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University of Washington 

Abstract 

Developing and Benchmarking MH4D, a Tetrahedral Mesh MHD Code 

Eric Meier 

Chair of the Supervisory Committee: 
Professor Uri Shumlak 

Aeronautics and Astronautics 

The Plasma Science and Innovation Center (PSI-Center) is dedicated to 

developing predictive computational models for Emerging Concept plasma 

confinement experiments.  The Center adopted MH4D, a finite volume 

tetrahedral mesh MHD code, largely for its facility in meshing and parallelizing 

geometrically complicated domains.  New capabilities have been added to the 

code including periodic and electrically insulating boundary conditions, and 

atomic physics effects.  Several benchmark calculations were done.  The implicit 

and semi-implicit capabilities of the code were explored and developed.  

Preliminary simulations of the ZaP Flow Z-Pinch experiment were performed 

and compared to other reliable MHD simulation results.  MH4D is limited in its 

ability to resolve fine detail, and time step limitations seem sure to prevent 

addition of important two-fluid physics.  However, development has shown it to 

be a flexible test bed code – a useful tool for the PSI-Center’s continuing mission. 
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Introduction 

The first significant plasma science research was conducted in the 1920’s by 

Irving Langmuir.  Since then, many plasma applications have been 

commercialized – fluorescent lighting, plasma spray coating, and semi-conductor 

manufacturing to name a few.  However, magnetic fusion energy (MFE), a 

plasma technology that would bring the power of stars to the earth, remains 

elusive.  The United States has committed a large part of its MFE research budget 

to a single concept, the tokamak [1].  Because the commercial potential of the 

tokamak is uncertain, Emerging Concept (EC) devices, intended to be simpler 

and cheaper alternatives to the tokamak, are also being developed.  The 

computational modeling research described in this thesis has been performed as 

part of the United States EC program. 

Theorists have long relied on computation to improve comprehension of the 

intertwined electromagnetic and gas dynamic interactions in plasmas.  Because of 

steadily increasing computer capability, it is now conceivable to simulate the 

overall behavior of plasma in an MFE device.  Significant progress toward this 

goal has made, but integrated simulations that capture the small-scale and large-

scale phenomena that determine confinement quality are still under development.  

The research for this thesis is part of the Plasma Science and Innovation (PSI) 

Center collaboration, which develops predictive computational models of 

emerging concept EC experiments [2]. 

The computational tool, MH4D (MagnetoHydrodynamics on a Tetrahedral 

Domain), is the basis for the research described in this thesis.  MH4D solves the 

Resistive Magnetohydrodyamic (MHD) equations on a 3D tetrahedral mesh using 

a finite volume scheme.  MH4D’s irregular tetrahedral mesh facilitates grid 

generation for complicated asymmetric 3D geometries.  When acquired by the 



2 

 

PSI-Center, the code was capable of simulations with resistivity and viscosity in 

domains with conducting boundaries.  The following features have been added to 

the code: 

• Periodic and electrically insulating boundary conditions 

• Variable resistivity in the form of Spitzer and Chodura models 

• Ohmic heating 

• A simple atomic physics model, including ionization and recombination of a 

static neutral gas 

Though the set of physics features in MH4D is smaller than for some similar 

established codes (e.g. NIMROD), if a user would like to capture first order 

Resistive MHD physics, the code’s relative simplicity is attractive.  Periodic and 

insulating boundary conditions can now be easily applied, and the capability of 

the code has been explored and expanded.  MH4D is a useful code, especially as 

a test bed for new physics such as the atomic physics described in this thesis. 

Several aspects of this research distinguish it from previous work: 

1) This research involves full 3D MHD code development. 

Full 3D codes (e.g. MACH3 [3] and WARP3 [4]) have previously been 

developed.  However, fusion plasma simulation research has focused primarily on 

“spectral 3D” codes like NIMROD and M3D, which use 2D grids and resolve 

the 3rd dimension spectrally.  (As discussed later in this section, MH4D is further 

distinguished from other full 3D code research by working with an irregular 

tetrahedral mesh.)  As compared to full 3D codes, spectral 3D codes are more 
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computationally efficient if low mode representation is adequate.  Another 

advantage of the spectral approach is that only 2D grid generation is required.  A 

limitation of spectral codes is that they require axisymmetry.  Many MFE devices 

are non-axisymmetric.  For example, consider the HIT-SI device, shown in 

Figure 1. 

 

Figure 1: Cutaway view of the non-axisymmetric HIT-SI device.  The non-
axisymmetric injectors of HIT-SI can be modeled accurately with a “full 
3D” code, but not with a “spectral 3D” code. 

HIT-SI is not axisymmetric, but has been modeled with NIMROD [5].  In the 

NIMROD simulations, the non-axisymmetric injectors are not modeled 

accurately.  The simulation results are interesting and useful in many ways, but 

disagreed with experimental evidence for toroidal current generation.  Full 3D 

simulation results could provide better agreement with experimental data and 
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greater insight into HIT-SI plasma behavior.  This research contributes to the 

base of knowledge for full 3D MHD simulation. 

2) Irregular tetrahedral meshes are used in this research. 

MH4D uses a novel tetrahedral mesh MHD formulation.  The primary impetus 

for the tetrahedral mesh formulation is that complicated 3D geometries can be 

easily discretized.  Descriptions of tetrahedral mesh codes are not readily available 

in literature.  References [10] and [11] discuss the numerical techniques employed 

in MH4D, but the implementation described uses a spectral 3D approach.  This 

thesis presents unique research with tetrahedral mesh MHD simulations. 

3) A simple atomic physics model that is tailored to EC devices has been 

implemented and tested in MH4D. 

The effects of ionization, recombination and charge exchange can strongly 

influence plasma behavior in MFE devices.  Most published atomic physics 

research focuses on the plasma edge regions of tokamaks and stellerators (see 

research involving the UEDGE code [6], for example).  The research in this 

thesis describes an atomic physics implementation that is developed specifically 

for EC devices. 
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Chapter 1  

MAGNETOHYDRODYNAMICS (MHD) IN GENERAL 

Section 1.1 introduces the reader to magnetohydrodynamics (MHD), briefly 

describing its derivation from the particle picture.  A more comprehensive 

derivation can be found Krall and Trivelpiece [7].  Section 1.2 presents validity 

limits for Resistive and Ideal MHD, largely following derivations by Freidberg [8].  

Section 1.3 discusses these validity limits.  In Section 1.4, the MHD validity limits 

are applied to three EC experiments, HIT-SI, ZaP, and TCS. 

 

1.1 From N-body models to MHD 

N-body models, which track individual particle motion, and kinetic models, 

which treat the plasma using probability distribution functions, are 

computationally demanding and generally can not be used to simulate magnetic 

fusion energy (MFE) devices.  Fluid models are a common simplification of N-

body models.  The quantities that are commonly thought of as “fluid properties” 

– density, velocity, and temperature – are formally defined by taking moments of 

the probability distribution function of a plasma.  Moments of the Boltzmann 

Equation, which is derived from a statistical plasma picture, produce the 

equations of the fluid models.  The first three moments yield the density, 

momentum, and energy equations.  Higher moments are possible, but these three 

are commonly used for a reasonably complete model that is computationally 

tractable.  The equation set is closed with an equation of state – e.g. the adiabatic 

equation of state, p γρ∝ .  If the density, momentum and energy equations are 

tracked for ions and electrons, the equation set is called the Two-Fluid Model.  
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To reach the Full (Single-Fluid) Magnetohydrodynamic Model, or Full MHD, 

two “asymptotic approximations” are made: 

1) Assume that the permittivity of free space is approximately zero.  This 

enforces “quasineutrality” and eliminates displacement current in Ampere’s Law. 

2) Assume that electron mass is approximately zero. 

Implications of these approximations are discussed in Section 1.2.  The first 

asymptotic approximation results in the low-frequency Maxwell’s equations, 

0 ,  , 0
t

µ ∂
∇× = ∇× = − ∇ • =

∂
BB J E B . (1) 

In addition to these Maxwell’s equations, Full MHD has a density equation, 

vρρ
•−∇=

∂
∂
t

, (2) 

a momentum equation, 

( )i ep
t

ρ ∂ + •∇ + ∇ − × = −∇ • + ∂ 
v v v J B π π  (3) 

an Ohm’s law (derivation of which involves neglecting electron momentum per 

the second asymptotic approximation), 

( )1
e ep

Zen
η+ × = + × − ∇ − ∇ •E v B J J B π  (4) 

and a pressure equation, 

( )1 : :

                                                                     

ei ie i e i i e e

e

e

d p Q Q
dt

p
Zen

γ γ

γ

γ
ρ ρ

ρ

  −
 = + − ∇ • + − ∇ − ∇   

 
 

+ •∇ 
 

h h π v π v

J
, (5) 
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where eπ  and iπ  are anisotropic pressure tensors for the electrons and ions, η is 

electrical resistivity, Z is effective ion charge, e is electron charge, n is electron 

number density, eh  and ih  are heat fluxes for electrons and ions, and eiQ  and 

ieQ  represent electron-ion and ion-electron collisional heating.  To reach the 

Ideal MHD model, all terms on right-hand sides of Eqns. (3), (4), and (5) are 

neglected.  Of the terms neglected to reach the Ideal MHD, the Resistive MHD 

model retains the term involving electrical resistivity (η j) in Eqn. (4) and an 

Ohmic heating term ( 2~ η j ) associated with eiQ .  Along with the modified 

Maxwell’s equations as given in Eqn. (1), the Resistive MHD model uses Eqns. 

(2)-(5) in reduced form, 

E η= − ×J v B  
 

( ) ( ) 21 ( 1)p p p
t

γ γ η∂
+ ∇ • = − ∇ • + −

∂
v v j  

vρρ
•−∇=

∂
∂
t

 

p
t

ρ ∂ + •∇ = −∇ + × ∂ 
v v v J B . (6) 

Resistive MHD provides the basis for MH4D.  The particular form of the model 

used in MH4D is presented in Section 2.1. 

1.2 Validity Limits of Ideal and Resistive MHD 

Several assumptions were made in deriving Ideal MHD.  Implications of these 

assumptions are discussed below, and key validity limits are presented.  The basis 

for the limits is shown in some of the most important cases.  Details supporting 

each validity limit can be found in reference [8]. 

Ohm’s Law 

Pressure 

Continuity 

Momentum 
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To develop validity limits, it is necessary to define and specify several 

characteristic quantities for the plasma of interest.  Characteristic time and length 

scales, τ and L, are set.  Characteristic magnetic field, density, temperature, speed, 

and resistivity (B0, ρ0, T0, and V0) are also defined.  Although these scales and 

parameters are subjective choices1, validity limits still provide valuable insight into 

MHD limitations. 

Maxwellian distributions 

In the process of deriving Ideal and Resistive MHD, Maxwellian distributions are 

assumed for ions and electrons.  For these assumptions to be valid, electron and 

ion collisionality must be high: 1 and 1ii eeτ τ
τ τ

, where iiτ  is the ion-ion 

collision time, eeτ  is the electron-electron collision time, and τ  is the 

characteristic timescale of phenomena of interest.  The ion collisionality 

requirement, 

1iiτ
τ

, (7) 

is more restrictive than the electron collisionality requirement. 

First asymptotic approximation 

Under the first approximation, Maxwell’s equations are transformed to the low-

frequency Maxwell’s equations2.  This is implemented by allowing the permittivity 

of free space to equal zero.  Gauss’s Law and Ampère’s Law are modified.  In 

                                                 
1 For instance, the characteristic magnetic field, B0,, chosen for a Z-pinch might be the maximum field value.  

However, B=0 at the center of a Z-pinch, so the choice for B0 is clearly not valid throughout the plasma.  
Similar general estimates are made for density, resistivity, and temperature for all experiments evaluated. 

2 As discussed, this approximation packages two simplifications: the assumption of quasineutrality and 
elimination of displacement current.  These two simplifications can be considered independently as in 
reference [7]. 
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Gauss’s Law, which can be written 0 q nα α
α

ε ∇ • = ∑E , 0 0ε ≈  means that 

0q nα α
α

≈∑ .  This implements local quasineutrality, but does not require that 

0∇ • =E  or that E be restricted in any way.  Next, consider Ampère’s Law with 

the electric field split into dynamic and steady components, 

( )0
0

1s d

t t
ε

µ
∂ ∂ + = ∇× − ∂ ∂ 

E E B j .  0 0ε ≈  does not pertain to Es because 

0s

t
∂

=
∂
E  without the assumption.  The dynamic electric field in Ampère’s Law is 

eliminated, implying that electrons respond quickly to prevent local charge 

separation.  Note that electric fields can still exist and evolve (slowly) under this 

first approximation. 

The first approximation implies that 2

0 0

1c
µ ε

= → ∞  and 
2

2

0
pe

e

ne
m

ω
ε

= → ∞ .  

Therefore, only phenomena with characteristic speeds 0V c  and characteristic 

times 1

pe

τ
ω

 are captured under this assumption.  It should be noted that 

high-frequency phenomena can affect low-frequency phenomena occurring on 

the timescale of interest.  (High-frequency effects can sometimes be captured 

with transport coefficients such as resistivity as described in Section 3.4.) 

Second asymptotic approximation 

Under the second approximation, electron mass is set to zero.  This 

approximation is natural since the ratio of proton mass to electron mass is 1836.  

However, electron mass causes finite response times which are significant, 

especially over long distances.  Low-frequency, long-wavelength modes caused by 
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electron lag, called drift waves, are missed in the MHD model because of this 

second approximation. 

If 0em → , clearly 
2

2

0
pe

e

ne
m

ω
ε

= → ∞  and ce
e

eB
m

ω = → ∞ .  It follows that 

electron skin depth, 0e
pe

cl
ω

= → , electron Larmor radius, , 0th e
Le

ce

v
r

ω
= → , and 

Debye length, , 0th e
D

pe

v
λ

ω
= → .  Therefore, only phenomena with  

1 1,
pe ce

τ
ω ω

 
  
 

 and characteristic length ( ), ,e Le DL l r λ  are captured under 

this assumption.  As mentioned above in the discussion of the first 

approximation, high-frequency phenomena can affect low-frequency phenomena. 

Hall and diamagnetic terms 

In Ohm’s Law, Zen×J B  (the Hall term) and  ep Zen∇  (the diamagnetic term) 

are neglected.  Validity can be assessed by comparing these terms to a retained 

term in Ohm’s Law, ×v B .  These assumptions are valid if 

2

2~ 1
x

ce elZen
L

τω×J B
v B

, (8) 

~ 1
x
e Lip Zen r

L
∇

v B
. (9) 

Infinite conductivity 

In Ohm’s Law, it is assumed that η=0.  This assumption is valid if 

 
0 0 .

1~ 1
x RemagLV
η η

µ
=

j
v B

. (10) 
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Collisional heating 

The collision heating terms, eiQ  and ieQ , include the effects of Ohmic heating 

and from thermodynamic equilibration of the electron and ion species.  If Eqn. 

(10) is violated, Ohmic heating should be included.  Ions and electrons are in 

thermodynamic equilibrium if 

1ii
i em m τ

τ
. (11) 

This thermodynamic equilibrium limit is more restrictive by i em m  than the 

collisionality limit given by Eqn. (7). 

Heat fluxes 

e∇ •h  dominates the total heat flux ( )e i∇ • +h h .  The validity of neglecting 

e∇ •h  is assessed by comparing e∇ •h  to p t∂ ∂ .  For validity, 1ii
i em m τ

τ
.  

This limit is identical to the thermodynamic equilibrium limit, Eqn. (11). 

Electron convection 

The term e

e

p
Zen γρ

 
•∇ 

 

J  can be neglected if 1Lir
L

.  This is the same validity 

limit found for the diamagnetic term. 

Anisotropic terms in energy equation 

:i i∇π v  can be neglected if the ion collisionality limit, Eqn. (7), is satisfied.  The 

requirement for neglecting :e e∇π v  is less restrictive. 
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1.3 Discussion of MHD validity limits 

The high collisionality requirement is usually not met for fusion grade plasmas.  

However, empirical evidence indicates that Ideal/Resistive MHD are useful 

beyond the high collisionality validity limit.  This circumstance arises because 

cyclotron motion plays the role of collisions in most fusion plasmas, and 

enhances the effective collisionality perpendicular to magnetic fields.  In general, 

if parallel gradients are not expected, the collisionality assumption can be relaxed. 

An important shortcoming of Ideal/Resistive MHD is an inability to capture 

local charge separation and the associated “two-fluid” effects such as the Lower 

Hybrid Drift instability. 

To summarize, Ideal/Resistive MHD captures low-frequency, large-scale 

phenomena, and its simplicity makes it a valuable tool for understanding 

macroscopic plasma behavior. 
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1.4 Applicability of Ideal/Resistive MHD to EC devices 

The validity limits found in Section 1.2 are now applied to several EC 

experiments: the HIT-SI spheromak, the ZaP Flow Z-Pinch and the TCS FRC.  

The characteristic parameters assumed for each device are summarized in Table 

1. 

Table 1: Characteristic parameters for HIT-SI, ZaP and TCS as used in 
MHD validity analysis.  V0 is the ion thermal speed.  The characteristic 
time, τ, is L/V0. 

Scale or 

parameter 
HIT-SI ZaP TCS 

L (m) 0.1 0.01 0.1 

B0 (T) 0.03 1 0.02 

n0 (m-3) 1x1019 1x1023 1x1020 

T0 (eV) 10 100 300 

V0 (m/s) 4.4x104 1.4x105 2.4x105 

The ion-ion collision time, τii, used in the analysis is found by using the 

relationship 2
i e

ii

m m
ne

η
τ

= .  In this relationship, classical Spitzer parallel resistivity, 

5 3/ 25 10 lnz Tη −= × Λ , is used. 
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As shown in Figure 2, the asymptotic approximations are reasonably valid for the 

devices considered.  All validity limit values are less than 0.1.  Most are less than 

0.01. 

 

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

HIT-SI ZaP TCS

 

Figure 2: Asymptotic Approximation validity limits, evaluated for HIT-
SI, ZaP and TCS.  Values are much less than 1 in all cases, indicating 
that the Asymptotic Approximations are justified. 

Validity limits for the simplification of Full MHD to Ideal MHD are evaluated 

and presented in Figure 3.  The title “Collisionality” refers to the limit 

1ii
i em m τ

τ
.  “Hall term” refers to 

2

2 1ce el
L

τω ; “Diamagnetic term” refers 

to 1Lir
L

; “Infinite conductivity” refers to 
0 0

1
LV
η

µ
. 

0V
c

1

peτω
1

ceτω
el
L

Ler
L

D

L
λ
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Figure 3: Validity limits for simplification of Full MHD to Ideal MHD for 
HIT-SI, ZaP and TCS.  Collisionality and isotropy limits are not strictly 
satisfied for any of the devices.  Neglecting the Hall term is clearly invalid 
for HIT-SI.  Neglecting the diamagnetic term is clearly invalid for TCS. 

Several aspects of the results presented in Figure 3 stand out: 

• Clearly, the collisionality limit is violated for all three EC devices.  However, 

as described in Section 1.3, collisionality is not required for ideal and resistive 

MHD to apply. 

• The Hall term is clearly needed for HIT-SI and the diamagnetic term is 

clearly needed for TCS.  MHD can provide insight into plasma dynamics in 

these devices, but potentially important effects could be missed. 
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• Figure 3 indicates that resistivity can be neglected in the three EC devices.  

Core plasma characteristics are assumed in Figure 3.  However, plasma 

characteristics are dramatically different at the plasma edge and in near-

vacuum regions, and the infinite conductivity validity limit is not applicable.  

For instance, in ZaP, high resistivity is appropriate in vacuum regions and in 

cool plasma. 
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Chapter 2  

MH4D OVERVIEW 

MH4D is a plasma simulation code that solves the resistive MHD equations with 

a finite volume method [23] on a tetrahedral mesh.  The code is parallelized.  

T3D [24] is used to generate the mesh.  ParMETIS [18] is used for partitioning.  

PETSc [26] is used for parallel matrix computations.  Key algorithms include 

leapfrog time discretization, predictor-corrector advance to provide dissipation in 

the induction equation, and implicit treatment of dissipative terms.  In this 

chapter, the features of MH4D that existed before adoption by the PSI-Center 

are presented, and some practical code application issues are discussed.  Features 

that have been developed by the PSI-Center are described in Chapter 3. 

2.1 MHD in original MH4D 

MH4D originally used the following Resistive MHD model: 

t
∂

− =
∂
A E ,  AB ×∇= , = ∇×j B  (12) 

t
η∂

= × −
∂
A v B j  

p p p
t

γ∂
+ •∇ = − ∇ •

∂
v v  

vρρ
•−∇=

∂
∂
t

 

2p
t

ρ ν∂ + •∇ = −∇ + × + ∇ ∂ 
v v v j B v , 

where A is the magnetic vector potential, B is the magnetic field, E is the electric 

field, v is velocity, j  is current density, p is pressure, is ρ density, η is electrical 

Induction 

Pressure 

Continuity 

Momentum 
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resistivity, and ν is viscosity.  A is the primitive variable for the electromagnetic 

components of the code.  MH4D normalizes j  and B by 0µ  so that µ0 is left 

out of the computations.  This results in conversions from “MH4D” units to S.I. 

units as shown in Appendix A.1. 

MH4D uses a Cartesian coordinate system. 

2.2 Tetrahedral mesh and finite volume formulation 

MH4D uses an irregular tetrahedral mesh, a particularly useful mesh type when 

the computational domain involves complex geometric features.  To generate a 

useful 3D mesh often requires separately discretizing different regions of the 

domain and then ensuring appropriate interfaces between the regions.  With 

tetrahedra, the domain can be discretized as a single region and special interfacing 

is not required.  Ease of grid generation comes at a price: 

• Computational overhead is increased. 

o Reference arrays (see Appendix A.2) are required to describe the 

irregular grid.  Logically mapped grids require no such arrays. 

• Solution accuracy at a given resolution can be compromised. 

o Although first-order accuracy is maintained in a tetrahedral mesh 

with distorted tetrahedra, a uniform mesh may produce smoother 

solutions in general. 

Eqns. (12) are solved in the order shown.  Integral relations are used to define the 

operators.  For example, the gradient is 

∫∫ =∇
SV

dSfdVf )()( n  (13) 
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In original MH4D algorithm development (i.e. before the research for this thesis 

began), special care was taken to preserve analytical properties of MHD in the 

discretized equations.  In particular, the discretized spatial operators are self-

adjoint [10].  Self-adjoint operators allow application of the efficient conjugate 

gradient method in iterative implicit solves. 

Figure 4 shows a tetrahedron as used by MH4D.  A staggered mesh or “dual 

mesh” is defined by the dashed lines between edge midpoints, side centroids and 

the cell centroid.  Sides are labeled by the index of their opposite vertex.  C is the 

centroid of the tetrahedron.  mij is the midpoint of edge lij.  Ci is the centroid of 

side i.  Si is the vector area of side i.  si is the vector area of the dual mesh surface.  

Appendix A.3 provides additional geometric details which are used in the MH4D 

finite volume formulation. 

 

Figure 4: Staggered mesh used in MH4D.  Vertices, edge lengths, 
tetrahedron surface areas, a dual mesh surface area, edge midpoints, face 
centroids, and the tetrahedron centroid are labeled. 
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As shown Figure 5, density, pressure and magnetic field are stored at cell 

centroids.  Vector potential, momentum and current density are stored at vertices.  

Averaging is used to determine velocity at edge midpoints and at face centers as 

required for advection as described below. 

 

Figure 5: Variable storage locations.  All variables are stored at either 
centroids or vertices.  Velocity is averaged to centroids and faces for 
advection calculations. 

Applying the finite volume method with B stored at tetrahedron centroids and A 

stored at vertices results in 0∇ • =B  inside the domain.  (No such guarantee 

exists for ∇ • B  on boundaries.)  See Appendix A.3 for details. 



21 

 

The upwind method is used for advection.  For example, the cell-to-cell 

advection formula for calculating ( )1 2n nρ −∇ vi  for tetrahedron τ is 

( )1
f f upwind

fVτ

ρ•∑ v S , (14) 

where the sum is over the four tetrahedron faces, Vτ is the tetrahedron volume, 

fv  is the velocity averaged to the face, and fS  is the surface area vector of the 

face.  The vertex-to-vertex formula for calculating ∇v vi  for vertex v is 

( )1
e e upwind

evV
•∑ v S v , (15) 

where the sum is over the edges converging on the vertex, ev  is the velocity 

averaged to the edge midpoint, and Se is the surface area vector of the edge as 

shown in Figure 6.  The advected fields in Eqns. (14) and (15) are density and 

velocity, respectively, and the “upwind” subscripts indicate that the advected field 

values are taken from the “upwind” side of the control surface, i.e. the side for 

which •v S  is positive. 

 

 

Figure 6: Control surfaces for advection.  Triangular areas between cells 
are used for cell-to-cell advection.  Dual mesh areas converging on edges 
are used for vertex-to-vertex advection. 

vertex-to-vertex advection 
e.g. ∇v vi  

cell-to-cell advection
e.g. ( )1 2n nρ −∇ vi  
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2.3 Time-stepping algorithm 

The time-stepping algorithm for MH4D uses a leapfrog time discretization, 

defining v and A (along with p and ρ) on staggered intervals.  Advective terms are 

advanced with a predictor-corrector method.  Wave-like terms in the momentum 

equation can be treated with a semi-implicit method.  Diffusive terms are treated 

implicitly.  The algorithm is 

* 1 2
1 2 ,

n
n n

t

−
−−

= ×
∆

A A v B  (16) 

* *,= ∇×B A  (17) 

( )

1 2 1 2
*

1 2 1 2                           1 ,

n n
n

n n
i i

t
η θ θ

+ −

+ −

−
= ×

∆
 − ∇×∇× − − ∇×∇× 

A A v B

A A
 (18) 

( )
1 2 1 2

1 2 ,
n n

n n

t
ρ ρ ρ

+ −
−−

= −∇
∆

vi  (19) 

( )
* 1 2

1 2 ,
n

n np p p
t

−
−−

= −∇
∆

vi  (20) 

( )
1 2 *

*1 ,
n

np p p
t

γ
+ −

= − − ∇
∆

vi  (21) 

*

,
n

n n

t
−

= − ∇
∆

v v v vi  (22) 

( )
** *

1 2 1 2 1 2
1 2

1

                 + semi-implicit ,

n n n
n p

t ρ
+ + +

+

−
= −∇ − ×

∆
v v j B

 (23) 

1 **
2 1 2 **

1 2 (1 )
n

n
v vnt

ν θ θ
ρ

+
+

+

−  = ∇ + − ∇ ∆
v v v v . (24) 
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The theta method is used in the corrector step of the induction equation, Eqn. 

(18), and the viscous advance, Eqn. (24).  θi and θv control the time weighting in 

the induction equation and viscous advances, respectively.  The semi-implicit 

term shown in Eqn. (23) is discussed in Section 2.5.  Implementation of the 

implicit procedure in the induction equation is discussed in Section 2.4.  The time 

advance procedure is illustrated in Figure 7. 

tn-1/2

tn

tn+1/2

tn+1

*

*

**

A ρ p v

tn-1/2

tn

tn+1/2

tn+1

*

*

**

A ρ p v

vxB

B*
ηj+vxB*

advect.

force

visc.

advect.

semi-
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ρ
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*

*
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A ρ p v
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tn+1

*

*
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A ρ p v

vxB

B*
ηj+vxB*

advect.

force

visc.

advect.

semi-

implicit

ρ  

Figure 7: MH4D time step diagram.  Vector potential is “predicted” with 

( )/n −× ∇× n 1 2v A  and “corrected” with *n ×v B  and the implicit resistive 

term.  Density is advanced in one flux step.  Pressure is partially advanced 
with an advective step, and the advance is completed with ( ) *1 npγ− − ∇ vi .  

Velocity is advanced first with advection, then with force terms, then with 
the viscous term. 

A more thorough discussion of the numerical techniques employed in time 
stepping can be found in reference [10]. 
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2.4 Implicit resistive diffusion advance 

An implicit advance of the resistive diffusion term of induction equation is 

appropriate when, because of numerical stiffness, excessive computational effort 

is required to advance the equation explicitly.  Numerical stiffness in the 

induction equation is introduced by high resistivity.  The ( )η ∇×∇× A  term in 

the induction equation is diffusive as seen if a vector identity is used to rewrite 

the term as 

( ) ( ) 2η η η∇×∇× = ∇ ∇ • − ∇A A A .  The 2∇  operator is the 3D equivalent of 

the spatial second derivative in the 1D diffusion equation, 
2

2

u uD
t x

∂ ∂
=

∂ ∂
, where u 

is a generic variable quantity and D is a diffusion coefficient.  As shown in [25], 

the timestep limit 

2

 
2
xt
D

∆
∆ ≤  (25)  

must be observed if the 1D diffusion equation is solved explicitly.  In three 

dimensions, the ∆x is replaced with the grid spacing, i.e. the distance between the 

vertices on which A is stored.  For fine meshes, this diffusive timestep limit is 

often much more prohibitive than other timestep limits such as the Courant 

limits discussed in Section 2.5. 

MH4D uses a θ-method for advancing A.  In time-discretized form, the equation 

is 

( )
1 2 1 2

* 1 2 1 21
n n

n n n

t
η θ θ

+ −
+ −−  = × − ∇×∇× + − ∇×∇× ∆

A A v B A A , (26) 
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where B* is *∇× A  and A* is computed with a predictor step, 
* 1 2

1 2
n

n n

t

−
−−

= ×
∆

A A v B . 

A factor of dV  (the dual mesh volume around each vertex) must be included on 

both sides of Eqn. (26) because of the finite volume integration technique used to 

form the (∇×∇× ) operator.  The final form of the equation is 

( ) ( )1 2 1 2 * 1 2n n n ndV tdV t tdVθ
η η

+ − −  ∆
+ ∆ ∇×∇× − = × −∆ ∇×∇× 

 

I A A v B A

. (27) 

A linear algebra problem, Ax=b, is formed.  If θ is 0, the method is explicit.  If θ 

is 1, the method is fully implicit and first-order accurate in time.  Using θ = 1/2 

corresponds to the Crank-Nicolson method which is second-order accurate in 

time.  With θ ≥  1/2, there is no stability criterion and timestep choice is guided 

by accuracy considerations. 

Figure 8 depicts the matrix problem presented in Eqn. (27). 

A x b=



26 

 

=

C1111 C1112 C1113

C1121 C1122 C1123

C1131 C1132 C1133

C12 C1n

Cnn

C21

Cn1

x1,1
x1,2
x1,3

xn,1
xn,2
xn,3

b1,1
b1,2
b1,3

bn,1
bn,2
bn,3

=

C1111 C1112 C1113

C1121 C1122 C1123

C1131 C1132 C1133

C12 C1n

Cnn

C21

Cn1

x1,1
x1,2
x1,3

xn,1
xn,2
xn,3

b1,1
b1,2
b1,3

bn,1
bn,2
bn,3

 

 

Figure 8: Basic matrix problem structure in MH4D.   The matrix, A, is an 
n x n matrix of 3 x 3 coupling matrices, Cij, coupling each vertex i to itself 
and all other vertices j.  The components of vector quantities in x and b 
are labeled 1, 2 and 3. 

For interior points, the vector components 1, 2 and 3 shown in Figure 8 are just 

the x, y, and z Cartesian components.  For boundary points, vector quantities are 

stored in a rotated frame such that the z axis is normal to the boundary surface – 

in this rotated frame,  vector components 1 and 2 are tangential to the boundary 

surface and component 3 is normal to the surface.  This facilitates boundary 

condition application as discussed in Section 2.6. 

The matrix A is symmetric positive definite: Cii=Cii
T and Cij=Cji

T.  Thus, 

convergence of the Conjugate Gradient method is guaranteed.  MH4D uses 

PETSc to invert symmetric positive definite matrices using a preconditioned 

Conjugate Gradient method. 

A                                     x      =         b 
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To understand the matrix shown in Figure 8, it is important to know the nature 

of the self-adjoint ( )dV ∇×∇×  operator.  It is shown below operating on A to 

give dVj  at vertex i: 

( ) ( )1 1
9i i i i v i i v v

v

dV dV
V

τ τ τ τ τ

τ τ

 = ∇×∇× = − − • • ∑ ∑j A S S S S I A  (28) 

where subscripts v and τ represent vertices and tetrahedra, S represents surface 

area vectors, and V is volume.  The inner sum is over the vertices, v, of a 

tetrahedron, τ, and the outer sum is over the tetrahedra that share vertex i.  The 

3x3 coupling matrices Cij shown in Figure 8 account for each contribution in 

Eqn. (28).  Geometric details supporting Eqn. (28) and other MH4D finite 

volume relations are available in Appendix A.3. 

2.5 Semi-implicit momentum advance 

This section is an introduction to the semi-implicit advance used in MH4D.  

Details are provided in references [27], [28], and [29].  Validation of the semi-

implicit method in MH4D for sound wave and Alfvén wave test problems is 

described in [30]. 

If the resistive term of the induction equation is treated implicitly and momentum 

is advanced explicitly, the algorithm shown in Section 2.3 is numerically stable if 

the simulation timestep satisfies the Courant conditions for waves and flows, 

maxv t x∆ < ∆  (29) 
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where maxv  depends on the flow speed, flowv , and on the magnetosonic wave 

speed, 2 2
MS A Sv v v= + , where the subscripts A and S refer to the Alfvén and 

sound speeds.  maxv  is defined by the geometric mean, 2 2
max MS flow
v v v= + .  The 

magnetosonic wave speed is often much faster than the flow speed.  However, 

using a semi-implicit method, the magnetosonic wave speed dependence in Eqn. 

(29) can be eliminated, leaving max flowv v= . 

The full MHD operator can separated into fast and slow components: 

{ } { } { }                     u u u u
t

∂
= = +

∂
M F S . (30) 

Alfvén waves and sound waves are contained in F , the fast part of the operator, 

while S  contains the slower physics of interest.  By treating F  implicitly, the 

prohibitive wave Courant condition can be avoided.  This procedure – treating 

fast waves implicitly and slow/interesting dynamics explicitly – is called semi-

implicit3.  Discretizing in time, treating the fast part implicitly (i.e. letting it 

operate on the velocity at time n+1), and treating the slow part explicitly, 

{ } { } { } ( ){ }
{ } { }

1
1 1

1              

n n
n n n n

n n n

u u u u u u
t

u u u

+
+ +

+

−
= + = +

∆
= + −

F S F M -F

M F
, (31) 

This equation can be rewritten as a matrix problem for 1n nu u+ − , 

                                                 
3 The semi-implicit method was developed for weather modeling, as described in [31], to eliminate the 

timestep restriction due to fast gravity waves. 

full MHD operator Alfvén waves, 
soundwaves

interesting 
physics
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( )( ) { }1n n nt u u t u+− ∆ − = ∆I F M . (32) 

{ }nuM  is explicitly calculated, and the equation is solved implicitly for 1n nu u+ −  

by inverting ( )t− ∆I F .  F  is chosen such that the matrix ( )t− ∆I F  is self-

adjoint and can be solved with PETSc using a preconditioned Conjugate 

Gradient algorithm.  Using the semi-implicit method, the computational effort 

can be significantly less than the effort required for an explicit advance. 

The semi-implicit algorithm in MH4D was not used in this research.  As 

mentioned above, the algorithm was used successfully in wave simulations, but 

additional research will be required to develop the algorithm for general 

applications like the benchmark simulations described in this research. 

2.6 Boundary conditions 

MH4D sets boundary conditions in two ways.  Explicit boundary conditions are 

applied after explicit calculations, e.g. by zeroing normal components at 

boundaries.  Implicit boundary couplings are modified in coupling matrices used in 

implicit advances that involve boundary points. 

Nodes and sides are flagged in MH4D to facilitate boundary condition 

implementation.  The code as originally adopted by the PSI-Center had only 

(perfectly) electrically conducting boundaries. All boundary nodes and sides are 

flagged.  At all boundaries, vector quantities are stored in a rotated coordinate 

system with the z component normal to the surface4. 

                                                 
4 Domain corners present a challenge because the surface normal is undefined.  Special treatment is often 

required at corners. 
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At perfectly conducting boundaries, tangential E  must be zero.  Thus, tangential 

components of 
t

∂
∂
A  are set to zero5. 

The boundary condition for pressure is that the normal gradient is zero.  Parallel 

velocity can be allowed on all boundaries (a slip boundary condition), or set to 

zero on all boundaries (a no-slip boundary condition).  Normal velocity is set to 

zero on all conducting boundaries.  Pressure and density flux are not allowed at 

any boundary. 

Perfectly conducting wall boundary conditions are imposed in MH4D by default.  

For instance, before vxB is used to advance A, the subroutine zero_bndr_vv  is 

called to zero the tangential components of vxB on boundaries.  Also, 

zero_normal_vv is used to zero normal velocity at conducting boundaries.  Non-

default explicit boundary conditions are set using routines in setbc.f.  For 

instance, special boundary conditions required at domain corners are imposed in 

setbc.f. 

Conducting boundary conditions require tangential 0=E .  Therefore, implicit 

boundary conditions are applied to the matrix ( )dV tθ
η

 
+ ∆ ∇×∇× 

 

I  in Eqn. 

(27).  Figure 9 illustrates the modifications made to impose conducting boundary 

conditions.  Tangential components of conducting boundary vertices are 

decoupled from the equation system.  Notice that the modified matrix remains 

symmetric positive definite. 

                                                 
5 The condition Etangential=0 corresponds to a fixed Atangential as shown in Eqn. 12. 
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Figure 9: Operator matrix with conducting boundary condition imposed.  
Vertex 1 is on a conducting boundary.  Vertex 2 is an interior vertex.  
Tangential components of conducting boundary vertices are decoupled. 

2.7 Practical issues in MH4D simulations 

Input deck 

Through the input deck, all key variables can be set without recompiling the code. 

Timestep 

Typically, a small timestep (~10x less than the timestep required to satisfy stability 

limits) is used initially.  The setdt routine allows the code to increase the timestep 

incrementally (the fractional increase never exceeding 10%) to the user-defined 

fraction of the timestep stability limit set with the input deck values, cflfac, 

cflfac_imp, or cflfac_si.  The more restrictive of the wave/flow timestep limits 

and the resistive timestep limit is imposed by the setdt routine. 
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Grids and restart files 

The grid generation program T3D [24] is used to create T3D files as described in 

Appendix B.  A T3D file contains information about vertex/tetrahedron 

association and location.  The “load” reads the T3D file and produces a “restart” 

file with grid information and MH4D primitive variable information in General 

Mesh Viewer (GMV) format [21] or in Tecplot [22] format.  Data postprocessing 

involves reading restart files with GMV or Tecplot. 

Different input parameters can be used with the load program to initialize a 

variety of problems.  Reflect, shift, and rotate routines are available to manipulate 

the grid. 

Memory considerations 

MH4D is parallelized, and the memory requirements during the time stepping 

loop depend directly on the degree of parallelization.  However, in the setup 

process, each processor temporarily creates and stores reference arrays and 

geometric factors describing the entire grid.  Presently, setup is performed in 

parallel.  For grids with many million tetrahedra, it may be important to modify 

MH4D so that setup processing occurs in serial so that memory limits are not 

exceeded. 
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Chapter 3  

CODE DEVELOPMENT 

3.1 Periodic boundary condition 

Periodic boundary conditions are an important feature for a plasma simulation 

code.  For example, computational expense can be reduced, mode selection is 

possible, and wave simulation is facilitated.  The periodic boundary condition 

implemented in MH4D allows multi-direction periodicity which is needed for 

Alfvén wave simulation.  The implementation also allows non-parallel-plane 

periodicity.  Azimuthal sections of axisymmetric domains can be modeled, 

enabling mode selection and domain size reduction.  For example if a 1/4-slice of 

a cylindrical domain is simulated, only m=0, 4, 8, etc. modes are captured. 

In MH4D, periodicity has been implemented for pairs of periodic surfaces.  One 

of the surfaces is designated “redundant” and the other, “retained”.  On the 

retained surfaces, grid entities (vertices, triangular tetrahedral sides, and 

tetrahedral edges) are kept.  On the redundant surfaces, redundant entity 

information is eliminated and replaced by pointers to the appropriate retained 

entities. 

Two test problems were used to verify functionality of the parallel-plane periodic 

boundary condition: a sound wave and a shear Alfvén wave.  For example, the 

Alfvén wave perturbation is 

1 2cos( ) sin( )t t
k
ε

ω ε ω
∧ ∧

= • − ⊥ ⇒ = • − ⊥1 1A k x B k x

2sin( )tε ω
∧

= • − ⊥1v k x  (33) 
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where 2

∧

⊥   and  1

∧

⊥  are in the transverse direction, ε  is the perturbation size, k  is 

a wavevector in the longitudinal direction.  ( 2 n
L
π

=k  where n is the mode 

number and L is the periodic length.) 

An obliquely propagating shear Alfvén wave in a triply periodic box domain was 

simulated successfully as depicted in Figure 10. 

 

Figure 10: Perpendicular magnetic field strength contours for a shear 
Alfvén wave. 

Non-parallel-plane periodicity is implemented by rotating vector quantities across 

the periodic boundary as appropriate, and by zeroing perpendicular components 

of vector quantities on the periodic axis.  Rotations are simple in explicit 

calculations – the rotated (or inverse-rotated) quantity is multiplied by a rotation 

matrix.  Rotations for matrix couplings across boundaries are more complicated.  

Consider the calculation 

ij j i=C x b , (34) 
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where Cij is a 3x3 matrix which multiplies vector xj to give vector bi.  If the vector 

at vertex j is in a rotated frame defined by the rotation matrix Rj, and the vector at 

vertex i is in a rotated frame defined by the rotation matrix Ri, the calculation is 

( ) ( )T T
ij j j i i=C R x R b , (35) 

where RT is the transposed rotation matrix.  This can be rewritten 

( )T T
i ij j j i=R C R x b . (36) 

The coupling matrix is pre-multiplied by T
iR  and post-multiplied by T

jR , and 

now vectors xj and bi are in their rotated frames.  Additional care must be taken if 

the vectors x or b are on boundary points (recall that the boundary vectors are 

rotated such that their third vector component is normal to the surface).  In this 

case, the inverse boundary rotation must take place before rotation across the 

periodic boundary. 

3.2 Insulating boundary condition 

An insulating-wall boundary condition has been added such that plasma 

interaction with electrically isolated electrodes can be modeled.  To initially 

develop the boundary condition, a plasma-armature railgun was modeled as 

shown in Figure 11.  The method was then extended to coaxial cylindrical shell 

electrodes and to ZaP simulations (see Chapter 6). 
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Bx (applied)

jy (induced)

 

Bx (applied)

jy (induced)

 

Figure 11: Plasma armature railgun problem with insulating boundary.  
Applied magnetic field, Bx, corresponds to a current source as shown. 
Top and bottom boundaries are electrically conducting.  Gray-shaded 
boundaries are electrically insulating.  The jxB force drags the applied Bx 
into the domain ( “flux injection”). 

In general, either an electric or a magnetic field can be specified on the insulating 

boundary.  If an electric field is specified, a fixed voltage across the electrodes is 

implied.  If the magnetic field is specified, constant current is dictated between 

the electrodes.  For instance, in coaxial geometry, 02 enclosedrB Iθπ µ= .  In many 

plasma experiments, the power-supply has much higher impedance than the 

plasma, and the total current applied is a smoother function than the applied 

voltage.  For this reason, the specified magnetic field boundary condition has 

been developed in MH4D. 

Inside the domain, the current density at vertex i is calculated with the following 

formula: 

1
3i i

vV
τ

τ

= ×∑J S B , (37) 
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where the sum is over tetrahedra that share vertex i, Si is the surface area opposite 

vertex i, and Vv is the dual mesh volume around vertex i.  Refer to Figure 4 for 

grid cell geometry.  To implement the insulating boundary condition, the 

magnetic field on the insulating surface is included in the calculation: 

, . . . . . .
. .

1
3i i b i i b i b

i bvV
τ

τ

 = × + × 
 
∑ ∑J S B S B , (38) 

where the subscript i.b. means “insulating boundary”, and the second sum is over 

all insulating boundary triangles that share vertex i. 

At insulating boundaries, the velocity boundary condition is modified.  A 

tangential electric field is induced by the applied magnetic field.  In the induction 

equation (
t

η∂
= × −

∂
A v B J ), the tangential electric field is balanced by tangential 

components of vxB and ηJ.  If normal velocity is zero, a tangential current must 

always exist on the insulating boundary.  This non-physical current can be 

eliminated by allowing normal velocity on the insulating boundary6.  Velocity 

away from the insulating walls reduces the density to zero at the wall.  To prevent 

high Alfvén speeds and associated numerical stiffness in low-density plasma, a 

density floor is implemented as discussed in Section 3.3. 

The implicit induction advance is modified to accommodate the insulating 

boundary.  In the discretized induction equation, Eqn. (27), the ∇×∇×  

operators should include the tangential surface contributions.  On the right-hand 

side, 

                                                 
6 Velocity normal to a surface may seem non-physical.  However, note that there is no momentum allowed 

through the wall.  Even the density floor (see Section 3.3)only adds mass to the simulation. 
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( ) ( )internal boundary
∇×∇× = ∇×∇× + ∇×∇×A A A , (39) 

where the insulating boundary term, ( )boundary
∇×∇× A  is . . . .

. .

1
3 i b i b

i bvV
×∑B S  as 

found in Eqn. (38).  On the left-hand side of Eqn. (27), (∇×∇× ) acts on 

( )1 2 1 2n n+ −−A A , so the surface part is ( )1 2 1 2
. . . . . .

. .

1
3

n n
i b i b i b

i bvV
+ −− ×∑ B B S .  Assuming 

that Bi.b. is slowly varying on the boundary, Eqn. (27) is unchanged except for 

explicitly including the surface contribution for 1 2n−∇×∇× A  per Eqn. (38).  The 

implicit boundary conditions imposed on the (∇×∇× ) operator must be 

modified to allow for tangential components on the boundary.  Recall that, as 

shown in Figure 9, tangential boundary components are decoupled for 

conducting boundary vertices.  For insulating boundary vertices, tangential 

components remain coupled and normal components are decoupled as shown in 

Figure 12. 
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Figure 12: Operator matrix with insulating boundary condition imposed.  
Vertex 1 is on an insulating boundary.  Vertex 2 is an interior vertex.  
Normal components of insulating boundary vertices are decoupled. 

By decoupling normal components on the insulating boundary, a zero normal 

electric field boundary condition is imposed.  This implies that surface charge is 

not allowed.  Neglecting surface charge seems to be acceptable in the sense that 

flux is injected and the calculation is numerically stable.  However, allowing 

surface charge (i.e. allowing normal components on the insulating boundary to 

couple) was not studied and could also give reasonable results. 

If 1 2
. .
n
i b

+B  is known, the assumption of slow variation of . .i bB  is unnecessary.  The 

contribution of the surface term, ( )1 2 1 2
. . . . . .

. .

1
3

n n
i b i b i b

i bvV
+ −− ×∑ B B S , is then added to 

the right-hand side. 
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3.3 Density floor 

As density approaches zero, Alfvén speed  ( 0Av µ ρ= B ) approaches infinity.  

After density is advanced, if density in any cell has dropped below some “density 

floor”, mass is added at that cell to maintain the floor density.  If the total mass 

contribution is small, this violation of continuity is acceptable. 

3.4 Resistivity models and ohmic heating 

Only uniform resistivity was available when the PSI-Center began developing 

MH4D.  Options for Spitzer resistivity, Chodura resistivity, and a combination of 

the two have been added.  Spitzer resistivity is defined by the well-known formula 

( )5

. 3
2

5 10 ln
-mSp

eVT
η

−× Λ
= Ω  (40) 

The empirical Chodura resistivity model is designed to capture the anomalous 

resistivity that occurs at low densities.  This anomalous resistivity is attributable to 

an instability when the electron drift speed exceeds the ion sound speed by a 

factor of ~3.  This was shown by Shumlak et al. in simulations using a Two-Fluid 

plasma physics model [19] [20].  Chodura resistivity is implemented as 

2ne
me

CC νη = ; , 1 exp e
p iC C

s

vC
fv

ν ω
  

= − −  
  

 (41) 

where the electron drift speed and sound speed are e ne
ν =

j
 and 

ρ
γν p

s = .  The 

Chodura constant, Cc, and the parameter f, are typically Cc ≈ 0.1 and f ≈ 3. 
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Figure 13 compares Spitzer and Chodura resistivity graphically.  As shown, 

Chodura exceeds Spitzer at high temperatures and low densities.  To provide a 

smooth transition between high-temperature and low-temperature regimes, it is 

useful to combine the Chodura and Spitzer models.  In MH4D the user can 

choose a combined model that sets resistivity to the higher of the Spitzer or the 

Chodura resistivity. 

 

Figure 13: Comparison of Spitzer and Chodura resistivity models.  
Chodura resistivity is shown for two current density values.  Chodura is 
greater than Spitzer at high temperatures and low densities. 

When finite resistivity is present, it is appropriate to include the effect of 

collisional heating or “Ohmic” heating in the MH4D pressure equation shown in 

Section 2.1.  Ohmic heating contributes energy 2η j  to the system.  The 

thermodynamic relation between energy and pressure is 
( )

~ pe
γ −1

 , so the 

T (eV) density 
(x10-3 kg/m3) 

log10[ η (ohm-m/µ0) ] 



42 

 

contribution of Ohmic heating to pressure is ( ) 21γ η− j .  The modified pressure 

equation is 

( ) 21p p p
t

γ γ η∂
+ •∇ = − ∇ • + −

∂
v v j . (42) 

3.5 Atomic physics 

Neutral gas atoms can have a significant effect on plasma behavior in magnetic 

confinement devices.  Ionization cools the plasma.  Ionized neutrals add mass 

with low momentum, slowing plasma motion.  Recombination and charge 

exchange likewise play significant roles in plasma energy and momentum loss.  By 

adding atomic physics effects in order of importance, the PSI-Center intends to 

develop an atomic physics model that allows predictive computational modeling 

of EC devices.  An initial step has been to implement in MH4D a simple model 

involving a plasma fluid and a neutral fluid.  The neutral fluid is assumed to be 

stationary and cold.  The induction equation is unchanged for this atomic physics 

model.  The new and modified equations are 

( )i
i i ion rect

ρ ρ∂
= −∇ +Γ − Γ

∂
vi  (43) 

n
ion rect

ρ∂
= −Γ + Γ

∂
 (44) 

( )i
i e i rec i ip p m
t

ρ ∂
+ ∇ + = × −Γ

∂
v j B v  (45) 

( ) ( )21 1 ion n ion rec i
p p p m m p
t

γ γ η γ∂
+ ∇ = − ∇ + − − − Γ Φ − Γ

∂
v v ji i . (46) 



43 

 

Eqns. (43)-(46) are ion continuity, neutral continuity, ion momentum, and ion 

pressure.  Modifications to the usual MH4D MHD model are shown in boxes.  

ionΓ  and recΓ  are the source rates for ionization and recombination in 

( )3/kg m s .  For example, i ion e i nnσ ρΓ = 〈 〉v , where ionσ  is the ionization cross 

section and ion eσ〈 〉v  is the ionization rate parameter.  The angle brackets indicate 

that the quantity has been averaged over a Maxwellian distribution.  Charge 

exchange is assumed to be zero in this implementation, but could easily be added.  

Ionization and recombination rates are temperature dependent per the following 

relations for coronal equilibrium given by Goldston and Rutherford [9]: 

1/ 213
, 3 -1

, ,

2 10 13.6exp  m s
6.0 /13.6 13.6

e eV
ion e

e eV e eV

T
T T

σ
−   ×

〈 〉 = −    +    
v  (47) 

1/ 2

19 3 -1

,

13.60.7 10 m srec e
e eVT

σ −  
〈 〉 = ×   

 
v  (48) 

Simple ion and neutral accounting rules are observed in MH4D.  If iondtΓ  is 

greater than nρ , i i nρ ρ ρ= +  and 0nρ = .  Likewise, if recdtΓ  is greater than iρ , 

n n iρ ρ ρ= +  and n floorρ ρ= . 

Timestep restrictions associated with atomic physics timescales are discussed in 

Section 5.1. 

A limitation of this atomic physics model is that Paschen physics (i.e. the cascade 

of secondary electrons emitted by collisions in an interelectrode gap) is not 

captured.  However, as shown in the applications of this model (see Chapter 5 

and Section 6.6), important atomic physics effects are still captured. 
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Chapter 4  

SCREW PINCH AND SPHEROMAK BENCHMARKS 

4.1 Screw Pinch 

As a code benchmark test, the linear phase of the m=1 screw pinch kink 

instability was simulated with MH4D.  The instability growth rates found with 

MH4D are compared to growth rates found with a linear stability analyzer which 

uses the linearized MHD equations and captures only m=1 modes. 

4.1.1 Theoretical Background 

Equilibrium in a screw pinch is governed by the equation 

p× = ∇j B  (49) 

There are three variables: p, the plasma pressure, Bθ, the azimuthal magnetic field, 

and Bz, the axial magnetic field.  (Radial magnetic field is zero.)  If any two of 

these are specified, the third is determined by the equilibrium equation. 

Beginning with an equilibrium, we expect an external current-driven kink 

instability in a screw pinch if the axial magnetic field is too weak [13] [14].  The 

requirement for kink stability is quantified as follows: 

( )/
1

/(2 )
zB L

q
B aθ π

= >  (50) 

If a kink perturbation is present, magnetic energy is converted to kinetic energy 

when q<1, but if q>1, magnetic energy is increased at the expense of 
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perturbation energy.  Detailed explanations of the screw pinch kink can be found 

in [15] and [16]. 

A parabolic pressure profile was chosen for the screw pinch benchmark: 
2

0 1 rp p
a

  = −  
   

.  Constant temperature is assumed, and density is determined 

by the ideal gas law.  Given a parabolic pressure profile, Eqn. (49) can be solved 

to find the equilibrium magnetic field profile, 

0 0

0 0

    r a

    r a

r p
aB
a p
r

θ

µ

µ

 ≤= 
 >


. (51) 

4.1.2 MH4D modeling of the screw pinch 

For this screw pinch problem, T3D was used to generate a discretized cylindrical 

domain.  The load program was then used to load initial data, make the cylinder 

ends periodic, and generate a restart file in GMV format.  The following 

parameters were chosen: cylinder length = 0.1 m; cylinder diameter = 0.1 m; 

pinch radius, a=0.03 m; p0=1x106 Pa; T=50 eV (ρmax = 1.05x10-4 or 

nmax=6.29x1022). 

To assign initial vector potential, A0, in the restart file, it is necessary to determine 

an A0 that satisfies 0 0= ∇×B A .  Knowing the form of the curl in cylindrical 

coordinates, a suitable A0 can be found.  In this case, only Bθ exists, so 

r zB A A
z rθ

∂ ∂
= −

∂ ∂
.  Choosing Ar=0, one can solve for Az, and use the value in 

the restart file.  In the first timestep of the simulation, MH4D computes B. 
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A helical velocity perturbation was used, 0.01 Av v= .  The Alfvén speed used for 

the perturbation (and for the growth rate normalization, below) is based on the 

azimuthal magnetic field strength and density at r=a/2.  Ideal MHD was used in 

these simulations.  The cylinder ends were periodic.  The default conducting 

boundary condition is applied at the cylinder outer wall. 

4.1.3 Results and Discussion 

Table 2 shows the normalized kinetic energy growth rates found with MH4D and 

the normalized kink instability growth rates found with a linear stability analyzer 

(developed by the author). 

Table 2: MH4D screw pinch kinetic energy growth rates compared to kink 
instability growth rates predicted with linear stability code “linstab”.  
Agreement is within 5%. 

 

As shown in Figure 14, convergence is approximately linear with resolution as 

expected for MH4D. 

q Linstab 

γτA 

MH4D 

γτA 

% difference 

0.5 2.514 2.464 -2.0 

0.7 2.575 2.493 -3.2 

0.9 2.520 2.410 -4.4 
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Figure 14: MH4D normalized kinetic energy growth rate predictions vs. 
resolution.  Peak resolution is 2 mm (a/dx=15) which required a total of 
350,000 tetrahedra. 

Figure 15 shows the kinetic energy evolution of an MH4D simulation.  Notice 

the clear linear behavior beginning at about 0.5 µsec. 

 

Figure 15: MH4D screw pinch kinetic energy vs. time (dx=5 mm). 
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Figure 16: MH4D screw pinch simulation snapshot showing pressure 
contours.  t=0.9 µs (dx=5 mm).  For reference, 0.5 sAτ µ≈ . 

A snapshot of a kinking screw pinch is shown in Figure 16. 

As seen in Figure 14, the highest resolution used is 2 mm.  With this resolution, 

there are 15 grid cells across the pinch radius.  Higher resolutions are possible, 

but would not likely alter the conclusions that can be drawn.  MH4D simulations 

agree with linear stability analysis within 5%, and build confidence that MH4D 

properly captures magnetohydrodynamic plasma behavior.  The cause of the 5% 

discrepancy is not known with certainty.  A possible explanation is that non-linear 

effects are present by the time clear linear growth is present in the simulations. 

4.2 Spheromak 

In a second linear stability test, the m=1 tilt mode of a spheromak in a “tuna can” 

cylindrical domain was simulated and compared to published growth rate 

calculations.  This test was performed for two main reasons.  First, due to the 



49 

 

discrepancy between MH4D screw pinch kink mode growth rate predictions and 

linear stability analyzer predictions, a second benchmark was desirable.  Second, 

the PSI-Center had previously used spheromak tilt mode simulations to test 

atomic physics models.  Developing spheromak tilt simulations in MH4D 

provided continuity between MH4D atomic physics development and previous 

atomic physics work. 

4.2.1 Theoretical Background 

Details about spheromak equilibria can be found in Bellan [12].  The three 

components of magnetic field for an m=0 cylindrical equilibrium are as follows: 

( ) ( )

( ) ( )

( ) ( )

0 1

2

0 12

0 0

cos

1 sin

sin

z
r r z

r

z
r z

r

z r z

kB B J k r k z
k

kB B J k r k z
k

B B J k r k z

φ

 
= −  

 

= +

=

 (52) 

where kz=π/L, kr=3.8317/R, and L and R are the length and radius of the 

cylindrical domain. 

Two spheromaks are shown in Figure 17.  On the left is a stable spheromak in an 

oblate or “tuna can” flux conserver.  On the right is an unstable spheromak in an 

prolate flux conserver.  The tilt instability can be explained by a minimum energy 

argument.  When L/R is <1.67, as for the tuna can flux conserver, energy is 

required to tilt the spheromak.  When L/R >1.67, a tilted configuration is 

energetically favorable. 
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⇒L

R

⇒⇒⇒L

R

 

Figure 17: Illustrations of tilt-stable (left) and tilt-unstable (right) 
spheromak configurations. 

Figure 18 shows growth rates versus L/R for various β values. 

 

Figure 18: Spheromak m=1 tilt growth rates vs. L/R at various β [17]. 
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4.2.2 MH4D modeling of the spheromak 

Initially, the plasma has uniform pressure=100 Pa and temperature=10 eV.  The 

initial magnetic field peaks at 1 T, and corresponds to the zero-β equilibrium field 

per Eqn. (52).  Thus, the initial plasma β is 0.025%7.  L/R=2.5 was chosen for 

these simulations, where L=2.5 m and R=1 m. 

In MH4D, the initial condition must be provided in terms of A (MH4D’s 

primitive variable) rather than B.  For this axisymmetric configuration, we know 

that 

( )

( )

( ) ( )1

rr

r z

zz

A
z

A A
z r

rA
r r

φ

φφ

φ

∂
∇× = = −

∂
∂ ∂

∇× = = −
∂ ∂

∂
∇× = =

∂

A B

A B

A B

 (53) 

Solving the upper equation of Eqns. (53), r
z

A B dzφ = −∫ .  One of the two 

remaining components, Ar and Az, can be assumed equal to zero.  Taking Az=0, 

straightforward integration yields a form for A whose curl is the desired B. 

Conducting boundary conditions are used for this problem.  Corners at the top 

and bottom of the cylindrical domain are treated specially.  Surface normals are 

pointed in a direction that is normal to neither of the surfaces that converge at 

the corners as shown in Figure 19.  A special routine in setbc.f is used to ensure 

                                                 
7 This β value (β=0.025%) is for a uniform pressure profile.  The β values shown in Figure 18 are for a non-

uniform pressure.  With uniform pressure, it is found that β affects growth rates significantly – much more 
than indicated in Figure 18. 
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that appropriate normal or tangential components are zeroed on both converging 

surfaces. 

 n̂  

 

Figure 19: Incorrect surface normal at corner of cylindrical spheromak 
domain. 

Tangential boundary components of A, determined from Eqns. (53), are non-

zero.  With some slight code modifications, MH4D handles this naturally by 

requiring tang. 0
t

∂
=

∂

A
 instead of tang. 0=A on conducting boundaries. 

The perturbation for the problem is a rigid rotor velocity perturbation modulated 

by parabolic functions of radius and height to prevent perturbed velocity at radial 

and axial boundaries.  The rotation is around an axis perpendicular to the cylinder 

centerline through the geometric center of the cylinder.  The perturbation value is 

0.001 Av v= .  The Alfvén speed used for this perturbation (and for growth rate 

normalization, below) is based on the peak magnetic field strength and the 

uniform initial plasma density. 
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4.2.3 Results and Discussion 

A plot of normalized kinetic energy growth rate versus simulation resolution is 

provided in Figure 20.  A snapshot of a simulated tilting spheromak which is 

entering the non-linear growth phase is provided in Figure 21. 

y = -0.7068x + 0.1683
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Figure 20: MH4D spheromak normalized kinetic energy growth rates vs. 
resolution.  Peak resolution is dx=4.5 mm (R/dx=25) which required a 
total of 810,000 tetrahedra. 

 

Figure 21: MH4D spheromak tilt simulation, toroidal magnetic field 
contours.  t=32 µsec, dx=10 cm (R/dx=10). 
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If the tilt is in a known plane, the toroidal field is easily plotted.  For example, if 

the spheromak tilts the y-z plane, the Bx component is the toroidal component 

(as in Figure 21).  In these simulations, it was discovered that grid error can 

overwhelm the initial perturbation and cause the spheromak to tilt arbitrarily.  If 

the mesh for the spheromak problem is created with T3D by discretizing the 

entire cylindrical volume at once, grid errors can be asymmetric.  To prevent this 

problem, a grid can be created by reflecting a lengthwise slice.  Then, net grid 

errors are symmetric and the tilt direction is determined by the perturbation. 

As seen in Figure 20, the converged growth rate prediction is 0.168.  As in the 

screw pinch simulations, the convergence seen in Figure 20 is linear with 

resolution.  Based on the data in Figure 18, a growth rate of 0.17 is expected for 

L/R=2.5.  Thus the difference between MH4D kinetic energy growth rate 

prediction and the linear stability prediction is around 1%. 

The spheromak tilt results indicate reasonable performance of MH4D. 
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Chapter 5  

ATOMIC PHYSICS TESTS 

5.1 Simulation of stationary, constant temperature plasma 

Three test problems involving stationary, constant temperature plasma have been 

solved.  Two of the problems have analytical solutions.  The third problem is a 

coronal equilibrium test for which empirical results are available in literature. The 

test problems and results are presented, and then implementation details are 

discussed. 

5.1.1 Background for analytical test problems 

With the ionization and recombination models described in Section 3.5, two 

simple problems with analytical solutions have been solved with MH4D.  In these 

problems, the plasma has zero velocity, and temperature is constant.  A spatially 

and temporally constant neutral density is assumed.  A box domain with coarse 

discretization (roughly 100 tetrahedra) is used.  Conducting hardwall boundary 

conditions are used. 

The equation describing ionization is 

i
ion e i nnt

ρ σ ρ∂
= 〈 〉

∂
v , 

which has the analytical solution, 

( ) [ ]0 expi ion et tρ ρ σ= 〈 〉v , 

where ρ0 is the initial plasma density.  For recombination, 
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2i
rec e i i rec e in C

t
ρ σ ρ σ ρ∂

= −〈 〉 = −〈 〉
∂

v v , 

where C is the conversion from kg/m3 to #/m3.  This has the solution, 

1

0

1
i ion et Cρ σ

ρ

−
 

= 〈 〉 + 
 

v . 

These two analytical problems are called the “isolated ionization” and “isolated 

recombination” problems. 

5.1.2 Background for coronal equilibrium test problem 

At a given temperature, the ionization fraction of a plasma in coronal equilibrium 

is predictable.  A variable neutral density is implemented in MH4D to allow this 

test. 

5.1.3 Results and discussion 

MH4D successfully produces the analytical solutions for various initial data and 

ionization and recombination rates for the isolated ionization and isolated 

recombination problems.  Some difficulty was encountered with timestep choice 

in the isolated ionization problem.  Consider the number density change for 

plasma, i
ion e i n

n n n
t

σ∂
= 〈 〉

∂
v .  MH4D is set up so that the number of new ions 

cannot exceed the number of available neutrals.  Thus, if in t
t

∂
∆

∂
 exceeds nn , the 

solution found by MH4D does not match the analytical solution (this is obvious 

in retrospect). 
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MH4D predicts coronal equilibrium ionization fractions similar to those 

estimated in Goldston and Rutherford [9] as shown in Table 3. 

Table 3: MH4D coronal equilibrium predictions compared to literature. 

TeV % ionized,

MH4D 

% ionized, 

Goldston and Rutherford 

13.6 99.997 ~99.999

1.5 57 ~50

 

There is an obvious theoretical timestep limit for ionization and recombination 

rates, 

i
i n

ndn t n
t

∂
= ∆ <

∂
   and   n

n i
ndn t n
t

∂
= ∆ <

∂
. 

These limits reflect the fact that the number of new ions cannot exceed the 

number of existing neutrals and vice versa.  In addition to this theoretical limit, a 

practical limit exists.  If  ,i ndn  ( ,i nn t
t

∂
= ∆

∂
) is of order ,i nn , oscillatory solutions 

are obtained for the coronal equilibrium problem as shown in Figure 22.  

Restricting ∆t such that ,
, 10

i n
i n

n
dn <  is observed to produce temporally smooth 

solutions. 
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Figure 22: Atomic physics simulation ionization fraction vs. time at 1.5 
eV.  With dt=1x10-7, the solution is smooth.  With dt=1x10-6, the solution is 
oscillatory. 

5.2 Spheromak tilt with neutral gas 

A spheromak tilt problem has been used to qualitatively verify the modifications 

to the momentum and pressure equations seen in Eqns. (45) and (46).  There are 

no standard test problems to assess a code’s ability to capture atomic physics 

effects.  However, when a plasma is increasing its mass by ionizing a neutral gas 

background, the atomic physics terms in the momentum equation should slow 

any instability growth rates.  The spheromak tilt mode is simulated with and 

without an ionizing neutral gas background.  Generally, if plasma mass increases 

significantly, a significant slowing of the growth rate is expected. 

5.2.1 Spheromak tilt test problem background 

Time (sec x 10-5)

Ionization 
fraction 
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General theoretical background and implementation details of the spheromak 

problem setup can be found in Section 4.2.  In this atomic physics test, β=0.25% 

is used.  This corresponds to T=100 eV.  In the spheromak tilt benchmark test 

described in Section 4.2, T=10 eV is used.  The higher temperature, 100 eV, is 

desirable for this atomic physics test because it causes full ionization prior to the 

linear kinetic energy growth phase (but the associated higher β does slightly 

reduce the growth rate as the results indicate). 

5.2.2 Results and discussion 

Figure 23 shows results kinetic energy vs. time for a spheromak tilt simulation in 

which a background neutral gas is initialized with 1/5 the density of the initial 

plasma. 

kinetic
energy

(J)
with neutral gas

without neutral gas

time (sec x10-5)

(dx = 0.075 m)

kinetic
energy

(J)
with neutral gas

without neutral gas

time (sec x10-5)

kinetic
energy

(J)
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without neutral gas

time (sec x10-5)

(dx = 0.075 m)

 

Figure 23: Kinetic energy vs. time from spheromak tilt simulations with 
and without atomic physics.  Growth rate is clearly reduced in simulation 
with initial neutral gas. 
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Figure 24 shows how the total plasma mass varies with time.  As seen, the neutral 

gas is quickly and nearly completely ionized.  The increased mass slows the 

spheromak tilt as seen in Figure 23.  The converged tilt growth rate without 

neutral gas is found to be 0.161.  With an initial neutral gas background, the 

growth rate is 0.146 – reduced by 9%.  This result qualitatively verifies the atomic 

physics implementation. 

( )
( 0)

plasma

plasma

m t
m t =

( )time s
 

Figure 24: Total plasma mass as a fraction of initial mass vs. simulation 
time for spheromak with initial neutral gas.  The plasma is fully ionized 
by 10 µs. 
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Chapter 6  

DEVELOPMENT BY APPLICATION TO THE ZAP FLOW Z-PINCH 

EXPERIMENT 

Since the ultimate goal of computational plasma science is to understand 

phenomena observed in experiment, an important part of code development is 

application to experiments.  This aspect of MH4D development has focused on 

the ZaP Flow Z-Pinch Experiment at the University of Washington [32].  

MACH2 [33] ZaP simulation results are used as a benchmark for the MH4D 

simulations. 

6.1 Introduction to the ZaP Experiment and terminology 

A ZaP schematic is provided in Figure 25.  As indicated, the annular region 

between the inner and outer electrode is called the “acceleration region”.  The 

cylindrical region beyond the tip of the inner electrode is called the “assembly 

region”.  Other important features include the neutral gas injection plane and the 

hole in the endwall that allows outflow. 
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boundary
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Figure 25: ZaP simulation diagram and MH4D 1/8-slice domain.  An 
azimuthal magnetic field with 1/r dependence is applied at the insulating 
boundary indicated. 

In ZaP, neutral gas (often Hydrogen) is injected into the acceleration region, the 

gas is ionized and accelerated into the assembly region where a Z-pinch with 

sheared axial flow is formed.  This process is depicted in Figure 26. 
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Figure 26: Conceptual diagrams of ZaP Z-pinch formation [34].  In the 
upper frame, an annular current sheet has developed and a “snowplow” 
effect is seen.  In the lower frame, the Z-pinch formation has started and 
residual neutral gas and plasma is present in the acceleration region. 

While the neutral gas is still concentrated near the ports, voltage is applied and 

some of the gas is ionized.  This ionized gas forms an annular current sheet which 

is accelerated axially into the assembly region by Lorentz forces.  Near the inner 

electrode, higher current density and higher magnetic fields cause a “snowplow” 

effect in which plasma close to the inner electrode moves faster than outer 

plasma.  The sheet is stretched as it forms the Z-pinch, embedding axially sheared 

flow in the pinch.  Some residual plasma is left behind in the acceleration region.  

New plasma is formed from the neutral gas that was not initially ionized.  Sheared 
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flow is probably maintained to some extent by plasma that emerges from the 

acceleration region well after initial pinch formation.  Sheared flow stabilizes the 

Z-pinch for over 2000 times the growth time of a static Z-pinch [32].  Resolved 

MHD simulations of ZaP should capture the essential behavior described above. 

6.2 Basic ZaP simulation approach 

1-eV plasma is initialized in an annular volume with 20 cm axial length, centered 

on the neutral gas injection plane in the acceleration region.  The initial plasma 

density is 6.0x10-5 kg/m3, corresponding to a total mass of 2.8x10-7 kg.  Total 

mass injected in the experiment is typically 1-3x10-7 kg. 

Flux is injected at the insulating boundary shown in Figure 258.  To accomplish 

the flux injection, a time-varying magnetic field boundary condition is applied to 

the insulating back wall.  The applied field is in the azimuthal direction.  The 

current generated due to the applied field can be calculated using Ampère’s Law: 

( )0 / 2encB I rθ µ π= .  (Refer to Figure 28 for current profiles used in simulations.) 

Except for the insulator, boundaries are modeled as conducting walls.  To make 

high-resolution simulations feasible, periodic boundary conditions are used to 

model only a 1/8-slice of the domain.  Various combinations of Chodura and 

Spitzer resistivity are used.  Sometimes, a resistivity floor is used to maintain 

dissipation in the simulations.  A resistivity cap is always used to prevent extreme 

numerical stiffness.  A density floor is used with a value 10 to 100 times smaller 

than the initial density in the gas puff. 

                                                 
8 Treating the entire back wall of the experiment as an insulating boundary is a simplification, but modeling 

the more complicated insulator geometry should not significantly change the simulation results. 
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6.3 Assessment of implicit induction advance via ZaP simulation 

As described in Section 2.4, the explicit timestep limit for the induction equation 

is prohibitive.  By advancing the induction equation implicitly, presumably, 

significantly larger timesteps can be taken and computational effort can be 

dramatically reduced for a given simulation without sacrificing accuracy.  This 

expectation has been tested via simulations of the ZaP acceleration region.  This 

section presents several implicit runs and one explicit run with different timestep 

sizes, but with a fixed computational grid and fixed simulation parameters.  The 

peak resistivity for these simulations is 0.025 ohm-m (equivalent to Spitzer 

resistivity for a 0.1 eV plasma).  A combination of Spitzer and Chodura resistivity 

is used.  The density floor is 1x10-6.  The mesh size is 6 mm.  In Table 4, key 

simulation characteristics of these runs are shown for each timestep size.  Figure 

27 gives a plot of computational effort versus timestep size. 

Table 4: Implicit advance accuracy with various timestep sizes.  Key 
simulation characteristics are shown.  There is <1% variation in 
maximum velocity or location of the peak pressure.  The peak pressure 
value increases by only 4% for the largest timestep. 

dt (ns) vmax (m/s)
deviation 

(%) ppeak (Pa)
deviation 

(%)

z-location of ppeak 

(m from insul. 
boundary)

deviation 
(%)

0.06* 65410 0.000 320686 0.000 0.36152 0.000
0.5 65440 0.046 321986 0.405 0.36152 0.000
1 65460 0.076 323857 0.989 0.36152 0.000
2 65520 0.168 326575 1.836 0.36322 0.470
4 65610 0.306 334595 4.337 0.36152 0.000

* Explicit  
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Figure 27: Computational effort with implicit induction advance.  
Computing time vs. number of timesteps is shown for the five runs in 
Table 4.  Computing time is reduced linearly with the number of 
timesteps for the runs shown. 

The qualitative plasma behavior in all of these simulations is identical.  The 

deviation of 4% in pressure, seen in Table 4, certainly does not obscure the 

essential plasma behavior.  The results shown in Figure 27 suggest that increasing 

the timestep has not yet become counterproductive (with a sufficiently large 

timestep, the benefit of less time steps would be balanced by time spent in the 

iterative solver).  The maximum timestep for these simulations, 4 ns, is dictated 

by the wave-flow timestep limit (see Section 2.5).  These results indicate that 

pushing the timestep to the wave-flow timestep limit is generally acceptable and 

appropriate for maximizing computational efficiency. 
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6.4 MACH2 benchmark 

MH4D ZaP simulations have been performed.  The results are benchmarked 

against ZaP simulation results from MACH2 [33], a 2½D MHD code.  The 

MACH2 simulations were not conducted as part of this research. 

In Section 6.4.1, MACH2 and MH4D simulation conditions are compared.  

Sections 6.4.2 and 6.4.3 present MACH2 and MH4D results.  In Section 6.4.4, 

results are compared and discussed. 

6.4.1 Simulation conditions 

Simulation conditions for MACH2 and MH4D are shown in Table 5.  In ZaP, a 

hole in the endwall allows outflow.  This outflow boundary is modeled in 

MACH2 but not in MH4D.  The resolutions used in the MH4D runs are 

significantly lower than the corresponding resolutions in MACH2 runs.  

Differences in density floor and radiation modeling are probably of secondary 

importance as compared to the outflow boundary condition and the resolution 

difference. 

The current profiles for MH4D and MACH2 are similar as shown in Figure 28. 
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Table 5: Comparison of ZaP simulation conditions for MACH2 and 
MH4D.  Differences are highlighted.  Conditions for MH4D runs at two 
resolutions (coarse and fine) are shown.  MACH2 uses elongated 
rectangular cells (with length dimension dz larger than radial dimension 
dr).  In the assembly region, resolution is maximum on the pinch axis 
and minimum at the radial wall. 

Feature MACH2 MH4D 

Current b.c. See Figure 28. 
Similar. 

See Figure 28. 

Outflow b.c. Yes No 

Tinit. 1 eV 1 eV 

ρinit. 6e-5 kg/m3 6e-5 kg/m3 

ρfloor 1e-8 kg/m3 
1e-6 / 7 kg/m3 

(coarse / fine) 

Radiation Line radiation, 1% O2 None 

Resistivity Spitzer Spitzer 

Ohmic heating Yes Yes 

( ) 0
n

p∇ =  Yes Yes 

Velocity b.c. Slip Slip 

Resolution in accel. 

region 
dr=2.5 mm, dz=4 mm

dxfine = 4 mm 

dxcoarse = 6 mm 

Resolution in 

assembly region 

(pinch axis / wall) 

dr = 0.5 / 3 mm 

dz =4 mm 

dxfine = 2 / 4 mm 

dxcoarse = 3 / 6 mm 
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Figure 28: Current profiles for MH4D and MACH2 ZaP simulations.  
The MH4D applied current profile closely matches the MACH2 profile. 

6.4.2 MACH2 results 

Snapshots of density and pressure during a MACH2 simulation are presented in 

Figure 29 and Figure 30.  Figure 29 concentrates on the first 15 µs on the 

acceleration process, while Figure 30 shows snapshots from 20 to 50 µs.  The 

MACH2 simulation continues through 100 µs but these snapshots illustrate the 

key predicted plasma behavior. 
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Figure 29: Snapshots of MACH2 ZaP simulation acceleration behavior.  
The snowplow effect pushes plasma to the outer wall.  Pinch formation 
begins at 15 µs.  (z-axis scale is compressed 5:1 relative to the radial scale.) 

0 µs 5 µs 

10 µs 15 µs 
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Figure 30: Snapshots of MACH2 ZaP simulation assembly behavior.  
Plasma from the acceleration region feeds the pinch and is incorporated in 
the pinch or exhausted through the outflow boundary.  (z-axis scale is 
compressed 5:1 relative to the radial scale.) 

20 µs 30 µs 

40 µs 50 µs 
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6.4.3 MH4D results 

Two MH4D simulations are presented.  Parameters for the simulations are 

shown in Table 5.  One is called the “coarse” simulation and the other, “fine”.  

The coarse simulation has 420,000 tetrahedra and the fine simulation has 

1,300,000 tetrahedra.  The differences in the simulations are in resolution and 

density floor: in the “fine” run, mesh size 50% smaller, and the density floor is 

lower by a factor of 10.  Snapshots corresponding to the snapshots presented for 

MACH2 are presented in Figure 31 and Figure 32 for the coarse run and Figure 

33 and Figure 34 for the fine run. 
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Figure 31: Snapshots of “coarse” MH4D ZaP simulation acceleration 
behavior.  Snowplow only partially forms and plasma is almost uniformly 
accelerated axially.  (z-axis scale is compressed 5:1 relative to the radial 
scale.) 

0 µs 5 µs 

10 µs 15 µs 
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Figure 32: Snapshots of “coarse” MH4D ZaP simulation assembly 
behavior.  Uniformly accelerated plasma compresses and rebounds from 
the endwall, creating shock waves in the simulation.  (z-axis scale is 
compressed 5:1 relative to the radial scale.) 

20 µs 30 µs 

40 µs 50 µs 
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Figure 33: Snapshots of “fine” MH4D ZaP simulation acceleration 
behavior.  Snowplow forms and pushes plasma to outer wall.  (z-axis scale 
is compressed 5:1 relative to the radial scale.) 

 

0 µs 5 µs 

10 µs 15 µs 
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Figure 34: Snapshots of “fine” MH4D ZaP simulation assembly behavior.  
Plasma was pushed against outer wall and slowly enters assembly region.  
No density pinch is formed.  Pressure pinch is not as tight as in MACH2.  
(z-axis scale is compressed 5:1 relative to the radial scale.) 

 

20 µs 30 µs 

40 µs 50 µs 
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6.4.4 Comparison and discussion 

The acceleration region behavior in the fine MH4D simulation is much different 

than in the coarse simulation.  In the coarse simulation, the plasma is accelerated 

almost uniformly toward the assembly region.  Inertia carries the bulk of the 

plasma to the endwall where it rebounds, causing shockwaves that are not seen in 

the MACH2 results or in the fine simulation results.  In the fine simulation, as in 

MACH2, the snowplow forces the bulk of the plasma to the outer wall where it 

moves slowly toward the assembly region.  Density distributions at 20 and 30 µs 

in the fine simulation are comparable to those seen in the corresponding MACH2 

plots. 

ZaP diagnostics reveal a discrete Z-pinch with 1-cm radius.  In the 30, 40 and 50 

µs snapshots, MACH2 density contours show this 1-cm-radius pinch on the axis.  

MH4D does not capture this peaked density in either the coarse or the fine 

simulations.  This difference is probably due primarily to insufficient resolution in 

the pinch region.  High radial gradients in pressure and density are not resolved, 

and a tight pinch cannot form in the simulations.  Outflow, which is modeled in 

the MACH2 simulation, but not in the MH4D simulations, could also play a role. 

High magnetic fields are present in the simulations at the cathode nosecone.  

Increasing resolution at the nosecone reduces the maximum magnetic field 

magnitudes, indicating that the high fields are at least partly due to numerical 

error (see discussion of ∇ • B  in Appendix A.3).  A “shadowing” effect could 

also contribute to these high magnetic fields, as the predominantly axially-directed 

plasma passes the cathode nosecone. 

The semi-implicit algorithm is not used in these simulations.  Some difficulties 

have been encountered in applying the algorithm.  However, even with the semi-
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implicit momentum advance functioning to eliminate the magnetosonic wave 

speed timestep restriction, high flow speeds in ZaP will force small timesteps.  In 

MACH2, this issue is alleviated by using elongated grid cells in the direction of 

high flow speeds (i.e. the axial direction), easing the timestep restriction.  MH4D 

cannot use this grid alignment technique because distorted tetrahedra cause 

numerical inaccuracy. 

Computational effort for the fine MH4D run was 10 hours on 64 NERSC Bassi 

processors (1.9 GHz per processor).  Using the semi-implicit algorithm, the effort 

could be reduced by roughly a factor of 5, despite the high flow speeds.  Based on 

this information, a simulation with MACH2-like resolution seems within reach. 

In summary, MH4D simulation results are seen to converge to the MACH2 

results in the acceleration region.  However, predictions by MH4D and MACH2 

of Z-pinch behavior in the assembly region differ significantly.  As discussed, 

further research to develop and improve MH4D ZaP simulations is possible.  

Such research would at least explore and probably extend the known capabilities 

of the code. 



79 

 

6.5 ZaP simulation with 3D neutral gas injection 

To exercise the 3D capability of MH4D, a ZaP acceleration region simulation 

was performed with a 3D “puff” of neutral gas replacing the previously-described 

uniform density “block” initial condition.  This 3D initial condition is shown in 

Figure 35. 

End view

Side view

Gas inflow at inner and 
outer electrodes.

dx = 3 mm
for this sim.

 

Figure 35: 3D gas “puff” initial condition.  This initial condition is 
generated by separately simulating gas injection.   During injection, by not 
advancing the induction equation, plasma is treated like neutral gas. 

Gas injection is accomplished in MH4D by designating inflow boundary vertices 

and allowing normal velocity, and normal pressure gradients for those vertices.  

Dirichlet boundary conditions are set on pressure and density.  In gas injection 

simulations (i.e. the simulations to generate the initial condition shown in Figure 

35), the induction equation is not advanced and magnetic field and vector 

potential are zero everywhere in the domain.  Density and pressure boundary 

values and injection time were varied to produce a gas puff with reasonable 
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characteristics.  The total injected mass in the initial condition shown in Figure 32 

is equal to the total mass in the 2D density block initial conditions used for 

MACH2 and MH4D simulations shown in Section 6.4. 

Figure 36 presents the 3D puff simulation results.  To visualize simulated plasma 

behavior, two cutplanes are used as shown.  Density contours in these two 

cutplanes are shown at several simulation times.  The initially azimuthally 

asymmetric plasma symmetrizes as the plasma is accelerated and as it converges 

on the pinch axis. 
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Figure 36: Density evolution in ZaP simulation with 3D gas puff initial 
condition.  At t=0, plasma is azimuthally localized in the injection plane.  
Significant azimuthal symmetrization is evident as the simulation 
progresses.  (Note that the entire ZaP domain is simulated, but the 
visualized domain is truncated at approximately 0.2 meters axially beyond 
the cathode tip.) 
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Azimuthal symmetrization is also observed experimentally.  Figure 37 shows 

Imacon Fast-Framing Camera pictures taken from the ZaP endwall looking in the 

negative z direction.  Breakdown occurs at a single injection location.  The 

accelerating plasma symmetrizes azimuthally. 

10 us 11 us 12 us 13 us

14 us 15 us 16 us 17 us
Pulse: 70813025

10 us 11 us 12 us 13 us

14 us 15 us 16 us 17 us
Pulse: 70813025  

Figure 37: Imacon images looking into the accelerator from the end of 
ZaP.  Breakdown occurs at one of the eight gas ports.  The plasma 
symmetrizes azimuthally as it is accelerated. 

6.6 ZaP simulation with atomic physics 

The MH4D atomic physics implementation has been applied to ZaP.  Plasma and 

neutral gas are initialized in the acceleration region.  The simulations described 

here begin with an ionization fraction of 1/2.  Other simulation parameters are 

similar to those described in Section 6.3. 

Figure 38 shows snapshots of the simulated neutral gas density and plasma 

density.  As seen, a significant part of the original neutral gas is ionized.  The 

simulation is stopped at 15 µs because the plasma collides with the endwall in the 
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acceleration region simulation.  Figure 39 shows the neutral gas density vs. time.  

As shown, net plasma generation occurs throughout the simulation. 

 

Figure 38: Snapshots of ZaP acceleration region simulation with neutral 
gas.  Simulation is stopped at 15 µs when plasma hits endwall.  Neutrals 
are ionized by hot plasma.  (dx=4 mm) 
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Figure 39: Plasma mass and neutral mass vs. time for acceleration region 
simulation with neutral gas.  Significant plasma generation begins around 
9 µs and continues through the simulation. 

The atomic physics model implemented in MH4D predicts a source of plasma 

via neutral gas ionization.  As described in Section 6.1, this plasma source likely 

plays a role in maintaining the sheared axial velocity profile that stabilizes the Z-

pinch. 
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Chapter 7  

CONCLUSION 

7.1 Concluding remarks 

MH4D has been improved as a computational tool by implementing useful 

boundary conditions for plasma simulation, and by adding important physics 

features to the code.  A periodic boundary condition, useful for domain 

reduction, mode selection, and wave modeling, is now available.  An insulating 

boundary condition has been implemented and allows flux injection.  Spitzer and 

Chodura resistivity models have been added, and Ohmic heating is now an 

option.  Atomic physics has been implemented.  Simulations that have been 

conducted with atomic physics provide insight into requirements for numerical 

stability and accuracy, and form a basis for future development in MH4D or 

other codes. 

The quasi-linear regimes of the non-linear screw pinch kink and spheromak tilt 

instabilities have been simulated with MH4D.  The results are benchmarked 

against linear stability code results, and agreement is reasonable. 

MH4D is now adaptable to a variety of problems as shown in this research.  In 

addition to the instability simulations, the code has been applied to the ZaP Flow 

Z-Pinch experiment.  When resolution is sufficient and simulation conditions 

match, the results compare favorably to results from MACH2, a 2½D MHD 

code. 

This research demonstrates that MH4D is a useful tool for physics development.  

Also, MH4D is shown to be useful for qualitative analysis of plasma behavior.  

High resolution is often needed to capture important details, and in three 
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dimensional simulations is inherently challenging because the degrees of freedom 

(e.g. the number of tetrahedra) in the computational domain grow with (1/dx)3.  

The first-order accuracy and the irregular computational grid of MH4D do not 

maximize computational efficiency.  However, the tetrahedral mesh formulation 

is convenient and flexible.  Steadily increasing availability of computational 

resources might allow useful high-resolution simulations with MH4D.  This code 

development research has only begun to explore the practical utility of MH4D 

for resistive MHD simulation. 

As shown in Section 1.4, resistive MHD does not contain all of the required 

physics for accurately modeling EC experiments.  MH4D is not a practical 

platform for including the missing physics, in particular the Hall effect and the 

diamagnetic effect.  With these two-fluid effects, the MHD equation system 

includes high-speed waves that increase in speed with (1/dx)2.  A code with first-

order spatial accuracy pays a much higher penalty (in the form of small timesteps) 

for high resolution than a code with higher-order accuracy.  Furthermore, the 

temporal stiffness of the system is such that a fully implicit approach is highly 

desirable.  (A discussion of practical considerations for modeling with two-fluid 

physics can be found in [36].) 

7.2 Future study 

Some additional development of MH4D could be pursued.  As described in 

Section 6.4, an important improvement to MH4D would be to develop the semi-

implicit method for general use.  Furthermore, there is some interest in applying 

the code to experiments that require full 3D treatment such as the HIT-SI 

experiment at the University of Washington and the CTIX experiment at the 

University of California at Davis. 
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MH4D will likely be used as a platform for additional atomic physics 

development. 

While the “best” formulation for modeling EC experiments, in terms of spatial 

discretization method and time advance approach, is not obvious, high-order 

accuracy and implicit time advancement have clear advantages, particularly when 

two-fluid effects are included.  Future study is expected to center on developing a 

full 3D code based on the SEL code [35].  The code is to be called HI-FI (for 

High-order Finite elements).  HI-FI features will include a fully implicit time 

advance, and high-order finite elements on a semi-structured hexahedral domain.  

Like MH4D, HI-FI will have the flexibility to model complex geometries. 
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Appendix A 

MH4D Background 

A.1 – MH4D Units 

MH4D is based on the S.I. units.  Ampère’s Law (without displacement current) 

is usually 0µ∇× =B J .  In MH4D, B and J are redefined such that the factor of 

µ0:is distributed.  BM = 0µB  and JM = 0µJ .  Ampère’s Law becomes 

M M∇× =B J  where the “M” subscript is for “MH4D units”.  Given that B is 

the curl of A, clearly AM= 0µA . 

The induction equation is 
t

η∂
= × −

∂
A v B J  or in MH4D units, 

M
M M Mt

η∂
= × −

∂
A v B J .  From this equation, it is clear that ηM= 0η µ .  The 

other variables (velocity, density, pressure and time) retain their original S.I. units. 

In summary: 

Variable Conversion 

t n/a 

p n/a 

ρ n/a 

V n/a 

A AMH4D= 0µA . 
B BMH4D= 0µB . 
J JMH4D= 0µJ . 

η ηMH4D= 0η µ . 
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A.2 – MH4D Grid Information Data Structure 

A spreadsheet showing the MH4D grid information data structure after 

parallelization is shown in Figure A1 (in the code, the “geometry” subroutine 

contains comments describing the global reference arrays).  The variables shown 

in Figure A1 are declared in the header of the MH4D module tetrahedralgrid.f.  

As shown, derived type objects are created for vertices, tetrahedra, sides, and 

edges.  Within those objects is information like location, neighbors, surface area 

vectors, boundary flags, etc. 
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A.3 – MH4D Geometry Information and Proof that 0∇ • =B  Inside the 

Domain 

This appendix section provides a proof that the divergence of magnetic field is 

zero and briefly discusses some important computational characteristics of 

MH4D.  The appropriate geometric preliminaries are provided.  This appendix 

section is based on unpublished work by D. Schnack and R. Lionello. 

In the MHD model, the vector potential, A, the magnetic field, B, and the current 

density, j, are related by the curl operator, 

= ∇×B A , (A1) 

= ∇×j B , (A2) 

and so 

= ∇×∇×j A . (A3) 

As required by Eqns. (A1) and (A2), 0∇ • =B  and 0∇ • =j .  The second order 

differential operator in Eqn. (A3) is self-adjoint.  Ideally, a computational MHD 

code should preserve these solenoidal and self-adjoint properties. 

Some geometric preliminaries are now given to provide a basis for the discussion 

that follows.  A tetrahedral cell of the primary mesh is shown in Figure A2. 
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Figure A2: Tetrahedral grid cell 

The centroid of the cell is labeled C.  The vertices are labeled i, j, k, and l.  

Vertices j, k, and l are ordered clockwise as seen from vertex i.  The triangular 

sides are labeled by the index of their opposing vertex.  The area vectors for the 

sides, ˆi i iS=S n , are pointed out of the cell. 

The cross product of two edge vectors of a side give the area, e.g., 1
2i ik ij= ×S l l .  

The area vectors satisfy the relationship 

4

1
0i

i=
=∑S . (A4) 
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l il
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A second mesh is intertwined with the mesh of tetrahedral cells.  This “dual 

mesh” is shown in dashed lines inside the tetrahedral cell in Figure A2.  It can be 

shown that the points C, Cl, Ck, and mij are coplanar.  The quadrilateral defined by 

those four points, indicated by ijσ , is one of three areas that form the surface of 

the dual mesh volume inside of the cell that encloses vertex i.  It can be shown 

that the dual mesh surface area inside the cell τ  enclosing vertex i is 1
3i i

τ τ=s S .  

The volume of the dual mesh enclosing vertex i within cell τ is 1
4i

v Vτ
τ= .  The 

total dual mesh volume enclosing vertex i is then i iv vτ

τ

= ∑  where the sum is 

over tetrahedra that share vertex i. 

The vector potential A is defined at vertices.  Using a finite volume 

representation, magnetic field B is defined at cell centers in terms of A, and 

current density j is defined at vertices in terms of A. 

A generalization of Stokes’ theorem relates the volume integral of a curl to the 

integral of the vector over the control surface, 

dV d∇× = ×∫ ∫A S A . (A5) 

Applying Eqn. (A5) to tetrahedral cell τ, 

4

1
i i

i
Vτ τ

=

= ×∑B S A , (A6) 

where the sum is over the four triangular faces, and, for example, iA  is 

( )1
3i j k l= + +A A A A  (A7) 



97 

 

Then, using Eqn. (A4), Eqn. (A7) can be rewritten 

4

1

1
3 i i

iVτ
τ =

= − ×∑B S A , (A8) 

where the sum is now over the four vertices of the tetrahedron.  Eqn. (A8) is the 

primary definition of B in terms of A. 

The divergence of B is computed using Gauss’ theorem, 

dV d∇ • = •∫ ∫B B S , (A9) 

which is applied to the dual mesh volume element enclosing each vertex, 

( )
iii

v τ
τ

τ

∇ • = •∑B B s , (A10) 

where vi is the dual mesh volume around vertex i, the sum is over the tetrahedra, 

τ, surrounding vertex i, and 
i

τs  is the dual mesh area in tetrahedron τ associated 

with vertex i.  This can be rewritten in terms of A, 

( ) ( )
( ) ( )

( )

, , ,

1
3

1                
3

i

j i k i

l i

ii
i j k l

j k

l

v
V

V

γ γ

τ τ τ

τ γτ

τ τ τ τ τ τ

τ τ τ
τ τ

=

∇ • = • ×

 • × + • ×
 =
 + • × 

∑ ∑

∑

B A S S

A S S A S S

A S S

. (A11) 

Consider two adjacent tetrahedra sharing vertex i, 1τ  and 2τ , as shown in Figure 

A3.  Their common interface is shaded in the figure. 
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Figure A3: Two tetrahedra that share vertex i.  Their common interface is 
shaded. 

The terms from the common interface triangles are 

( ) ( ) ( )1 1 1 2 2 2

1 1 2 2

1 2

1 13 ... ...
i ii l l j ji

v
V V

τ τ τ τ τ τ

τ τ

∇ • = + • × + • × +B A S S A S S , (A12) 

It can be shown that 

1 1

1 1 1 1

3
2i l k jVτ τ

τ× =S S l , (A13) 

and 

2 2

2 2 2 2

3
2i j k lVτ τ

τ× = −S S l . (A14) 

Now Eqn. (A12) can be written 

( ) 1 2

1 1 1 2 2 2
2 ... ...i l k j j k li

v τ τ∇ • = + • + • +B A l A l . (A15) 
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By construction, 1 2

1 2l j
τ τ=A A  and 

1 1 2 2k j k l=l l , so the contributions from the 

common faces cancel and ( ) 0
i

∇ • =B .  That is, the divergence of B vanishes at 

interior vertices.  In simulations, it has been found that 0∇ • =B  is not enforced 

at boundary vertices in the current implementation. 

Using the same Stokes’ theorem approach, but now applied to the dual mesh 

volume around a vertex, the current density j is defined 

1
3i iv τ τ

τ

= ×∑j S B . (A16) 

By inserting the expression for B given in Eqn. (A8), it can be shown that Eqn. 

(A16) becomes 

( )
4

1

1 1
9i i j i i j j

j

v
V

τ τ τ τ τ

τ τ =

 = − − • • ∑ ∑j S S S S I A  (A17) 

This can be written as 

( )
( ) ( )

, ' jv τ τ
ν ν

τ ν ν τ

ν ν= •∑∑j AM , (A18) 

where ν  indicates a vertex, ( )τ ν  indicates a tetrahedron that shares vertex ν , 

and ( )ν τ  is a vertex of tetrahedron ( )τ ν .  This operator, τM  is symmetric and 

self-adjoint. 

The more complicated geometry involved in Eqn. (A17) has prevented 

theoretical analysis of ∇ • j  (a quantity stored at cell centers).  However 

simulations show that 0∇ • =j  is not enforced in the current implementation. 
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In summary, the MH4D formulation ensures 0∇ • =B  for interior vertices.  

Furthermore, the double curl operator is self-adjoint.  However, 0∇ • =B  is not 

enforced at boundaries, and 0∇ • =j  is not enforced. 
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Appendix B 

T3D Grid Generation 

The website for T3D (http://mech.fsv.cvut.cz/~dr/t3d.html) has a user guide, 

and several sample input files. 

Below is a sample t3d input file. 

# A simple 2x2x2 box 
 
vertex 11 xyz 0. 0. 0. 
vertex 12 xyz 0. 0. 2. 
vertex 13 xyz 0. 2. 2. 
vertex 14 xyz 0. 2. 0. 
vertex 15 xyz 2. 0. 0. 
vertex 16 xyz 2. 0. 2.  
vertex 17 xyz 2. 2. 2. 
vertex 18 xyz 2. 2. 0. 
 
curve 12 order 2 vertex 11 12  
curve 23 order 2 vertex 13 12 
curve 34 order 2 vertex 14 13 
curve 41 order 2 vertex 14 11  
curve 56 order 2 vertex 15 16  
curve 67 order 2 vertex 17 16  
curve 78 order 2 vertex 18 17  
curve 85 order 2 vertex 18 15  
curve 15 order 2 vertex 11 15  
curve 26 order 2 vertex 12 16  
curve 48 order 2 vertex 14 18  
curve 37 order 2 vertex 13 17  
 
surface 15 curve 12 26 56 15 output yes 
surface 16 curve 34 37 78 48 output yes 
 
surface 11 curve 12 23 34 41 output yes  
surface 13 curve 56 67 78 85 output yes 
 
surface 12 curve 26 23 37 67 output yes 
surface 14 curve 15 41 48 85 output yes 
 
region 31 boundary surface -11 12 13 -14 15 -16 size def 
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With this input file, the command to discretize this 2x2x2 box into tetrahedra 

with maximum edge length 0.1 and write the output file box.t3d is 

> t3d -i box.in -o box.t3d -d 0.1 

A useful T3D feature is its ability to control grid packing by using “background 

mesh” files.  This feature is critical for generating efficient meshes.  For a screw 

pinch simulation, for instance, it may be important to have a fine mesh near the 

axis of a cylindrical domain, and a smooth transition to coarse mesh near the 

cylinder wall.  The procedure for using background mesh files is detailed in the 

online manual. 

 

 

 


