INTRODUCTION

- Novel designs for underwater vehicles encourage the investigation of new propulsion systems. Batoids are fast, maneuverable, and highly efficient.
- The hydrodynamic merits are better established (Fish, 2016), but the structural dynamics have yet to be thoroughly investigated.

CONVENTIONAL UNDULATORY PROPULSION DESIGNS REQUIRE COMPLEX ACTUATION AND CONTROL.

- Our previous work demonstrates that batoid inspired structural characteristics undulate with simple excitation.
- We propose that Batoids exploit shape and structure induce, facilitate, and control undulatory motion.
- We intend to investigate this across the vast morphological and functional diversity (Martinez, 2016) of Batoids.

METHODS

- A simplified approach to characterize the fundamental dynamics of different species of batoids:
- We use Bezier functions to model the curvatures of the pectoral fin, and extended pectoral girdle.
- Laser cut flat plates can be stacked to create simple bi-stiffness structures for dynamic analysis.

Figure 1. DARPA Manta Ray UAV

Figure 2. Left: Fluorescence image of a section of skate fin skeleton. Right: Modeshape of a batoid inspired structure

Figure 3. From Top to Bottom: Mobula biradialis, Aetomylaeus nichofii, Gymnura crebibicornis, Raja clavata, Dasyatis acutirostris, Himantura imbricata, Urobatis maccutatus, Potamotrygon imamurana [image sources in Acknowledgements]

Figure 4. Flat plate model modal test rig

Figure 5. Workflow for designing batoid inspired structures with control over fin ray arrangement and radial stiffness matrix

ACKNOWLEDGEMENTS

- U-M LSA Museum of Zoology: Matthew Kolmann, Autumn Magnuson, Devya Hemraj-Naraine, Randal Singer, Herman Lopez-Fernandez, and Nate Lovejoy
- Micronesia Conservation Coalition
- Giuseppe Marramà
- Kayla C. Hall
- DARPA
- The Splash Lab, Tadd Truscott, KAUST

LITERATURE