Deep Space Travel with Fusion

- Interstellar flight is not feasible with current rocket technology, which produce too low exhaust speeds and require enormous amounts of propellant.
- The Z-pinch configuration could fulfill the requirements of both high thrust and high propellant utilization efficiency for operation into deep space.

Z-Pinch Plasma Thruster Schematic [1]

- The Z-pinch thruster would be lighter and smaller than other fusion approaches, which require complex applied magnetic fields.

What is a Z-Pinch?

- A Z-pinch is a configuration that magnetically confines high-temperature and high-density plasma to attain the conditions necessary for fusion.
- The Z-pinch is advantageous for achieving fusion as it does not require an applied magnetic field, and is a simple, linear configuration.

Measuring Thrust on ZaP-HD

- As the plasma is made up of moving charges with a current in the ‘Z’ direction, an azimuthal magnetic field radially ‘pinches’ the plasma via the Lorentz force.

Ballistic Pendulum Design

Expected Results

- Once the thrust stand is installed, we can process deflection measurements into values of thrust and specific impulse of ZaP-HD.
- We expect to record more than 1000 newtons of thrust and 7000 seconds of specific impulse as our new configuration is more potent than previously tested ones.

Device Name	Thrust (N)	Specific Impulse (s)
Aerojet Hall Thruster | 0.254 | 2020
Aerojet APS | 0.6 | 2800
VASIMR VX-200 | 6 | 5000
ZaP-HD | 1000 | 7000
Theoretical Z-Pinch Thruster | 3.3 \times 10^5 | 3.5 \times 10^5

Acknowledgements

We would like to thank the Washington NASA Space Grant Consortium, the William E. Boeing Department of Aeronautics & Astronautics, and the Department of Energy for supporting this research.