arrive_n45+.05e-6))))

arrive_n25=time_25(min(where $

((sm_b_n25 ge .05*max(sm_b_n25)) and $

(time_25 ge arrive_n35+.05e-6))))

sm2_b_n65=interpol(sm_b_n65,time_65,time_120)

sm2_b_n55=interpol(sm_b_n55,time_55,time_120)

sm2_b_n45=interpol(sm_b_n45,time_45,time_120)

sm2_b_n35=interpol(sm_b_n35,time_35,time_120)

sm2_b_n25=interpol(sm_b_n25,time_25,time_120)

arrive2_n120=time_120(min(where $

((sm_b_n120 ge .05*max(sm_b_n120)) and $

(time_120 ge 0))))

arrive2_n65=time_120(min(where $

((sm2_b_n65 ge .3*sm_b_n120) and $

(time_120 ge arrive2_n120+.05e-6))))

arrive2_n55=time_120(min(where $

((sm2_b_n55 ge .3*sm_b_n120) and $

(time_120 ge arrive2_n65+.05e-6))))
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arrive2_n45=time_120(min(where $

((sm2_b_n45 ge .3*sm_b_n120) and $

(time_120 ge arrive2_n55+.05e-6))))

arrive2_n35=time_120(min(where $

((sm2_b_n35 ge .3*sm_b_n120) and $

(time_120 ge arrive2_n45+.05e-6))))

arrive2_n25=time_120(min(where $

((sm2_b_n25 ge .3*sm_b_n120) and $

(time_120 ge arrive2_n35+.05e-6))))

vel_65_25=.4/(arrive_n25-arrive_n65)

vel_65_45=.2/(arrive_n45-arrive_n65)

vel_45_25=.2/(arrive_n25-arrive_n45)

v_rundown=fltarr(5)

v_rundown(1)=.1/(arrive_n55-arrive_n65)

v_rundown(2)=.1/(arrive_n45-arrive_n55)

v_rundown(3)=.1/(arrive_n35-arrive_n45)

v_rundown(4)=.1/(arrive_n25-arrive_n35)

t_rundown=fltarr(5)

t_rundown(0)=arrive_n120

t_rundown(1)=(arrive_n55+arrive_n65)/2.

t_rundown(2)=(arrive_n45+arrive_n55)/2.

t_rundown(3)=(arrive_n35+arrive_n45)/2.

t_rundown(4)=(arrive_n25+arrive_n35)/2.

v2_rundown=fltarr(5)

v2_rundown(1)=.1/(arrive2_n55-arrive2_n65)

v2_rundown(2)=.1/(arrive2_n45-arrive2_n55)

v2_rundown(3)=.1/(arrive2_n35-arrive2_n45)

v2_rundown(4)=.1/(arrive2_n25-arrive2_n35)
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t2_rundown=fltarr(5)

t2_rundown(0)=arrive_n120

t2_rundown(1)=(arrive2_n55+arrive2_n65)/2.

t2_rundown(2)=(arrive2_n45+arrive2_n55)/2.

t2_rundown(3)=(arrive2_n35+arrive2_n45)/2.

t2_rundown(4)=(arrive2_n25+arrive2_n35)/2.

n_b120_rundown=fltarr(5)

for i=0,4 do $

n_b120_rundown(i)=min(where(time_120 ge t_rundown(i)))

n2_b120_rundown=fltarr(5)

for i=0,4 do $

n2_b120_rundown(i)=min(where(time_120 ge t2_rundown(i)))

pi=!dpi

r_wall=.0963

r_inner=.0508

mu_0=pi*4e-7

F_rundown=(pi*r_wall^2*b_n120^2/mu_0)*alog(r_wall/r_inner)

impulse=fltarr(5)

for i=1,4 do $

impulse(i)=impulse(i-1)+ $

int_tabulated( $

time_120(n_b120_rundown(i-1):n_b120_rundown(i)), $

F_rundown(n_b120_rundown(i-1):n_b120_rundown(i)))

impulse2=fltarr(5)

for i=1,4 do $

impulse2(i)=impulse2(i-1)+ $

int_tabulated( $
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time_120(n2_b120_rundown(i-1):n2_b120_rundown(i)), $

F_rundown(n2_b120_rundown(i-1):n2_b120_rundown(i)))

mass_rundown=impulse/(v_rundown>1.)

mass2_rundown=impulse2/(v2_rundown>1.)

if ps ne 1 then begin

if p_ps eq 1 then begin

SET_PLOT, ’PS’

DEVICE, FILENAME=’rundown_vel_’+stremo(shot)+’.ps’, $

SET_FONT=’Times’, /color , $

/portrait,ysize=25,yoffset=1.2

!p.thick=3

!x.thick=3

!y.thick=3

!p.charthick=2

!p.charsize=1

endif

!p.multi=[0,3,3]

plot,time_65*1e6,b_n65,xra=[0,50],yra=[0,max(sm_b_n120)], $

title=’Magnetic Feild Shot=’+stremo(shot)

oplot,time_65*1e6,sm_b_n65,co=4

vline,arrive_n65*1e6

oplot,time_45*1e6,b_n45

oplot,time_45*1e6,sm_b_n45,co=4

vline,arrive_n45*1e6

oplot,time_25*1e6,b_n25

oplot,time_25*1e6,sm_b_n25,co=4

vline,arrive_n25*1e6

oplot,time_55*1e6,b_n55
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oplot,time_55*1e6,sm_b_n55,co=4

vline,arrive_n55*1e6

oplot,time_35*1e6,b_n35

oplot,time_35*1e6,sm_b_n35,co=4

vline,arrive_n35*1e6

oplot,time_120*1e6,b_n120

oplot,time_120*1e6,sm_b_n120,co=4

vline,arrive_n120*1e6

vline,arrive2_n65*1e6,co=2

vline,arrive2_n55*1e6,co=2

vline,arrive2_n45*1e6,co=2

vline,arrive2_n35*1e6,co=2

vline,arrive2_n25*1e6,co=2

xra=[0,arrive2_n25+5e-6]

plot,t_rundown,v_rundown,xra=xra,title=’Velocity’

oplot,t2_rundown,v2_rundown,co=2

plot,time_120,F_rundown,xra=xra,title=’Force’

plot,t_rundown,impulse,xra=xra,yra=[0,impulse2(4)], $

title=’Impulse’

oplot,t2_rundown,impulse2,co=2

plot,t_rundown,mass_rundown,xra=xra, $

yra=[0,max([mass_rundown,mass2_rundown])], $

title=’Total mass’

oplot,t2_rundown,mass2_rundown,co=2

plot,t_rundown,mass_rundown/1.6726e-27,xra=xra, $

yra=[0,max([mass_rundown,mass2_rundown])/1.6726e-27], $

title=’Total ions’
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oplot,t2_rundown,mass2_rundown/1.6726e-27,co=2

plot,t_rundown,mass_rundown/1.6726e-27,xra=xra, $

yra=[0,max([mass_rundown,mass2_rundown])/1.6726e-27], $

title=’Total ions’

oplot,t2_rundown,mass2_rundown/1.6726e-27,co=2

vline,arrive_n25

vline,arrive2_n25,co=2

!p.multi=0

if p_ps eq 1 then begin

device,/close

SET_PLOT, ’win’

!p.thick=1

!x.thick=1

!y.thick=1

!p.charthick=1

!p.charsize=1.5

!p.multi=0

endif

endif else begin

xra=[0,arrive2_n25+5e-6]*1e6

plot,t_rundown*1e6,mass_rundown/1.6726e-27,xra=xra, $

yra=[0,max([mass_rundown,mass2_rundown])/1.6726e-27], $

title=’Total ions’

oplot,t2_rundown*1e6,mass2_rundown/1.6726e-27,co=2

vline,arrive_n25*1e6

vline,arrive2_n25*1e6,co=2

endelse

end
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C.2.3 find mode array.pro

; This code calculates the inversion array needed to

; find the amplitudes and phases of the mode amplitudes when

; the probes are not equally spaced. The famous missing probe

; problem

pro find_mode_array

;azimuthal position of said probes

phi = [ 0.0, 45.0, 90.0, 135.0, $

180.0, 225.0, 270.0, 315.0] * !dpi / 180.

phi = [ 45.0, 90.0, 135.0, $

180.0, 225.0, 270.0, 315.0] * !dpi / 180.

; Calculating inversion array. This array was obtained by

; assuming f(x)=a0 + sum(a(i)*cos(i*x)) + sum(b(i)*sin(i*x)).

; To find a(or b) multiply multiply f by cos(i*x) (or sin(i*x))

; and sum over all of the probes. This will give a system of n

; equations with n unknowns from which a(i) and b(i) can by

; solved for.

nppts=n_elements(phi)

cosp=cos(phi)

sinp=sin(phi)

cos2p=cos(2*phi)

sin2p=sin(2*phi)

cos3p=cos(3*phi)

sin3p=sin(3*phi)

u = nppts
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c = total( cosp )

s = total( sinp )

c2 = total( cos2p )

s2 = total( sin2p )

c3 = total( cos3p )

s3 = total( sin3p )

cc = cosp ## transpose( cosp)

sisi = sinp ## transpose( sinp)

cs = cosp ## transpose( sinp)

c2c2 = cos2p ## transpose( cos2p)

s2s2 = sin2p ## transpose( sin2p)

c2s2 = cos2p ## transpose( sin2p)

cc2 = cosp ## transpose( cos2p)

ss2 = sinp ## transpose( sin2p)

cs2 = cosp ## transpose( sin2p)

sc2 = sinp ## transpose( cos2p)

cc3 = cosp ## transpose( cos3p)

ss3 = sinp ## transpose( sin3p)

cs3 = cosp ## transpose( sin3p)

sc3 = sinp ## transpose( cos3p)

c2c3 = cos2p ## transpose( cos3p)

s2s3 = sin2p ## transpose( sin3p)

c2s3 = cos2p ## transpose( sin3p)

s2c3 = sin2p ## transpose( cos3p)

c3c3 = cos3p ## transpose( cos3p)

s3s3 = sin3p ## transpose( sin3p)

c3s3 = cos3p ## transpose( sin3p)

mat = [ [ u, c, s, c2, s2, c3, s3 ] , $
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[ c, cc, cs, cc2, cs2, cc3, cs3 ] , $

[ s, cs, sisi, sc2, ss2, sc3, ss3 ] , $

[ c2, cc2, sc2, c2c2, c2s2, c2c3, c2s3 ] , $

[ s2, cs2, ss2, c2s2, s2s2, s2c3, s2c3 ] , $

[ c3, cc3, sc3, c2c3, c2s3, c3c3, c3s3 ] , $

[ s3, cs3, ss3, c2s3, s2s3, c3s3, s3s3 ] ]

inv = invert(mat)

inv(where(abs(inv) le 1e-10))=0.0

print,’inverse (up to m=3)=’

print,float(inv)

mat = [ [ u, c, s, c2, s2] , $

[ c, cc, cs, cc2, cs2] , $

[ s, cs, sisi, sc2, ss2] , $

[ c2, cc2, sc2, c2c2, c2s2] , $

[ s2, cs2, ss2, c2s2, s2s2] ]

inv = invert(mat)

inv(where(abs(inv) le 1e-10))=0.0

print,’inverse (up to m=2)=’

print,float(inv)

mat = [ [ u, c, s] , $

[ c, cc, cs] , $

[ s, cs, sisi] ]

inv = invert(mat)

inv(where(abs(inv) le 1e-10))=0.0

print,’inverse (up to m=1)=’

print,float(inv)

end
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C.2.4 mode calculation.pro

; This code calculates amplitudes and phases of

; the modes as functions of time. The method is required

; for this as some probes are missing, so the remaining ones

; are unevenly

; spaced.

pro mode_calculation,m_0_p0_7=m_0_p0_7,m_1_p0_7=m_1_p0_7,c0_miss=c0_miss, $

c1_miss=c1_miss,s1_miss=s1_miss,time=time

shotname = stremo( mdsvalue(’$shotname’, /quiet, status=status) )

;probe numbers used

label = [0, 45, 90, 135, 180, 225, 270, 315]

;azimuthal position of said probes

phi = [ 0.0, 45.0, 90.0, 135.0, 180.0, 225.0, 270.0, 315.0] * !pi / 180.

phi_miss = [ 0.0, 45.0, 90.0, 135.0, 180.0, 270.0, 315.0] * !pi / 180.

phi_4 = [ 0.0, 90.0, 180.0, 270.0] * !pi / 180.

;number of probes is NPPTS

nppts=n_elements(label)

;find number of time points to use, NTPTS

b=data(’\b_p0_0’,time=t)

ntpts=n_elements(t)

;make some arrays. ARRAY contains data,
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;A0,A1,A2,A3 are the respective amplitudes of the modes versus time,

;PHASE1(2,3) is the phase of n=1(2,3) mode

array = fltarr (ntpts,nppts)

a0 = fltarr(ntpts) & a1=a0 & a2=a0 & a3 = a0

phase1 = a0 & phase2 = a0 & phase3 = a0

c0 = a0 & c1 = a0 & c2 = a0 & c3= a0

s1 = a0 & s2 = a0 & s3 = a0

array_miss = fltarr (ntpts,nppts-1)

a0_miss = fltarr(ntpts) & a1_miss=a0_miss & a2_miss=a0_miss

a3_miss = a0_miss

phase1_miss = a0_miss & phase2_miss = a0_miss

phase3_miss = a0_miss

c0_miss = a0_miss & c1_miss = a0_miss & c2_miss = a0_miss

3_miss= a0_miss

s1_miss = a0_miss & s2_miss = a0_miss & s3_miss = a0_miss

array_4 = fltarr (ntpts,4)

a0_4 = fltarr(ntpts) & a1_4=a0_4

phase1_4 = a0_4

c0_4 = a0_4

c1_4 = a0_4

s1_4 = a0_4

;loop across the probes to get data

for k=0,nppts-1 do begin

b=data(’\b_p0_’+stremo(label(k)),time=t1)
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b1=interpol(b,t1,t)

array(*,k)=b1

endfor

time=t1

array_miss(*,0:4)=array(*,0:4)

array_miss(*,5:6)=array(*,6:7)

array_4=array(*,[0,2,4,6])

; Calculating inversion array. This array was obtained by assuming

; f(x)=a0 + sum(a(i)*cos(i*x)) + sum(b(i)*sin(i*x)). To find a(or b)

; multiply f by cos(i*x) (or sin(i*x)) and sum over all of the probes.

; This will give a system of n equations with n unknowns from which

; a(i) and b(i) can by solved for.

cosp=cos(phi)

sinp=sin(phi)

cos2p=cos(2*phi)

sin2p=sin(2*phi)

cos3p=cos(3*phi)

sin3p=sin(3*phi)

cosp_4=cos(phi_4)

sinp_4=sin(phi_4)

cosp_miss=cos(phi_miss)

sinp_miss=sin(phi_miss)

cos2p_miss=cos(2*phi_miss)

sin2p_miss=sin(2*phi_miss)

cos3p_miss=cos(3*phi_miss)

sin3p_miss=sin(3*phi_miss)
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inv = [[.125, 0, 0, 0, 0, 0, 0], $

[0, .250, 0, 0, 0, 0, 0], $

[0, 0, .250, 0, 0, 0, 0], $

[0, 0, 0, .250, 0, 0, 0], $

[0, 0, 0, 0, .250, 0, 0], $

[0, 0, 0, 0, 0, .250, 0], $

[0, 0, 0, 0, 0, 0, .250]]

inv_4 = [[0.25, 0.0, 0.0], $

[0.00, 0.5, 0.0], $

[0.00, 0.0, 0.5]]

inv_miss =[[ 0.199074 ,-0.104757 ,-0.104757 ,-7.06634e-009 $

, 0.129630 , 0.104757 ,-0.0589256 ],$

[-0.104757 , 0.398148 , 0.148148 , 3.90113e-008 $

,-0.183324 ,-0.148148 , 0.0833333 ],$

[-0.104757 , 0.148148 , 0.398148 , 2.00781e-008 $

,-0.183324 ,-0.148148 , 0.0833334 ],$

[-1.80641e-009, 3.15726e-008, 1.26394e-008, 0.250000 $

-5.21567e-008,-3.30633e-008,-9.52607e-009],$

[ 0.111111 ,-0.157135 ,-0.157135 ,-6.27398e-008 $

, 0.444444 , 0.157135 ,-6.92547e-008],$

[ 0.0851148 ,-0.120370 ,-0.120370 ,-2.94110e-008 $

, 0.104757 , 0.370370 ,-0.0833334 ],$

[ -0.104757 , 0.148148 , 0.148148 , 1.63528e-008 $

,-0.183324 ,-0.148148 , 0.333333 ]]

;loop over times to get results

;stop
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array_t=transpose(array)

array_t_miss=transpose(array_miss)

array_t_4=transpose(array_4)

for i=0,ntpts-1 do begin

b_miss = transpose(array_t_miss(*,i))

uy_miss = total( b_miss )

cy_miss = cosp_miss ## (b_miss)

sy_miss = sinp_miss ## (b_miss)

c2y_miss = cos2p_miss ## (b_miss)

s2y_miss = sin2p_miss ## (b_miss)

c3y_miss = cos3p_miss ## (b_miss)

s3y_miss = sin3p_miss ## (b_miss)

inh_miss = [ uy_miss, cy_miss, sy_miss, c2y_miss, s2y_miss , $

c3y_miss , s3y_miss ]

res_miss = inv_miss#inh_miss

c0_miss(i) = res_miss(0)

c1_miss(i) = res_miss(1)

s1_miss(i) = res_miss(2)

c2_miss(i) = res_miss(3)

s2_miss(i) = res_miss(4)

c3_miss(i) = res_miss(5)

s3_miss(i) = res_miss(6)

b_4 = transpose(array_t_4(*,i))

uy_4 = total( b_4 )

cy_4 = cosp_4 ## (b_4)

sy_4 = sinp_4 ## (b_4)
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inh_4 = [ uy_4, cy_4, sy_4]

res_4 = inv_4#inh_4

c0_4(i) = res_4(0)

c1_4(i) = res_4(1)

s1_4(i) = res_4(2)

b = transpose(array_t(*,i))

uy = total( b )

cy = cosp ## (b)

sy = sinp ## (b)

c2y = cos2p ## (b)

s2y = sin2p ## (b)

c3y = cos3p ## (b)

s3y = sin3p ## (b)

inh = [ uy, cy, sy, c2y, s2y , c3y , s3y ]

res = inv#inh

c0(i) = res(0)

c1(i) = res(1)

s1(i) = res(2)

c2(i) = res(3)

s2(i) = res(4)

c3(i) = res(5)

s3(i) = res(6)

endfor

a0 = sqrt( c0^2)
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a1 = sqrt( c1^2 + s1^2)

a2 = sqrt( c2^2 + s2^2)

a3 = sqrt( c3^2 + s3^2)

a0_4 = sqrt( c0_4^2)

a1_4 = sqrt( c1_4^2 + s1_4^2)

a0_miss = sqrt( c0_miss^2)

a1_miss = sqrt( c1_miss^2 + s1_miss^2)

a2_miss = sqrt( c2_miss^2 + s2_miss^2)

a3_miss = sqrt( c3_miss^2 + s3_miss^2)

a0_8=a0

a1_8=a1

a2_8=a2

a3_8=a3

a0_7=a0_miss

a1_7=a1_miss

a2_7=a2_miss

a3_7=a3_miss

;putting data into tree

goto, skip ; comment to write data to the tree

build_string = ’build_signal(build_with_units($1,"T"),’ + $

’*,’ + $

’build_dim(build_window(0,’ + stremo(ntpts-1) + $

’,’ + stremo(t(0)) + ’),’ + $

’build_slope(’ + stremo(t(1)-t(0)) + ’,,)))’
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mdsput, ’\c_m0_p0’, build_string, c0

mdsput, ’\c_m1_p0’, build_string, c1

mdsput, ’\c_m2_p0’, build_string, c2

mdsput, ’\c_m3_p0’, build_string, c3

mdsput, ’\s_m1_p0’, build_string, s1

mdsput, ’\s_m2_p0’, build_string, s2

mdsput, ’\s_m3_p0’, build_string, s3

mdsput, ’\c_m0_p0_7’, build_string, c0_miss

mdsput, ’\c_m1_p0_7’, build_string, c1_miss

mdsput, ’\c_m2_p0_7’, build_string, c2_miss

mdsput, ’\c_m3_p0_7’, build_string, c3_miss

mdsput, ’\s_m1_p0_7’, build_string, s1_miss

mdsput, ’\s_m2_p0_7’, build_string, s2_miss

mdsput, ’\s_m3_p0_7’, build_string, s3_miss

mdsput, ’\c_m0_p0_4’, build_string, c0_4

mdsput, ’\c_m1_p0_4’, build_string, c1_4

mdsput, ’\s_m1_p0_4’, build_string, s1_4

end
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C.2.5 find b wall.pro

pro find_b_wall

!p.thick=3

mu_0=4.*!dpi*1e-7

n_theda=360

n_r=11*4

n_ang=24*4

r0=.1

r1=2d-2

curr=1e5

curr=2*!dpi*r0/mu_0

theda=findgen(n_theda)*2*!dpi/n_theda

d_theda=(theda(1)-theda(0))

ds=r0*d_theda

theda_skin=theda+d_theda/2.

;calculating the locations of the filiments and

; points of interest.

;x,y locations of the electroid, skin, and outer surface

x_elec=r0*cos(theda)

y_elec=r0*sin(theda)

x_skin=(r0-ds)*cos(theda+d_theda/2.)

y_skin=(r0-ds)*sin(theda+d_theda/2.)

x_outer=(r0+ds)*cos(theda+d_theda/2.)

y_outer=(r0+ds)*sin(theda+d_theda/2.)

x_outer=(r0)*cos(theda+d_theda/2.)

y_outer=(r0)*sin(theda+d_theda/2.)
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;x,y location of the electroid, skin, and outer surface

; relative to the current

x_cur_elec=x_elec-r1

y_cur_elec=y_elec

x_cur_skin=x_skin-r1

y_cur_skin=y_skin

x_cur_outer=x_outer-r1

y_cur_outer=y_outer

theda_cur_elec=atan(y_cur_elec,x_cur_elec)

r_cur_elec=sqrt(y_cur_elec^2+x_cur_elec^2)

theda_cur_skin=atan(y_cur_skin,x_cur_skin)

r_cur_skin=sqrt(y_cur_skin^2+x_cur_skin^2)

theda_cur_outer=atan(y_cur_outer,x_cur_outer)

r_cur_outer=sqrt(y_cur_outer^2+x_cur_outer^2)

;x,y location of the electroid, skin, and outer surface

; relative to the electrode

x_elec_elec=dblarr(n_theda,n_theda)

y_elec_elec=dblarr(n_theda,n_theda)

for i=0,n_theda-1 do begin

x_elec_elec(*,i)=x_elec(i)-x_elec

y_elec_elec(*,i)=y_elec(i)-y_elec

endfor

r_elec_elec=(sqrt(x_elec_elec^2+y_elec_elec^2))>ds

x_elec_skin=dblarr(n_theda,n_theda)

y_elec_skin=dblarr(n_theda,n_theda)

for i=0,n_theda-1 do begin

x_elec_skin(*,i)=x_skin(i)-x_elec

y_elec_skin(*,i)=y_skin(i)-y_elec
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endfor

r_elec_skin=(sqrt(x_elec_skin^2+y_elec_skin^2))>ds

x_elec_outer=dblarr(n_theda,n_theda)

y_elec_outer=dblarr(n_theda,n_theda)

for i=0,n_theda-1 do begin

x_elec_outer(*,i)=x_outer(i)-x_elec

y_elec_outer(*,i)=y_outer(i)-y_elec

endfor

r_elec_outer=(sqrt(x_elec_outer^2+y_elec_outer^2))>(ds/2.)

;xy location for contour plots

r3=r0*(dindgen(n_r)+1)/(n_r)

a1=dindgen(n_ang)/(n_ang+0.0)*(2*!dpi)

x_int=dblarr(n_ang,n_r)

y_int=dblarr(n_ang,n_r)

for i=0,n_r-1 do begin

x_int(*,i)=cos(a1)*(r3(i)/r0)* $

(2*ds+sqrt(r0^2+(cos(a1)*r1)^2-r1^2)-r1*cos(a1))+r1

y_int(*,i)=sin(a1)*(r3(i)/r0)* $

(2*ds+sqrt(r0^2+(cos(a1)*r1)^2-r1^2)-r1*cos(a1))

endfor

theda_int=atan(y_int,x_int)

theda_int(where(theda_int lt 0))= $

theda_int(where(theda_int lt 0))+2*!dpi

x_cur_int=x_int-r1

y_cur_int=y_int

r_cur_int=sqrt((x_cur_int)^2+y_cur_int^2)
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x_elec_int=dblarr(n_theda,n_ang,n_r)

y_elec_int=dblarr(n_theda,n_ang,n_r)

r_elec_int=dblarr(n_theda,n_ang,n_r)

for i=0,n_r-1 do begin

for j=0,n_ang-1 do begin

x_elec_int(*,j,i)=x_int(j,i)-x_elec

y_elec_int(*,j,i)=y_int(j,i)-y_elec

endfor

endfor

r_elec_int=sqrt(x_elec_int^2+y_elec_int^2)>ds

!p.multi=[0,2,2]

plot,x_elec,y_elec,xra=[-r0-2*ds,r0+2*ds], $

yra=[-r0-2*ds,r0+2*ds],title=’Points of interest’

oplot,x_skin,y_skin,co=2

oplot,x_outer,y_outer,co=4

oplot,x_int,y_int,psym=3,co=3

oplot,[r1,r1],[0,0],psym=4

;caculating the magnetic field from the current

b_x_cur_elec=mu_0*curr/(2*!dpi*r_cur_elec)* $

(-y_cur_elec/r_cur_elec)

b_y_cur_elec=mu_0*curr/(2*!dpi*r_cur_elec)* $

( x_cur_elec/r_cur_elec)

b_r_cur_elec= cos(theda)*b_x_cur_elec+ $

sin(theda)*b_y_cur_elec

b_t_cur_elec=-sin(theda)*b_x_cur_elec+ $

cos(theda)*b_y_cur_elec

b_x_cur_skin=mu_0*curr/(2*!dpi*r_cur_skin)* $

(-y_cur_skin/r_cur_skin)
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b_y_cur_skin=mu_0*curr/(2*!dpi*r_cur_skin)* $

( x_cur_skin/r_cur_skin)

b_r_cur_skin= cos(theda_skin)*b_x_cur_skin+ $

sin(theda_skin)*b_y_cur_skin

b_t_cur_skin=-sin(theda_skin)*b_x_cur_skin+ $

cos(theda_skin)*b_y_cur_skin

b_x_cur_outer=mu_0*curr/(2*!dpi*r_cur_outer)* $

(-y_cur_outer/r_cur_outer)

b_y_cur_outer=mu_0*curr/(2*!dpi*r_cur_outer)* $

( x_cur_outer/r_cur_outer)

b_r_cur_outer= cos(theda_skin)*b_x_cur_outer+ $

sin(theda_skin)*b_y_cur_outer

b_t_cur_outer=-sin(theda_skin)*b_x_cur_outer+ $

cos(theda_skin)*b_y_cur_outer

b_x_cur_int=mu_0*curr/(2*!dpi*r_cur_int)*(-y_cur_int/r_cur_int)

b_y_cur_int=mu_0*curr/(2*!dpi*r_cur_int)*( x_cur_int/r_cur_int)

b_r_cur_int= cos(theda_int)*b_x_cur_int+ $

sin(theda_int)*b_y_cur_int

b_t_cur_int=-sin(theda_int)*b_x_cur_int+ $

cos(theda_int)*b_y_cur_int

plot,theda,b_t_cur_elec,yra=([-0,1.1]*max(b_t_cur_elec)), $

title=’B!d!4h!3!n from the current’, $

xtitle=’!4h!3 (rad)’, ytitle=’B(T)’

oplot,theda_skin,b_t_cur_skin,co=2

oplot,theda_skin,b_t_cur_outer,co=4

oplot,theda_int(*,n_r-1),b_t_cur_int(*,n_r-1),co=3

plot,theda,b_r_cur_elec,title=’B!dr!n from the current’, $
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xtitle=’!4h!3 (rad)’, ytitle=’B(T)’

oplot,theda_skin,b_r_cur_skin,co=2

oplot,theda_skin,b_r_cur_outer,co=4

oplot,theda_int(*,n_r-1),b_r_cur_int(*,n_r-1),co=3

levels=(findgen(10)+1)*.9

c_colors=[12,4,11,5,10,3,9,8,6,2]

;initial guess of the current profile

j_elec=dblarr(n_theda)-curr/(2*!dpi*r0)

;Calculating the magnetic field due to the electrode

b_y_elec_elec= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_elec/(r_elec_elec^2))

b_x_elec_elec=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_elec/(r_elec_elec^2))

b_r_elec_elec= cos(theda)*b_x_elec_elec+ $

sin(theda)*b_y_elec_elec

b_t_elec_elec=-sin(theda)*b_x_elec_elec+ $

cos(theda)*b_y_elec_elec

b_y_elec_skin= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_skin/(r_elec_skin^2))

b_x_elec_skin=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_skin/(r_elec_skin^2))

b_r_elec_skin= cos(theda_skin)*b_x_elec_skin+ $

sin(theda_skin)*b_y_elec_skin

b_t_elec_skin=-sin(theda_skin)*b_x_elec_skin+ $

cos(theda_skin)*b_y_elec_skin

b_y_elec_outer= (ds*mu_0/(2*!dpi))* $
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j_elec#(x_elec_outer/(r_elec_outer^2))

b_x_elec_outer=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_outer/(r_elec_outer^2))

b_r_elec_outer= cos(theda_skin)*b_x_elec_outer+ $

sin(theda_skin)*b_y_elec_outer

b_t_elec_outer=-sin(theda_skin)*b_x_elec_outer+ $

cos(theda_skin)*b_y_elec_outer

b_y_elec_int=dblarr(n_ang,n_r)

b_x_elec_int=dblarr(n_ang,n_r)

for i=0,n_r-1 do begin

b_y_elec_int(*,i)= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_int(*,*,i)/(r_elec_int(*,*,i)^2))

b_x_elec_int(*,i)=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_int(*,*,i)/(r_elec_int(*,*,i)^2))

endfor

b_r_elec_int= cos(theda_int)*b_x_elec_int+ $

sin(theda_int)*b_y_elec_int

b_t_elec_int=-sin(theda_int)*b_x_elec_int+ $

cos(theda_int)*b_y_elec_int

;finding the total field

b_t_total_skin=b_t_elec_skin+b_t_cur_skin

b_r_total_skin=b_r_elec_skin+b_r_cur_skin

b_t_total_elec=b_t_elec_elec+b_t_cur_elec

b_r_total_elec=b_r_elec_elec+b_r_cur_elec

b_t_total_outer=b_t_elec_outer+b_t_cur_outer

b_r_total_outer=b_r_elec_outer+b_r_cur_outer
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s_b_t_total_skin=b_t_total_skin

b_t_total_int=b_t_elec_int+b_t_cur_int

b_r_total_int=b_r_elec_int+b_r_cur_int

levels=(findgen(10)+1)*.9

c_colors=[12,4,11,5,10,3,9,8,6,2]

contour,sqrt(b_t_cur_int^2+b_r_cur_int^2),x_int,y_int, $

/irregular,c_colors=c_colors,levels=levels, $

title=’B!dtotal!n from the current’

oplot,x_elec,y_elec

dbr_dt=fltarr(n_theda)

dbr_dt(1:n_theda-1)=b_r_total_skin(1:n_theda-1)- $

b_r_total_skin(0:n_theda-2)

dbr_dt(0)=b_r_total_skin(0)-b_r_total_skin(n_theda-1)

dbr_dt=-dbr_dt/(d_theda*r0*mu_0)

count=0

!p.multi=0

plot,theda_skin,b_r_total_skin,title=’B!dr!n total at the skin’

while (max(abs(dbr_dt*(2*ds)) gt (min(abs(j_elec))*1e-4))) and $

(count le n_theda) do begin

j_elec=j_elec-dbr_dt*(2*ds)

b_y_elec_skin= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_skin/(r_elec_skin^2))

b_x_elec_skin=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_skin/(r_elec_skin^2))

b_r_elec_skin= cos(theda_skin)*b_x_elec_skin+ $
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sin(theda_skin)*b_y_elec_skin

b_r_total_skin=b_r_elec_skin+b_r_cur_skin

dbr_dt=fltarr(n_theda)

dbr_dt(1:n_theda-1)=b_r_total_skin(1:n_theda-1)- $

b_r_total_skin(0:n_theda-2)

dbr_dt(0)=b_r_total_skin(0)-b_r_total_skin(n_theda-1)

dbr_dt=-dbr_dt/(d_theda*r0*mu_0)

oplot,theda_skin,b_r_total_skin,co=2+(count/(.1*n_theda))

count=count+1

endwhile

;Calculating the magnetic field due to the electrode

b_y_elec_elec= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_elec/(r_elec_elec^2))

b_x_elec_elec=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_elec/(r_elec_elec^2))

b_r_elec_elec= cos(theda)*b_x_elec_elec+ $

sin(theda)*b_y_elec_elec

b_t_elec_elec=-sin(theda)*b_x_elec_elec+ $

cos(theda)*b_y_elec_elec

b_y_elec_skin= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_skin/(r_elec_skin^2))

b_x_elec_skin=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_skin/(r_elec_skin^2))

b_r_elec_skin= cos(theda_skin)*b_x_elec_skin+ $

sin(theda_skin)*b_y_elec_skin

b_t_elec_skin=-sin(theda_skin)*b_x_elec_skin+ $

cos(theda_skin)*b_y_elec_skin
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b_y_elec_outer= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_outer/(r_elec_outer^2))

b_x_elec_outer=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_outer/(r_elec_outer^2))

b_r_elec_outer= cos(theda_skin)*b_x_elec_outer+ $

sin(theda_skin)*b_y_elec_outer

b_t_elec_outer=-sin(theda_skin)*b_x_elec_outer+ $

cos(theda_skin)*b_y_elec_outer

b_y_elec_int=dblarr(n_ang,n_r)

b_x_elec_int=dblarr(n_ang,n_r)

for i=0,n_r-1 do begin

b_y_elec_int(*,i)= (ds*mu_0/(2*!dpi))* $

j_elec#(x_elec_int(*,*,i)/(r_elec_int(*,*,i)^2))

b_x_elec_int(*,i)=-(ds*mu_0/(2*!dpi))* $

j_elec#(y_elec_int(*,*,i)/(r_elec_int(*,*,i)^2))

endfor

b_r_elec_int= cos(theda_int)*b_x_elec_int+ $

sin(theda_int)*b_y_elec_int

b_t_elec_int=-sin(theda_int)*b_x_elec_int+ $

cos(theda_int)*b_y_elec_int

!p.multi=[0,2,2]

levels=(findgen(10)+1)*.9

c_colors=[12,4,11,5,10,3,9,8,6,2]

contour,sqrt(b_t_cur_int^2+b_r_cur_int^2),x_int,y_int, $

/irregular,c_colors=c_colors,levels=levels, $

title=’B!dtotal!n from the current’

oplot,x_elec,y_elec
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levels=levels*.1

contour,sqrt(b_t_elec_int^2+b_r_elec_int^2),x_int,y_int, $

/irregular,c_colors=c_colors,levels=levels, $

title=’B!dtotal!n from the wall (levels*.1)’

oplot,x_elec,y_elec

;finding the total field

b_x_total_int=b_x_elec_int+b_x_cur_int

b_y_total_int=b_y_elec_int+b_y_cur_int

b_t_total_skin=b_t_elec_skin+b_t_cur_skin

b_r_total_skin=b_r_elec_skin+b_r_cur_skin

b_t_total_elec=b_t_elec_elec+b_t_cur_elec

b_r_total_elec=b_r_elec_elec+b_r_cur_elec

b_t_total_outer=b_t_elec_outer+b_t_cur_outer

b_r_total_outer=b_r_elec_outer+b_r_cur_outer

b_t_total_int=b_t_elec_int+b_t_cur_int

b_r_total_int=b_r_elec_int+b_r_cur_int

levels=(findgen(10)+1)*.9

c_colors=[12,4,11,5,10,3,9,8,6,2]

contour,sqrt(b_t_total_int^2+b_r_total_int^2), $

x_int,y_int,/irregular, $

c_colors=c_colors,levels=levels, $

title=’B!dtotal!n from both’

oplot,x_elec,y_elec

levels=levels*.1

contour,b_y_elec_int,x_int,y_int,/irregular, $

c_colors=c_colors,levels=levels, $
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title=’B!dy!n from the wall (levels*.1)’

oplot,x_elec,y_elec

!p.multi=0

plot,theda_skin,b_t_total_skin,XRA=[0,2*!pi],xstyle=1, $

title=’B!d!4h!3!n from both’,xtitle=’!4h!3 (rad)’, $

ytitle=’B(T)’

oplot,theda_skin,s_b_t_total_skin,co=2

hline,mu_0*curr/(2*!pi*(r0-ds)),co=3

;read,bogus

oplot,theda_skin,2*b_t_cur_skin-mu_0*curr/(2*!pi*(r0-ds)), $

co=4,linestyle=2

ps=1

if ps eq 1 then begin

SET_PLOT, ’PS’

DEVICE, FILENAME=’find_b_wall.ps’, /color , $

/portrait,ysize=10,yoffset=1.2

!p.thick=3

!x.thick=3

!y.thick=3

!p.charthick=2

!p.charsize=1

endif

plot,theda_skin,b_t_total_skin,xra=[0,2*!pi],xstyle=1, $

title=’Constant Displacement’,xtitle=’!4h!3 (rad)’, $

ytitle=’B(T)’

oplot,theda_skin,s_b_t_total_skin,co=2

hline,mu_0*curr/(2*!pi*(r0-ds)),co=3
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oplot,theda_skin,2*b_t_cur_skin-mu_0*curr/(2*!pi*(r0-ds)), $

co=4,linestyle=2

xyouts,.7,.85,’B!d!4h!3!u0!n+ B!d!4h!3!u1!n+B!d!4h!3!u2!n’, $

/normal

xyouts,.7,.8,’B!d!4h!3!u0!n’,/normal,co=3

xyouts,.7,.75,’B!d!4h!3!u0!n+ B!d!4h!3!u1!n’,/normal,co=2

xyouts,.7,.7,’B!d!4h!3!u0!n+2B!d!4h!3!u1!n’,/normal,co=4

if ps eq 1 then begin

device,/close

SET_PLOT, ’win’

!p.thick=1

!x.thick=1

!y.thick=1

!p.charthick=1

!p.charsize=1.5

!p.multi=0

endif

!p.multi=0

end

C.3 Density Codes

The density is calculated and written to the tree with Dense fin.pro. The code assumes

the tree is already open. The density is calculated with the method described in Sec. 5.6.3.

The fringe jumps are found with a series of tests. This method removes any bias which

may occur when an operator determines the fringe jumps. The phase may be lost when the
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radius of the lissajou becomes zero. The code can normally find this point and correct it

when the radius goes through zero once during a pulse. The radius of the lissajou should

be checked when the density has a 2π5.61× 1020 m−2 jump for a period of time. The code
may miss two fringe jumps when the radius goes through zero twice.

C.3.1 Dense fin.pro

pro dense_fin

;

;getting shot

;

shot = mdsvalue(’$shot’)

;

; Conversion using 632.8nm for laser wavelength, eq 4.2 in Hermann Thesis

;

convert=5.61

;

;chord length of each view

;

l=dblarr(4)

l(0)=0.0938

l(1)=0.124

l(2)=0.145

l(3)=19.261

;

;Setting initial noise end to I_P = 50000

;

Ip=mdsvalue(’\I_P’)

Tip=mdsvalue(’dim_of(\I_P)’)

ip=abs(dsmooth(ip,5,7))
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Kip=min(where(ip gt 2e4))

If (kip eq -1) then kip=0

Noise_end = tip(kip)*1e6

Kip=max(where(ip gt 2e4))

If (kip eq -1) then kip=max(where(Tip gt 200e-6))

Plasma_end = tip(kip)*1e6 + 200

;

; Digital filter parameters

;

Flow=0

Fmid=.2

Fhigh=1

a=50

N_terms=13

Coeff_low = DIGITAL_FILTER(Flow, Fmid, A, N_terms)

Coeff_high= DIGITAL_FILTER(Fmid, Fhigh, A, N_terms)

;

; Magnitude of phi change to account for fringe jumps

;

jump=!pi

;

;Do loop for 2 chords

;

for chord=1,2 do begin

;

;Getting time base, location, sin and cos values

;

if (chord eq 1) then begin
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cos1=mdsvalue(’\digitizers::cos1’)

sin1=mdsvalue(’\digitizers::sin1’)

to=mdsvalue(’dim_of(\digitizers::cos1)’)

loc=mdsvalue(’\NE_1:HOLE_LOC’)

baseline=mdsvalue(’\ne_1:baseline’)

z=mdsvalue(’\ne_1:z_loc’)

endif else begin

cos1=mdsvalue(’\digitizers::cos2’)

sin1=mdsvalue(’\digitizers::sin2’)

to=mdsvalue(’dim_of(\digitizers::cos2)’)

loc=mdsvalue(’\NE_2:HOLE_LOC’)

baseline=mdsvalue(’\ne_2:baseline’)

z=mdsvalue(’\ne_2:z_loc’)

endelse

;

; Adjusting time base

;

to=to*1e6

;

;Get the array size

;

ndata=n_elements(cos1)

;

;Offset method

;

if ( shot ne baseline) then begin

mdsopen,’zapmain’,stremo(baseline)

if (chord eq 1) then begin

xpo=mdsvalue(’\ne_1:sin_offset’)

ypo=mdsvalue(’\ne_1:cos_offset’)
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del_xpo=mdsvalue(’\ne_1:sin_offset:error’)

del_ypo=mdsvalue(’\ne_1:cos_offset:error’)

endif else begin

xpo=mdsvalue(’\ne_2:sin_offset’)

ypo=mdsvalue(’\ne_2:cos_offset’)

del_xpo=mdsvalue(’\ne_2:sin_offset:error’)

del_ypo=mdsvalue(’\ne_2:cos_offset:error’)

endelse

mdsopen,’zapmain’,stremo(shot)

endif else begin

xpo=total(sin1)/ndata

ypo=total(cos1)/ndata

del_xpo=sqrt(total((sin1-xpo)^2)/(ndata-1))

del_ypo=sqrt(total((cos1-ypo)^2)/(ndata-1))

sin1=sin1+1.

cos1=cos1+1.

endelse

;

; Adjustment for center offset

;

xo=sin1-xpo

yo=cos1-ypo

;

; Rotating the coordinate system

;

theda_0=atan(total(xo(0:10))/11,total(yo(0:10))/11)

xo_t=xo

yo_t=yo

xo=xo_t*cos(theda_0)-yo_t*sin(theda_0)

yo=yo_t*cos(theda_0)+xo_t*sin(theda_0)
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;

; Calculate the phase shift

;

y=atan(xo,yo)

;

; Calculate the phase shift with applying the digital filter

;

x_low=CONVOL(xo, Coeff_low)

y_low=CONVOL(yo, Coeff_low)

x_high=CONVOL(xo, Coeff_high)

y_high=CONVOL(yo, Coeff_high)

y_sm=atan(x_low,y_low)

to_sm=to

ndata_sm=n_elements(to_sm)

;

;Correction for VAX atan(0,0)

n_xy_zero=where(((x_low eq 0) and (y_low eq 0)) and (to le 0))

y_sm(n_xy_zero)=y_sm(max(n_xy_zero)+2)

n_xy_zero=where(((x_low eq 0) and (y_low eq 0)) and (to ge 0))

y_sm(n_xy_zero)=y_sm(min(n_xy_zero)-2)

;

;getting the amplitude of the noise

;

x_high1=dsmooth(abs(x_high))+sqrt((del_xpo*cos(theda_0))^2+ $

(del_ypo*sin(theda_0))^2)

y_high1=dsmooth(abs(y_high))+sqrt((del_ypo*cos(theda_0))^2+ $

(del_xpo*sin(theda_0))^2)

;

;finding errors in psi
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;

r_2=(x_low^2+y_low^2)>(del_xpo^2+del_ypo^2)

del_y=sqrt(((yo*x_high1)^2+(xo*y_high1)^2)/((r_2)^2))

del_y=del_y<(2*!dpi)

;

;Finding earliest vibration fringe jump

;

ave1=total(y_sm(1:50))/50.

n_time_m1=min(where(to_sm ge -1e-6))>50

ave2=total(y_sm(n_time_m1-50:n_time_m1-1))/50.

ave_slope=(ave2-ave1)/(to_sm(n_time_m1-25)-to_sm(25))

t_end_slope=to(25)+(2.5-abs(ave1))/abs(ave_slope)

;

; Finding region for vibration fits

;

k=min(where(to ge noise_end))

pk=min(where(to ge plasma_end<t_end_slope))

;

; Accounting for fringe jumps after the plasma pulse

;

a=dblarr(ndata-pk)

b=dblarr(ndata-pk)

d=dblarr(ndata-pk)

a=(y(pk:ndata-2)-y((pk+1):ndata-1)) gt jump

b=(y(pk:ndata-2)-y((pk+1):ndata-1)) lt -jump

d=1.0*a-1.0*b

sum=dblarr(ndata-pk)

for I=1,ndata-1-pk do $

sum(I)=sum(I-1)+d(I-1)

y(pk+1:ndata-1)=y(pk+1:ndata-1)+2.0*!pi*sum(1:ndata-pk-1)
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a=dblarr(ndata_sm-pk)

b=dblarr(ndata_sm-pk)

d=dblarr(ndata_sm-pk)

a=(y_sm(pk:ndata_sm-2)-y_sm(pk+1:ndata_sm-1)) gt jump

b=(y_sm(pk:ndata_sm-2)-y_sm(pk+1:ndata_sm-1)) lt -jump

d=1.0*a-1.0*b

sum=dblarr(ndata_sm-pk)

for I=1,ndata_sm-1-pk do $

sum(I)=sum(I-1) + d(I-1)

y_sm(pk+1:ndata_sm-1)=y_sm(pk+1:ndata_sm-1)+2.0*!pi*sum(1:ndata_sm-pk-1)

;

pk=min(where(to ge plasma_end))

;

;finding time for baseline

;

nset=[where(to_sm le 2e-6),where(to_sm ge plasma_end)]

;

; Finding baseline and error

;

diag=INDGEN(5)*(5 + 1)

pder=[[replicate(1., n_elements(nset))],[to(nset)], $

[to(nset)^2],[to(nset)^3],[to(nset)^4]]

weight=1/(del_y(nset)^2)

alpha = transpose(pder) # (weight# (fltarr(5)+1.)*pder)

alpha_inv=invert(alpha)

drift_coeff=invert(transpose(pder) # pder) # $

(transpose(pder) # y_sm(nset))

sigma = sqrt( alpha_inv[diag] )

del_phi_vib=sigma(0)+to*sigma(1)+(to^2)*sigma(2)+ $

(to^3)*sigma(3)+(to^4)*sigma(4)
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del_phi_p=sqrt(del_y^2+del_phi_vib^2)

del_phi_p(0:20)=0

del_phi_p(ndata-21:ndata-1)=0

drift=drift_coeff(0)+to*drift_coeff(1)+(to^2)*drift_coeff(2)+ $

(to^3)*drift_coeff(3)+(to^4)*drift_coeff(4)

y=y-drift

y_sm=y_sm-drift

;

; Modified Milroy code using Uri’s idea for accounting for

; fringe jumps (Jul 03)

;

nstart=min(where(to ge 0))

a1=fltarr(ndata)

b1=fltarr(ndata)

a1(1:ndata-1)=(y(0:ndata-2)-y(1:ndata-1)) ge jump

b1(1:ndata-1)=(y(0:ndata-2)-y(1:ndata-1)) le -jump

d1=1.0*a1-1.0*b1

d1(0:nstart+100)=0

sumf=fltarr(ndata)

for i=1,ndata-1 do $

sumf(i)=sumf(i-1)+d1(i)

sumb=fltarr(ndata)

for i=ndata-2,0,-1 do $

sumb(i)=sumb(i+1)+d1(i+1)

phi_f=y+2*!pi*sumf

phi_b=y-2*!pi*sumb

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata-100) gt phi_f(ndata-100))- $
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1.*(phi_b(ndata-100) lt phi_f(ndata-100))

count=0

if cross gt 0 then begin

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

while (cross ne 0) and (count le 15) do begin

fringe=max(where(a_new(0:ndata-200)*cross gt -1*!pi))

new_sum=fltarr(ndata)

new_sum(fringe:ndata-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata-100) gt phi_f(ndata-100))- $

1.*(phi_b(ndata-100) lt phi_f(ndata-100))

count=count+1

endwhile

endif else begin

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

while (cross ne 0) and (count le 15) do begin

fringe=max(where(a_new(0:ndata-200)*cross gt 1.*!pi))+1

new_sum=fltarr(ndata)

new_sum(fringe:ndata-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

cross=- 1.*((phi_f(0)-phi_b(0)) gt .001)

count=count+1
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endwhile

endelse

y=-phi_b_new

;

;Modified Milroy code using Uri’s idea for accounting for

; fringe jumps w/filtered data (Jul 03)

;

a1=fltarr(ndata_sm)

b1=fltarr(ndata_sm)

a1(1:ndata_sm-1)=(y_sm(0:ndata_sm-2)-y_sm(1:ndata_sm-1)) gt jump

b1(1:ndata_sm-1)=(y_sm(0:ndata_sm-2)-y_sm(1:ndata_sm-1)) lt -jump

d1=1.0*a1-1.0*b1

d1(0:nstart+100)=0

sumf=fltarr(ndata_sm)

for i=1,ndata_sm-1 do $

sumf(i)=sumf(i-1)+d1(i)

sumb=fltarr(ndata_sm)

for i=ndata_sm-2,0,-1 do $

sumb(i)=sumb(i+1)+d1(i+1)

phi_f=y_sm+2*!pi*sumf

phi_b=y_sm-2*!pi*sumb

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata_sm-100) gt phi_f(ndata_sm-100))- $

1.*(phi_b(ndata_sm-100) lt phi_f(ndata_sm-100))

count=0

if cross gt 0 then begin

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new



267

while (cross ne 0) and (count le 10) do begin

fringe=max(where(a_new(0:ndata_sm-200)*cross gt -1*!pi))

new_sum=fltarr(ndata_sm)

new_sum(fringe:ndata_sm-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b+ phi_f(0)+phi_b(0)

a_new=phi_f - phi_b_new

cross= 1.*(phi_b(ndata_sm-100) gt phi_f(ndata_sm-100))- $

1.*(phi_b(ndata_sm-100) lt phi_f(ndata_sm-100))

count=count+1

endwhile

endif else begin

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

while (cross ne 0) and (count le 10) do begin

fringe=max(where(a_new(0:ndata_sm-200)*cross gt 1.*!pi))+1

new_sum=fltarr(ndata_sm)

new_sum(fringe:ndata_sm-1)=2*!pi*cross

phi_f=phi_f+new_sum

phi_b=phi_b-2*!pi*cross +new_sum

phi_b_new= -phi_b

a_new=phi_f - phi_b_new

cross=- 1.*((phi_f(0)-phi_b(0)) gt .001)

count=count+1

endwhile

endelse

y_sm=-phi_b_new

;

; forcing all densities to be positive
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;

y(where(y le -.5)>0)=y(where(y le -.5)>0)+2*!pi

y_sm(where(y_sm le -.5)>0)=y_sm(where(y_sm le -.5)>0)+2*!pi

;

;forcing last point to be a fringe jump

;

y(ndata-1)=2*!pi

y_sm(ndata_sm-1)=2*!pi

;

; Converting to density

;

y=y*convert

y_sm=y_sm*convert

del_phi_p=del_phi_p*convert

;stop

;

; Putting data unto the tree

;

build_string = ’build_signal(build_with_units($1*1e20,"m^(-2)"),’ + $

’*,(build_with_units($2*1e-6,"s")))’

build_string_sm = ’build_signal(build_with_units($1*1e20/’ + $

stremo(l(loc-1))+’,"m^(-2)"),’ + $

’*,(build_with_units($2*1e-6,"s")))’

build_string_with_err = $

’build_signal(build_with_errors(build_with_units’ + $

’($1*1e20,"m^(-2)"), $3)’ + $

’*, (build_with_units($2*1e-6,"s")))’

mdsopen,’zapmain’,stremo(shot)

if (chord eq 1) then begin

mdsput, ’\ne_1’, build_string, y, to
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mdsput, ’\ne_1:ne_1_sm’, build_string, y_sm, to

mdsput, ’\ne_1:ne_1_ave’, build_string_sm, y, to

mdsput, ’\ne_1:ne_1_sm_ave’, build_string_sm, y_sm, to

mdsput, ’\ne_1:fmid’, ’$’, Fmid

mdsput, ’\ne_1:jump’, ’$’, jump

mdsput, ’\ne_1:sin_offset’, ’$’, xpo

mdsput, ’\ne_1:sin_offset:error’, ’$’, del_xpo

mdsput, ’\ne_1:cos_offset’, ’$’, ypo

mdsput, ’\ne_1:cos_offset:error’, ’$’, del_ypo

mdsput, ’\ne_1:error’, build_string, del_phi_p, to

endif else begin

mdsput, ’\ne_2’, build_string, y, to

mdsput, ’\ne_2:ne_2_sm’, build_string, y_sm, to

mdsput, ’\ne_2:ne_2_ave’, build_string_sm, y, to

mdsput, ’\ne_2:ne_2_sm_ave’, build_string_sm, y_sm, to

mdsput, ’\ne_2:fmid’, ’$’, Fmid

mdsput, ’\ne_2:jump’, ’$’, jump

mdsput, ’\ne_2:sin_offset’, ’$’, xpo

mdsput, ’\ne_2:sin_offset:error’, ’$’, del_xpo

mdsput, ’\ne_2:cos_offset’, ’$’, ypo

mdsput, ’\ne_2:cos_offset:error’, ’$’, del_ypo

mdsput, ’\ne_2:error’, build_string, del_phi_p, to

endelse

endfor

end

;

; Past comments and code

;

;--Finding the center of the DC offsets (No longer used 7 Feb 99)



270

; [;xpo=total(sin1(0:ndata-1))/ndata]

; [;ypo=total(cos1(0:ndata-1))/ndata]

; [;xp=sin1-xpo]

; [;yp=cos1-ypo]

; [;xpp=(total(xp^3+xp*yp^2)*total(yp^2) - $]

; [; (total(yp^3+yp*xp^2))*total(xp*yp))$]

; [; /(2*(total(xp^2)*total(yp^2)-(total(xp*yp))^2))]

; [;ypp=(total(yp^3+yp*xp^2)*total(xp^2) - $]

; [; (total(xp^3+xp*yp^2))*total(xp*yp))$]

; [; /(2*(total(xp^2)*total(yp^2)-(total(xp*yp))^2))]

;

;--rotating the coordinate system, added 4jun02

;

;--added to offset method 4jun02:

; [;sin1=fltarr(ndata)+1.;cos1=fltarr(ndata)+1. ]
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C.4 Spectroscopy Codes

The plasma velocity has been measured with three spectrometers. The data analysis codes

for the IDS and ICCD spectrometers are included in this section.

C.4.1 Calibration codes

The IDS calibration factors are found with ids cal4.pro. The method used to calculate the

calibration factors was discussed in Sec. 5.7.3. The code calculates the calibration factors

for a pulse and prints them to the screen. The calibration factors are recorded and used in

ids temp fin3.pro.

The calibration of the ICCD was discussed in Sec. 5.7.4. A large number of calibration

sets are needed for the ICCD. These sets are with hundreds of spectra. An example code,

iccd 18sep01 cal 600.pro, is used to find the ICCD calibration factors. The code plots the

calibration factors from all the images for many of the steps used to find the calibration

factors into a file. The calibration factor are check by reviewing the plots in the file. When

the calibration factors calculated by the code are incorrect, such as the number of rows

in a bin, modifications are made to the code or the calibration factors are calculated by

hand. Once all of the calibration factors have been verified, save cal 18sep01 param.pro

averages the calibration factors and saves them to a file. The code is verified by calculating

the calibration factors by hand for the wavelength regions where velocity measurements are

made.
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ids cal4.pro

pro ids_cal4,shot=shot,par=par,sig=sig

default,shot,315012

ss,shot

ids1=data(’\digitizers::zap_3412_a:input_1’,xaxis=tim)

nel=n_elements(ids1)

nch=16

sm=7

w=120

d_t=(tim(2)-tim(0))/2

n_os=1/(d_t*w)

ids1_sm=smooth(ids1,sm)-.1

totn_os=nel/n_os

w_os=fltarr(totn_os/4)

for i=0,totn_os/4-1 do begin

mint=0+n_os*i

maxt=n_os-1+n_os*i

lds_max=where(ids1_sm(mint:maxt) ge 1.001*max(ids1_sm(mint:maxt)))

lds_min=where(ids1_sm(mint:maxt) le .999*min(ids1_sm(mint:maxt)))

wc=.5*1/abs(tim(lds_min(n_elements(lds_min)/2)) - $

tim(lds_max(n_elements(lds_max)/2)))

w_os(i)=wc
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endfor

ave=moment(w_os)

n_os=1/(d_t*w)

totn_os=nel/n_os

n_skip=n_os*findgen(totn_os)

tot=fltarr(nel/totn_os)

ids_peak=fltarr(nch,totn_os)

ids=fltarr(nch,nel)

ids_sm=fltarr(nch,nel)

ids_fit=fltarr(nch,nel-1)

n_mintot=fltarr(nch)

ch_nam=[’\digitizers::zap_3412_a:input_1’, $

’\digitizers::zap_3412_a:input_2’, $

’\digitizers::zap_3412_a:input_3’, $

’\digitizers::zap_3412_a:input_4’, $

’\digitizers::zap_3412_b:input_1’, $

’\digitizers::zap_3412_b:input_2’, $

’\digitizers::zap_3412_b:input_3’, $

’\digitizers::zap_3412_b:input_4’, $

’\digitizers::zap_3412_c:input_1’, $

’\digitizers::zap_3412_c:input_2’, $

’\digitizers::zap_3412_c:input_3’, $

’\digitizers::zap_3412_c:input_4’, $

’\digitizers::zap_3412_d:input_1’, $

’\digitizers::zap_3412_d:input_2’, $

’\digitizers::zap_3412_d:input_3’, $

’\digitizers::zap_3412_d:input_4’]
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par=fltarr(nch,3)

sig=fltarr(nch,3)

for i = 0, nch-1 do begin

ids(i,0:nel-1)=data(ch_nam(i))

ids_sm(i,0:nel-1)=smooth(ids(i,0:nel-1),sm)

for j=0,n_os-1 do begin

tot_tmp=transpose(ids_sm(i,n_skip+j))

tot(j)=min(tot_tmp)

endfor

n_mintot(i)=min(where(tot eq min(tot)))

ids_peak(i,0:totn_os-1)=ids_sm(i,n_skip+n_mintot(i))

y=transpose(ids_peak(i,*))

x=tim(n_skip+n_mintot(i))

plot,x,y

yfit=gaussfit(x,y,b,nterms=4) ;Intitial guess using guassfit

oplot,x,yfit,color=2

a=b(0:2)

w=fltarr(n_elements(x))+1./(0.002^2)

yfit(*)=curvefit(x,y,w,a,sigma,function_name=’fgauss3’)

oplot,x,yfit,color=3

par(i,*)=a

sig(i,*)=sigma

endfor

ip=fltarr(totn_os)

for i = 0, nch-1 do begin

ip=transpose(ids_peak(i,0:totn_os-1))

t_skip=tim(n_skip+n_mintot(i))
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idspline=spline(t_skip,ip,tim)

ids_fit(i,*)=idspline

endfor

peak_tm=fltarr(nch)

peak_min=fltarr(nch)

fwhm=fltarr(nch)

disp=fltarr(nch-1)

for i=0,nch-1 do begin

n_max=where(transpose(ids_fit(i,*)) eq min(ids_fit(i,*)))

n_m=n_max(n_elements(n_max)/2)

peak_tm(I)=tim(n_m)

start=max(where( transpose(ids_fit(I,*)) gt -0.02))

start_cen=min(where( transpose(ids_fit(I,*)) gt -0.02))

mom=int_tabulated(tim(start_cen:start), $

tim(start_cen:start)* $

transpose(ids_fit(i,start_cen:start)))

aera=int_tabulated(tim(start_cen:start), $

transpose(ids_fit(i,start_cen:start)))

cen=mom/aera

peak_tm(i)=cen

fwh=where(transpose(ids_fit(I,*)) lt .5*ids_fit(I,n_m))

start=max(fwh)

start_cen=min(fwh)

mom=int_tabulated(tim(start_cen:start), $

tim(start_cen:start)* $

transpose(ids_fit(i,start_cen:start)))

aera=int_tabulated(tim(start_cen:start), $

transpose(ids_fit(i,start_cen:start)))
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cen=mom/aera

peak_tm(i)=cen

fwh=where(transpose(ids_fit(I,*)) lt .5*ids_fit(I,n_m))

fwhm(I)=tim(max(fwh))-tim(min(fwh))

peak_min(I)=(ids_fit(i,min(where(tim ge peak_tm(i)))))

endfor

disp=peak_tm(1:nch-1)-peak_tm(0:nch-2)

print,’Shot=’,shot

print,’time=’,peak_tm

print,’time_fit=’,(par(*,1))

print,’time_sig=’,(sig(*,1))

print,’peak=’,peak_min

print,’peak_fit=’,(par(*,0))

print,’peak_sig=’,(sig(*,0))

print,’FWHM=’,fwhm

print,’FWHM_fit=’,(par(*,2))

print,’FWHM_sig=’,(sig(*,2))

print,’Disp=’,disp

print,’Disp_fit=’,(par(1:nch-1,1)-par(0:nch-2,1))

print,’Disp_sig=’,((sig(1:nch-1,1)*sig(1:nch-1,1)+ $

par(0:nch-2,1)*par(0:nch-2,1))^.5)

print,’Rel Int (ch8)=’,peak_min/peak_min(7)

print,’Rel_Int_fit=’,(par(*,0)/par(7,0))

print,’Rel_Int_sig=’,((sig(*,0)/par(7,0))^2+ $

(sig(7,0)*par(*,1)/(par(7,1)^2))^2)^.5

end
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iccd 18sep01 cal 600.pro

;pro iccd_18sep01_cal_600

default,ha_int,0

if ha_int ne 1 then begin

n_shot=300 ;total calibration shots

;n_shot=6

n_el=512 ;n pixels in the picture

n_chord=20 ;number of chords

image_all=fltarr(n_el,n_el,n_shot)

wave_all=fltarr(n_el,n_shot)

endif

r_level=.1

; initializing arrays

n_p=60 ;number of points to use in finding the centroid

pix=findgen(n_el) ;vector of all of the pixels

pix1=findgen(n_p+1)-n_p/2

pix2=findgen(31)-15

pix3=findgen(21)-10

pix4=findgen(15)-7

pix_fit=[findgen(10)-20,findgen(201)*.1-10,findgen(10)+11]

n_ideal=fltarr(n_shot)

offset=fltarr(n_el,n_shot) ;array of offsets for row

;correction from fine data

offset_3=fltarr(n_el,n_shot)

offset_t=fltarr(n_el)
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max_int=fltarr(n_el,n_shot)

max_i=fltarr(n_el,n_shot)

image_s=fltarr(n_p/2+1,n_el,n_shot)

x_s=fltarr(n_p+1,n_shot/3)

n_min=fltarr(n_chord,n_shot)

n_max=fltarr(n_chord,n_shot)

wave_set=[228.9,326.1,361.0,457.4,480.1,508.6, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

228.9,326.1,361.0,457.4,480.1,508.6, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

228.9,326.1,361.0,457.4,480.1,508.6, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

228.9,326.1,361.0,457.4,480.1,508.6, $

228.9,326.1,361.0,457.4,480.1,508.6, $

643.5,652.3,686.0, $

483.1,477.1,231.4,226.4 ] ;wave leangth for each shot

; ideal waveleangth for each shot



279

wave_i=[228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

228.8022,326.1055,361.0508,457.6044,479.992,508.5822, $

643.847,650.5048,686.4066, $

479.992 ,479.992 ,228.8022,228.8022]

port_i=[0,0,0,0,0,0, $

0,0,0,0,0,0,0,0,0, $

0,0,0,0,0,0,0,0,0, $

0,0,0,0,0,0,0,0,0, $

0,0,0,0,0,0, $

0,0,0,0,0,0,0,0,0, $

1,1,1,1,1,1, $

1,1,1,1,1,1,1,1,1, $

1,1,1,1,1,1,1,1,1, $
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1,1,1,1,1,1,1,1,1, $

1,1,1,1,1,1, $

1,1,1,1,1,1,1,1,1, $

1,1,1,1]

view_i=port_i

grate_i=[0,0,0,0,0,0, $

1,1,1,1,1,1,1,1,1, $

2,2,2,2,2,2,2,2,2, $

2,2,2,2,2,2,2,2,2, $

0,0,0,0,0,0, $

1,1,1,1,1,1,1,1,1, $

0,0,0,0,0,0, $

1,1,1,1,1,1,1,1,1, $

2,2,2,2,2,2,2,2,2, $

2,2,2,2,2,2,2,2,2, $

0,0,0,0,0,0, $

1,1,1,1,1,1,1,1,1, $

1,1,0,0] ;grating for each shot

for k=0,n_shot-1 do begin

;reading data

; changed to read_princeton on 11 April 01

if ha_int ne 1 then begin

read_princeton, ’d:\Zap Spec Data\ICCD_cal\18sep01\18sep01cal’+ $

stremo(k+1)+’.spe’, $

image, x_calibration=wave

;

;saving images
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;

image_all(*,*,k)=image

wave_all(*,k)=wave

endif else begin

image=image_all(*,*,k)

wave=wave_all(*,k)

endelse

;finding index of the ideal wavelength

n_ideal_temp=min(where(wave ge wave_i(k/3)))

n_ideal(k)=n_ideal_temp+(wave_i(k/3)-wave(n_ideal_temp))/ $

(wave(n_ideal_temp)-wave(n_ideal_temp-1))

x1=pix1+n_ideal(k) ;pixel range for ideal signal

x2=pix2+n_ideal(k) ;pixel range for ideal signal

x3=pix3+n_ideal(k) ;pixel range for ideal signal

x4=pix4+n_ideal(k) ;pixel range for ideal signal

pix1_t=pix1

pix2_t=pix2

if wave_i(k/3) gt 600. then begin

x1=x2

x2=x3

pix1_t=pix2

pix2_t=pix3

endif

window,0

plot,x1,image(x1,0),yrange=[0,1.1*max(image(x1,*))],$

title=’grate=’+stremo(grate_i(k/3))+’ wave=’+stremo(wave_i(k/3))

vline,n_ideal(k)

for i=0,n_el-1 do begin

;creating fine matrix for centriod calculation
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;initial guess for center

max_int(i,k)=max(image(x1,i))

max_i(i,k)=min(where(image(x1,i) eq max_int(i,k)))

offset(i,k)=((-n_elements(x1)/2+max_i(i,k))>(-5.)<10)

offset_t(i)=offset(i,k)+1

count=0

while (abs(offset(i,k)-offset_t(i)) gt .05) and $

(count lt 20) do begin

offset_t(i)=offset(i,k)

image_c=interpol(image(*,i),pix-offset(i,k),x1)

offset(i,k)=(((((int_tabulated(pix1_t,image_c*pix1_t)/ $

int_tabulated(pix1_t,image_c))<1)>(-1))+ $

offset_t(i))>(-5.)<10)

count=count+1

endwhile

oplot,x1,image_c,color=(count+1)>2

offset_t(i)=offset(i,k)+1

count=0

while (abs(offset(i,k)-offset_t(i)) gt .05) and $

(count lt 20) do begin

offset_t(i)=offset(i,k)

image_c=interpol(image(*,i),pix-offset(i,k),x2)

offset(i,k)=(((((int_tabulated(pix2_t,image_c*pix2_t)/ $

int_tabulated(pix2_t,image_c))<1)>(-1))+ $

offset_t(i))>(-5.)<10)

count=count+1

endwhile

offset_t(i)=offset(i,k)+1

count=0
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while (abs(offset(i,k)-offset_t(i)) gt .05) and (count lt 20) do begin

offset_t(i)=offset(i,k)

image_c=interpol(image(*,i),pix-offset(i,k),x3)

offset(i,k)=(((((int_tabulated(pix3,image_c*pix3)/ $

int_tabulated(pix3,image_c))<1)>(-1))+ $

offset_t(i))>(-5.)<10)

count=count+1

endwhile

oplot,x3,image_c,color=(count+1)>2,linestyle=1

offset_3(i,k)=offset(i,k)

offset_t(i)=offset(i,k)+1

count=0

while (abs(offset(i,k)-offset_t(i)) gt .05) and (count lt 20) do begin

offset_t(i)=offset(i,k)

image_c=interpol(image(*,i),pix-offset(i,k),x4)

offset(i,k)=(((((int_tabulated(pix4,image_c*pix4)/ $

int_tabulated(pix4,image_c))<1)>(-1))+ $

offset_t(i))>(-5.)<10)

count=count+1

endwhile

oplot,x4,image_c,color=20*i/n_el+2,linestyle=2

max_int(i,k)=max(image_c)

endfor

max_sm=smooth(smooth(max_int(*,k),11,/EDGE_TRUNCATE),7,/EDGE_TRUNCATE)

a=(max_sm(0:n_el-2)-max_sm(1:n_el-1)) lt 1

b=a(0:509)-a(1:510)

c=where(b ne 0)
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n_el_c=n_elements(c)

if n_el_c lt (n_chord*2-1) then begin

c_temp=c

c=fltarr(n_chord*2-1)

c(1:n_el_c)=c_temp

endif

for j=0,n_chord-1 do begin

l_m=c(2*j)+1

if j ne 0 then $

find_stop=c(2*j-1)+1 else $

find_stop=0

n_min(j,k)=l_m

while (max_sm((n_min(j,k)-1)>0) gt $

(r_level*(max_sm(l_m)-max_sm(find_stop))+max_sm(find_stop))) $

and (n_min(j,k) gt find_stop) do $

n_min(j,k)=n_min(j,k)-1

if j ne n_chord-1 then $

find_stop=c(2*j+1)+1 else $

find_stop=n_el-1

n_max(j,k)=l_m

while (max_sm((n_max(j,k)+1)<(n_el-1)) gt $

(r_level*(max_sm(l_m)-max_sm(find_stop))+max_sm(find_stop))) $

and (n_max(j,k) lt find_stop) do $

n_max(j,k)=n_max(j,k)+1

endfor

window,1,xsize=500,ysize=400,xpos=0,ypos=100,title=’Window 1’

loadct,10

shade_surf,image_all(x1,*,k),ax=90,az=0;,yrange=[0,100]
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tek_color

contour,image_all(x1,*,k),/noerase,nlevel=3,title=’k=’+stremo(k)

for i=0,n_chord-1 do begin

hline,n_min(i,k)

hline,n_max(i,k)

endfor

oplot,offset(*,k)+n_elements(x1)/2,pix

endfor

tek_color

bin1:

SET_PLOT, ’PS’

DEVICE, FILENAME= $

’d:\Zap Spec Data\ICCD_cal\18sep01\18sep01_check_600.ps’, $

/portrait, /color, $

ysize=25,yoffset=1.2

!p.multi=[0,1,3]

for k1=0,n_shot/3-1 do begin

plot,offset(*,3*k1), $

title=’offset cal=’+stremo(3*k1+1)+’ wave=’+stremo(wave_i(k1))

for k=1,2 do $

oplot,offset(*,3*k1+k),color=k+1

plot,n_min(*,3*k1), $

title=’n_min cal=’+stremo(3*k1+1)+’ Grate=’+stremo(grate_i(k1))

for k=1,2 do $

oplot,n_min(*,3*k1+k),color=k+1

plot,n_max(*,3*k1),title=’n_max cal=’+stremo(3*k+1)

for k=1,2 do $
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oplot,n_max(*,3*k1+k),color=k+1

endfor

DEVICE, /CLOSE

set_plot,’win’

SET_PLOT, ’PS’

DEVICE, FILENAME= $

’d:\Zap Spec Data\ICCD_cal\18sep01\18sep01_cal_var1_600.ps’, $

/landscape, /color

!p.multi=[0,3,1]

for k=0,n_shot-1 do begin

x1=pix1+n_ideal(k)

contour,image_all(x1,*,k),nlevel=10,title=’raw cal=’+ $

stremo(k+1),c_colors=indgen(5)+2, $

xrange=[20,40];,yrange=[0,100]

for i=0,n_chord-1 do begin

hline,n_min(i,k),color=2

hline,n_max(i,k),color=4

endfor

oplot,offset(*,k)+n_elements(x1)/2,pix,color=2

endfor

;finding row offsets and bins to use

row_offset=fltarr(n_el,n_shot/3)

bin_min=fltarr(n_chord,n_shot/3)

bin_max=fltarr(n_chord,n_shot/3)

err_row_offset=fltarr(n_el,n_shot/3)
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err_bin_min=fltarr(n_chord,n_shot/3)

err_bin_max=fltarr(n_chord,n_shot/3)

image_shift=fltarr(n_el,n_el)

image_bin=fltarr(n_el,n_chord,n_shot)

d_image_bin=fltarr(n_chord,n_shot)

area_fine=fltarr(n_chord,n_shot)

area_coarse=fltarr(n_chord,n_shot)

fwhm_s=fltarr(n_chord,n_shot)

ratio_shot=fltarr(n_chord,n_shot)

inst_line_s=fltarr(n_p+1,n_chord,n_shot)

row_offset_3=fltarr(n_el,n_shot/3)

err_row_offset_3=fltarr(n_el,n_shot/3)

!p.multi=[0,4,5]

for k=0,n_shot/3-1 do begin

row_offset(*,k)=(offset(*,3*k)+offset(*,3*k+1)+offset(*,3*k+2))/3

err_row_offset(*,k)=sqrt((offset(*,3*k)-row_offset(*,k))^2 + $

(offset(*,3*k+1)-row_offset(*,k))^2 + $

(offset(*,3*k+2)-row_offset(*,k))^2)/3

row_offset_3(*,k)=(offset_3(*,3*k)+ $

offset_3(*,3*k+1)+offset_3(*,3*k+2))/3

err_row_offset_3(*,k)=sqrt((offset_3(*,3*k)-row_offset_3(*,k))^2 + $

(offset_3(*,3*k+1)-row_offset_3(*,k))^2 + $

(offset_3(*,3*k+2)-row_offset_3(*,k))^2)/3

for i=0,n_chord-1 do begin

bin_min(i,k)=max(n_min(i,3*k:(3*k+2)))

bin_max(i,k)=min(n_max(i,3*k:(3*k+2)))

endfor

err_bin_min(*,k)=sqrt((n_min(*,3*k)-bin_min(*,k))^2 + $
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(n_min(*,3*k+1)-bin_min(*,k))^2 + $

(n_min(*,3*k+2)-bin_min(*,k))^2)

err_bin_max(*,k)=sqrt((n_max(*,3*k)-bin_max(*,k))^2 + $

(n_max(*,3*k+1)-bin_max(*,k))^2 + $

(n_max(*,3*k+2)-bin_max(*,k))^2)

plot,row_offset(*,k)

oplot,row_offset(*,k)+err_row_offset(*,k),linestyle=2

oplot,row_offset(*,k)-err_row_offset(*,k),linestyle=2

oplot,row_offset_3(*,k),color=2

oplot,row_offset_3(*,k)+err_row_offset_3(*,k),color=2,linestyle=2

oplot,row_offset_3(*,k)-err_row_offset_3(*,k),color=2,linestyle=2

endfor

bin_min(0,*)=0

;finding correction parameters for each shot

!p.multi=[0,3,1]

for k=0,n_shot-1 do begin

;aligning rows

for i=0,n_el-1 do begin

image_shift(*,i)=interpol(image_all(*,i,k),pix-row_offset(i,k/3),pix)

endfor

;window,1,xsize=1000,ysize=750,xpos=0,ypos=100,title=’Window 1’

tek_color

x1=pix1+n_ideal(k)

contour,image_shift(x1,*),nlevel=10,title=’cal’+stremo(k+1), $

c_colors=indgen(5)+2, $

xrange=[20,40];,yrange=[0,100]

for i=0,n_chord-1 do begin
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hline,n_min(i,k),color=2

hline,n_max(i,k),color=4

endfor

;binning data

for j=0,n_chord-1 do begin

bin_max=bin_max>bin_min

for i=0,n_el-1 do $

image_bin(i,j,k)= $

total(image_shift(i,bin_min(j,k/3):bin_max(j,k/3)))

x=pix1+n_ideal(k)

small_x=pix_fit+n_ideal(k)

y=image_bin(x,j,k)

y_f=spline(x,y,small_x,1)

area_fine(j,k)=int_tabulated(small_x,y_f)

area_coarse(j,k)=total(y)

max_bin=max(y_f)

FWHM_s(j,k)=small_x((max(where(y_f gt .5*max_bin))<n_p*10)>0) - $

small_x(min(where(y_f gt .5*max_bin))>0)

inst_line_s(*,j,k)=y

endfor

;finding correction factors for each shot

ratio_shot(*,k)=area_coarse(10,k)/area_coarse(*,k)

endfor

ratio=fltarr(n_chord,n_shot/3)

fwhm=fltarr(n_chord,n_shot/3)

inst_line=fltarr(n_p+1,n_chord,n_shot/3)
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err_ratio=fltarr(n_chord,n_shot/3)

err_fwhm=fltarr(n_chord,n_shot/3)

err_inst_line=fltarr(n_p+1,n_chord,n_shot/3)

area=fltarr(n_chord,n_shot/3)

err_area=fltarr(n_chord,n_shot/3)

;finding correction factors

for k=0,n_shot/3-1 do begin

area(*,k)=(area_coarse(*,3*k)+ $

area_coarse(*,3*k+1)+area_coarse(*,3*k+2))/3

err_area(*,k)=sqrt((area_coarse(*,3*k)-area(*,k))^2 + $

(area_coarse(*,3*k+1)-area(*,k))^2 + $

(area_coarse(*,3*k+2)-area(*,k))^2)/3

fwhm(*,k)=(fwhm_s(*,3*k)+fwhm_s(*,3*k+1)+fwhm_s(*,3*k+2))/3

ratio(*,k)=(ratio_shot(*,3*k)+ratio_shot(*,3*k+1)+ratio_shot(*,3*k+2))/3

err_ratio(*,k)=sqrt((ratio_shot(*,3*k)-ratio(*,k))^2 + $

(ratio_shot(*,3*k+1)-ratio(*,k))^2 + $

(ratio_shot(*,3*k+2)-ratio(*,k))^2)/3

fwhm(*,k)=(fwhm_s(*,3*k)+fwhm_s(*,3*k+1)+fwhm_s(*,3*k+2))/3

err_fwhm(*,k)=sqrt((fwhm_s(*,3*k)-fwhm(*,k))^2 + $

(fwhm_s(*,3*k+1)-fwhm(*,k))^2 + $

(fwhm_s(*,3*k+2)-fwhm(*,k))^2)/3

for j=0,n_chord-1 do $

inst_line(*,j,k)=(inst_line_s(*,j,3*k)/area_coarse(j,3*k)+ $

inst_line_s(*,j,3*k+1)/area_coarse(j,3*k+1)+ $

inst_line_s(*,j,3*k+2)/area_coarse(j,3*k+2))/3

!p.multi=[0,2,2]

plot,inst_line(*,0,k),title=’shot=’+stremo(k*3+1)

for i=1,4 do oplot,inst_line(*,0+i,k),color=i+1

plot,inst_line(*,5,k),title=’shot=’+stremo(k*3+1)
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for i=1,4 do oplot,inst_line(*,5+i,k),color=i+1

plot,inst_line(*,10,k),title=’shot=’+stremo(k*3+1)

for i=1,4 do oplot,inst_line(*,10+i,k),color=i+1

plot,inst_line(*,15,k),title=’shot=’+stremo(k*3+1)

for i=1,4 do oplot,inst_line(*,15+i,k),color=i+1

!p.multi=0

endfor

DEVICE, /CLOSE

set_plot,’win’

if n_shot eq 300 then save,FILENAME =

’d:\Zap Spec Data\ICCD_cal\18sep01\18sep01_cal_var2_600.dat’,/all

end
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save cal 18sep01 param.pro

;pro save_cal_18sep01_param

;All parameters are a function of wavelength, view, and grating

; Wavelength

; 0->min(wave)<275

; 1->275<min(wave)<340

; 2->340<min(wave)<420

; 3->420<min(wave)<520

; 4->520<min(wave)<600

; 5->600<min(wave)<675

; 6->675<min(wave)

; should use 277.454,343.578,420.521,494.287,576.215,665.127

; for this calibration

; will use 275,340,420,495,575,665 for this calibration

; Entrance port

; 0->front

; 1->side

; Grating

; 2->150

; 1->2400

; 0->3600

default,have,1

default,ps,0

if have ne 0 then begin
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restore,FILENAME = ’j:\Zap Spec Data\ICCD_cal\18sep01\’ + $

’18sep01_cal_var2_600.dat’

!p.position=0

!p.multi=[0,2,4]

row_offset_t=row_offset(*,0:95)

err_row_offset_t=err_row_offset(*,0:95)

bin_min_t=bin_min(*,0:95)

bin_max_t=bin_max(*,0:95)

rel_i_t=ratio(*,0:95)

err_rel_i_t=err_ratio(*,0:95)

wave_i=wave_i(0:95)

;averaging parameters

wave_test=[228.8022,326.1055,361.0508,479.992,508.5822,643.847,686.4066]

n_wt=n_elements(wave_test)

;initializing arrays

row_offset=fltarr(512,7,2,3)

bin_min=fltarr(20,7,2,3)

bin_max=fltarr(20,7,2,3)

rel_i=fltarr(20,7,2,3)

fwhm_inst=fltarr(20,7,2,3)

inst_func=fltarr(61,20,7,2,3)

wav_i=fltarr(96)

endif

for i=0,95 do begin

if wave(n_el/2) le 275 then wav_i=0 $

else if wave(n_el/2) le 340 then wav_i=1 $
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else if wave(n_el/2) le 420 then wav_i=2 $

else if wave(n_el/2) le 495 then wav_i=3 $

else if wave(n_el/2) le 575 then wav_i=4 $

else if wave(n_el/2) le 665 then wav_i=5 $

else wav_i=6

;row_offset(*,wav_i(i),view_i(i),(grate_i(i)))=row_offset_t(*,i)

;bin_min(*,wav_i(i),view_i(i),(grate_i(i)))=bin_min_t(*,i)

;bin_max(*,wav_i(i),view_i(i),(grate_i(i)))=bin_max_t(*,i)

;rel_i(*,wav_i(i),view_i(i),(grate_i(i)))=rel_i_t(*,i)

;fwhm_inst(*,wav_i(i),view_i(i),(grate_i(i)))=fwhm(*,i)

;inst_func(*,*,wav_i(i),view_i(i),(grate_i(i)))=inst_line(*,*,i)

endfor

for i=0,n_wt-1 do begin

n_wave_test=where(wave_i eq wave_test(i))

n_nwt=n_elements(wave_test)

n_36=where(grate_i(n_wave_test) eq 0)

n_24=where(grate_i(n_wave_test) eq 1)

n_15=where(grate_i(n_wave_test) eq 2)

if min(n_36) ne -1 then begin

n_front=where(view_i(n_wave_test(n_36)) eq 0)

row_offset(*,i,0,0)= $

(row_offset_t(*,(n_wave_test(n_36(n_front(0)))))+ $

row_offset_t(*,(n_wave_test(n_36(n_front(1))))))/2

bin_min(*,i,0,0)= $

(bin_min_t(*,(n_wave_test(n_36(n_front(0)))))+ $

bin_min_t(*,(n_wave_test(n_36(n_front(1))))))/2

bin_max(*,i,0,0)= $

(bin_max_t(*,(n_wave_test(n_36(n_front(0)))))+ $
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bin_max_t(*,(n_wave_test(n_36(n_front(1))))))/2

rel_i(*,i,0,0)= $

(rel_i_t(*,(n_wave_test(n_36(n_front(0)))))+ $

rel_i_t(*,(n_wave_test(n_36(n_front(1))))))/2

fwhm_inst(*,i,0,0)= $

(fwhm(*,(n_wave_test(n_36(n_front(0)))))+ $

fwhm(*,(n_wave_test(n_36(n_front(1))))))/2

inst_func(*,*,i,0,0)= $

(inst_line(*,*,(n_wave_test(n_36(n_front(0)))))+ $

inst_line(*,*,(n_wave_test(n_36(n_front(1))))))/2

n_side=where(view_i(n_wave_test(n_36)) eq 1)

row_offset(*,i,1,0)= $

(row_offset_t(*,(n_wave_test(n_36(n_side(0)))))+ $

row_offset_t(*,(n_wave_test(n_36(n_side(1))))))/2

bin_min(*,i,1,0)= $

(bin_min_t(*,(n_wave_test(n_36(n_side(0)))))+ $

bin_min_t(*,(n_wave_test(n_36(n_side(1))))))/2

bin_max(*,i,1,0)= $

(bin_max_t(*,(n_wave_test(n_36(n_side(0)))))+ $

bin_max_t(*,(n_wave_test(n_36(n_side(1))))))/2

rel_i(*,i,1,0)= $

(rel_i_t(*,(n_wave_test(n_36(n_side(0)))))+ $

rel_i_t(*,(n_wave_test(n_36(n_side(1))))))/2

fwhm_inst(*,i,1,0)= $

(fwhm(*,(n_wave_test(n_36(n_side(0)))))+ $

fwhm(*,(n_wave_test(n_36(n_side(1))))))/2

inst_func(*,*,i,1,0)= $

(inst_line(*,*,(n_wave_test(n_36(n_side(0)))))+ $

inst_line(*,*,(n_wave_test(n_36(n_side(1))))))/2
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endif

n_front=where(view_i(n_wave_test(n_24)) eq 0)

row_offset(*,i,0,1)= $

(row_offset_t(*,(n_wave_test(n_24(n_front(0)))))+ $

row_offset_t(*,(n_wave_test(n_24(n_front(1))))))/2

bin_min(*,i,0,1)= $

(bin_min_t(*,(n_wave_test(n_24(n_front(0)))))+ $

bin_min_t(*,(n_wave_test(n_24(n_front(1))))))/2

bin_max(*,i,0,1)= $

(bin_max_t(*,(n_wave_test(n_24(n_front(0)))))+ $

bin_max_t(*,(n_wave_test(n_24(n_front(1))))))/2

rel_i(*,i,0,1)= $

(rel_i_t(*,(n_wave_test(n_24(n_front(0)))))+ $

rel_i_t(*,(n_wave_test(n_24(n_front(1))))))/2

fwhm_inst(*,i,0,1)= $

(fwhm(*,(n_wave_test(n_24(n_front(0)))))+ $

fwhm(*,(n_wave_test(n_24(n_front(1))))))/2

inst_func(*,*,i,0,1)= $

(inst_line(*,*,(n_wave_test(n_24(n_front(0)))))+ $

inst_line(*,*,(n_wave_test(n_24(n_front(1))))))/2

n_side=where(view_i(n_wave_test(n_24)) eq 1)

row_offset(*,i,1,1)= $

(row_offset_t(*,(n_wave_test(n_24(n_side(0)))))+ $

row_offset_t(*,(n_wave_test(n_24(n_side(1))))))/2

bin_min(*,i,1,1)= $

(bin_min_t(*,(n_wave_test(n_24(n_side(0)))))+ $

bin_min_t(*,(n_wave_test(n_24(n_side(1))))))/2

bin_max(*,i,1,1)= $

(bin_max_t(*,(n_wave_test(n_24(n_side(0)))))+ $
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bin_max_t(*,(n_wave_test(n_24(n_side(1))))))/2

rel_i(*,i,1,1)= $

(rel_i_t(*,(n_wave_test(n_24(n_side(0)))))+ $

rel_i_t(*,(n_wave_test(n_24(n_side(1))))))/2

fwhm_inst(*,i,1,1)= $

(fwhm(*,(n_wave_test(n_24(n_side(0)))))+ $

fwhm(*,(n_wave_test(n_24(n_side(1))))))/2

inst_func(*,*,i,1,1)= $

(inst_line(*,*,(n_wave_test(n_24(n_side(0)))))+ $

inst_line(*,*,(n_wave_test(n_24(n_side(1))))))/2

n_front=where(view_i(n_wave_test(n_15)) eq 0)

row_offset(*,i,0,2)= $

(row_offset_t(*,(n_wave_test(n_15(n_front(0)))))+ $

row_offset_t(*,(n_wave_test(n_15(n_front(1))))))/2

bin_min(*,i,0,2)= $

(bin_min_t(*,(n_wave_test(n_15(n_front(0)))))+ $

bin_min_t(*,(n_wave_test(n_15(n_front(1))))))/2

bin_max(*,i,0,2)= $

(bin_max_t(*,(n_wave_test(n_15(n_front(0)))))+ $

bin_max_t(*,(n_wave_test(n_15(n_front(1))))))/2

rel_i(*,i,0,2)= $

(rel_i_t(*,(n_wave_test(n_15(n_front(0)))))+ $

rel_i_t(*,(n_wave_test(n_15(n_front(1))))))/2

fwhm_inst(*,i,0,2)= $

(fwhm(*,(n_wave_test(n_15(n_front(0)))))+ $

fwhm(*,(n_wave_test(n_15(n_front(1))))))/2

inst_func(*,*,i,0,2)= $

(inst_line(*,*,(n_wave_test(n_15(n_front(0)))))+ $

inst_line(*,*,(n_wave_test(n_15(n_front(1))))))/2
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n_side=where(view_i(n_wave_test(n_15)) eq 1)

row_offset(*,i,1,2)= $

(row_offset_t(*,(n_wave_test(n_15(n_side(0)))))+ $

row_offset_t(*,(n_wave_test(n_15(n_side(1))))))/2

bin_min(*,i,1,2)= $

(bin_min_t(*,(n_wave_test(n_15(n_side(0)))))+ $

bin_min_t(*,(n_wave_test(n_15(n_side(1))))))/2

bin_max(*,i,1,2)= $

(bin_max_t(*,(n_wave_test(n_15(n_side(0)))))+ $

bin_max_t(*,(n_wave_test(n_15(n_side(1))))))/2

rel_i(*,i,1,2)= $

(rel_i_t(*,(n_wave_test(n_15(n_side(0)))))+ $

rel_i_t(*,(n_wave_test(n_15(n_side(1))))))/2

fwhm_inst(*,i,1,2)= $

(fwhm(*,(n_wave_test(n_15(n_side(0)))))+ $

fwhm(*,(n_wave_test(n_15(n_side(1))))))/2

inst_func(*,*,i,1,2)= $

(inst_line(*,*,(n_wave_test(n_15(n_side(0)))))+ $

inst_line(*,*,(n_wave_test(n_15(n_side(1))))))/2

endfor

save,row_offset,bin_min,bin_max,rel_i,fwhm_inst,inst_func, $

FILENAME =’j:\Zap Spec Data\ICCD_cal\18sep01\’ $

’iccd_cal_param_18sep01.dat’

row_offset_new=row_offset

bin_min_new=bin_min

bin_max_new=bin_max

rel_i_new=rel_i

fwhm_inst_new=fwhm_inst
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inst_func_new=inst_func

restore,’j:\Zap Spec Data\iccd_data\iccd_cal_param.dat’

if ps eq 1 then begin

SET_PLOT, ’PS’

DEVICE, FILENAME=’j:\Zap Spec Data\ICCD_cal\18sep01\’ = $

’18sep01_check_cal_factors.ps’, $

/portrait, /color, $

ysize=25,yoffset=1.2

endif

!p.multi=[0,2,5]

winct=0

for i=0,2 do begin

!p.multi=[0,2,n_wt]

if ps ne 1 then window,i*2

for j=0,n_wt-1 do begin

plot,row_offset_new(*,j,0,i), $

yrange=[-10,10], $

title=’grate=’+stremo(i)+’wave=’+stremo(wave_test(j))

oplot,row_offset(*,j,0,i),color=2,linestyle=2

plot,row_offset_new(*,j,1,i), $

yrange=[min(row_offset_new(*,*,1,i)) $

,max(row_offset_new(*,*,1,i))], $

title=’grate=’+stremo(i)+’wave=’+stremo(wave_test(j))

oplot,row_offset(*,j,1,i),color=2,linestyle=2

endfor

!p.multi=[0,2,2]

if ps ne 1 then window,i*2+1
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plot,wave_test,transpose(bin_min_new(0,*,0,i)), $

yrange=[0,512]

for j=0,19 do oplot,wave_test,transpose(bin_min_new(j,*,0,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(bin_min(j,*,0,i)), $

color=2+j,linestyle=2

plot,wave_test,transpose(bin_min_new(0,*,1,i)), $

yrange=[0,512]

for j=0,19 do oplot,wave_test,transpose(bin_min_new(j,*,1,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(bin_min(j,*,1,i)), $

color=2+j,linestyle=2

plot,wave_test,transpose(bin_max_new(0,*,0,i)), $

yrange=[0,512]

for j=0,19 do oplot,wave_test,transpose(bin_max_new(j,*,0,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(bin_max(j,*,0,i)), $

color=2+j,linestyle=2

plot,wave_test,transpose(bin_max_new(0,*,1,i)), $

yrange=[0,512]

for j=0,19 do oplot,wave_test,transpose(bin_max_new(j,*,1,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(bin_max(j,*,1,i)), $

color=2+j,linestyle=2

plot,wave_test,transpose(rel_i_new(0,*,0,i)), $

yrange=[0,2]

for j=0,19 do oplot,wave_test,transpose(rel_i_new(j,*,0,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(rel_i(j,*,0,i)), $

color=2+j,linestyle=2
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plot,wave_test,transpose(rel_i_new(0,*,1,i)), $

yrange=[0,2]

for j=0,19 do oplot,wave_test,transpose(rel_i_new(j,*,1,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(rel_i(j,*,1,i)), $

color=2+j,linestyle=2

plot,wave_test,transpose(fwhm_inst_new(0,*,0,i)), $

yrange=[2,7]

for j=0,19 do oplot,wave_test,transpose(fwhm_inst_new(j,*,0,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(fwhm_inst(j,*,0,i)), $

color=2+j,linestyle=2

plot,wave_test,transpose(fwhm_inst_new(0,*,1,i)), $

yrange=[2,7]

for j=0,19 do oplot,wave_test,transpose(fwhm_inst_new(j,*,1,i)), $

color=2+j

for j=0,19 do oplot,wave_test,transpose(fwhm_inst(j,*,1,i)), $

color=2+j,linestyle=2

;plot,wave_test,transpose(inst_func(*,*,i,0,0))

endfor

!p.multi=0

if ps eq 1 then begin

DEVICE, /CLOSE

set_plot,’win’

endif

end
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C.4.2 fitting routines and functions

The codes in this section are used to fit Gaussians or instrument widened Gaussians to

the measured spectra. err CURVEFIT wide.pro is a modified version of the IDL routine

CURVEFIT which returns a flag when errors are encountered and values used to calculate

the correct errors. The other functions in this section are examples of the different fitting

functions which are used to model the spectral intensities. fgauss3.pro is the function used

when fitting the amplitude of a Gaussian with an offset. f emiss wide.pro is the function

used when fitting the amplitude of a Gaussian with an offset. When a doublet or triplet

is being fit, the difference of central wavelengths, the relative intensity and the FWHM of

each Gaussian is fixed. f emiss wide three cV 227 is the function used when fitting the area

of multiple Gaussians, which have been widened by the instrument function including an

offset.
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err CURVEFIT wide.pro

; $Id: curvefit.pro,v 1.21 1999/01/16 01:22:27 scottm Exp $

;

; Copyright (c) 1982-1999, Research Systems, Inc. All rights reserved.

; Unauthorized reproduction prohibited.

;

FUNCTION err_CURVEFIT_wide, x, y, weights, a, a1, sigma, $

FUNCTION_NAME = Function_Name, $

ITMAX=itmax, ITER=iter, TOL=tol, CHI2=chi2, $

NODERIVATIVE=noderivative, CHISQ=chisq, $

curve_err=curve_err,pder=pder

;

;This is a modification of the curve fit program.

;It returns an a constant "curve_err=0" if the curve fit failed

;If the fit succeded then curve_err=1

;+

; NAME:

; CURVEFIT

;

; PURPOSE:

; Non-linear least squares fit to a function of an arbitrary

; number of parameters. The function may be any non-linear

; function. If available, partial derivatives can be calculated by

; the user function, else this routine will estimate partial

; derivatives with a forward difference approximation.

;

; CATEGORY:

; E2 - Curve and Surface Fitting.

;
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; CALLING SEQUENCE:

; Result = CURVEFIT(X, Y, Weights, A, SIGMA, FUNCTION_NAME = name, $

; ITMAX=ITMAX, ITER=ITER, TOL=TOL, /NODERIVATIVE)

;

; INPUTS:

; X: A row vector of independent variables. This routine does

; not manipulate or use values in X, it simply passes X

; to the user-written function.

;

; Y: A row vector containing the dependent variable.

;

; Weights: A row vector of weights, the same length as Y.

; For no weighting,

; Weights(i) = 1.0.

; For instrumental (Gaussian) weighting,

; Weights(i)=1.0/sigma(i)^2

; For statistical (Poisson) weighting,

; Weights(i) = 1.0/y(i), etc.

;

; A: A vector, with as many elements as the number of terms, that

; contains the initial estimate for each parameter. IF A is

; double precision, calculations are performed in double

; precision, otherwise they are performed in single precision.

; Fitted parameters are returned in A.

;

; KEYWORDS:

; FUNCTION_NAME: The name of the function (actually, a procedure) to

; fit. IF omitted, "FUNCT" is used. The procedure must be written as

; described under RESTRICTIONS, below.

;
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; ITMAX: Maximum number of iterations. Default = 20.

; ITER: The actual number of iterations which were performed

; TOL: The convergence tolerance. The routine returns when the

; relative decrease in chi-squared is less than TOL in an

; interation. Default = 1.e-3.

; CHI2: The value of chi-squared on exit (obselete)

;

; CHISQ: The value of reduced chi-squared on exit

; NODERIVATIVE: IF this keyword is set THEN the user procedure

; will not be requested to provide partial derivatives.

; The partial derivatives will be estimated in CURVEFIT

; using forward differences. IF analytical derivatives

; are available they should always be used.

;

; OUTPUTS:

; Returns a vector of calculated values.

; A: A vector of parameters containing fit.

;

; OPTIONAL OUTPUT PARAMETERS:

; Sigma: A vector of standard deviations for the parameters in A.

;

; COMMON BLOCKS:

; NONE.

;

; SIDE EFFECTS:

; None.

;

; RESTRICTIONS:

; The function to be fit must be defined and called FUNCT,

; unless the FUNCTION_NAME keyword is supplied. This function,
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; (actually written as a procedure) must accept values of

; X (the independent variable), and A (the fitted function’s

; parameter values), and return F (the function’s value at

; X), and PDER (a 2D array of partial derivatives).

; For an example, see FUNCT in the IDL User’s Libaray.

; A call to FUNCT is entered as:

; FUNCT, X, A, F, PDER

; where:

; X = Variable passed into CURVEFIT. It is the job of the

; user-written function to interpret this variable.

; A = Vector of NTERMS function parameters, input.

; F = Vector of NPOINT values of function, y(i) = funct(x), output.

; PDER = Array, (NPOINT, NTERMS), of partial derivatives of funct.

; PDER(I,J) = DErivative of function at ith point with

; respect to jth parameter. Optional output parameter.

; PDER should not be calculated IF the parameter is not

; supplied in call. IF the /NODERIVATIVE keyword is set in

; the call to CURVEFIT THEN the user routine will never need

; to calculate PDER.

;

; PROCEDURE:

; Copied from "CURFIT", least squares fit to a non-linear

; function, pages 237-239, Bevington, Data Reduction and Error

; Analysis for the Physical Sciences. This is adapted from:

; Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear

; Parameters", J. Soc. Ind. Appl. Math., Vol 11, no. 2, pp. 431-441,

; June, 1963.

;

; "This method is the Gradient-expansion algorithm which

; combines the best features of the gradient search with
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; the method of linearizing the fitting function."

;

; Iterations are performed until the chi square changes by

; only TOL or until ITMAX iterations have been performed.

;

; The initial guess of the parameter values should be

; as close to the actual values as possible or the solution

; may not converge.

;

; EXAMPLE: Fit a function of the form f(x) = a * exp(b*x) + c to

; sample pairs contained in x and y.

; In this example, a=a(0), b=a(1) and c=a(2).

; The partials are easily computed symbolicaly:

; df/da = exp(b*x), df/db = a * x * exp(b*x), and df/dc = 1.0

;

; Here is the user-written procedure to return F(x) and

; the partials, given x:

;

; pro gfunct, x, a, f, pder ; Function + partials

; bx = exp(a(1) * x)

; f= a(0) * bx + a(2) ;Evaluate the function

; IF N_PARAMS() ge 4 THEN $ ;Return partials?

; pder= [[bx], [a(0) * x * bx], [replicate(1.0, N_ELEMENTS(f))]]

; end

;

; x=findgen(10) ;Define indep & dep variables.

; y=[12.0, 11.0,10.2,9.4,8.7,8.1,7.5,6.9,6.5,6.1]

; Weights=1.0/y ;Weights

; a=[10.0,-0.1,2.0] ;Initial guess

; yfit=curvefit(x,y,Weights,a,sigma,function_name=’gfunct’)
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; print, ’Function parameters: ’, a

; print, yfit

; end

;

; MODIFICATION HISTORY:

; Written, DMS, RSI, September, 1982.

; Does not iterate IF the first guess is good. DMS, Oct, 1990.

; Added CALL_PROCEDURE to make the function’s name a parameter.

; (Nov 1990)

; 12/14/92 - modified to reflect the changes in the 1991

; edition of Bevington (eq. II-27) (jiy-suggested by CreaSo)

; Mark Rivers, U of Chicago, Feb. 12, 1995

; - Added following keywords: ITMAX, ITER, TOL, CHI2,

; NODERIVATIVE

; These make the routine much more generally useful.

; - Removed Oct. 1990 modification so the routine does one

; iteration even IF first guess is good. Required to get

; meaningful output for errors.

; - Added forward difference derivative calculations required for

; NODERIVATIVE keyword.

; - Fixed a bug: PDER was passed to user’s procedure on first

; call, but was not defined. Thus, user’s procedure might

; not calculate it, but the result was THEN used.

;

; Steve Penton, RSI, June 1996.

; - Changed SIGMAA to SIGMA to be consistant with other fitting

; routines.

; - Changed CHI2 to CHISQ to be consistant with other fitting

; routines.

; - Changed W to Weights to be consistant with other fitting
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; routines.

; _ Updated docs regarding weighing.

;

;-

ON_ERROR,2 ;Return to caller IF error

curve_err=1 ;Set intial error to 1 (no error)

;Name of function to fit

IF n_elements(function_name) LE 0 THEN function_name = "FUNCT"

IF n_elements(tol) EQ 0 THEN tol = 1.e-3 ;Convergence tolerance

IF n_elements(itmax) EQ 0 THEN itmax = 20 ;Maximum # iterations

type = size(a)

type = type[type[0]+1]

double = type EQ 5

;Make params floating

IF (type ne 4) AND (type ne 5) THEN a = float(a)

; IF we will be estimating partial derivatives THEN compute machine

; precision

IF keyword_set(NODERIVATIVE) THEN BEGIN

res = machar(DOUBLE=double)

eps = sqrt(res.eps)

ENDIF

nterms = n_elements(a) ; # of parameters

nfree = n_elements(y) - nterms ; Degrees of freedom
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IF nfree LE 0 THEN message, ’Curvefit - not enough data points.’

flambda = 0.001 ;Initial lambda

diag = lindgen(nterms)*(nterms+1) ; Subscripts of diagonal elements

; Define the partial derivative array

IF double THEN pder = dblarr(n_elements(y), nterms) $

ELSE pder = fltarr(n_elements(y), nterms)

;

FOR iter = 1, itmax DO BEGIN ; Iteration loop

; Evaluate alpha and beta matricies.

IF keyword_set(NODERIVATIVE) THEN BEGIN

; Evaluate function and estimate partial derivatives

CALL_PROCEDURE, Function_name, x, a, a1, yfit

FOR term=0, nterms-1 DO BEGIN

p = a ; Copy current parameters

; Increment size for forward difference derivative

inc = eps * abs(p[term])

IF (inc EQ 0.) THEN inc = eps

p[term] = p[term] + inc

CALL_PROCEDURE, function_name, x, p, a1, yfit1

pder[0,term] = (yfit1-yfit)/inc
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ENDFOR

ENDIF ELSE BEGIN

; The user’s procedure will return partial derivatives

call_procedure, function_name, x, a, a1, yfit, pder

ENDELSE

IF nterms EQ 1 THEN pder = reform(pder, n_elements(y), 1)

beta = (y-yfit)*Weights # pder

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1)*pder)

; save current values of return parameters

sigma1 = sqrt( 1.0 / alpha[diag] ) ; Current sigma.

sigma = sigma1

chisq1 = total(Weights*(y-yfit)^2)/nfree; Current chi squared.

chisq = chisq1

yfit1 = yfit

pder1 = pder

done_early = chisq1 LT total(abs(y))/1e7/NFREE

IF done_early THEN GOTO, done

c = sqrt(alpha[diag])

c = c # c
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lambdaCount = 0

REPEAT BEGIN

lambdaCount = lambdaCount + 1

; Normalize alpha to have unit diagonal.

array = alpha / c

; Augment the diagonal.

array[diag] = array[diag]*(1.+flambda)

; Invert modified curvature matrix to find new parameters.

IF n_elements(array) EQ 1 THEN array = (1.0 / array) $

ELSE array = invert(array)

b = a + array/c # transpose(beta) ; New params

; Evaluate function

call_procedure, function_name, x, b, a1, yfit

chisq = total(Weights*(y-yfit)^2)/nfree ; New chisq

sigma = sqrt(array[diag]/alpha[diag]) ; New sigma

IF (finite(chisq) EQ 0) OR $

(lambdaCount GT 30 AND chisq GE chisq1) THEN BEGIN
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; Reject changes made this iteration, use old values.

yfit = yfit1

pder = pder1

sigma = sigma1

chisq = chisq1

message, ’Failed to converge’, /INFORMATIONAL

curve_err=0

GOTO, done

ENDIF

flambda = flambda*10. ; Assume fit got worse

ENDREP UNTIL chisq LE chisq1

flambda = flambda/100.

a=b ; Save new parameter estimate.

IF ((chisq1-chisq)/chisq1) LE tol THEN GOTO,done ;Finished?

ENDFOR ;iteration loop

;

MESSAGE, ’Failed to converge’, /INFORMATIONAL

curve_err=0

;

done: chi2 = chisq ; Return chi-squared (chi2 obsolete-still works)

IF done_early THEN iter = iter - 1

return,yfit ; return result

END
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fgauss3.pro

pro fgauss3, x, b, f, pder

del= x - b (1)

inside = -0.5* (del / b(2))^2

xpterm= exp(inside)

f=b(0)*xpterm+b(3)

pder = [ [ xpterm ],$

[ b(0)*del*xpterm/(b(2))^2 ],$

[ b(0)*del^2*xpterm/(b(2))^3 ], $

[ replicate(1.0 , n_elements(x)] ]

end
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f emiss wide.pro

pro f_emiss_wide, x, b, c, f, pder

n_c=n_elements(c)

n_el=n_elements(x)

dx=x(1)-x(0)

x1=x(0)-n_c*dx+findgen(n_el+2*n_c)*dx

n_x1=n_elements(x1)

a=fltarr(n_x1,n_x1)

del1= x1 - b (1)

inside1 = -0.5* (del1 / b(2))^2

xpterm1= exp(inside1)

f1=(b(0)/b(2))*xpterm1+b(3)

pder1 = [ [ xpterm1/b(2) ],$

[ b(0)/b(2)*del1*xpterm1/(b(2))^2 ],$

[ b(0)/b(2)*del1^2*xpterm1/(b(2))^3 - $

b(0)/(b(2))^2*xpterm1 ],$

[ replicate(1.0,n_x1)]]

pder2=pder1

;filling arrays

for i=0,n_x1-1 do $

a((i-n_c/2)>0:(i+n_c/2)<(n_x1-1),i)=c((n_c/2-i)>0: $

(n_c/2+(n_x1-i-1))<(n_c-1))

a=transpose(a)

f1=transpose(a##f1)
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pder1=transpose(a ## transpose(pder1))

f=f1(n_c:(n_c+n_el-1))

pder=pder1(n_c:(n_c+n_el-1),*)

end
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f emiss wide three cV 227.pro

pro f_emiss_wide_three_cV_227, x, b, c, f, pder

n_c=n_elements(c)

n_el=n_elements(x)

dx=x(1)-x(0)

x1=x(0)-n_c*dx+findgen(n_el+2*n_c)*dx

n_x1=n_elements(x1)

a=fltarr(n_x1,n_x1)

del1= x1 - b(1); C V 227.089,Rel I=40

inside1 = -0.5* (del1 / b(2))^2

xpterm1= exp(inside1)

del2= x1 - b(1) -.638;C V 227.727,Rel I=5

inside2 = -0.5* (del2 / b(2))^2

xpterm2= exp(inside2)

del3= x1 - b(1) -.703; 227.792,Rel I=20

inside3 = -0.5* (del3 / b(2))^2

xpterm3= exp(inside3)

f1=b(0)/b(2)*(1.*xpterm1+.125*xpterm2+.5*xpterm3)+b(3)

pder1 = [ [ (1.*xpterm1+.125*xpterm2+.500*xpterm3)/b(2) ],$

[ b(0)*(1.000*del1*xpterm1/(b(2))^3 + $

0.125*del2*xpterm2/(b(2))^3 + $

0.500*del3*xpterm3/(b(2))^3) ],$
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[ -b(0)*(1.*xpterm1+.125*xpterm2+.500*xpterm3)/b(2)^2+ $

b(0)*(1.000*del1^2*xpterm1/b(2)^4 + $

0.125*del2^2*xpterm2/b(2)^4 + $

0.500*del3^2*xpterm3/b(2)^4) ],$

[ replicate(1.0,n_x1)]]

;filling arrays

for i=0,n_x1-1 do $

a((i-n_c/2)>0:(i+n_c/2)<(n_x1-1),i)=c((n_c/2-i)>0: $

(n_c/2+(n_x1-i-1))<(n_c-1))

a=transpose(a)

f2=transpose(a##f1)

pder2=transpose(a ## transpose(pder1))

f=f2(n_c:(n_c+n_el-1))

pder=pder2(n_c:(n_c+n_el-1),*)

end



319

C.4.3 Analysis codes

The analysis of the IDS data was discussed in Sec. 5.7.3 ids temp fin3.pro determines which

data points to attempt a fit. The plasma parameters are then found. The plasma parameters

and the errors are then written to the trees.

The corrections made to the ICCD images are discussed in Sec. 5.7.4. Four codes are

used to place the images in the tree. w iccd data pro.pro has the ICCD setup parameters

passed to it for a given pulse. It then calls iccd reduce.pro, which applies the calibration

factors to the image. The nodes are entered into the tree with repair iccd node.pro and the

data is entered into the nodes with iccd save.pro.

find iccd raw param SYIAH.pro determines when the chord integrated parameters should

be calculated on a pulse. The criteria used are discussed in Sec. 5.7.4. The chord integrated

plasma parameters are then found with iccd raw multi emis.pro. When chord emissivity is

peaked, the local plasma parameters can be found with the method described in Sec. 5.7.5.

find iccd shell param SYIAH.pro tests the chord integrated emissivity profile, calculates the

local parameters and writes them to the tree. The location of the Z-pinch is determined

with find center SYIAH.pro, which calculates the local plasma parameters for various center

locations and determines the best center location by comparing the emissivity and velocity

of the inner two shells. The local parameters are found with shell par SYIAH.pro. The

length matrix used is calculated with shell length mid.pro.

All of these run with minimal user intervention. This was done to remove any bias that

the user may have during the analysis of the data. The simulated spectral intensities are

stored in the trees. The profiles can be verified by comparing the measured and calculated

spectral intensities. The local and chord integrated parameter profiles should also be com-

pared. The local profiles often have steeper gradients. The general shapes of the profiles

should be similar.
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ids temp fin3.pro

pro ids_temp_fin3,shot=shot,temp=temp,sigtemp=sigtemp, $

amp=amp,sigamp=sigamp, $

lamb0=lamb0,siglamb0=siglamb0,time=time,slit=slit,ids_sm=ids_sm, $

tim1=tim1,lambda=lambda,dial=dial,cdial=cdial, $

lamb_ideal=lamb_ideal,sm_1=sm_1,sm_2=sm_2, $

t_start=t_start,t_end=t_end,min_v_sig,nterms=nterms, $

c_dial=c_dial,sigcdial=sigcdial,vel=vel,sigvel=sigvel,mass=mass, $

view=view

;

; Default values for logbook parameters

;

default,shot,331051 ;Shot Number

default,slit,10 ;slit width (micro meters)

default,mass,15.999 ;Mass of ion (Amu)

default,dial,2783.7 ;Dial setting in (A)

default,tsigmin,1.e9 ;minimum value to use for measured fwhm

;default,siginsignu,0.011e-10 ;Unknown constant used in temp err

default,lamb_ideal,2781.01*1e-10 ;Ideal Lambda of the line(m)

default,sm_1,1 ;First smooth number for double smooth

default,sm_2,1 ;Second smooth number for double smooth

default,t_start,10 ;Time to start calculating tempurature (microseconds)

default,t_end,80 ;Time to stop calculating tempurature (microseconds)

default,min_v_sig,-.005 ;minimun signal to attempt temperature calculation

default,nterms,4 ;number of terms to use in gaussfit

default,cdial,0 ;difference between lamb0 and lamb_lideal on 90 shots (A)

default,sigcdial,0 ;error in cdial (A)

default,view,’90’;viewing port
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if view eq ’35’ then view_a=35 else view_a=0

;

;setting shot,getting time base

;

ss,shot

ids1=data(’\digitizers::zap_3412_a:input_1’,xaxis=tim)

nel=n_elements(ids1)

tim=tim*1e6 ;adjusting time array (micro seconds)

;

;Initialize Constants

;

nch=16 ;Number of channels

;channel names of the raw data

ch_nam=[’\digitizers::zap_3412_a:input_1’, $

’\digitizers::zap_3412_a:input_2’, $

’\digitizers::zap_3412_a:input_3’, $

’\digitizers::zap_3412_a:input_4’, $

’\digitizers::zap_3412_b:input_1’, $

’\digitizers::zap_3412_b:input_2’, $

’\digitizers::zap_3412_b:input_3’, $

’\digitizers::zap_3412_b:input_4’, $

’\digitizers::zap_3412_c:input_1’, $

’\digitizers::zap_3412_c:input_2’, $

’\digitizers::zap_3412_c:input_3’, $

’\digitizers::zap_3412_c:input_4’, $

’\digitizers::zap_3412_d:input_1’, $

’\digitizers::zap_3412_d:input_2’, $

’\digitizers::zap_3412_d:input_3’, $

’\digitizers::zap_3412_d:input_4’]
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;scale factors (independent of all parameters)

cal_fac=[1.09723375 ,0.900595875,0.960089125,0.966937875, $

0.966911125,0.989201375,0.981266875,1, $

1.012489375,1.0764375 ,1.2428 ,0.963335125, $

0.990833375,1.09686625 ,1.040672625,1.29062375]

sigcal_fac=[0.001747631,0.001948167,0.002843711,0.003193323, $

0.002954162,0.002672477,0.002533517,0.002270627, $

0.00217039 ,0.002242405,0.002774807,0.002451812, $

0.002526445,0.002753236,0.00317802 ,0.003398917]

;

;Initializing Arrays

;

ids=fltarr(nel,16)

sig_d=fltarr(nel,16)

ids_low=fltarr(nel,16)

ids_high=fltarr(nel,16)

;

;Parameters from IDS calibration

;

;average voltage signal sigma

sigsig=0.001 ;error in the voltage measurement(moise level of digitizers)

x=[0.320817838,0.297842325,0.2759533 ,0.255078138,0.234059788, $

0.211890013,0.189719638,0.167228563,0.144396963,0.121756688, $

0.100109688,0.07861185 ,0.05763135 ,0.037850938,0.018704063,0]

sigx=[0.001593992,0.001457234,0.001425688,0.001376474,0.001322406, $

0.001273049,0.001237905,0.001184458,0.001149112,0.001111576, $

0.00105742 ,0.001018223,0.000925628,0.000754417,0.000591216,0]
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sigx=total(sigx)/n_elements(sigx)*1e-9 ;Error in the dispersion in (m)

;delta lambda between channel 16 and the dial (A)

dialcor=-4.64+cdial

;Calculating lambda of each channel (m)

lambda=(x+(dial+dialcor)*.1)*1e-9

siglambda=sigx*1e-9 ;need to add errors for dial

;

;Full width half max of each channel (nm)

;

;fwhm for 10 nm and 30 nm slit widths

if (slit eq 10) then begin

fwhm=[0.028284475,0.026712775,0.024897525,0.024623025,0.02525235, $

0.025597475,0.02563125 ,0.026085325,0.026458425,0.02683885, $

0.02579785 ,0.025925625,0.02580485 ,0.025507275,0.02513725, $

0.024972225]

sigfwhm=[0.001123507,0.001422191,0.002295178,0.002570645,0.002174236, $

0.001674691,0.001839515,0.001437365,0.001475303,0.001679625, $

0.001995407,0.0019059 ,0.002031325,0.002193243,0.002988289, $

0.003014583]

endif else if (slit eq 30) then begin

fwhm=[0.030689267,0.028936433,0.027746267,0.0279142 ,0.028586967, $

0.028432967,0.0282238 ,0.028575067,0.029159167,0.0295244 , $

0.028902733,0.028369667,0.027955467,0.027846833,0.027795733, $

0.027883567]

sigfwhm=[0.001662433,0.001665302,0.002910932,0.003311828,0.002975127, $

0.003124332,0.002882961,0.002641393,0.002325255,0.002400108, $

0.003241493,0.002796515,0.00283306 ,0.003137584,0.003252324, $
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0.00371306]

endif

fwhmI=fwhm*1e-9*3/7 ;converting to (m) A2 units

sigfwhmI=sigfwhm*1e-9*3/7 ;converting to (m) A2 units

;

;Physical Constants

;

alpha = mass * 936800890. ;gaussian constant = mc^2/e,

c = 299792458 ;speed of light in m/sec

nu_ideal=c/lamb_ideal ;ideal frequency (s)-1

nu = c / lambda ;frequencies

signu = nu * siglambda / lambda ;error in nu

FWHMnuI_b=nu*fwhmI/lambda ;FWHM machine in nu

FWHMnuI=total(FWHMnuI_b)/nch

sigFWHMnuI=sqrt((signu*fwhmI/lambda)^2+(sigfwhmI*nu/lambda)^2+ $

(siglambda*nu*fwhmI/lambda^2)^2)

sigFWHMnuI=total(sigFWHMnuI)/sqrt(nch)

;

;Reading and smoothing data from the tree

;

for i = 0, nch-1 do begin

ids(0:nel-1,i)=data(ch_nam(i))*cal_fac(i)

; Get coefficients:

Flow=0

Fmid=.2

Fhigh=1
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a=50

N_terms=13

Coeff_low = DIGITAL_FILTER(Flow, Fmid, A, N_terms)

Coeff_high= DIGITAL_FILTER(Fmid, Fhigh, A, N_terms)

; Apply the filter:

ids_low(0:nel-1,i) = CONVOL(ids(0:nel-1,i), Coeff_low)

ids_high(0:nel-1,i) = CONVOL(ids(0:nel-1,i), Coeff_high)

for j=0,nel-1 do $

sig_d(j,i)=(max(ids_high((j-10)>0:(j+10)<(nel-1),i))- $

min(ids_high((j-10)>0:(j+10)<(nel-1),i)))/2

endfor

m_1=data(’\m_1_p0’,xaxis=tim_m)

;

;test data

;

;for i=1,nch do $

; ids_low(nel-1,i-1)=-exp(-((i-7)/4)^2)

;

;Finding data during the region of interest

;

n_start=min(where(tim gt t_start)) ;element to start using data

n_end=max(where(tim lt t_end)) ;element to stop using data

time=tim(n_start:n_end) ;adjusting time base

ids_use=ids_low(n_start:n_end,*) ;adjusting data base

sig_d_use=sig_d(n_start:n_end,*)

nuse=n_elements(time) ;finding total number of elements of reduced array

;

;Initializing fit arrays

;

par=fltarr(nuse,3) ;Array of saved fit coefficients
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sig=fltarr(nuse,3) ;Array of saved fit errors

a=fltarr(3) ;Array of coefficients returned from fit

yfit=fltarr(nch) ;dummy array (fitted data)

amp=fltarr(nuse) ;Amplitude of fitted curve

lamb0=fltarr(nuse) ;Center wavelength of fitted data

nu0=fltarr(nuse)

signu0=fltarr(nuse)

FWHMnu=fltarr(nuse)

sigFWHMnu=fltarr(nuse)

tsig=fltarr(nuse) ;Square root of delta lambda minus machine width

temp=fltarr(nuse) ;Temperature (eV)

temp1=fltarr(nuse) ;Temperature (eV)

ids_use_min=fltarr(nuse) ;Minimum voltage at each time

cal_ch=fltarr(nuse) ;Cannel of the minimun voltage

errc=intarr(nuse)

;

;Finding data with a large enough signal that curve can calculate a signal

;

for i = 0,nuse-1 do begin

ids_use_min(i)=min(ids_use(i,3:12))

cal_ch(i)=where(ids_use_min(i) eq min(ids_use(i,3:12)))+3

endfor

cal=where(ids_use_min lt min_v_sig)

n_cal=n_elements(cal)

if cal(0) eq -1 then cal(0)=1

;

;curve fit for each time of interest

;

for i=1,n_cal-1 do begin
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y=ids_use(cal(i),*)

sig_y=sig_d_use(cal(i),*)

yfit=gaussfit(x,y,b,nterms=nterms) ;Intitial guess using guassfit

if ((b(0) gt 0) or (b(0) lt -1.5)) then begin

b(0:2)=a(0:2)

b(3)=y(0)>y(15)

endif else $

b(3)=y(0)>y(15)>b(3)

a=b(0:2)

;weights for curve fit 1/sigma^2

w=1./ ( (cal_fac*(sig_y>.001))^2 +(y*sigcal_fac)^2)

y=y-b(3)

yfit=err_curvefit(x,y,w,a,sigma,function_name=’fgauss3’, $

curve_err=curve_err);,tol=1e-4)

par(cal(i),*)=a

sig(cal(i),*)=sigma

errc(cal(i))=curve_err

endfor

amp=par(*,0) ;Amp(V)

sigamp=sig(*,0) ;Error Amp (V)

cal1=where(amp lt -sigamp)

lamb0=par(*,1)*1e-9 + lambda(15) ;Centroid of the gaussian (m)

siglamb0=sig(*,1)*1e-9 ;Error of the centroid (m)

if cal1(0) ne -1 then begin

cal_temp=(where((lamb0(cal1) - siglamb0(cal1)) gt lambda(15)))

if cal_temp(0) eq -1 then $

cal2=[0] else $
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cal2=cal_temp

endif else cal2=[-1]

if cal2(0) ne -1 then $

cal4=cal2(where((lamb0(cal2) + siglamb0(cal2)) lt lambda(0))) $

else cal4=[0]

cal_temp=where(errc(cal4) eq 1)

if cal_temp(0) eq -1 then $

cal3=[0] else $

cal3=cal4(cal_temp)

time=time(cal3)

lamb0=lamb0(cal3) ;Centroid of the gaussian (m)

siglamb0=siglamb0(cal3) ;Error of the centroid (m)

amp=amp(cal3) ;Amp(V)

sigamp=sigamp(cal3) ;Error Amp (V)

FWHM=par(cal3,2)*1e-9 ;FWHM (m)

sigFWHM=sig(cal3,2)*1e-9 ;Error in FWHM (m)

nu0=c/lamb0

signu0=nu*siglamb0/lamb0

FWHMnu=FWHM*nu0/lamb0

sigFWHMnu=sigFWHM*nu0/lamb0

tsig = sqrt(FWHMnu^2-FWHMnuI^2);>tsigmin

temp = alpha*(tsig/nu_ideal)^2



329

;An expansion which is close enough for this

;sigtsig = FWHMnu*sigFWHMnu*$

; ( 1. + (signu*siginsignu/FWHMnu/sigFWHMnu)^2 ) / tsig

;

;sigtemp=2*alpha*( tsig / nu0^2 ) * $

; sqrt( sigtsig^2 + (tsig*signu0/nu0 )^2 )

;

tempsig = alpha*( FWHMnuI / ( nu_ideal ) )^2

dTdFWHM=2*alpha*FWHMnu/nu_ideal^2

dTdTi=2*alpha*FWHMnuI/nu_ideal^2

sigTemp=sqrt((dTdFWHM*sigFWHMnu)^2+(dTdTi*sigFWHMnuI)^2)

vel=(lamb_ideal-lamb0)*c/(lamb_ideal*cos(view_a*!pi/180))

sigvel=sqrt(siglamb0^2+sigx^2+(sigcdial*1e-10)^2)*c/ $

(lamb_ideal*cos(view_a*!pi/180))

window,1,xsize=600,ysize=250,xpos=0,ypos=600,title=’Window 1’

window,2,xsize=600,ysize=250,xpos=0,ypos=350,title=’Window 2’

window,3,xsize=600,ysize=250,xpos=0,ypos=100,title=’Window 3’

window,4,xsize=600,ysize=250,xpos=600,ypos=100,title=’Window 4’

window,5,xsize=600,ysize=500,xpos=600,ypos=400,title=’Window 5’

wset,1

plot,time ,amp ,$

title=’Amplitude (V)’,xtitle=’Time’, $

/yst,/xst,xra=[t_start,t_end], $

yra=[-.5,0]

errplot,time ,amp -sigamp ,amp +sigamp

wset,2
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plot,time ,lamb0 ,yra=[min(lambda),max(lambda)] , $

title=’Peak Wavelength’,xtitle=’Time’, $

/yst,/xst,xra=[t_start,t_end]

errplot,time ,lamb0 -siglamb0 ,lamb0 +siglamb0

hline,lamb_ideal,color=2

wset,3

plot,time ,temp ,$

title=’Temperatue (eV) Shot=’+stremo(shot), $

xtitle=’Time’,/yst,/xst,$

xra=[t_start,t_end],yra=[0,1000]

errplot,time ,temp -sigtemp ,temp +sigtemp

hline,tempsig,color=2

wset,4

plot,time ,vel ,$

title=’Velocity (m/s) Shot=’+stremo(shot), $

xtitle=’Time’,/yst,/xst,$

xra=[t_start,t_end],yrange=[0,2e5]

errplot,time ,vel -sigvel ,vel +sigvel

wset,5

plot,time ,vel ,$

title=’Velocity (m/s) Shot=’+stremo(shot), $

xtitle=’Time’,/yst,/xst,$

xra=[t_start,t_end],yrange=[-10000,10000]

hline,0

if n_elements(tim_m) ne 0 then oplot,tim_m*1e6,m_1*1e5,color=2

;
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;Routine used to find CDial

;

;c_dial=[(-total(lamb0(where((time gt 25) and (time lt 30))))/ $

; (n_elements(where((time gt 25) and (time lt 30)))) $

; +lamb_ideal)*1e10 + cdial, $;

;;

; (-total(lamb0(where((time gt 30) and (time lt 35))))/ $

; (n_elements(where((time gt 30) and (time lt 35)))) $

; +lamb_ideal)*1e10 + cdial, $

;;

; (-total(lamb0(where((time gt 35) and (time lt 40))))/ $

; (n_elements(where((time gt 35) and (time lt 40)))) $

; +lamb_ideal)*1e10 + cdial, $

;;

; (-total(lamb0(where((time gt 40) and (time lt 45))))/ $

; (n_elements(where((time gt 40) and (time lt 45)))) $

; +lamb_ideal)*1e10 + cdial]

;;

;print,’shot= ’,shot,’(25,30,35,40) cdial=’,c_dial

tim1=time*1e-6

end
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w iccd data pro.pro

pro w_iccd_data,shot=shot,port=port,grate=grate,gate=gate, $

gain=gain,trans_focus=trans_focus,trans_r=trans_r, $

wave_set=wave_set,comment=comment

ss,shot

port_i=-1

grating_selection=-1

if port eq "side" then port_i = 1

if port eq "front" then port_i = 0

if grate eq 150 then grat_i = 2

if grate eq 2400 then grat_i = 1

if grate eq 3600 then grat_i = 0

print,’reducing’

iccd_reduce,shot=shot,port_i=port_i,grat_i=grat_i, $

image=image,imag_c=image_c,pix=pix, $

intens=intens,inten_cor=inten_cor,wave=wave, $

row_offset=row_offset,bin_min=bin_min,bin_max=bin_max, $

rel_i=rel_i,fwhm_i=fwhm_i,inst_line=inst_line

print,’Repairing tree’

repair_iccd_node,shot

print,’saving’
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iccd_save,shot=shot,port_i=port_i,gate=gate, grating=grate, gain=gain, $

wavs=wave_set, pix=pix, $

intens=intens, iccd_image=image, wave=wave, $

row_offset=row_offset,bin_min=bin_min,bin_max=bin_max, $

rel_i=rel_i,fwhm_i=fwhm_i,inst_line=inst_line, $

comment=comment

print,’finding velocities’

find_iccd_raw_param_SYIAH,shot

find_iccd_shell_param_SYIAH,shot

end
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iccd reduce.pro

pro iccd_reduce,shot=shot,port_i=port_i,grat_i=grat_i, $

image=image,imag_c=imag_c,pix=pix,$

intens=intens,inten_cor=inten_cor,wave=wave, $

row_offset=row_offset,bin_min=bin_min,bin_max=bin_max, $

rel_i=rel_i,fwhm_i=fwhm_i,inst_line=inst_line

default,dat_tex,’26jul00’

default,shot_num,25

default,shot,726025

default,port_i,1

default,grat_i,0

case !version.os_family of

’unix’: sep_char = ’/’

’Windows’: sep_char = ’\’

else: begin

print, ’ICCD not supported on ’+!version.os_family

return

end

endcase

;reading data

default, iccd_filepath, getenv(’iccd_filepath’)

if iccd_filepath eq ’’ then begin
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print, ’Please set your iccd_filepath enviroment variable, e.g.’

print, "IDL> setenv,’iccd_filepath=j:\Zap Spec Data\iccd_data’"

print, ’where j: is your disk share to zappc1’

return

endif

if shot eq 0 then $

shotname = stremo( mdsvalue(’$shotname’, /quiet, status=status) ) $

else $

shotname = stremo(shot)

; convert shotname to ICCD SPE data structure format

sn_len = strlen( shotname )

shot_no = strmid( shotname, 2, 3, /reverse )

day = strmid( shotname, 4, 2, /reverse )

case sn_len of

6: begin

month = ’0’ + strmid( shotname, 6, 1, /reverse )

year = ’00’

end

7: begin

year = ’00’

month = strmid( shotname, 6, 2, /reverse )

end

8: begin

year = ’0’ + strmid( shotname, 7, 1, /reverse )

month = strmid( shotname, 6, 2, /reverse )
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end

9: begin

year = strmid( shotname, 7, 2, /reverse )

month = strmid( shotname, 6, 2, /reverse )

end

endcase

month_name = [ ’jan’, ’feb’, ’mar’, ’apr’, ’may’, ’jun’, $

’jul’, ’aug’, ’sep’, ’oct’, ’nov’, ’dec’ ]

if year eq ’03’ then begin

year_folder_name = ’’

endif else if year eq ’02’ then begin

year_folder_name = ’2002\’

endif else if year eq ’01’ then begin

year_folder_name = ’2001\’

endif else begin

year_folder_name = ’2000\’

endelse

if year eq ’03’ then begin

folder_name = year + month_name( fix(month-1) ) + day

endif else begin

folder_name = day + month_name( fix(month-1) ) + year

endelse

if strmid( shot_no, 0, 1 ) eq ’0’ then $

shot_no = strmid( shot_no, 1 )

if strmid( shot_no, 0, 1 ) eq ’0’ then $
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shot_no = strmid( shot_no, 1 )

if strmid( iccd_filepath, 0, 1, /reverse ) ne sep_char then $

iccd_filepath = iccd_filepath + sep_char

filename=iccd_filepath+year_folder_name+folder_name+sep_char+ $

folder_name+shot_no+’.SPE’

read_princeton, filename, image, $

x_calibration=wave

pix=findgen(n_elements(wave))

;correction arrays

n_el=512 ;number of pixels

imag_c=fltarr(n_el,n_el) ;array of row corrected data

ymd=fix(day)+100*fix(month)+10000*fix(year)

if ymd lt 010823 then begin

restore,iccd_filepath+’iccd_cal_param.dat’

;chosing correct row corrections

if wave(n_el/2) le 275 then wav_i=0 $

else if wave(n_el/2) le 340 then wav_i=1 $

else if wave(n_el/2) le 420 then wav_i=2 $

else if wave(n_el/2) le 520 then wav_i=3 $

else if wave(n_el/2) le 600 then wav_i=4 $

else if wave(n_el/2) le 675 then wav_i=5 $

else wav_i=6

endif else begin
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if ymd lt 021007 then begin

restore,iccd_filepath+’iccd_cal_param_18sep01.dat’

;chosing correct row corrections

if wave(n_el/2) le 275 then wav_i=0 $

else if wave(n_el/2) le 340 then wav_i=1 $

else if wave(n_el/2) le 420 then wav_i=2 $

else if wave(n_el/2) le 495 then wav_i=3 $

else if wave(n_el/2) le 575 then wav_i=4 $

else if wave(n_el/2) le 675 then wav_i=5 $

else wav_i=6

print,wav_i,port_i,grat_i,0

endif else begin

restore,iccd_filepath+’iccd_cal_param_ri_17oct02.dat’

;chosing correct row corrections

if wave(n_el/2) le 275 then wav_i=0 $

else if wave(n_el/2) le 340 then wav_i=1 $

else if wave(n_el/2) le 420 then wav_i=2 $

else if wave(n_el/2) le 495 then wav_i=3 $

else if wave(n_el/2) le 575 then wav_i=4 $

else if wave(n_el/2) le 675 then wav_i=5 $

else wav_i=6

added 16 Jan 03 since the calibrations for 5,6 are bad

if (wav_i ge 4) and (grat_i eq 1) then wav_i=4;

print,wav_i,port_i,grat_i,1

endelse

endelse

row_offset=row_offset(*,wav_i,port_i,grat_i)
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bin_min=bin_min(*,wav_i,port_i,grat_i)

bin_max=bin_max(*,wav_i,port_i,grat_i)

rel_i=rel_i(*,wav_i,port_i,grat_i)

fwhm_i=fwhm_inst(*,wav_i,port_i,grat_i)

inst_line=inst_func(*,*,wav_i,port_i,grat_i)

if max(rel_i) eq 0 then rel_i=rel_i+1.0

for j=0,n_el-1 do begin

imag_c(*,j)=interpol(transpose(image(*,j)),pix-row_offset(j),pix)

endfor

intens=fltarr(n_el,20)

inten_cor=fltarr(n_el,20)

for j=0,19 do begin

for i=0,n_el-1 do begin

intens(i,j)=total(imag_c(i,bin_min(j):bin_max(j)))

endfor

inten_cor(*,j)=intens(*,j)*rel_i(j)

endfor

end
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repair iccd node.pro

pro repair_iccd_node,shot

if shot le 21126025 then begin

mdstcl,"edit zapmain/shot="+stremo(shot)

mdstcl,"set def .signals"

mdstcl,"delete node iccd /noconfirm"

mdstcl,"add node/usage=structure .iccd"

;

mdstcl,"set def \zapmain::top.signals.iccd"

mdstcl,"add node/usage=signal iccd_mon"

mdstcl,"add tag iccd_mon iccd_mon"

mdstcl,"write"

mdstcl,"close"

endif

mdstcl,"edit zapanalysis/shot="+stremo(shot)

mdstcl,"add node/usage=structure .iccd"

mdstcl,"set def .iccd"

mdstcl,"add node/usage=structure .spectra"

mdstcl,"set def .spectra"

mdstcl,"add node/usage=text comment"

mdstcl,"add node/usage=text enter_port"

mdstcl,"add node/usage=numeric gain"

mdstcl,"add node/usage=numeric gate"

mdstcl,"add node/usage=numeric grating"

mdstcl,"add node/usage=signal iccd_image"

mdstcl,"add node/usage=text view"

mdstcl,"add node/usage=numeric wavelength"
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mdstcl,"add node/usage=structure .bin_param"

mdstcl,"add node/usage=structure .tele_35"

mdstcl,"add node/usage=structure .tele_90"

mdstcl,"add node/usage=structure .intensity"

mdstcl,"set def \zapanalysis::top.iccd.spectra.bin_param"

mdstcl,"add node/usage=signal row_offsets"

mdstcl,"add node/usage=signal start_bin"

mdstcl,"add node/usage=signal end_bin"

mdstcl,"set def \zapanalysis::top.iccd.spectra.tele_35"

mdstcl,"add node/usage=numeric trans_focus"

mdstcl,"add node/usage=numeric trans_r"

mdstcl,"add node/usage=numeric iris_diam"

mdstcl,"add node/usage=text iris_hole_se"

mdstcl,"set def \zapanalysis::top.iccd.spectra.tele_90"

mdstcl,"add node/usage=numeric trans_focus"

mdstcl,"add node/usage=numeric trans_r"

mdstcl,"add node/usage=numeric iris_diam"

mdstcl,"add node/usage=text iris_hole_se"

mdstcl,"set def \zapanalysis::top.iccd.spectra.intensity"

for i=1,9 do begin

mdstcl,"add node/usage=signal iccd_0"+stremo(i)

mdstcl,"add tag iccd_0"+stremo(i)+" iccd_0"+stremo(i)

mdstcl,"add node/usage=signal iccd_0"+stremo(i)+":raw_binned"

mdstcl,"add node/usage=numeric iccd_0"+stremo(i)+":scale_fact"

mdstcl,"add node/usage=signal iccd_0"+stremo(i)+":inst_func"

mdstcl,"add node/usage=numeric iccd_0"+stremo(i)+":inst_fwhm"

mdstcl,’put iccd_0’+stremo(i)+’ "\ICCD_0’+stremo(i)+ $
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’:RAW_BINNED * \ICCD_0’+stremo(i)+’:SCALE_FACT"’

endfor

;stop

for i=10,20 do begin

mdstcl,"add node/usage=signal iccd_"+stremo(i)

mdstcl,"add tag iccd_"+stremo(i)+" iccd_"+stremo(i)

mdstcl,"add node/usage=signal iccd_"+stremo(i)+ $

":raw_binned"

mdstcl,"add node/usage=numeric iccd_"+stremo(i)+ $

":scale_fact"

mdstcl,"add node/usage=signal iccd_"+stremo(i)+ $

":inst_func"

mdstcl,"add node/usage=numeric iccd_"+stremo(i)+ $

":inst_fwhm"

mdstcl,’put iccd_’+stremo(i)+’ "\ICCD_’+stremo(i)+ $

’:RAW_BINNED * \ICCD_’+stremo(i)+’:SCALE_FACT"’

endfor

mdstcl,"add node/usage=signal iccd_lambda"

mdstcl,"add tag iccd_lambda iccd_lambda"

mdstcl,"add tag \zapanalysis::top.iccd iccd"

mdstcl,"write"

mdstcl,"close"

ss,shot

mdsput, ’.zapanalysis.iccd.spectra.tele_35:iris_diam’, $

’build_with_units(31.8,"")’

mdsput, ’.zapanalysis.iccd.spectra.tele_35:iris_hole_se’, $

’build_with_units("D","")’

mdsput, ’.zapanalysis.iccd.spectra.tele_35:trans_focus’, $
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’build_with_units(1.25,"")’

mdsput, ’.zapanalysis.iccd.spectra.tele_90:iris_diam’, $

’build_with_units(22.2,"")’

mdsput, ’.zapanalysis.iccd.spectra.tele_90:iris_hole_se’, $

’build_with_units("A","")’

mdsput, ’.zapanalysis.iccd.spectra.tele_90:trans_focus’, $

’build_with_units(1.771,"")’

if shot lt 001031000 then begin

mdsput, ’.zapanalysis.iccd.spectra.tele_35:trans_r’, $

’build_with_units(1.90,"")’

mdsput, ’.zapanalysis.iccd.spectra.tele_90:trans_r’, $

’build_with_units(1.94,"")’

endif else begin

mdsput, ’.zapanalysis.iccd.spectra.tele_35:trans_r’, $

’build_with_units(1.64,"")’

mdsput, ’.zapanalysis.iccd.spectra.tele_90:trans_r’, $

’build_with_units(1.68,"")’

endelse

mdsclose

end
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iccd save.pro

pro iccd_save,shot=shot,port_i=port_i,gate=gate, $

grating=grating, gain=gain, $

wavs=wavs, pix=pix, $

intens=intens, iccd_image=iccd_image, wave=wave, $

row_offset=row_offset,bin_min=bin_min,bin_max=bin_max, $

rel_i=rel_i,fwhm_i=fwhm_i,inst_line=inst_line, $

comment=comment

default,comment,""

if port_i eq 1 then begin

port=’side’

view=35

endif else if port_i eq 0 then begin

port=’front’

view=90

endif

n_w=n_elements(wave)

pix_i=findgen(n_elements(inst_line(*,0)))+1

build_string_1 = ’build_signal(build_with_units($1,"counts"),’ + $

’*,’ + $

’\iccd_lambda,,)’

build_string_2a = ’build_signal(build_with_units($1,"nm"),’ + $

’,’ + $

’,,)’

build_string_2b = ’build_signal(build_with_units($1,"pixels"),’ + $

’,’ + $

’,,)’
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build_string_3 = ’build_signal(build_with_units($1,"counts"),’ + $

’*,’ + $

’build_with_units($2,"pixel"),,)’

build_array = ’build_signal(build_with_units($1,"counts"),’ + $

’*,’ + $

’\iccd_lambda’ + $

’build_dim(build_window(0,’ + stremo(n_w-1) + $

’,’ + stremo(pix(0)) + ’),’ + $

’build_slope(’ + stremo(pix(1)-pix(0)) + ’,,)))]’

print,port

ss,shot

mdsput, ’.zapanalysis.iccd.spectra.enter_port’, $

’build_with_units($,"")’,port

mdsput, ’.zapanalysis.iccd.spectra.gain’, $

’build_with_units($,"")’,gain

mdsput, ’.zapanalysis.iccd.spectra.gate’, $

’build_with_units($,"s")’,gate

mdsput, ’.zapanalysis.iccd.spectra.grating’, $

’build_with_units($,"")’,grating

mdsput, ’.zapanalysis.iccd.spectra.view’, $

’build_with_units($,"")’,view

mdsput, ’.zapanalysis.iccd.spectra.wavelength’, $

’build_with_units($,"nm")’,wavs

mdsput, ’.zapanalysis.iccd.spectra.comment’, $

’build_with_units($,"")’,comment

mdsput, ’.zapanalysis.iccd.spectra.bin_param:row_offsets’, $

build_string_2b,row_offset

mdsput, ’.zapanalysis.iccd.spectra.bin_param:start_bin’, $
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build_string_2b,bin_min

mdsput, ’.zapanalysis.iccd.spectra.bin_param:end_bin’, $

build_string_2b,bin_max

mdsput, ’\iccd_lambda’, build_string_2a, wave

for i=0,8 do begin

mdsput, ’\iccd_0’+stremo(i+1)+’:raw_binned’, $

build_string_1, intens(*,i)

mdsput, ’\iccd_0’+stremo(i+1)+’:inst_func’, $

build_string_3, inst_line(*,i), pix_i

mdsput, ’\iccd_0’+stremo(i+1)+’:inst_FWHM’, $

’build_with_units($,"pix")’,fwhm_i(i)

mdsput, ’\iccd_0’+stremo(i+1)+’:scale_fact’, $

’build_with_units($,"")’,rel_i(i)

endfor

for i=9,19 do begin

mdsput, ’\iccd_’+stremo(i+1)+’:raw_binned’, $

build_string_1, intens(*,i)

mdsput, ’\iccd_’+stremo(i+1)+’:inst_func’, $

build_string_3, inst_line(*,i), pix_i

mdsput, ’\iccd_’+stremo(i+1)+’:inst_FWHM’, $

’build_with_units($,"pix")’,fwhm_i(i)

mdsput, ’\iccd_’+stremo(i+1)+’:scale_fact’, $

’build_with_units($,"")’,rel_i(i)

endfor

mdsclose

mdsclose

end
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find iccd raw param SYIAH.pro

pro find_iccd_raw_param_SYIAH,shot

default,shot,21121022

ss,shot

;getting data

chord=findgen(20)+1

build_string_1 = ’build_signal(build_with_units($1,$2),’ + $

’*,’ + $

’$3,,)’

if not(data_there(’\iccd_01’)) then goto,blank

view=mdsvalue(’.zapanalysis.iccd.spectra:view’)

intense=data(’\iccd_01’,xaxis=wave)

intense=data(’\iccd_01:inst_func’,xaxis=pix)

n_el=n_elements(wave)

n_inst=n_elements(pix)

intense=fltarr(n_el,20)

inst_line=fltarr(n_inst,20)

inst_fwhm=fltarr(20)

for i=0,8 do begin

intense(*,i)=data(’\iccd_0’+stremo(i+1))>(-1.e3)

inst_line(*,i)=data(’\iccd_0’+stremo(i+1)+’:inst_func’)

inst_fwhm(i)=data(’\iccd_0’+stremo(i+1)+’:inst_fwhm’)

endfor

for i=9,19 do begin

intense(*,i)=data(’\iccd_’+stremo(i+1))>(-1.e3)

inst_line(*,i)=data(’\iccd_’+stremo(i+1)+’:inst_func’)

inst_fwhm(i)=data(’\iccd_’+stremo(i+1)+’:inst_fwhm’)
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endfor

fwhm_pix = inst_fwhm

wave_s=wave

intense_s=intense

inst_line_s=inst_line

inst_fwhm_s=inst_fwhm

l_edge_ave=fltarr(20)

r_edge_ave=fltarr(20)

l_edge_sigma=fltarr(20)

r_edge_sigma=fltarr(20)

for i=0,19 do begin

l_edge_ave(i)=total(intense(1:10,i))/10

r_edge_ave(i)=total(intense(500:509,i))/10

l_edge_sigma(i)=sqrt(total((intense(1:10,i)-l_edge_ave(i))^2)/9)

r_edge_sigma(i)=sqrt(total((intense(500:509,i)-r_edge_ave(i))^2)/9)

endfor

d_raw=((l_edge_sigma/(sqrt(l_edge_ave>1.)))< $

(r_edge_sigma/(sqrt(r_edge_ave>1.))))>1.

ave_edge=(l_edge_ave+r_edge_ave)/2

inten_back=intense

for i=0,19 do inten_back(*,i)=intense(*,i)-ave_edge(i)

window,0

!p.multi=[0,1,2]

plot,wave,intense(*,0),yra=[-.01,.1]*max(intense)

for i=0,19 do oplot,wave,intense(*,i),co=2+i

hline,5*max(d_raw)

plot,wave,inten_back(*,0),yra=[-.01,.1]*max(inten_back)
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for i=0,19 do oplot,wave,inten_back(*,i),co=2+i

hline,5*max(d_raw)

; looking for lines

; C

all_ions=[’c3’,’c3’,’c4’,’c4’,’c5’,’c6’,’c6’, $

’n3’,’n3’,’n4’,’n4’,’n4’,’n5’,’n6’,’n6’, $

’o3’,’o3’,’o4’,’o5’,’o5’,$

’o6’,’o6’,’o7’, $

’He2’, $

’b3’]

all_mass=[12.107 ,12.107 ,12.107 ,12.107 ,12.107 ,12.107 ,12.107 , $

14.00674,14.00674,14.00674,14.00674,14.00674,14.00674,14.00674, $

14.00674,15.9994 ,15.9994 ,15.9994 ,15.9994 ,15.9994 , $

15.9994 ,15.9994 ,15.9994 , $

4.002602, $

10.811 ]

all_ideal_wav=[229.687 ,464.7418,465.83 ,580.131,227.089,343.369,529.1 , $

268.218 ,409.736 ,638.075,264.562,347.872,298.078,205.61, $

289.64 ,326.0857,375.4696,306.343,559.789,278.101, $

381.135 ,383.424 ,255.9, $

468.57 , $

206.5776]

Number_lines=[1,-1,-1, 2, 3, 1, 1, $

1, 2, 1, 3, 3, 3, 1, 1, $

3, 3, 2, 1, 3, $

1, 1, 1, $

1, $

2] ; use -1 for the c III c IV region

f_name=[’’,’three_cIII_465’,’’,’two_cIV_580’,’three_cV_227’ ,’’,’’, $
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’’,’two_nIII_409’,’’,’three_nIV_264’,’three_nIV_347’, $

’three_nV_298’,’’,’’,’three_oIII_326’,’three_oIII_375’, $

’two_oIV_306’,’’,’three_oV_278’ , $

’’,’’,’’,’’,’two_bIII_206’]

n_ions=n_elements(all_ions)

n_start=intarr(n_ions)

for i=0,n_ions-1 do n_start(i)=min(where(wave ge all_ideal_wav(i)))

regions=where(n_start ge 5)

if regions(0) lt 0 then goto,blank

n_regions=n_elements(regions)

use_region=intarr(n_regions)

use_region1=intarr(n_regions)

for i=0,n_regions-1 do $

if max(inten_back((n_start(regions(i))-10)>5: $

(n_start(regions(i))+10)<506,*)) ge $

5*max(d_raw) then $

use_region1(i)=1

for i=0,n_regions-1 do $

if total(inten_back((n_start(regions(i))-10)>5: $

(n_start(regions(i))+10)<506,*)) ge $

10*(sqrt(total(abs(inten_back((n_start(regions(i))-10)>5: $

(n_start(regions(i))+10)<506,*)))>0.)* $

((total(d_raw)/20.)>5))>100 then $

use_region(i)=1
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print,use_region,use_region1

n_usefull=where(use_region eq 1)

if n_usefull(0) lt 0 then goto,blank

regions=regions(n_usefull)

n_regions=n_elements(regions)

for i=0,n_regions-1 do begin

case 1 of

Number_lines(regions(i)) eq 1 :begin

print,’Calculating ’+all_ions(regions(i))+’ ’+ $

stremo(all_ideal_wav(regions(i)))+’ parameters’

iccd_raw_emis,intense,d_raw,wave,inst_line,fwhm_inst, $

lamb_ideal=all_ideal_wav(regions(i)), $

mass=all_mass(regions(i)), $

par_raw=par_raw,sig_raw=sig_raw,chi_raw=chi_raw, $

amp_raw=amp_raw,sig_amp=sig_amp_raw, $

vel_raw=vel_raw,sig_vel=sig_vel_raw, $

temp_raw=temp_raw,sig_temp=sig_temp_raw, $

offset_raw=offset_raw,sig_offset=sig_offset_raw, $

wave_fit=wave_fit,yfit_raw=yfit_raw, $

error_raw=error_raw

write_raw_param,shot,all_ions(regions(i)), $

all_ideal_wav(regions(i)), $

amp_raw,vel_raw,temp_raw,offset_raw, $

sig_amp_raw,sig_vel_raw, $

sig_temp_raw,sig_offset_raw, $

chi_raw,error_raw,wave_fit,yfit_raw

end

Number_lines(regions(i)) gt 1 :begin
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print,’Calculating ’+all_ions(regions(i))+’ ’+ $

stremo(all_ideal_wav(regions(i)))+’ parameters’

iccd_raw_multi_emis,intense,d_raw,wave,inst_line, $

fwhm_inst,func_name=f_name(regions(i)), $

lamb_ideal=all_ideal_wav(regions(i)), $

mass=all_mass(regions(i)), $

par_raw=par_raw,sig_raw=sig_raw,chi_raw=chi_raw, $

amp_raw=amp_raw,sig_amp_raw=sig_amp_raw, $

vel_raw=vel_raw,sig_vel=sig_vel_raw, $

temp_raw=temp_raw,sig_temp=sig_temp_raw, $

offset_raw=offset_raw, $

sig_offset=sig_offset_raw,ps=ps, $

wave_fit=wave_fit,yfit_raw=yfit_raw, $

error_raw=error_raw

write_raw_param,shot,all_ions(regions(i)), $

all_ideal_wav(regions(i)), $

amp_raw,vel_raw,temp_raw,offset_raw, $

sig_amp_raw,sig_vel_raw, $

sig_temp_raw,sig_offset_raw, $

chi_raw,error_raw,wave_fit,yfit_raw

end

Number_lines(regions(i)) eq -1 :begin

if all_ions(regions(i)) eq ’c3’ then begin

if all_ideal_wav(regions((i+1)<(n_regions-1))) eq $

465.83 then begin

print,’Calculating c3_c4_465 parameters’

iccd_raw_emis_four_CIII,intense,d_raw,wave, $

inst_line,fwhm_inst, $

lamb_ideal_3=464.7418,lamb_ideal_4=465.830, $

mass=mass,itmax=itmax,tol=tol, $
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par_raw=par_raw_c3_465, $

sig_raw=sig_raw_c3_465,chi_raw=chi_raw, $

amp_3_raw=amp_raw_c3_465, $

sig_amp_raw_3=sig_amp_raw_c3_465, $

vel_raw_3=vel_raw_c3_465, $

sig_vel_raw_3=sig_vel_raw_c3_465, $

temp_raw_3=temp_raw_c3_465, $

sig_temp_raw_3=sig_temp_raw_c3_465, $

amp_4_raw=amp_raw_c4_465, $

sig_amp_raw_4=sig_amp_raw_c4_465, $

vel_raw_4=vel_raw_c4_465, $

sig_vel_raw_4=sig_vel_raw_c4_465, $

temp_raw_4=temp_raw_c4_465, $

sig_temp_raw_4=sig_temp_raw_c4_465, $

offset_raw=offset_raw_465, $

sig_offset=sig_offset_raw_465,ps=ps, $

wave_raw=wave_fit,yfit_raw=yfit_raw, $

error_raw=error

n_bad=where((error ne 1) or $

(finite(amp_raw_c3_465) ne 1) or $

(finite(vel_raw_c3_465) ne 1) or $

(finite(temp_raw_c3_465) ne 1) or $

(finite(amp_raw_c4_465) ne 1) or $

(finite(vel_raw_c4_465) ne 1) or $

(finite(temp_raw_c4_465) ne 1) or $

(finite(offset_raw_465) ne 1) or $

(amp_raw_c3_465 lt 0) or $

(amp_raw_c4_465 lt 0))

if n_elements(n_bad) ne 20 then begin

if n_bad(0) ne -1 then begin
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amp_raw_c3_465(n_bad)=-1

vel_raw_c3_465(n_bad)=-1

temp_raw_c3_465(n_bad)=-1

amp_raw_c4_465(n_bad)=-1

vel_raw_c4_465(n_bad)=-1

temp_raw_c4_465(n_bad)=-1

offset_raw_465(n_bad)=-1

chi_raw(n_bad)=-1

endif

mdstcl,"edit zapanalysis/shot="+stremo(shot)

mdstcl,"set def .iccd"

mdstcl,"add node/usage=numeric c3"

mdstcl,"add tag c3 c3"

mdstcl,"set def c3"

mdstcl,"add node/usage=signal emiss_raw"

mdstcl,"add node/usage=signal vel_raw"

mdstcl,"add node/usage=signal temp_raw"

mdstcl,"add node/usage=signal offset_raw"

mdstcl,"add node/usage=signal emiss_raw:error"

mdstcl,"add node/usage=signal vel_raw:error"

mdstcl,"add node/usage=signal temp_raw:error"

mdstcl,"add node/usage=signal offset_raw:error"

mdstcl,"add node/usage=signal chisq_raw"

mdstcl,"add node/usage=text comment"

for i=1,9 do $

mdstcl,"add node/usage=signal fit_raw_0"+stremo(i)

for i=10,20 do $

mdstcl,"add node/usage=signal fit_raw_"+stremo(i)

mdstcl,"set def .iccd"
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mdstcl,"add node/usage=numeric c4"

mdstcl,"add tag c4 c4"

mdstcl,"set def c4"

mdstcl,"add node/usage=signal emiss_raw"

mdstcl,"add node/usage=signal vel_raw"

mdstcl,"add node/usage=signal temp_raw"

mdstcl,"add node/usage=signal emiss_raw:error"

mdstcl,"add node/usage=signal vel_raw:error"

mdstcl,"add node/usage=signal temp_raw:error"

mdstcl,"add node/usage=text comment"

for i=1,9 do $

mdstcl,"add node/usage=signal fit_raw_0"+stremo(i)

for i=10,20 do $

mdstcl,"add node/usage=signal fit_raw_"+stremo(i)

mdstcl,"write"

mdstcl,"close"

mdstcl,"close"

ss,shot

mdsput, ’\c3’,’build_with_units(464.7418,"nm")’

mdsput, ’\c3:emiss_raw’, build_string_1, $

amp_raw_c3_465,"counts",chord

mdsput, ’\c3:vel_raw’, build_string_1, $

vel_raw_c3_465,"m/s",chord

mdsput, ’\c3:temp_raw’, build_string_1, $

temp_raw_c3_465,"eV",chord

mdsput, ’\c3:offset_raw’, build_string_1, $

offset_raw_465,"counts",chord

mdsput, ’\c3:emiss_raw:error’, build_string_1, $

sig_amp_raw_c3_465,"counts",chord
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mdsput, ’\c3:vel_raw:error’, build_string_1, $

sig_vel_raw_c3_465,"m/s",chord

mdsput, ’\c3:temp_raw:error’, build_string_1, $

sig_temp_raw_c3_465,"eV",chord

mdsput, ’\c3:offset_raw:error’, build_string_1, $

sig_offset_raw_465,"counts",chord

mdsput, ’\c3:chisq_raw’, build_string_1, $

chi_raw,"counts",chord

mdsput, ’\c3:comment’,’build_with_units($,"")’, $

’Plasma parameters found using 464.7418 nm,’+ $

’ with C IV’

mdsput, ’\c4’,’build_with_units(465.830,"nm")’

mdsput, ’\c4:emiss_raw’, build_string_1, $

amp_raw_c4_465,"counts",chord

mdsput, ’\c4:vel_raw’, build_string_1, $

vel_raw_c4_465,"m/s",chord

mdsput, ’\c4:temp_raw’, build_string_1, $

temp_raw_c4_465,"eV",chord

mdsput, ’\c4:emiss_raw:error’, build_string_1, $

sig_amp_raw_c4_465,"counts",chord

mdsput, ’\c4:vel_raw:error’, build_string_1, $

sig_vel_raw_c4_465,"m/s",chord

mdsput, ’\c4:temp_raw:error’, build_string_1, $

sig_temp_raw_c4_465,"eV",chord

mdsput, ’\c4:comment’,’build_with_units($,"")’, $

’Plasma parameters found using 465.830 nm,’+ $

’ with C III triplet’

for i=1,9 do $

mdsput, ’\c3:fit_raw_0’+stremo(i), $

build_string_1,yfit_raw(*,i-1),"counts",wave_fit
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for i=10,20 do $

mdsput, ’\c3:fit_raw_’+stremo(i), $

build_string_1,yfit_raw(*,i-1),"counts",wave_fit

for i=1,9 do $

mdsput, ’\c4:fit_raw_0’+stremo(i), $

build_string_1,yfit_raw(*,i-1),"counts",wave_fit

for i=10,20 do $

mdsput, ’\c4:fit_raw_’+stremo(i), $

build_string_1,yfit_raw(*,i-1),"counts",wave_fit

mdsclose

endif

nowrite:

endif else begin

print,’Calculating c3_465 parameters’

iccd_raw_multi_emis,intense,d_raw,wave,inst_line, $

fwhm_inst,func_name=f_name(regions(i)), $

lamb_ideal=all_ideal_wav(regions(i)), $

mass=all_mass(regions(i)), $

par_raw=par_raw,sig_raw=sig_raw,chi_raw=chi_raw, $

amp_raw=amp_raw,sig_amp=sig_amp_raw, $

vel_raw=vel_raw,sig_vel=sig_vel_raw, $

temp_raw=temp_raw,sig_temp=sig_temp_raw, $

offset_raw=offset_raw,sig_offset=sig_offset_raw, $

wave_fit=wave_fit,yfit_raw=yfit_raw, $

error_raw=error_raw

write_raw_param,shot,all_ions(regions(i)), $

all_ideal_wav(regions(i)), $

amp_raw,vel_raw,temp_raw,offset_raw, $

sig_amp_raw,sig_vel_raw, $
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sig_temp_raw,sig_offset_raw, $

chi_raw,error_raw,wave_fit,yfit_raw

endelse

endif

if n_elements(where(Number_lines(regions) eq -1)) lt 2 then begin

print,’Calculating ’+all_ions(regions(i))+’ ’+ $

stremo(all_ideal_wav(regions(i)))+’ parameters’

iccd_raw_emis,intense,d_raw,wave,inst_line,fwhm_inst, $

lamb_ideal=all_ideal_wav(regions(i)), $

mass=all_mass(regions(i)), $

par_raw=par_raw,sig_raw=sig_raw,chi_raw=chi_raw, $

amp_raw=amp_raw,sig_amp=sig_amp_raw, $

vel_raw=vel_raw,sig_vel=sig_vel_raw, $

temp_raw=temp_raw,sig_temp=sig_temp_raw, $

offset_raw=offset_raw,sig_offset=sig_offset_raw, $

wave_fit=wave_fit,yfit_raw=yfit_raw, $

error_raw=error_raw

write_raw_param,shot,all_ions(regions(i)), $

all_ideal_wav(regions(i)), $

amp_raw,vel_raw,temp_raw,offset_raw, $

sig_amp_raw,sig_vel_raw, $

sig_temp_raw,sig_offset_raw, $

chi_raw,error_raw,wave_fit,yfit_raw

endif

end

endcase

endfor

blank:

!p.multi=0

end
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iccd raw multi emis.pro

pro iccd_raw_multi_emis,intense,d_raw,wave,inst_line,fwhm_inst, $

func_name=func_name, $

lamb_ideal=lamb_ideal,mass=mass,itmax=itmax,tol=tol, $

par_raw=par_raw,sig_raw=sig_raw,yfit_raw=yfit_raw, $

chi_raw=chi_raw, $

amp_raw=amp_raw,sig_amp_raw=sig_amp_raw, $

vel_raw=vel_raw,sig_vel=sig_vel_raw, $

temp_raw=temp_raw,sig_temp=sig_temp_raw, $

offset_raw=offset_raw,sig_offset=sig_offset_raw,ps=ps, $

wave_fit=wave_fit,error_raw=error_raw

default,ps,0

n_el=n_elements(wave)

n_chord=n_elements(intense(0,*))

par_raw=fltarr(4,n_chord)

sig_raw=fltarr(4,n_chord)

yfit_raw=fltarr(n_el,n_chord)

chi_raw=fltarr(n_chord)

default,fwhm_inst,fltarr(n_chord)+(wave(1)-wave(0))

if n_elements(d_raw) eq 0 then begin

d_raw=fltarr(n_chord)

for i=0,n_chord-1 do begin

err1=intense(0:19,i)-total(intense(0:19,i))/20

err2=intense(n_el-20:n_el-1,i)-total(intense(n_el-20:n_el-1,i))/20

d_raw(i)=sqrt(total(err1^2)/(19*sqrt(total(intense(0:19,i))/20))) > $

sqrt(total(err2^2)/ $

(19*sqrt(total(intense(n_el-20:n_el-1,i))/20)))>2
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endfor

endif

;

;Physical Constants

;

fwhm=fwhm_inst ;instrument FWHM wavelength

default,lamb_ideal,227.089 ;ideal waveleangth nm

default,mass,12.0107 ;mass C AMU

alpha_temp = mass * 936800890. ;gaussian constant = mc^2/e,

c = 299792458 ;speed of light in m/sec

fwhm=fwhm_inst*3/7 ;correcting fwhm to a(2) scale

tmin=(wave(1)-wave(0))*3/7 ;minimun FWHM 1 pixel

fwhm_temper=fwhm*tmin*7/3

lamb_ideal=lamb_ideal

x=wave

n_ideal=min(where(wave ge lamb_ideal))

x=wave(((n_ideal-40)>0):((n_ideal+120)<(n_el-1)))

n_x=n_elements(x)

yfit_raw=fltarr(n_x,n_chord)

wave_fit=x

error_raw=fltarr(n_chord)

;print,n_ideal,n_el,n_elements(intense(*,0)),n_elements(intense(0,*))

if ps ne 1 then window,17,XPOS=20 , YPOS=20 , XSIZE=1000 , YSIZE=800

!p.multi=[0,4,5]

a=fltarr(4)

for i=0,n_chord-1 do begin

y=intense(((n_ideal-40)>0):((n_ideal+120)<(n_el-1)),i)
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a1=inst_line(*,i)

w=fltarr(n_x)+1.;/(d_raw(i)*sqrt(y>1.))^2

yfitg=gaussfit(x(0:81<(n_x-1)),y(0:81<(n_x-1)),b,nterms=4)

a(0)=b(0)*b(2)*1.25

a(1)=b(1)

a(2)=sqrt((b(2)^2-fwhm_temper(i)^2)>tmin)

a(3)=b(3)

yfit=err_curvefit_wide(x,y,w,a,a1,sigma,chisq=chisq, $

function_name=’f_emiss_wide_’+func_name, $

curve_err=curve_err,itmax=itmax, $

tol=tol,pder=pder)

par_raw(*,i)=a

yfit_raw(*,i)=yfit

error_raw(i)=curve_err

plot,x,y,title=’chord ’+stremo(i+1)

oplot,x,yfit,co=2

oplot,x(0:81<(n_x-1)),yfitg,co=3,linestyle=2

oplot,x,a1*max(y)/max(a1),co=4,linestyle=2

;

;correct error analysis

;

nterms=n_elements(a)

nfree = n_elements(y) - nterms ; Degrees of freedom

diag = lindgen(nterms)*(nterms+1) ; Subscripts of diagonal elements

Weights=fltarr(n_x)+1./(d_raw(i)*sqrt(y>1.))^2

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1.)*pder)

sigma=sqrt( 1/alpha[diag] )

alpha_inv=invert(alpha)

sigma = sqrt( alpha_inv[diag] ) <10*sigma

chisq = total(Weights*(y-yfit)^2)/nfree ; Current chi squared



362

sig_raw(*,i)=sigma

chi_raw(i)=chisq

endfor

amp_raw=transpose(par_raw(0,*))

sig_amp_raw=abs(transpose(sig_raw(0,*)))

offset_raw=transpose(par_raw(3,*))

sig_offset_raw=abs(transpose(sig_raw(3,*)))

vel_raw=(lamb_ideal-transpose(par_raw(1,*)))*c/ $

(lamb_ideal*cos(35*!pi/180))

sig_vel_raw= transpose(sig_raw(1,*))*c/(lamb_ideal*cos(35*!pi/180))

del_lamb=abs(transpose(par_raw(2,*)))>tmin

temp_raw=alpha_temp*(del_lamb/lamb_ideal)^2

sig_temp_raw=2*alpha_temp*del_lamb*transpose(sig_raw(2,*))/lamb_ideal^2

if ps ne 1 then window,16,XPOS=20 , YPOS=20 , XSIZE=1000 , YSIZE=800

plot,findgen(n_chord)+1,amp_raw, $

title=’Amplitude Shot=’+ $

stremo( mdsvalue(’$shotname’, /quiet, status=status) ), $

charsize=2,thick=2,background=1,color=0

plot,findgen(n_chord)+1,vel_raw,title=’Velocity’, $

charsize=2,thick=2,background=1,color=0, $

yrange=[(min(vel_raw)>(-2e5))<0,(max(vel_raw)<2e5)]

plot,findgen(n_chord)+1,temp_raw,title=’Temperature’, $

charsize=2,thick=2,background=1,color=0, $

yrange=[(min(temp_raw)>(-1))<0,(max(temp_raw)<1e3)]

plot,findgen(n_chord)+1,offset_raw,title=’Offset’, $

charsize=2,thick=2,background=1,color=0

!p.multi=0

end



363

find iccd shell param SYIAH.pro

pro find_iccd_shell_param_SYIAH,shot

default,shot,30910022

ss,shot

;getting data

chord=findgen(20)+1

build_string_1 = ’build_signal(build_with_units($1,$2),’ + $

’*,’ + $

’$3,,)’

if not(data_there(’\iccd_01’)) then goto,blank

intense=data(’\iccd_01’,xaxis=wave)

; looking for lines

all_ions=[’c3’,’c3’,’c4’,’c4’,’c5’,’c6’,’c6’, $

’n3’,’n3’,’n4’,’n4’,’n4’,’n5’,’n6’,’n6’, $

’o3’,’o3’,’o4’,’o5’,’o5’,$

’o6’,’o6’,’o7’, $

’He2’, $

’b3’]

all_mass=[12.107 ,12.107 ,12.107 ,12.107 ,12.107 ,12.107 ,12.107 , $

14.00674,14.00674,14.00674,14.00674,14.00674,14.00674,14.00674, $

14.00674,15.9994 ,15.9994 ,15.9994 ,15.9994 ,15.9994 , $

15.9994 ,15.9994 ,15.9994 , $

4.002602, $

10.811 ]

all_ideal_wav=[229.687 ,464.7418,465.83 ,580.131,227.089,343.369,529.1 , $

268.218 ,409.736 ,638.075,264.562,347.872,298.078,205.61, $
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289.64 ,326.0857,375.4696,306.343,559.789,278.101, $

381.135 ,383.424 ,255.9, $

468.57 , $

206.5776]

max_ideal_wav=[229.687 ,465.1473,465.83 ,581.197,227.792,343.369,529.1 , $

268.218 ,410.339 ,638.075,264.698,348.300,299.843,205.61, $

289.64 ,326.7204,375.9875,307.160,559.789,278.985, $

381.135 ,383.424 ,255.9, $

468.57 , $

206.7233]

Number_lines=[1,-1,-1, 2, 3, 1, 1, $

1, 2, 1, 3, 3, 3, 1, 1, $

3, 3, 2, 1, 3, $

1, 1, 1, $

1, $

2] ; use -1 for the c III c IV region

f_name=[’’,’three_cIII_465’,’’,’two_cIV_580’ ,’three_cV_227’ ,’’,’’, $

’’,’two_nIII_409’ ,’’,’three_nIV_264’,’three_nIV_347’, $

’three_nV_298’,’’,’’,’three_oIII_326’,’three_oIII_375’, $

’two_oIV_306’,’’,’three_oV_278’ ,’’,’’,’’,’’,’two_bIII_206’]

n_ions=n_elements(all_ions)

n_start=intarr(n_ions)

for i=0,n_ions-1 do n_start(i)=min(where(wave ge all_ideal_wav(i)))

regions=where(n_start ge 5)

if regions(0) lt 0 then goto,blank

n_regions=n_elements(regions)

use_region=intarr(n_regions)
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for i=0,n_regions-1 do $

use_region(i)=(data_there(’\’+all_ions(regions(i))+’:emiss_raw’))

n_usefull=where(use_region eq 1)

if n_usefull(0) lt 0 then goto,blank

regions=regions(n_usefull)

n_regions=n_elements(regions)

shellfit=intarr(n_regions)

a_save=fltarr(4,n_regions)

window,10

!p.multi=[0,1,n_regions]

for i=0,n_regions-1 do begin

emiss=data(’\’+all_ions(regions(i))+’:emiss_raw’,xaxis=chord)

chord=chord(where(finite(emiss) eq 1))

emiss=(emiss(where(finite(emiss) eq 1))<1e10)>(-1e10)

yfit=gaussfit(chord,emiss,a,nterms=4)

a_save(*,i)=a

plot,chord,emiss

oplot,chord,yfit,co=2

if (((a(1) + abs(a(2))*7./6.) lt 20) and $

((a(1) - abs(a(2))*7./6.) gt 1)) and $

(a(0) gt 100>2*abs(a(3))) and $

(Number_lines(regions(i)) ne -1) $

then shellfit(i)=1

;stop

endfor

print,shellfit

n_shellfit=where(shellfit eq 1)

if n_shellfit(0) lt 0 then goto,blank
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regions=regions(n_shellfit)

a_save=a_save(*,n_shellfit)

n_regions=n_elements(regions)

print,regions,all_ions(regions)

view=mdsvalue(’.zapanalysis.iccd.spectra:view’)

intense=data(’\iccd_01’,xaxis=wave)

intense=data(’\iccd_01:inst_func’,xaxis=pix)

n_el=n_elements(wave)

n_inst=n_elements(pix)

intense=fltarr(n_el,20)

inst_line=fltarr(n_inst,20)

inst_fwhm=fltarr(20)

for i=0,8 do begin

intense(*,i)=data(’\iccd_0’+stremo(i+1))>(-1.e3)

inst_line(*,i)=data(’\iccd_0’+stremo(i+1)+’:inst_func’)

inst_fwhm(i)=data(’\iccd_0’+stremo(i+1)+’:inst_fwhm’)

endfor

for i=9,19 do begin

intense(*,i)=data(’\iccd_’+stremo(i+1))>(-1.e3)

inst_line(*,i)=data(’\iccd_’+stremo(i+1)+’:inst_func’)

inst_fwhm(i)=data(’\iccd_’+stremo(i+1)+’:inst_fwhm’)

endfor

fwhm_pix = inst_fwhm

wave_s=wave

intense_s=intense

inst_line_s=inst_line

inst_fwhm_s=inst_fwhm

l_edge_ave=fltarr(20)
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r_edge_ave=fltarr(20)

l_edge_sigma=fltarr(20)

r_edge_sigma=fltarr(20)

for i=0,19 do begin

l_edge_ave(i)=total(intense(1:10,i))/10

r_edge_ave(i)=total(intense(500:509,i))/10

l_edge_sigma(i)=sqrt(total((intense(1:10,i)-l_edge_ave(i))^2)/9)

r_edge_sigma(i)=sqrt(total((intense(500:509,i)-r_edge_ave(i))^2)/9)

endfor

d_raw=((l_edge_sigma/(sqrt(l_edge_ave>1.)))<( $

r_edge_sigma/(sqrt(r_edge_ave>1.))))>1.

ave_edge=(l_edge_ave+r_edge_ave)/2

window,0

!p.multi=0

plot,wave,intense(*,0),yra=[-.01,1]*max(intense)

for i=0,19 do oplot,wave,intense(*,i),co=2+i

hline,5*max(d_raw)

for i=0,n_regions-1 do begin

ss,shot

inst_fwm=fwhm_pix

wave=wave_s

intense=intense_s

inst_line=inst_line_s

inst_fwhm=inst_fwhm_s

if Number_lines(regions(i)) eq 1 then $

funct_name=’f_emiss_wide’ $

else $
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funct_name=’f_emiss_wide_’+stremo(f_name(regions(i)))

;stop

find_center_SYIAH,intense,wave,d_raw,inst_line,pix,inst_fwhm, $

a_save(1,i),a_save(2,i)/4., $

all_ideal_wav(regions(i)), $

max_ideal_wav(regions(i)), $

all_mass(regions(i)),funct_name, $

all_ions(regions(i)), $

r_chord=r_chord, $

amp_shell_l=amp_shell_l, $

sig_amp_shell_l=sig_amp_shell_l, $

vel_shell_l=vel_shell_l, $

sig_vel_shell_l=sig_vel_shell_l, $

temp_shell_l=temp_shell_l, $

sig_temp_shell_l=sig_temp_shell_l, $

offset_shell_l=offset_shell_l, $

sig_offset_shell_l=sig_offset_shell_l, $

amp_shell_r=amp_shell_r, $

sig_amp_shell_r=sig_amp_shell_r, $

vel_shell_r=vel_shell_r, $

sig_vel_shell_r=sig_vel_shell_r, $

temp_shell_r=temp_shell_r, $

sig_temp_shell_r=sig_temp_shell_r, $

offset_shell_r=offset_shell_r,

sig_offset_shell_r=sig_offset_shell_r, $

chi_1=chi_1, $

center=center,x_error=x_error,error=error, $

yfit_l=yfit_l,yfit_r=yfit_r,fit_wave=fit_wave

write_shell_param,shot,all_ions(regions(i)),all_ideal_wav(regions(i)), $
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center,r_chord,x_error,error, $

amp_shell_l,vel_shell_l, $

temp_shell_l,offset_shell_l, $

sig_amp_shell_l,sig_vel_shell_l, $

sig_temp_shell_l,sig_offset_shell_l, $

amp_shell_r,vel_shell_r, $

temp_shell_r,offset_shell_r, $

sig_amp_shell_r,sig_vel_shell_r,sig_temp_shell_r, $

sig_offset_shell_r, $

fit_wave,yfit_l,yfit_r

endfor

blank:

end
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find center SYIAH.pro

pro find_center_SYIAH,intense,wave,d_raw,inst_line,pix,inst_fwhm, $

start_cen,d_center,lamb_ideal,lamb_max,mass, $

function_name,ion, $

r_chord=r_chord, $

amp_shell_l=amp_shell_l, $

sig_amp_shell_l=sig_amp_shell_l, $

vel_shell_l=vel_shell_l, $

sig_vel_shell_l=sig_vel_shell_l, $

temp_shell_l=temp_shell_l, $

sig_temp_shell_l=sig_temp_shell_l, $

offset_shell_l=offset_shell_l, $

sig_offset_shell_l=sig_offset_shell_l, $

amp_shell_r=amp_shell_r, $

sig_amp_shell_r=sig_amp_shell_r, $

vel_shell_r=vel_shell_r, $

sig_vel_shell_r=sig_vel_shell_r, $

temp_shell_r=temp_shell_r, $

sig_temp_shell_r=sig_temp_shell_r, $

offset_shell_r=offset_shell_r, $

sig_offset_shell_r=sig_offset_shell_r, $

chi_1=chi_1, $

center=center,x_error=x_error,error=error, $

yfit_l=yfit_l,yfit_r=yfit_r,fit_wave=fit_wave

n_el=n_elements(wave)

n_inst=n_elements(pix)

shot = mdsvalue(’$shot’, /quiet, status=status)
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if ((shot le 21007000) or (shot ge 500000000)) then $

d_r=1.24 $

else $

d_r=1.78

x=start_cen+d_center*(findgen(11)-5)

i_use=where((x ge 2) and (x le 18))

if i_use(0) ne -1 then $

x=x(i_use) $

else $

x=[2.,6.,10.,14.,18.]

n_x=n_elements(x)

if n_x lt 5 then begin

x=[2.,6.,10.,14.,18.]

n_x=5

endif

amp_shell_l_s=fltarr(20,n_x)

amp_shell_r_s=fltarr(20,n_x)

vel_shell_l_s=fltarr(20,n_x)

vel_shell_r_s=fltarr(20,n_x)

temp_shell_l_s=fltarr(20,n_x)

temp_shell_r_s=fltarr(20,n_x)

offset_shell_l_s=fltarr(20,n_x)

offset_shell_r_s=fltarr(20,n_x)

r_chord_20_s=fltarr(20,n_x)

for i=0,n_x-1 do begin

center=x(i)
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shell_par_SYIAH,wave,intense,d_raw,inst_line,inst_fwhm, $;data

center,d_r, $;geometry

lamb_ideal,lamb_max,mass,function_name, $;ion

itmax=itmax,tol=tol, $;fit parameters

r_chord=r_chord, $

amp_shell_l=amp_shell_l, $

sig_amp_shell_l=sig_amp_shell_l, $

vel_shell_l=vel_shell_l, $

sig_vel_shell_l=sig_vel_shell_l, $

temp_shell_l=temp_shell_l, $

sig_temp_shell_l=sig_temp_shell_l, $

offset_shell_l=offset_shell_l, $

sig_offset_shell_l=sig_offset_shell_l, $

amp_shell_r=amp_shell_r, $

sig_amp_shell_r=sig_amp_shell_r, $

vel_shell_r=vel_shell_r, $

sig_vel_shell_r=sig_vel_shell_r, $

temp_shell_r=temp_shell_r, $

sig_temp_shell_r=sig_temp_shell_r, $

offset_shell_r=offset_shell_r, $

sig_offset_shell_r=sig_offset_shell_r, $

chi_1=chi_1, $

par_shell_l=par_shell_l,par_shell_r=par_shell_r, $

l_shell_l=l_shell_l,err_l_shell_l=err_l_shell_l, $

l_shell_r=l_shell_r,err_l_shell_r=err_l_shell_r

amp_shell_l_s(*,i)=amp_shell_l

amp_shell_r_s(*,i)=amp_shell_r

vel_shell_l_s(*,i)=vel_shell_l

vel_shell_r_s(*,i)=vel_shell_r

temp_shell_l_s(*,i)=temp_shell_l
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temp_shell_r_s(*,i)=temp_shell_r

offset_shell_l_s(*,i)=offset_shell_l

offset_shell_r_s(*,i)=offset_shell_r

r_chord_20_s(*,i)=r_chord

endfor

chi2_amp=fltarr(n_x)

chi2_vel=fltarr(n_x)

for i=0,n_x-1 do begin

n=where((abs(r_chord_20_s(*,i)) le 2*d_r) and $

(amp_shell_r_s(*,i) gt 0) and $

(amp_shell_l_s(*,i) gt 0))

if n_elements(n) le 1 then begin

chi2_amp(i)=100

chi2_vel(i)=100

endif else begin

chi2_amp(i)=total(((amp_shell_r_s(n,i)-amp_shell_l_s(n,i))/ $

((amp_shell_r_s(n,i)+amp_shell_l_s(n,i))>1))^2)

chi2_vel(i)=total(((vel_shell_r_s(n,i)-vel_shell_l_s(n,i))/ $

(abs(vel_shell_r_s(n,i)+vel_shell_l_s(n,i))>1e4))^2)

chi2_amp(i)=sqrt(chi2_amp(i)/n_elements(n))

chi2_vel(i)=sqrt(chi2_vel(i)/n_elements(n))

endelse

plot,r_chord_20_s(*,i),amp_shell_r_s(*,i)

oplot,r_chord_20_s(*,i),amp_shell_l_s(*,i),co=2

plot,r_chord_20_s(*,i),vel_shell_r_s(*,i)

oplot,r_chord_20_s(*,i),vel_shell_l_s(*,i),co=2

endfor

plot,x,chi2_amp,yra=[0,1]

plot,x,chi2_vel,yra=[0,1]
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error=sqrt(chi2_amp^2+chi2_vel^2)

print,’center location=’,x(min(where(error eq min(error))))

min_dx=d_center

count=0

while (min_dx ge .01) and count le 20 do begin

n_x=n_elements(x)

n_min=min(where(error(2:n_x-3) eq min(error(2:n_x-3))))+2

i_1=indgen(4)-2+n_min

x=[x,(x(i_1)+x(i_1+1))*0.5]

for i=n_x,n_x+3 do begin

center=x(i)

shell_par_SYIAH,wave,intense,d_raw,inst_line,inst_fwhm, $;data

center,d_r, $;geometry

lamb_ideal,lamb_max,mass,function_name, $;ion

itmax=itmax,tol=tol, $;fit parameters

r_chord=r_chord, $

amp_shell_l=amp_shell_l, $

sig_amp_shell_l=sig_amp_shell_l, $

vel_shell_l=vel_shell_l, $

sig_vel_shell_l=sig_vel_shell_l, $

temp_shell_l=temp_shell_l, $

sig_temp_shell_l=sig_temp_shell_l, $

offset_shell_l=offset_shell_l, $

sig_offset_shell_l=sig_offset_shell_l, $

amp_shell_r=amp_shell_r, $

sig_amp_shell_r=sig_amp_shell_r, $



375

vel_shell_r=vel_shell_r, $

sig_vel_shell_r=sig_vel_shell_r, $

temp_shell_r=temp_shell_r, $

sig_temp_shell_r=sig_temp_shell_r, $

offset_shell_r=offset_shell_r, $

sig_offset_shell_r=sig_offset_shell_r, $

chi_1=chi_1, $

par_shell_l=par_shell_l,par_shell_r=par_shell_r, $

l_shell_l=l_shell_l,err_l_shell_l=err_l_shell_l, $

l_shell_r=l_shell_r,err_l_shell_r=err_l_shell_r

amp_shell_l_s=[[amp_shell_l_s],[amp_shell_l]]

amp_shell_r_s=[[amp_shell_r_s],[amp_shell_r]]

vel_shell_l_s=[[vel_shell_l_s],[vel_shell_l]]

vel_shell_r_s=[[vel_shell_r_s],[vel_shell_r]]

temp_shell_l_s=[[temp_shell_l_s],[temp_shell_l]]

temp_shell_r_s=[[temp_shell_r_s],[temp_shell_r]]

offset_shell_l_s=[[offset_shell_l_s],[offset_shell_l]]

offset_shell_r_s=[[offset_shell_r_s],[offset_shell_r]]

r_chord_20_s=[[r_chord_20_s],[r_chord]]

n=where((abs(r_chord_20_s(*,i)) le 2*d_r) and $

(amp_shell_r_s(*,i) gt 0) and $

(amp_shell_l_s(*,i) gt 0))

if n(0) eq -1 then begin

chi2_amp=[chi2_amp,100]

chi2_vel=[chi2_vel,100]

endif else begin

chi2_amp=[chi2_amp,total(((amp_shell_r_s(n,i)- $

amp_shell_l_s(n,i))/ $

((amp_shell_r_s(n,i)+ $
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amp_shell_l_s(n,i))>1))^2)]

chi2_vel=[chi2_vel,total(((vel_shell_r_s(n,i)- $

vel_shell_l_s(n,i))/ $

(abs(vel_shell_r_s(n,i)+ $

vel_shell_l_s(n,i))>1e4))^2)]

chi2_amp(i)=sqrt(chi2_amp(i)/n_elements(n))

chi2_vel(i)=sqrt(chi2_vel(i)/n_elements(n))

endelse

plot,r_chord_20_s(*,i),amp_shell_r_s(*,i)

oplot,r_chord_20_s(*,i),amp_shell_l_s(*,i),co=2

plot,r_chord_20_s(*,i),vel_shell_r_s(*,i)

oplot,r_chord_20_s(*,i),vel_shell_l_s(*,i),co=2

endfor

n_x=n_x+4

error=sqrt(chi2_amp^2+chi2_vel^2)

i_sort=sort(x)

x=x(i_sort)

error=error(i_sort)

chi2_amp=chi2_amp(i_sort)

chi2_vel=chi2_vel(i_sort)

amp_shell_l_s=amp_shell_l_s(*,i_sort)

amp_shell_r_s=amp_shell_r_s(*,i_sort)

vel_shell_l_s=vel_shell_l_s(*,i_sort)

vel_shell_r_s=vel_shell_r_s(*,i_sort)

temp_shell_l_s=temp_shell_l_s(*,i_sort)

temp_shell_r_s=temp_shell_r_s(*,i_sort)

offset_shell_l_s=offset_shell_l_s(*,i_sort)

offset_shell_r_s=offset_shell_r_s(*,i_sort)

r_chord_20_s=r_chord_20_s(*,i_sort)
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min_dx=min(x(1:n_x-1)-x(0:n_x-2))

count=count+1

;stop

endwhile

window,30,XPOS=40 , YPOS=40 , XSIZE=1000 , YSIZE=800

!p.multi=[0,1,3]

plot,x,chi2_amp,yra=[0,1]

plot,x,chi2_vel,yra=[0,1]

error=sqrt(chi2_amp^2+chi2_vel^2)

n_x=n_elements(x)

plot,x,error,yra=[0,1]

i=min(where(error(2:n_x-3) eq min(error(2:n_x-3))))+2

print,’center location=’,x(i)

!p.multi=[0,2,2]

window,31,XPOS=20 , YPOS=20 , XSIZE=1000 , YSIZE=800

vel_raw=data(’\’+ion+’:vel_raw’)

temp_raw=data(’\’+ion+’:temp_raw’)

amp_raw=data(’\’+ion+’:emiss_raw’)

offset_raw=data(’\’+ion+’:offset_raw’)

plot,r_chord_20_s(*,i),vel_raw,title=’vel shot=’+stremo(shot)

oplot,r_chord_20_s(*,i),vel_shell_l_s(*,i),color=4

oplot,r_chord_20_s(*,i),vel_shell_r_s(*,i),color=2

plot,r_chord_20_s(*,i),temp_raw,title=’temp’

oplot,r_chord_20_s(*,i),temp_shell_l_s(*,i),color=4

oplot,r_chord_20_s(*,i),temp_shell_r_s(*,i),color=2
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plot,r_chord_20_s(*,i),10*amp_raw/max(r_chord_20_s(*,i)),title=’amp’

oplot,r_chord_20_s(*,i),amp_shell_l_s(*,i),color=4

oplot,r_chord_20_s(*,i),amp_shell_r_s(*,i),color=2

plot,r_chord_20_s(*,i),10*offset_raw/max(r_chord_20_s(*,i)),title=’offset’

oplot,r_chord_20_s(*,i),offset_shell_l_s(*,i),color=4

oplot,r_chord_20_s(*,i),offset_shell_r_s(*,i),color=2

!p.multi=0

center=x(i)

shell_par_SYIAH,wave,intense,d_raw,inst_line,inst_fwhm, $;data

center,d_r, $;geometry

lamb_ideal,lamb_max,mass,function_name, $;ion

itmax=itmax,tol=tol, $;fit parameters

r_chord=r_chord, $

amp_shell_l=amp_shell_l, $

sig_amp_shell_l=sig_amp_shell_l, $

vel_shell_l=vel_shell_l, $

sig_vel_shell_l=sig_vel_shell_l, $

temp_shell_l=temp_shell_l, $

sig_temp_shell_l=sig_temp_shell_l, $

offset_shell_l=offset_shell_l, $

sig_offset_shell_l=sig_offset_shell_l, $

amp_shell_r=amp_shell_r, $

sig_amp_shell_r=sig_amp_shell_r, $

vel_shell_r=vel_shell_r, $

sig_vel_shell_r=sig_vel_shell_r, $

temp_shell_r=temp_shell_r, $

sig_temp_shell_r=sig_temp_shell_r, $

offset_shell_r=offset_shell_r, $

sig_offset_shell_r=sig_offset_shell_r, $
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chi_1=chi_1, $

par_shell_l=par_shell_l,par_shell_r=par_shell_r, $

l_shell_l=l_shell_l,err_l_shell_l=err_l_shell_l, $

l_shell_r=l_shell_r,err_l_shell_r=err_l_shell_r, $

yfit_l=yfit_l,yfit_r=yfit_r,fit_wave=fit_wave

x_error=x

end
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shell par SYIAH.pro

pro shell_par_SYIAH,wave,intense,d_raw,inst_line,fwhm_pix, $;data

center,d_r, $;geometry

lamb_ideal,lamb_max,mass,function_name, $;ion

itmax=itmax,tol=tol, $;fit parameters

r_chord=r_chord,shell_max=shell_max, $

cen_per=cen_per, $;returned geomtery

err_center=err_center,err_rmax=err_rmax, $

err_cen_per=err_cen_per, $;returned errors

amp_shell_l=amp_shell_l, $

sig_amp_shell_l=sig_amp_shell_l, $

vel_shell_l=vel_shell_l, $

sig_vel_shell_l=sig_vel_shell_l, $

temp_shell_l=temp_shell_l, $

sig_temp_shell_l=sig_temp_shell_l, $

offset_shell_l=offset_shell_l, $

sig_offset_shell_l=sig_offset_shell_l, $

amp_shell_r=amp_shell_r, $

sig_amp_shell_r=sig_amp_shell_r, $

vel_shell_r=vel_shell_r, $

sig_vel_shell_r=sig_vel_shell_r, $

temp_shell_r=temp_shell_r, $

sig_temp_shell_r=sig_temp_shell_r, $

offset_shell_r=offset_shell_r, $

sig_offset_shell_r=sig_offset_shell_r, $

chi_1=chi_1, $

par_shell_l=par_shell_l,par_shell_r=par_shell_r, $

l_shell_l=l_shell_l,err_l_shell_l=err_l_shell_l, $

l_shell_r=l_shell_r,err_l_shell_r=err_l_shell_r, $
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yfit_l=yfit_l,yfit_r=yfit_r,fit_wave=fit_wave

d_raw=d_raw>1.

default,tol,1e-5

default,chi_1,0

;background level for 726025

default,background,[3481.25426 ,3581.75088,3937.5536 , $

3335.32269 ,3170.51358, $

3046.82294 ,3248.75191,2924.01434, $

2709.362648,3002.805, $

2884.00000 ,2829.1095 ,2957.00886, $

2707.26522 ,2786.80752, $

2949.16708 ,3117.4825 ,2963.0286 , $

3219.05781 ,3556.84632]

;

;Physical Constants

;

fwhm=fwhm_pix ;instrument FWHM wavelength

alpha_temp = mass * 936800890. ;gaussian constant = mc^2/e,

c = 299792458. ;speed of light in m/sec

fwhm_temper=fwhm*3/7 ;correcting fwhm to a(2) scale

fwhm_temper=fwhm_temper*(wave(1)-wave(0))

tmin=(wave(1)-wave(0))*3/7 ;minimun FWHM 1 pixel

;finding region of interest

n_el=n_elements(wave)

nid_min=min(where(wave ge lamb_ideal))

nid_max=min(where(wave ge lamb_max))

wave=wave(((nid_min-60)>0):((nid_max+40)<(n_el-1)))
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intense=intense(((nid_min-60)>0):((nid_max+40)<(n_el-1)),*)

n_el=n_elements(wave)

x=wave

fit_wave=x

;Initializing arrays

par_shell_l=dblarr(4,20) ;parameters from the left fit

sig_shell_l_all=dblarr(4,20) ;errors from the left fit

sig_shell_l_data=dblarr(4,20) ;errors from the left fit due to iccd

sig_shell_l_geom=dblarr(4,20) ;errors from the left fit due to center

; location

par_shell_r=dblarr(4,20) ;parameters from the right fit

sig_shell_r_all=dblarr(4,20) ;errors from the right fit

sig_shell_r_data=dblarr(4,20) ;errors from the right fit due to iccd

sig_shell_r_geom=dblarr(4,20) ;errors from the right fit due to center

; location

yfit_l=fltarr(n_el,20) ;fits from the left

yfit_r=fltarr(n_el,20) ;fits from the right

;determining the L matrix

default,d_r,1.24 ;distance between the chords

default,center,10.5 ;center location of the plasma in chord units

default,err_center,.25 ;error in the center location (chord units)

;shell_max ;maximun shell radius

default,err_rmax,1. ;error in the maximun shell radius (chord units)

default,cen_per,.75 ;location of chord i in shell i (from 0 to 1)

;1.0 puts chord r of shell i-1

default,err_cen_per,.25 ;error in the location of chord i in shell i
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shell_length_mid,center=center,d_r=d_r,shell_max=shell_max, $

r_chord=r_chord,err_center=err_center,err_rmax=err_rmax, $

cen_per=cen_per,err_cen_per=err_cen_per, $

l_shell_l=l_shell_l,err_l_shell_l=err_l_shell_l, $

l_shell_r=l_shell_r,err_l_shell_r=err_l_shell_r, $

err_cen_l_shell_l=err_cen_l_shell_l, $

err_cen_l_shell_r=err_cen_l_shell_r, $

err_max_l_shell_l=err_max_l_shell_l, $

err_max_l_shell_r=err_max_l_shell_r, $

err_per_l_shell_l=err_per_l_shell_l, $

err_per_l_shell_r=err_per_l_shell_r, $

n_shell_r=n_shell_r

;converting shells to ovals

l_shell_l=l_shell_l*2/sin(35*!pi/180)

l_shell_r=l_shell_r*2/sin(35*!pi/180)

err_l_shell_l=err_l_shell_l*2/sin(35*!pi/180)

err_l_shell_r=err_l_shell_r*2/sin(35*!pi/180)

err_cen_l_shell_l=err_cen_l_shell_l*2/sin(35*!pi/180)

err_cen_l_shell_r=err_cen_l_shell_r*2/sin(35*!pi/180)

err_max_l_shell_l=err_max_l_shell_l*2/sin(35*!pi/180)

err_max_l_shell_r=err_max_l_shell_r*2/sin(35*!pi/180)

err_per_l_shell_l=err_per_l_shell_l*2/sin(35*!pi/180)

err_per_l_shell_r=err_per_l_shell_r*2/sin(35*!pi/180)

;stop

;finding the inner most shell for each chord

first_shell_l=intarr(20)

first_shell_r=intarr(20)

for i=0,19 do $

first_shell_l(i)=max(where(l_shell_l(i,*) gt 0.0001))

for i=0,19 do $
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first_shell_r(i)=min(where(l_shell_r(i,*) gt 0.0001))

;opening window for check of the fits

window,20,XPOS=20 , YPOS=20 , XSIZE=1000 , YSIZE=800

!p.multi=[0,4,5]

;fitting data from the left

for i=0,19 do begin

;initalizing arrays for cord i

y_sub=dblarr(n_el)

err_y_sub=dblarr(n_el)

err_y_sub_data=dblarr(n_el)

err_y_sub_geom=dblarr(n_el)

a1=inst_line(*,i)

;calculating subtraction array

for j=0,first_shell_l(i)-1 do begin

a=par_shell_l(*,j)

CALL_PROCEDURE,function_name, x, a, a1, f, pder

y_sub=y_sub+f*l_shell_l(i,j)

;all sigmas

sigma=sig_shell_l_all(*,j)

err_f=sqrt(pder^2#sigma^2)

err_y_sub=err_y_sub+(err_f^2*l_shell_l(i,j)^2+ $

f^2*err_l_shell_l(i,j)^2)

;error from data

sigma=sig_shell_l_data(*,j)

err_f=sqrt(pder^2#sigma^2)

err_y_sub_data=err_y_sub_data+err_f^2*l_shell_l(i,j)^2

;error from geometry

sigma=sig_shell_l_geom(*,j)
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err_f=sqrt(pder^2#sigma^2)

err_y_sub_geom=err_y_sub_geom+(err_f^2*l_shell_l(i,j)^2+ $

f^2*err_l_shell_l(i,j)^2)

endfor

err_y_sub=sqrt(err_y_sub)<y_sub

err_y_sub_data=sqrt(err_y_sub_data)<y_sub

err_y_sub_geom=sqrt(err_y_sub_geom)<y_sub

;calculating the waveform to be fitted

y=((intense(*,i)-y_sub)/l_shell_l(i,first_shell_l(i)))

y=y>0.0

err_intense=sqrt((sqrt(intense(*,i)>1)*d_raw(i))^2+background(i))

err_y=sqrt((err_intense^2+err_y_sub^2)/ $

l_shell_l(i,first_shell_l(i))^2+ $

(y*err_l_shell_l(i,first_shell_l(i))/ $

l_shell_l(i,first_shell_l(i)))^2)> $

d_raw(i)/l_shell_l(i,first_shell_l(i))

err_y_data=sqrt((err_intense^2+err_y_sub_data^2)/ $

l_shell_l(i,first_shell_l(i))^2)

err_y_geom=sqrt((err_y_sub_geom^2/l_shell_l(i,first_shell_l(i))^2)+ $

(y*err_l_shell_l(i,first_shell_l(i))/ $

l_shell_l(i,first_shell_l(i)))^2)

if max(y) gt 1.*max(err_y) then begin

a1=inst_line(*,i)

w=fltarr(n_el)+1.

;fitting the data

yfit=gaussfit( x, y, a, NTERMS=4)

a(0)=a(0)*a(2)

a(2)=sqrt((a(2)^2-fwhm_temper(i)^2)>fwhm_temper(i)^2)
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yfit=err_CURVEFIT_wide(x,y,w,a,a1,sigma,chisq=chisq, $

function_name=function_name, $

curve_err=curve_err,itmax=itmax, $

tol=tol,pder=pder)

;finding the errors

nterms=n_elements(a)

diag = lindgen(nterms)*(nterms+1) ; Subscripts of diagonal elements

Weights=1/err_y^2

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1.)*pder)

sigma=sqrt( 1/alpha[diag] )

alpha_inv=invert(alpha)

sigma = sqrt( alpha_inv[diag] ) <10*sigma

par_shell_l(*,i)=a

sig_shell_l_all(*,i)=sigma

Weights=1/err_y_data^2

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1.)*pder)

alpha_inv=invert(alpha)

sigma = sqrt( alpha_inv[diag] )

sig_shell_l_data(*,i)=sigma

Weights=1/err_y_geom^2

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1.)*pder)

sigma=sqrt( 1/alpha[diag] )

alpha_inv=invert(alpha)

sigma = sqrt( alpha_inv[diag] ) <10*sigma

sig_shell_l_geom(*,i)=sigma

endif else begin

yfit=dblarr(n_el)

par_shell_l(*,i)=[0.0, lamb_ideal, tmin, 0.0]
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endelse

;plotting data

plot,x,intense(*,i)/l_shell_l(i,first_shell_l(i)), $

title=’Chord ’+stremo(i+1)+’ ’+stremo(r_chord(i)), $

xra=[x(n_el/4),x(n_el*3/4)]

oplot,x,(intense(*,i)+err_intense)/l_shell_l(i,first_shell_l(i)), $

linestyle=1

oplot,x,(intense(*,i)-err_intense)/l_shell_l(i,first_shell_l(i)), $

linestyle=1

oplot,x,yfit+y_sub/l_shell_l(i,first_shell_l(i)),color=4,linestyle=2

oplot,x,y_sub/l_shell_l(i,first_shell_l(i)),color=3

oplot,x,(y_sub+err_y_sub)/l_shell_l(i,first_shell_l(i)), $

color=3,linestyle=2

oplot,x,(y_sub-err_y_sub)/l_shell_l(i,first_shell_l(i)), $

color=3,linestyle=2

oplot,x,y,co=5,linestyle=2

oplot,x,yfit,co=6,linestyle=1

vline,lamb_ideal,color=2

if (i eq 9) or (i eq 19) then begin

xyouts,.85,.94,’Experimental spectra’,/normal,charsize=.5

xyouts,.85,.92,’Fitted spectra’,/normal,color=4,charsize=.5

xyouts,.85,.9,’Ideal wavelength’,/normal,color=2,charsize=.5

endif

yfit_l(*,i)=y_sub+yfit*l_shell_l(i,first_shell_l(i))

endfor

;opening window for check of the fits

window,21,XPOS=20 , YPOS=20 , XSIZE=1000 , YSIZE=800

!p.multi=[0,4,5]
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;fitting data from the right

for i=19,0,-1 do begin

;initalizing arrays for cord i

y_sub=dblarr(n_el)

err_y_sub=dblarr(n_el)

err_y_sub_data=dblarr(n_el)

err_y_sub_geom=dblarr(n_el)

a1=inst_line(*,i)

;calculating subtraction array

for j=n_shell_r-1,first_shell_r(i)+1,-1 do begin

a=par_shell_r(*,j+(20-n_shell_r))

CALL_PROCEDURE,function_name, x, a, a1, f, pder

y_sub=y_sub+f*l_shell_r(i,j)

sigma=sig_shell_r_all(*,j+(20-n_shell_r))

err_f=sqrt(pder^2#sigma^2)

err_y_sub=err_y_sub+(err_f^2*l_shell_r(i,j)^2+ $

f^2*err_l_shell_r(i,j)^2)

sigma=sig_shell_r_data(*,j+(20-n_shell_r))

err_f=sqrt(pder^2#sigma^2)

err_y_sub_data=err_y_sub_data+err_f^2*l_shell_r(i,j)^2

sigma=sig_shell_r_geom(*,j+(20-n_shell_r))

err_f=sqrt(pder^2#sigma^2)

err_y_sub_geom=err_y_sub_geom+(err_f^2*l_shell_r(i,j)^2+ $

f^2*err_l_shell_r(i,j)^2)

endfor

err_y_sub=sqrt(err_y_sub)<y_sub

err_y_sub_data=sqrt(err_y_sub_data)<y_sub

err_y_sub_geom=sqrt(err_y_sub_geom)<y_sub

;calculating the waveform to be fitted

y=((intense(*,i)-y_sub)/l_shell_r(i,first_shell_r(i)))
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y=y>0.0

err_intense=sqrt((sqrt(intense(*,i)>1)*d_raw(i))^2+background(i))

err_y=sqrt((err_intense^2+err_y_sub^2)/ $

l_shell_r(i,first_shell_r(i))^2+ $

(y*err_l_shell_r(i,first_shell_r(i))/ $

l_shell_r(i,first_shell_r(i)))^2)> $

d_raw(i)/l_shell_l(i,first_shell_l(i))

err_y_data=sqrt((err_intense^2+err_y_sub_data^2)/ $

l_shell_r(i,first_shell_r(i))^2)> $

d_raw(i)/l_shell_l(i,first_shell_l(i))

err_y_geom=sqrt((err_y_sub_geom^2)/l_shell_r(i,first_shell_r(i))^2+ $

(y*err_l_shell_r(i,first_shell_r(i))/ $

l_shell_r(i,first_shell_r(i)))^2)

if max(y) gt 1.*max(err_y) then begin

yfit=gaussfit( x, y, a, NTERMS=4)

a(0)=a(0)*a(2)

a(2)=sqrt((a(2)^2-fwhm_temper(i)^2)>fwhm_temper(i)^2)

yfit=err_CURVEFIT_wide(x,y,w,a,a1,sigma,chisq=chisq, $

function_name=function_name, $

curve_err=curve_err,itmax=itmax, $

tol=tol,pder=pder)

;finding the errors

nterms=n_elements(a)

diag = lindgen(nterms)*(nterms+1) ; Subscripts of diagonal elements

Weights=1/err_y^2

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1.)*pder)

alpha_inv=invert(alpha)

sigma=sqrt( 1/alpha[diag] )

alpha_inv=invert(alpha)

sigma = sqrt( alpha_inv[diag] ) <10*sigma
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par_shell_r(*,i)=a

sig_shell_r_all(*,i)=sigma

Weights=1/err_y_data^2

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1.)*pder)

sigma=sqrt( 1/alpha[diag] )

alpha_inv=invert(alpha)

sigma = sqrt( alpha_inv[diag] ) <10*sigma

sig_shell_r_data(*,i)=sigma

Weights=1/err_y_geom^2

alpha = transpose(pder) # (Weights # (fltarr(nterms)+1.)*pder)

sigma=sqrt( 1/alpha[diag] )

alpha_inv=invert(alpha)

sigma = sqrt( alpha_inv[diag] ) <10*sigma

sig_shell_r_geom(*,i)=sigma

endif else begin

yfit=dblarr(n_el)

par_shell_r(*,i)=[0.0, lamb_ideal, tmin, 0.0]

endelse

;plotting data

plot,x,intense(*,i)/l_shell_r(i,first_shell_r(i)), $

title=’Chord ’+stremo(i+1)+’ ’+stremo(r_chord(i)), $

xra=[x(n_el/4),x(n_el*3/4)]

oplot,x,(intense(*,i)+err_intense)/l_shell_r(i,first_shell_r(i)), $

linestyle=1

oplot,x,(intense(*,i)-err_intense)/l_shell_r(i,first_shell_r(i)), $

linestyle=1

oplot,x,yfit+y_sub/l_shell_r(i,first_shell_r(i)),color=4,linestyle=2

oplot,x,y_sub/l_shell_r(i,first_shell_r(i)),color=3



391

oplot,x,(y_sub+err_y_sub)/l_shell_r(i,first_shell_r(i)),color=3, $

linestyle=2

oplot,x,(y_sub-err_y_sub)/l_shell_r(i,first_shell_r(i)),color=3, $

linestyle=2

oplot,x,y,co=5

oplot,x,y+err_y,co=5,linestyle=2

oplot,x,y-err_y,co=5,linestyle=2

oplot,x,yfit,co=6,linestyle=1

vline,lamb_ideal,color=2

if (i eq 9) or (i eq 19) then begin

xyouts,.85,.94,’Experimental spectra’,/normal,charsize=.5

xyouts,.85,.92,’Fitted spectra’,/normal,color=4,charsize=.5

xyouts,.85,.9,’Ideal wavelength’,/normal,color=2,charsize=.5

endif

yfit_r(*,i)=y_sub+yfit*l_shell_r(i,first_shell_r(i))

endfor

;calculating the parameters and errors for the parameters

sig_shell_l=sqrt(sig_shell_l_data^2 + sig_shell_l_geom^2)

sig_shell_r=sqrt(sig_shell_r_data^2 + sig_shell_r_geom^2)

amp_shell_l=transpose(par_shell_l(0,*))*sqrt(2*!pi)

sig_amp_shell_l=transpose(sig_shell_l_all(0,*))*sqrt(2*!pi)

offset_shell_l=transpose(par_shell_l(3,*))

sig_offset_shell_l=abs(transpose(sig_shell_l_all(3,*)))

vel_shell_l=(lamb_ideal-transpose(par_shell_l(1,*)))*c/ $

(lamb_ideal*cos(35*!pi/180))

sig_vel_shell_l= transpose(sig_shell_l_all(1,*))*c/ $

(lamb_ideal*cos(35*!pi/180))
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del_lamb=sqrt((transpose(par_shell_l(2,*))^2)>tmin^2)

temp_shell_l=alpha_temp*(del_lamb/lamb_ideal)^2

sig_temp_shell_l=2*alpha_temp*del_lamb*transpose(sig_shell_l_all(2,*))/ $

lamb_ideal^2

amp_shell_r=transpose(par_shell_r(0,*))*sqrt(2*!pi)

sig_amp_shell_r=transpose(sig_shell_r_all(0,*))*sqrt(2*!pi)

offset_shell_r=transpose(par_shell_r(3,*))

sig_offset_shell_r=abs(transpose(sig_shell_r_all(3,*)))

vel_shell_r=(lamb_ideal-transpose(par_shell_r(1,*)))*c/ $

(lamb_ideal*cos(35*!pi/180))

sig_vel_shell_r= transpose(sig_shell_r_all(1,*))*c/ $

(lamb_ideal*cos(35*!pi/180))

del_lamb=sqrt((transpose(par_shell_r(2,*))^2)>tmin^2)

temp_shell_r=alpha_temp*(del_lamb/lamb_ideal)^2

sig_temp_shell_r=2*alpha_temp*del_lamb*transpose(sig_shell_r_all(2,*))/ $

lamb_ideal^2

end
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shell length mid.pro

pro shell_length_mid,center=center,d_r=d_r,shell_max=shell_max, $

r_chord=r_chord,err_center=err_center,err_rmax=err_rmax, $

cen_per=cen_per,err_cen_per=err_cen_per, $

r_shell_l=r_shell_l,n_shell_l=n_shell_l,$

l_shell_l=l_shell_l,err_l_shell_l=err_l_shell_l, $

shell_all_l=shell_all_l,err_shell_all_l=err_shell_all_l, $

r_shell_r=r_shell_r,n_shell_r=n_shell_r,$

l_shell_r=l_shell_r,err_l_shell_r=err_l_shell_r, $

shell_all_r=shell_all_r,err_shell_all_r=err_shell_all_r, $

err_cen_l_shell_l=err_cen_l_shell_l, $

err_cen_l_shell_r=err_cen_l_shell_r, $

err_max_l_shell_l=err_max_l_shell_l, $

err_max_l_shell_r=err_max_l_shell_r, $

err_per_l_shell_l=err_per_l_shell_l, $

err_per_l_shell_r=err_per_l_shell_r

default,d_r,1.24 ;distance between the chords

default,center,10.5 ;center location of the plasma in chord units

default,err_center,.25 ;error in the center location (chord units)

;shell_max ;maximun shell radius

default,err_rmax,1. ;error in the maximun shell radius (chord units)

default,cen_per,1 ;location of chord i in shell i (from 0 to 1)

;1.0 puts chord r of shell i-1

default,err_cen_per,.25 ;error in the location of chord i in shell i

;calculating the radius of the chords and shells

r_chord=(dindgen(20)-center+1)*d_r

;finding indicices to use to the radius of the shells
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n_l=where(r_chord le 0)

n_r=where(r_chord ge 0)

;calculating the radius of each shell

r_shell_l=-r_chord(n_l)+cen_per*d_r

r_shell_r= r_chord(n_r)+cen_per*d_r

default,shell_max,max(abs(r_chord))+2*d_r ;maximum shell radius

n_shell_l=n_elements(r_shell_l)

n_shell_r=n_elements(r_shell_r)

r_shell_l(0)=shell_max

r_shell_r(n_shell_r-1)=shell_max

;converting errors to real lengthes

err_center=err_center*d_r

err_rmax=err_rmax*d_r

err_cen_per=err_cen_per*d_r

;initializing length arrays

shell_all_l=dblarr(20,n_shell_l) ;length from shell j to the axis

;along chord i

err_cen_all_l=dblarr(20,n_shell_l) ;error from the center location

err_max_all_l=dblarr(20,n_shell_l) ;error from the max radius

err_per_all_l=dblarr(20,n_shell_l) ;error from the chord location

shell_all_r=dblarr(20,n_shell_r) ;length from shell j to the axis

;along chord i

err_cen_all_r=dblarr(20,n_shell_r) ;error from the center location

err_max_all_r=dblarr(20,n_shell_r) ;error from the max radius

err_per_all_r=dblarr(20,n_shell_r) ;error from the chord location

;finding lengths for left side fits

for j=0,n_shell_l-1 do $
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for i=0,19 do begin

shell_all_l(i,j)=sqrt(((r_shell_l(j))^2-(r_chord(i))^2)>0.0)

if shell_all_l(i,j) ne 0. then begin

err_cen_all_l(i,j)=err_center*(r_shell_l(j)- $

abs(r_chord(i)))/shell_all_l(i,j)

err_per_all_l(i,j)=err_cen_per*(r_shell_l(j))/shell_all_l(i,j)

endif

endfor

err_cen_all_l(*,0)=(err_center*abs(r_chord))/shell_all_l(*,0)

err_max_all_l(*,0)=(err_rmax*shell_max)/shell_all_l(*,0)

err_per_all_l(*,0)=dblarr(20)

for j=0,n_shell_r-1 do $

for i=0,19 do begin

shell_all_r(i,j)=sqrt(((r_shell_r(j))^2-(r_chord(i))^2)>0.0)

if shell_all_r(i,j) ne 0. then begin

err_cen_all_r(i,j)=err_center*(r_shell_r(j)-abs(r_chord(i)))/ $

shell_all_r(i,j)

err_per_all_r(i,j)=err_cen_per*(r_shell_r(j))/shell_all_r(i,j)

endif

endfor

err_cen_all_r(*,n_shell_r-1)=(err_center*abs(r_chord))/ $

shell_all_r(*,n_shell_r-1)

err_max_all_r(*,n_shell_r-1)=(err_rmax*shell_max)/ $

shell_all_r(*,n_shell_r-1)

err_per_all_r(*,n_shell_r-1)=dblarr(20)

;initializing l matrix for left and right fits

l_shell_l=dblarr(20,n_shell_l)

err_l_shell_l=dblarr(20,n_shell_l)

l_shell_r=dblarr(20,n_shell_r)
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err_l_shell_r=dblarr(20,n_shell_r)

;initializing length arrays

l_shell_l=dblarr(20,n_shell_l) ;length from shell j to the axis

;along chord i

err_cen_l_shell_l=dblarr(20,n_shell_l) ;error from the center location

err_max_l_shell_l=dblarr(20,n_shell_l) ;error from the max radius

err_per_l_shell_l=dblarr(20,n_shell_l) ;error from the chord location

l_shell_r=dblarr(20,n_shell_r) ;length from shell j to the axis

;along chord i

err_cen_l_shell_r=dblarr(20,n_shell_r) ;error from the center location

err_max_l_shell_r=dblarr(20,n_shell_r) ;error from the max radius

err_per_l_shell_r=dblarr(20,n_shell_r) ;error from the chord location

;calculating l and error in l matrices

for j=0,n_shell_l-2 do begin

l_shell_l(*,j)=shell_all_l(*,j)-shell_all_l(*,j+1)

err_cen_l_shell_l(*,j)=abs(err_cen_all_l(*,j)-err_cen_all_l(*,j+1))

err_max_l_shell_l(*,j)=abs(err_max_all_l(*,j)-err_max_all_l(*,j+1))

err_per_l_shell_l(*,j)=abs(err_per_all_l(*,j)-err_per_all_l(*,j+1))

endfor

l_shell_l(*,n_shell_l-1)=shell_all_l(*,n_shell_l-1)

err_cen_l_shell_l(*,n_shell_l-1)=err_cen_all_l(*,n_shell_l-1)

err_max_l_shell_l(*,n_shell_l-1)=err_max_all_l(*,n_shell_l-1)

err_per_l_shell_l(*,n_shell_l-1)=err_per_all_l(*,n_shell_l-1)

err_l_shell_l=sqrt(err_cen_l_shell_l^2+err_max_l_shell_l^2+ $

err_per_l_shell_l^2)

for j=0,n_shell_r-2 do begin

l_shell_r(*,j+1)=shell_all_r(*,j+1)-shell_all_r(*,j)
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err_cen_l_shell_r(*,j+1)=abs(err_cen_all_r(*,j+1)-err_cen_all_r(*,j))

err_max_l_shell_r(*,j+1)=abs(err_max_all_r(*,j+1)-err_max_all_r(*,j))

err_per_l_shell_r(*,j+1)=abs(err_per_all_r(*,j+1)-err_per_all_r(*,j))

endfor

l_shell_r(*,0)=shell_all_r(*,0)

err_cen_l_shell_r(*,0)=err_cen_all_r(*,0)

err_max_l_shell_r(*,0)=err_max_all_r(*,0)

err_per_l_shell_r(*,0)=err_per_all_r(*,0)

err_l_shell_r=sqrt(err_cen_l_shell_r^2+err_max_l_shell_r^2+ $

err_per_l_shell_r^2)

;converting errors back to chord units

err_center=err_center/d_r

err_rmax=err_rmax/d_r

err_cen_per=err_cen_per/d_r

;plot to testt error calculation

;i=3

;plot,l_shell_l(*,0)

;oplot,l_shell_l(*,0)+err_cen_l_shell_l(*,0),co=2

;oplot,l_shell_l(*,0)+err_max_l_shell_l(*,0),co=3

;oplot,l_shell_l(*,0)+err_per_l_shell_l(*,0),co=4

;oplot,l_shell_l(*,0)+err_l_shell_l(*,0),co=5

;oplot,l_shell_l(*,i),linestyle=2

;oplot,l_shell_l(*,i)+err_cen_l_shell_l(*,i),co=2,linestyle=2

;oplot,l_shell_l(*,i)+err_max_l_shell_l(*,i),co=3,linestyle=2

;oplot,l_shell_l(*,i)+err_per_l_shell_l(*,i),co=4,linestyle=2

;oplot,l_shell_l(*,i)+err_l_shell_l(*,i),co=5,linestyle=2

end
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