THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS <u>AA 419 AEROSPACE HEAT TRANSFER</u>

WINTER QUARTER

CREDITS AND CONTACT HOURS:	3 Credits, Three 50-minute lectures per week.		
COORDINATOR:	Dana Dabiri, Associate Professor of Aeronautics and Astronautics		
TEXTBOOK:	Fundamentals of Heat and Mass Transfer, Bergman, Lavin, Incropera and DeWitt, Seventh Edition, Wiley, 2011.		
SUPPLEMENTAL MATERIALS:	None		
CATALOG DATA:	AEROSPACE HEAT TRANSFER, Selective Elective Fundamentals of conductive, convective, and radiative heat transfer with emphasis on applications to atmospheric and space flight. Prerequisite: PHYS 123; MATH 307; MATH 324. Offered: W.		
PREREQUISITES BY TOPIC: 1) Senior status2) Thermodynamics3) Gasdynamics			
	 Students will be able to derive the governing equations of heat trans Students will be able to analytically and numerically solve problem conduction and convection. Students will be able to analytically solve problems of radiative heat the solution of the solution and convection. 	ns of heat	
RELATIONSHIP TO STUDENT OUTCOMES:			
(An ability to apply knowledge of mathematics, science, and engineering. An ability to design a system, component, or process to meet desired needs. An ability to identify, formulate, and solve engineering problems. An ability to communicate effectively An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. 		
	 Physical basis and governing equations of heat transfer One-dimensional, steady-state conduction Transient conduction-lumped capacitance model, Biot number Equations of convection; correlation coefficients, similarity analys Convective heat transfer for internal flow Free convective heat transfer Heat Exchangers Radiative transfer, Processes & Properties Radiative transfer, Exchange between Surfaces Radiative transfer in gases 	(2 classes) (5 classes) (3 classes) is (4 classes) (2 classes) (2 classes) (1 class) (4 classes) (2 classes) (2 classes) (2 classes) (2 classes)	