

Structural Optimization for Automated Fiber Placement (AFP)

STUDENT: Andrew Atkinson

Automated Fiber Placement

- · Used in industry
- · Able to make massive structures
- · Material and process benefits

Structural Optimization

- · Create a design space
- · Optimize an objective function Subject to constraints
- · Objective functions like: Mass Stiffness Resonant Frequency
- · Constraints like: Peak Stress Peak Displacement or, Also Mass

Composite Design Process

- · Set up design space
- · Carry out freesize optimization Result not manufacturable
- Carry out composite size optimization
- · Shuffle plies for stacking sequence requirements

Minimum Tow Length

- Current process does not account for manufacturing limitations
- All AFP equipment has a minimum length it can lay down
- · Distance from knit point to internal cutting module

Current State of Art

- · Optistruct has a minimum tow constraint built into it
- Does not work well
- · Over constrains the design space
- · Only generates tows of multiple of minimum length

Novel Constraint Implementation

- · Assume composite size result is "optimal" · Minimize changes from this result
- · Subject to minimum tow length.
- · Short tows okay if they touch panel perimeter
- · Optimal extension threshold found iteratively

Extend or eliminate tows as needed

Results and Analysis

- · All plies modified for AFP
- Mass increased by 1%
- 1% reduced maximum displacement
- · Unexpected buckling failure mode
- · Meets design criteria!

Before and after constraint application

Compressive failure mode in fibers

Simulation matches experimental Results [1]

Failure loads of different process stages

Criteria	Failure Load
Design	100kN
ree size (Tsai-Wu)	103kN
Composite Size (Tsai-Wu)	112kN
xplicit Sim, Initial (Hashin)	121kN
xplicit Sim, Ultimate (Hashin)	187kN

Future Work, References, and Acknowledgments

- · Implement 3d mesh functionality
- · Manufacturing demonstration in ACC
- · Improve threshold optimization

Faculty: Marco Salviato, Francesco Deleo, Jeff Wollschlager

Y. Aoki, S. Sugimoto, Y. Iwahori, and T. Nakamura, "Manufacturing and evaluation of an optimized composite panel with a out-out," 33rd Technical Conference of the American Society for Composites 2018, pp. 1386–1387, Jun. 2018.

[2] W. Prager, "Nearly optimal design of trusses," Computers & Structures, vol. 8, no. 3, pp. 451–454, 1978