


# **Architecting Co-existence:** Scalable Integration of Autonomy in Shared Spaces

STUDENT: Sarah H.O. Li



## **Incentivizing Preferential Group Behavior**



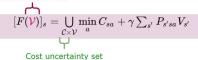
#### **Competitive urban transportation**

- Players: ride-share drivers
- Actions: wait for a rider or go to neighboring zone
- Objectives: earn maximum profit
- Random factor: zone-based stochastic ride demand with unknown destinations

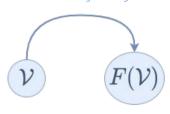
We can iteratively find the minimum toll needed to ensure

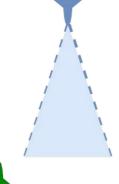


# Research objective


Enable autonomous vehicles to safely co-exist at scale in competitive and human-interactive environments

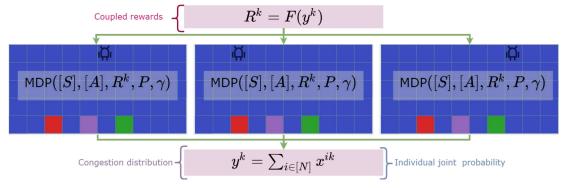
Tremendous advances in autonomy has enabled aerospace vehicles to achieve high precision and accuracy under self-guidance in isolated environments. As autonomous technology rapidly matures, we must consider how aerospace vehicles can be deployed in shared spaces and supported by existing infrastructure.


## Robust decision-making against uncoordinated vehicles


With no information on an uncoordinated player's actions, players experience cost uncertainty in their learning.

Value function set




We develop a set-based Bellman operator and derive a fixed value function set that remains **invariant** with respect to cost uncertainties during learning.

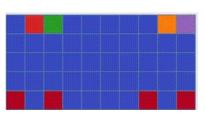






any linear constraint on the competitive population.




# Competitive policy synthesis at scale

We developed a distributed algorithm that solves congested Markov decision processes

- Individual optimization complexity is constant
- Total optimization is **linear**

Warehouse path planning with uncertain package drop off times

- Players: warehouse robots
- Actions: up/down/left/right
- Objectives: ensure all packages are dropped off while avoiding collision
- Random factor: stochastic package arrival time



## ADVISERS: Behcet Acikmese, Pierre-Loic Garoche, Mehran Mesbahi

