Architecting Co-existence: Scalable Integration of Autonomy in Shared Spaces

STUDENT: Sarah H.Q. Li

Incentivizing Preferential Group Behavior

Competitive urban transportation
- Players: ride-share drivers
- Actions: wait for a rider or go to neighboring zone
- Objectives: earn maximum profit
- Random factor: zone-based stochastic ride demand with unknown destinations

We can iteratively find the minimum toll needed to ensure any linear constraint on the competitive population.

Research objective
Enable autonomous vehicles to co-exist at scale in competitive and human-interactive environments

Tremendous advances in autonomy has enabled aerospace vehicles to achieve high precision and accuracy under self-guidance in isolated environments. As autonomous technology rapidly matures, we must consider how aerospace vehicles can be deployed in shared spaces and supported by existing infrastructure.

Robust decision-making against uncoordinated vehicles

With no information on an uncoordinated player’s actions, players experience cost uncertainty in their learning.

\[F(V) = \min_{\epsilon \in \mathcal{V}} \gamma \sum_{t=0}^{\infty} \epsilon^t V_t \]

Cost uncertainty set

We develop a set-based Bellman operator and derive a fixed value function set that remains invariant with respect to cost uncertainties during learning.

Competitive policy synthesis at scale

We developed a distributed algorithm that solves congested Markov decision processes
- Individual optimization complexity is constant
- Total optimization is linear

Warehouse path planning with uncertain package drop off times
- Players: warehouse robots
- Actions: up/down/left/right
- Objectives: ensure all packages are dropped off while avoiding collision
- Random factor: stochastic package arrival time

MDP([S], [A], R^k, P, \gamma)
MDP([S], [A], R^k, P, \gamma)
MDP([S], [A], R^k, P, \gamma)

Coupled rewards

Research objective
Enable autonomous vehicles to co-exist at scale in competitive and human-interactive environments

Tremendous advances in autonomy has enabled aerospace vehicles to achieve high precision and accuracy under self-guidance in isolated environments. As autonomous technology rapidly matures, we must consider how aerospace vehicles can be deployed in shared spaces and supported by existing infrastructure.

Robust decision-making against uncoordinated vehicles

With no information on an uncoordinated player’s actions, players experience cost uncertainty in their learning.

\[F(V) = \min_{\epsilon \in \mathcal{V}} \gamma \sum_{t=0}^{\infty} \epsilon^t V_t \]

Cost uncertainty set

We develop a set-based Bellman operator and derive a fixed value function set that remains invariant with respect to cost uncertainties during learning.

Competitive policy synthesis at scale

We developed a distributed algorithm that solves congested Markov decision processes
- Individual optimization complexity is constant
- Total optimization is linear

Warehouse path planning with uncertain package drop off times
- Players: warehouse robots
- Actions: up/down/left/right
- Objectives: ensure all packages are dropped off while avoiding collision
- Random factor: stochastic package arrival time

MDP([S], [A], R^k, P, \gamma)
MDP([S], [A], R^k, P, \gamma)
MDP([S], [A], R^k, P, \gamma)