THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

AA 360 PROPULSION I

SPRING QUARTER

CREDITS AND: CONTACT HOURS :	4 credits, Four 50-minute lectures per week.	
COORDINATOR:	Mitsuru Kurosaka, Professor of Aeronautics and Astronautics	
TEXTBOOK:	Elements of Propulsion, J.D. Mattingly, AIAA, 2006.	
SUPPLEMENTAL MATERIALS:	Aerothermodynamics of Gas Turbine and Rocket Propulsion, G.C. Oates, (Engr. Library) AIAA, 1997.	
	Rocket Propulsion Elements, G.P. Sutton and O. Biblarz, Wiley, 2001.	
	Mechanics and Thermodynamics of Propulsion, P.C. Hill and C.R. Peterson, 2 nd Ed., Addison-Wesley, 1992.	
	An Introduction to Combustion, S.R. Turns, McGraw-Hill, 2000.	
CATALOG DATA:	PROPULSION, Required Study of the aero- and thermodynamics of jet and rocket engines. Air-breathing engines as propulsion systems. Turbojets, turbofans, turboprops, ramjets. Aerodynamics of gas-turbine engine components. Rocket vehicle performance. Introduction to space propulsion. Prerequisite: minimum grade of 1.7 in A A 301.	
PREREQUISITES BY	X TOPIC: 1) Thermodynamics 2) Compressible flow	
OUTCOMES:	 Students will understand the aero- and thermodynamics of jet and rocket engines. Students will understand the fundamentals of turbojets, turbofans, turboprops, ramjets, scramjets, and hybrid engines. 	Commented [11]: This looks more like an AA461 objective
RELATIONSHIP TO STUDENT OUTCOMES:		
	 a) An ability to apply knowledge of mathematics, science, and engineering. e) An ability to identify, formulate, and solve engineering problems. k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice 	
TOPICS:	 Overview Review of thermodynamics/one-dimensional compressible flow Thrust equation for air breathing engines Thermal and propulsive efficiencies Air breathing propulsion cycles: ideal performance of turbojets, turbofans, turboprops, ramjets, advanced engine cycles Effects of losses and component efficiencies Rocket equation; velocity increment, specific impulse Staging; series and parallel 	
March 17, 2017		

THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

- 9) Nozzle flow fundamentals
- 10) Chemical/non-chemical rockets

March 17, 2017