

How can we Improve Underwater Turbines with Hydrodynamic-Exploiting Control? STUDENTS: Ari Athair (Presenting), Abigale Snortland and Dr. Isabel Scherl

William E. Boeing Department of Aeronautics and Astronautics

Introduction

Cross-Flow vs Axial-Flow Turbines

- Lower individual efficiency, higher per unit area^[1]
- Constructive interference
- Insensitive to flow direction
- Lower optimal rotation rate

Why Variable Speed Control?

- Controlling angle of attack and hydrodynamics with fixed geometry^[2,3]
- Improves understanding of beneficial flow phenomenon
- Simple control scheme

$\omega_{control} = \omega_0 + A_{\omega} Cos(2(\theta - \phi))$

• Downside: models predict higher loads associated with improved performance

Methods

- Alice C. Tyler Flume test facility at Harris Hydraulics Lab
- Forces and moments measured with 6-axis load cells mounted at top and bottom of turbine
- Sweep of control parameters fixing $\omega_0 = 21 \frac{rad}{s}$ the optimal value for our turbine
- Particle Image Velocimetry (PIV) for key cases to explore near blade hydrodynamics
- Metrics of Interest:
- Power producing efficiency, η
- Ratio of average η to max in plane force, C_{Force}

ALASKA EALBBANKS

 ω_{contr}

Control Parameter Sweep

Max efficiency

WASHINGTON

10	improvement 15%		
) 10	Low sensitivity to changes in A_{ω}		
20 30 • 40	Higher sensitivity to changes in ϕ		
50 • 60 10	Narrow region of beneficial kinematics, more combinations produce poor performance		
-10 . -20 -30	It is possible to decrease loading while still improving performance!		
-40 -50 -60	 Optimal η Suboptimal η Optimal $\frac{\eta}{\max(C_{Force})}$ 		
)///	Fiel	ds	
	$\overline{)}$		
	111		

- reduction in η /max(C_{Force})

Future Work and Acknowledgments

- Data being used for CFD validation by collaborators at the University of Wisconsin
- Analysis of work repeated with the addition a cambered profile blades to assess impacts on hydrodynamics and performance
- Interpretation of results through the lens of Coriolis effects and virtual forces present in a rotational frame

Project supported by the naval facilities engineering systems command (NAVFAC) and the U.S. Department of Energy TEAMER Program

Phase Averaged Analysis

Key Take Aways

• Variable velocity control can improve power generation by 15% through peak torque and angular velocity alignment

• Structural costs can be decreased through a 16%

• Performance can be directly tied to flow field features deepening our understanding of beneficial flow phenomena

- **Faculty:** Dr. Owen Williams (AA) and Dr. Brian Palogye (ME)
- **References:**
- [1] J. O. Dabiri, (2011). "Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind tur-bine arrays," JRSE.
- [2] B. Strom, S. L. Brunton, and B. Polagye, (2017). "Intracycle angular velocity control of cross-flow turbines," Nat. Energy.
- M. Dave, B. Strom, A. Snortland, O. Williams, B. Polagye, and J. A. Franck, (2021) "Simulations of intracycle angular velocity control for a crossflow turbine," AIAA Journal.