

Experimental and Computational Exploration of the Fracture Energy in Fiber Composites When Subject to Crack Parallel Compression

STUDENTS: Jeremy Brockmann

Motivation

- · Composite Material: combination of two or more materials that are distinct at a physical scale > ~1 µm
- · Used ubiquitously due to superior strength-to-weight, corrosion resistance, energy adsorption, and fatigue performance as well as having tailorable mechanical properties

commercial and military aircraft [2]

Commercial Aircraft Wingskin

• Composite fracture is a formidable challenge that is still a very active research area, despite their prevalence in industry.

It is the duty of the academic community to develop accurate, reliable and efficient composite fracture analysis tools

structure size

Supporting Theory

• Foundational assumptions of the most developed fracture theory (LEFM) are too restrictive to apply to composites, must use a newer, developing theory (OBFM)

Linear Elastic Fracture Mechanics

- Accurate for brittle fractures; glass ceramics, beryllium, etc
- Assumes infinitely sharp cracks
- global response linear elastic
- Response possibly Quasi-Brittle Fracture Mechanics
- Composites, concrete, shale, etc.
- Cracks have finite dimensions and global response can be nonlinear due to damage

The Gap Test

- LEFM leverages a single parameter description of failure fracture energy, G_{ij} is used to predict fracture and is assumed to be a constant material property
- · Presence of a finite width FPZ in composites questions the constancy of fracture energy

Manufacturing and Experimentation

Simple modification to standard 3PB test where plastic pads with a perfect yield plateau generate a crack compression prior to bending

Computational Framework

- Computational framework allows practicing engineers to appropriately model and predict a
- composite structure's behavior when crack parallel compression is experienced • Correct modelling definition also obviates the need to undertake a large experimental effort

- · Damage initiation is defined two ways:
- 1) Hashin Damage Criterion, which is captures all the crack tip stresses (fully tensorial) 2) Cohesive Elements + Maximum stress criterion, which does not capture all the crack tip
- stresses (reduced tensorial) Hashin damage

Results & Conclusions

- 1) As crack parallel compression is increased the fracture energy monotonically decreases proving that fracture energy may be non-constant in composites
- 2) Crack parallel compression leads to a change in fracture morphology which expedites catastrophic failure, explaining the observed weakening effect
- 3) To capture the effects of crack parallel compression in composites a crack band model with a fully tensorial damage law must be used, otherwise specious results are obtained
- 4) Further investigation is required for: crack parallel tension and shear, in-plane and out of plane, mixed mode and fatigue loading, and differing layup sequences and geometries

References

ADVISERS: Professor Marco Salviato, Professor Francesco Deleo