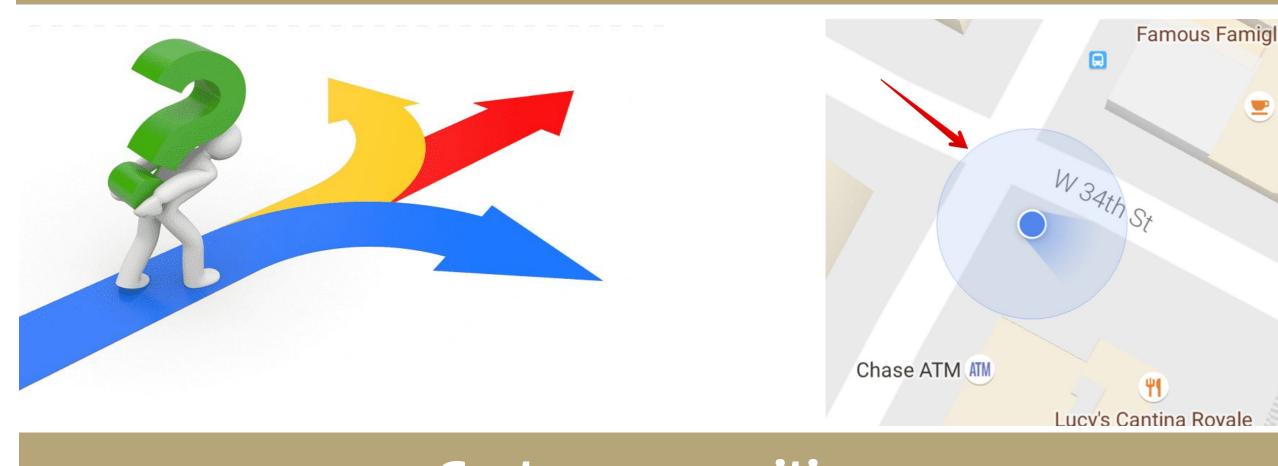
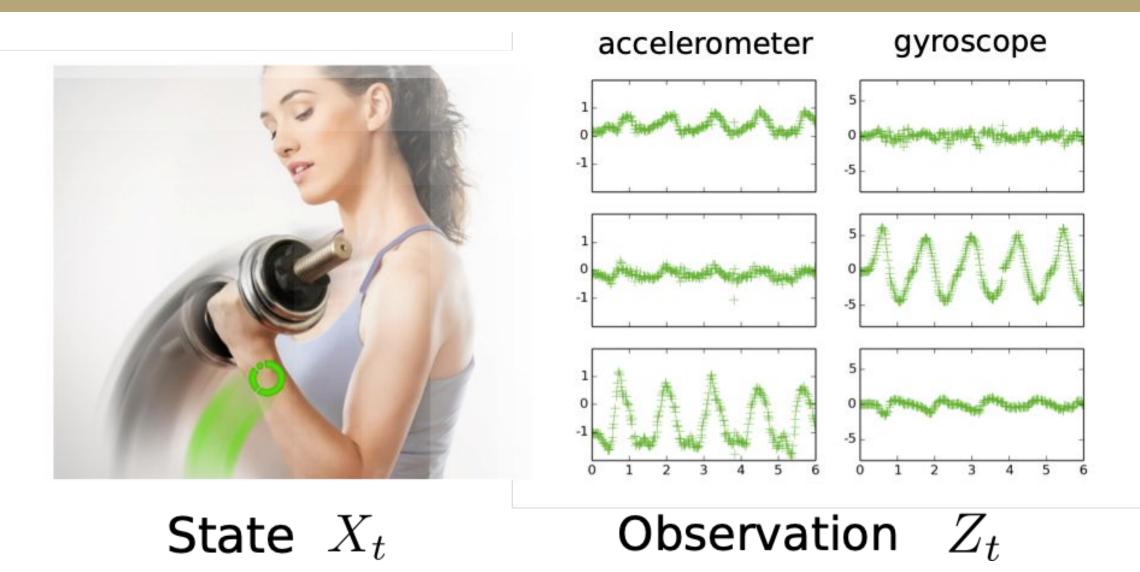
Optimal Transport Particle Filters

STUDENT: Mohammad Al-Jarrah

Embracing Uncertainty in Control Systems

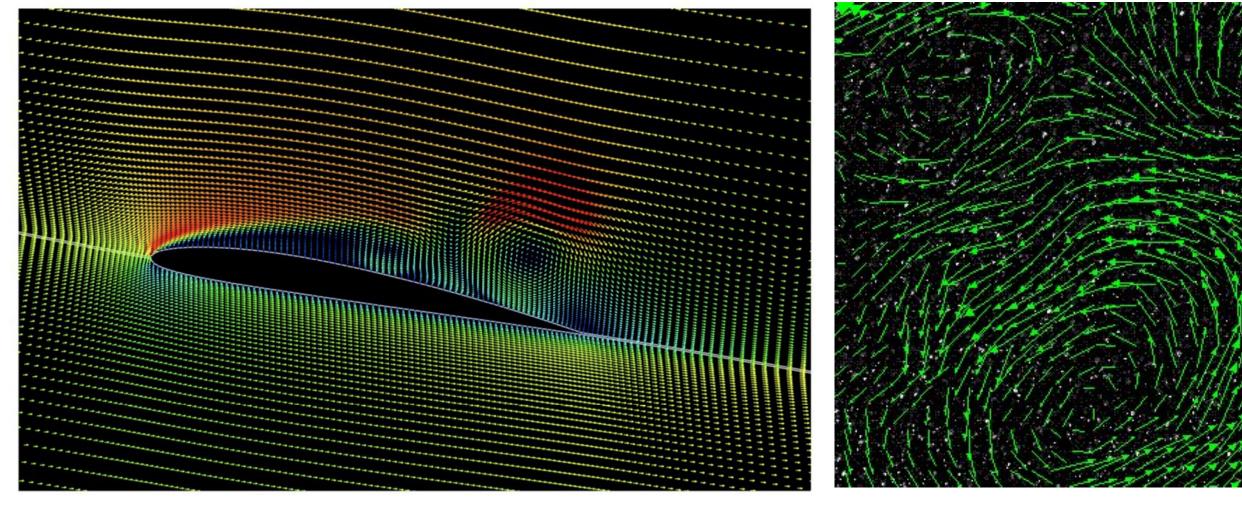


Gesture recognition



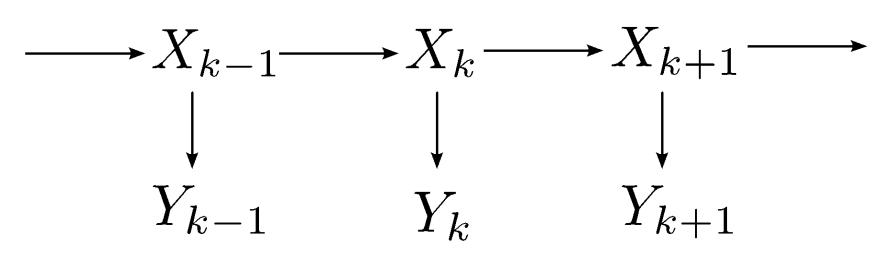
- ☐ Hidden state: Motion of hand
- Measurements: Motion sensors, accelerometer, and gyroscope
- □ Problem: Detection of gestures in real time

Particle image velocimetry



- Measurements: 2-D slice image of particle tracers
- Problem: Estimate velocity and trajectory of moving particle

Nonlinear Filtering, Bayesian inference



- \square State process: $X_k \sim a(\,\cdot\,|X_{k-1}), \quad X_0 \sim \pi_0$
- \square Observation process: $Y_k \sim h(\cdot | X_k)$

Objective: Compute the conditional probability distribution (posterior) $\mathbb{P}(X_t|Y_1,...,Y_t)$

Particle Filter

- ightharpoonup Approximate π_k with weighted empirical distribution of particles
- Apply the update rule to the particles and weights

$\{(X_k^1, w_k^1), \dots, (X_k^N, w_k^N)\} \qquad \{(X_{k+1}^1, w_{k+1}^1), \dots, (X_{k+1}^N, w_{k+1}^N)\}$ m.s.e (PF)

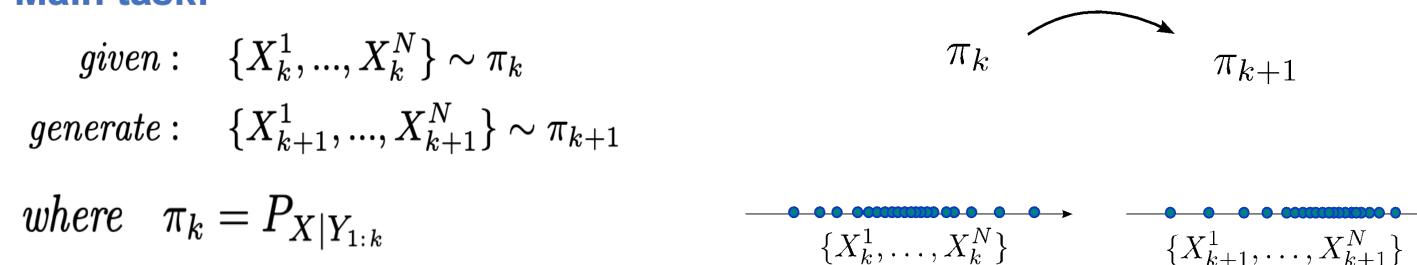
m.s.e (EnKF)

Properties:

- ➤ Exact in the limit as N goes to ∞
- Weight degeneracy (curse of dimensionality)

Optimal Transport Particle Filter

- ➤ Ensemble Kalman filter avoids curse of dimensionality in linear Gaussian setting
- > Can we extend this to Non-Gaussain setting?
- \triangleright Approximate π_k with empirical distribution of particles
- ➤ Main task:



> OTPF approach: update particle with the optimal transport map form π_k to π_{k+1} to $X_{k+1}^i = T_k(X_k^i)$

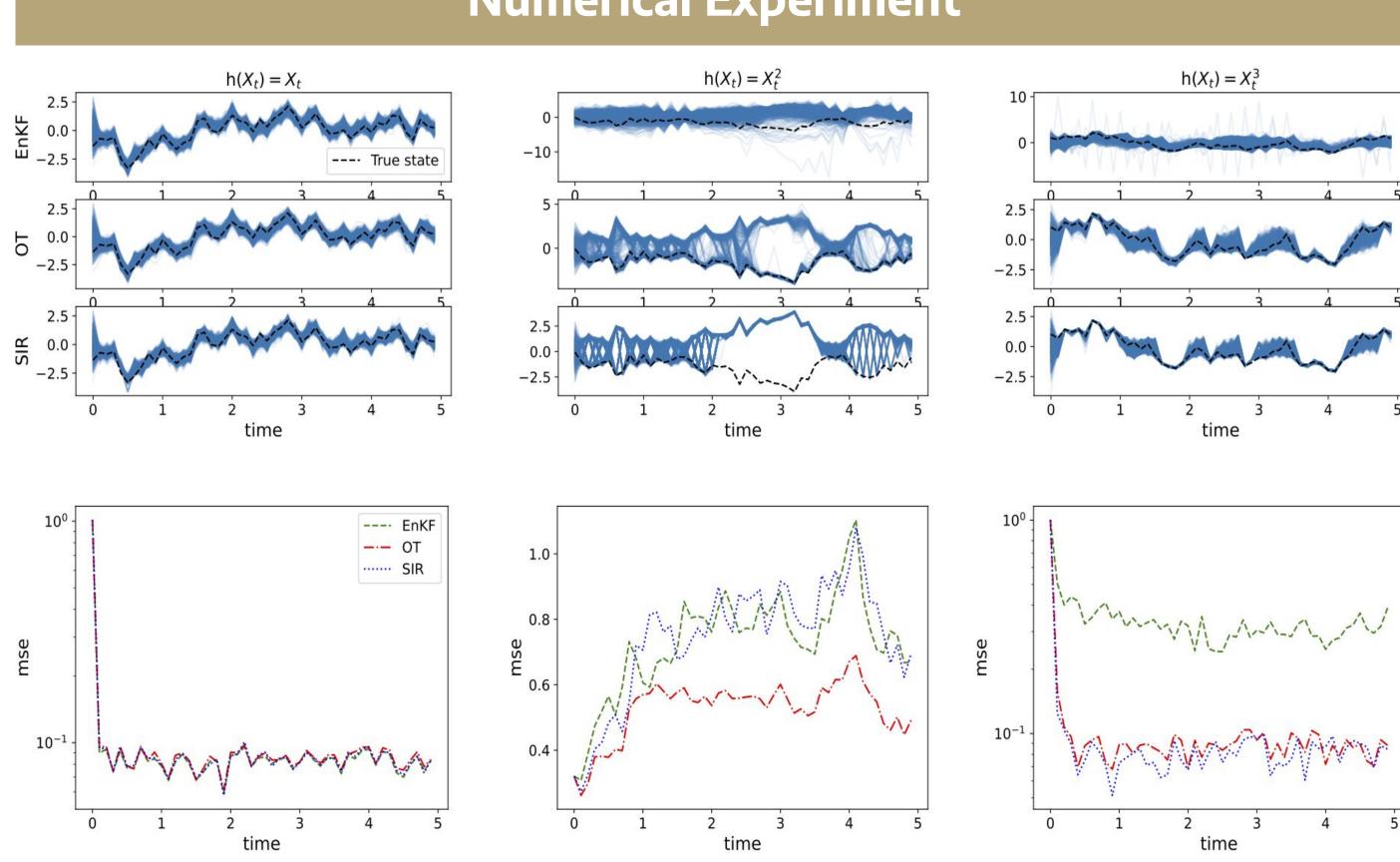
Optimal Transport formulation of the Bayes Law

Bayes Law:
$$P(X|Y) = \frac{P(X)P(y|X)}{P(Y)}$$

 $= \nabla_x \bar{f}(.;Y)_{\#} P_x$
where $\bar{f} = argmin_{f \in L^1 \mathcal{X} \times \mathcal{Y}} \mathbb{E}_{(X,Y) \sim P_X \otimes P_Y} [f(X;Y)] + \mathbb{E}_{(X,Y) \sim P_{XY}} [f^*(X;Y)]$

- \triangleright Only requires samples $(X_i, Y_i) \sim P_{XY}$ (data-driven / simulation based)
- > Enable construction of "approximate" posterior distribution
- > Allow application of ML tools (Stochastic optimization and Neural Networks)

Numerical Experiment



Future directions of research

- Establish theoretical guarantees and error bounds
- Efficient representations of the transport map
- Validation on high-dimensional applications

References

- Taghvaei, Amirhossein, and Bamdad Hosseini. "An optimal transport formulation of bayes' law for nonlinear filtering algorithms." 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022.
- Al-Jarrah, Mohammad, Bamdad Hosseini, and Amirhossein Taghvaei. "Optimal Transport Particle Filters." arXiv preprint arXiv:2304.00392 (2023).

ADVISERS: Amirhossein Taghvaei, Bamdad Hosseini