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Kirchhoff rod theory

Single fiber: 

r0(S) = �d1, where � = |r0(S)| di = A(S)Di

Curvature and twist of the rod 
Orth+

- Position fieldr(S)

d0
i = ↵⇥ di

Axial vector

Curvature Frame-invariant formulation: strain-energy function w(�,)

 = At↵ = iDi i =
1
2eijkdk · d0

j

Equilibrium equations: m0 +$ = f ⇥ r0 and f 0 + g = 0

m = (@w/@i)di f = ��1(@w/@�)r0 + f↵d↵



Kirchhoff rod theory

 Strain-energy function most commonly used for isotropic rods of circular section

w(1,) = 1
2GJ2

1 +
1
2EI↵↵

m = GJ1d1 + EI↵d↵ = GJ1d1 + EId1 ⇥ d0
1

Then



Fibers and matrix are kinematically independent; their interface convects as 
a material surface



Cosserat elasticity theory

Hadamard's compatibility condition requires that

F+ � F� = f ⌦N

Deformation gradients in the fiber 
and the matrix at the interface

Unit normal to the interface

F+D = F�D, but F+D↵ 6= F�D↵It follows that 

If a fiber is sufficiently stiff relative to the matrix, its deformation gradient is given 
approximately by a rotation field R

FD = �RDThus �(= |FD|)where

Consider a referential energy density U(F,R,S;X)

F = FiAei ⌦EA, R = RiAei ⌦EA and S = SiABei ⌦EA ⌦EB

Rotation gradient

with

FiA = �i,A and SiAB = RiA,B
(·),A = @(·)/@XA

xi = �i(XA)
where



Cosserat elasticity theory

The rotation field acts on the orthonormal triad field {Di(X)}

{Di} = {D,D↵}
D(= D1)

D↵

Unit tangent to a fiber in the reference configuration

Cross-sectional vectors embedded in the fiber

di = RDiThus

The fiber is regarded as an embedded curve

FD = �d, where d = RD and � = |FD|

Constraints: 
RD↵ · FD = 0; ↵ = 2, 3



Cosserat elasticity theory

Reduced strain-energy function

U(F,R,S;X) = U(QF,QR,QS;X)

U(F,R,S;X) = W (E,�;X)
The restriction

E = RtF = EABEA ⌦EB ; EAB = RiAFiB

where

� = �DCED ⌦EC ; �DC = 1
2eBADRiARiB,C

The associated axial vectors

�D(C) =
1
2eBADRiARiB,C

yielding
� = �C ⌦EC



Cosserat elasticity theory

Stationary energy and equilibrium

E =

Z

⇠
Wdv � LThe potential energy: 

Load potential
Consider the dead load problem, such that 

L =

Z

@⇠t

t · �da+

Z

@⇠c

mi · dida

The virtual work of the force and couples is

L̇ =

Z

@⇠t

t · �̇da+

Z

@⇠c

c · !da

{F(X; ✏),R(X;✏)}One parameter family:

c = ax[(Di ⌦mi)R�Rt(mi ⌦Di)]where ! = ax(⌦)



Cosserat elasticity theory

Virtual-work statementZ

⇠
Ẇdv =

Z

@⇠t

t · �̇da+

Z

@⇠c

c · !da

Global balance statements: Consider a rigid body motion

�(X; ✏) = Q(✏)�0(X) + b(✏), R(X;✏) = Q(✏)R0(X),

Orth+

Strain energy invariance givesZ

@⇠
(t · �̇+ c · !)da = 0

�̇ = a⇥ (�0 � b0) + ḃ and ! = �Rt
0a

where

To obtain the second result we use

(RtṘ)R
t
v = Rt(a⇥ v) = Rta⇥Rtv



Cosserat elasticity theory

Thus
(ḃ� a⇥ b) ·

Z

@⇠
tda+ a ·

Z

@⇠
(�⇥ t�Rc)da = 0

yielding Z

@⇠
tda = 0 and

Z

@⇠
(�⇥ t�Rc)da = 0

General case

Ē =

Z

⇠
W̄dv � L

W̄ = W + ⇤↵D↵ ·ED

Lagrange multipliers

Using RtṘ = �⌦ we conclude a = �R!



Virtual work                     reduces to

Cosserat elasticity theory

Z

⇠
{⇤̇↵D↵ ·ED+ ! · (Divµ+ 2axSkw[(� +⇤⌦D)Et + µ�t])� �̇ ·Div(R� + �⌦D)}dv

=

Z

@⇠t

�̇ · [t� (R� + �⌦D)n]da+

Z

@⇠c

! · (c+ µn)da

(Ē)· = 0

⇤ = ⇤↵D↵, � = R⇤, � = WE and µ = W�where 

Hence the equilibrium equations:

Div(R� + �⌦D) = 0, Divµ+ ax{2Skw[(� +⇤⌦D)Et + µ�t]} = 0 in ⇠

and the boundary conditions

t = (R� + �⌦D)n on @⇠t and c+ µn = 0 on @⇠c



Remarks

1. Fiber inextensibility is accommodated by appending the constraint RD · FD = 1

⇤ �and are given by ⇤iDi ⇤idiand
⇤1 is a kinematically undetermined density of axial force exerted on the fibers

2. Incompressibility entails the constraint detF(=detE) = 1

Accommodated by 

W̄ = W + ⇤↵D↵ ·ED� p(detE� 1)

Relevant modified equations are

Div(R� � pF⇤ + �⌦D) = 0 and t = (R� � pF⇤ + �⌦D)n

3. The conventional theory of elasticity may be regarded as a special 

c vanishes

W is independent of �

R is constrained to be the rotation in the polar factorization of F



Then E = U � · U̇ = Ẇ = RtP · U̇ P( = F⇧) = WFwhere

� = Sym(RtP) (Biot stress)

Skw(RtF) = 0 W̄ = W +W ·RtFand

(W̄ )· = (P+RW) · Ḟ+WU ·⌦+ Ẇ ·R
t
F

We obtain

The associated Euler equations are

Div(P+RW) = 0 and Skw(WU) = 0

Remarks



A simple model for fiber-reinforced material

The kinematics of embedded fibers may be described in this framework by using

i =
1
2eijkDk ·RtR0Dj

Fibers are straight and untwisted D0
j = 0

R0
iA = RiA,BDBUse to derive

RtR0 = RiCSiABDBEC ⌦EA = eACD�DBDBEC ⌦EA

�is determined by=)

Thus the strain energy is described by a (different) constitutive function

To determine the associated response function

W (E,)

 = iDi

µ

̇i = di · a0, where a = ax(ṘR
t
)

̇i = Di ·Rta0 = �Di ·Rt(R!)0 yielding

̇i = (RtR0)Di · ! � !0
i, where !i = ! ·Di



!0
i = !i,ADA Ė = 0 Ẇ = M · ̇=)

where M = MiDi with Mi = @W/@i

Ẇ = ! · [Div(M⌦D) + (RtR0)M]�Div[(M⌦D)t!]

µ = M⌦D

M0 + (RtR0)M+ ax{2Skw[(� +⇤⌦D)Et]} = 0, where M0 = (rM)D

 The moment-of-momentum balance specializes to

The associated boundary condition becomes c = �(D · n)M,

The model may be recast in a form more easily recognizable from rod theory by introducing the field

m = Midi = RM

This yields M0 + (RtR0)M = Rtm0

A simple model for fiber-reinforced material



 We observe that

ax{2Skw[(⇤⌦D)Et]} = ax[2Skw(Rt�⌦Rt�0)], where �0 = FD

Using the easily derived rule ax(a⌦ b� b⌦ a) = �a⇥ b

We obtain
ax[2Skw(Rt�⌦Rt�0)] = Rt�0 ⇥Rt� = Rt(�0 ⇥ �)

and hence

m0 + �0 ⇥ �+R{ax(�Et �E�t)} = 0, where m0 = (rm)D

The linear-momentum balance may be recast as

�0 +Div(R� � pF⇤) = 0, where �0 = (r�)D

The contribution to the net moment from the embedded fibers reduces to 

�Rc = m(D · n)
To the leading order

W (E,) = W (E,0) + 1
2 ·K(E) K(E) = W(E,0)where

A simple model for fiber-reinforced material



Material symmetry and transverse isotropy

⇠ µTwo references
Y(X)

F⇠ = FµH, where H = rY

detH = 1 Y(X0) = X0impose

R⇠ = RµL where L = Gi ⌦Di

 is a material vector, thus imposeD HD = |HD|LD

The rotation-gradient fields are related by

S
(⇠)
iAB = [S(µ)

iCDLCA +R
(µ)
iC LCA,D]HDB , where LCA,D = @LCA/@YD

Given

Uµ(F
(µ)
iA , R

(µ)
iA , S

(µ)
iAB ;X

0
A) = U⇠(F

(µ)
iB HBA, R

(µ)
iB LBA, [S

(µ)
iCDLCA +R

(µ)
iC LCA,D]HDB ;X

0
A)

U⇠(F⇠,R⇠,S⇠;X0)



Symmetry transformations for an isotropic fiber 
embedded in an isotropic matrix



Material symmetry and transverse isotropy

Suppose now that the two references respond identically to given deformation and director rotation fields

U⇠(F,R,S;X0) = Uµ(F,R,S;X0)

U⇠(FiA, RiA, SiAB ;XA) = U⇠(FiBHBA, RiBLBA, [SiCDLCA +RiCLCA,D]HDB ;XA)

Confine attention to proper-orthogonal H

We remove an inessential orientational degree of freedom in the local change of reference

D = HD = LD

Application to the simplified model and specialization to transverse isotropy

Curvature twist vectors related by ⇠ = Ltµ

whereas E⇠ = LtEµH

The associated strain-energy functions satisfy W⇠(E,) = Wµ(E,)

at the pivot point X0 Wµ(Eµ,µ) = W⇠(E⇠,⇠)where

Hence the restriction W⇠(E,) = W⇠(L
tEH,Lt)



Material symmetry and transverse isotropy

If the reinforced material is transversely isotropic, with the fibers perpendicular to the planes of isotropy, 
then this holds for all rotations

H,L 2 S, where

For example, Kirchhoff’s theory suggests strain-energy of the type

Thus, we have
for all L 2 S

Symmetry condition becomes

This is a non-standard representation problem

A list I of functionally independent scalars that satisfy the symmetry condition individually, for all
L,H 2 S



Material symmetry and transverse isotropy

where

where E⇤ = (detE)E�t, detE = detF, EtE = C, EEt = RtBR

with C = FtF and B = FFt  are the right and left Cauchy-Green deformation tensors.

The response function:

with

(Ij)E are obtained using the chain rule



Material symmetry and transverse isotropy
Useful identities:

By requiring,

The response function

We impose W2,3 > 0,) the tensor K(E) is positive definite

and



The Legendre-Hadamard condition

Consider

The first variation:

Then

Further

The latter yields

The second variation:

Since



The second variations are

Accordingly

At equilibrium:

The Legendre-Hadamard condition



The Legendre-Hadamard condition

Admissible second variations satisfy

Second variations satisfying become

Subject to

Recall

The variational derivative yields

where � is the fiber stretch.



The Legendre-Hadamard condition

We have

and hence

This requires c 2 R such that 

Taking the inner product with a⇥ d yields

˙� = 0. That is

and a⇥(a⇥ �0) = cd

Let e = a/ |a|

Using the identity �0 = (e · �0)e+ e⇥ (�0 ⇥ e) we get

(i) e · d = 0, and c = �� |a|2 , or (ii) e · d = ±1 and c = 0

The possibilities are:

We conclude



f(S) =
S � S1, S1  S  S2

� ✓
1�✓ (S � S3), S2 < S  S3

0, S 2 [0, L] \ (S1, S3),

The Legendre-Hadamard condition

Z S3

S1

̇ · (W)̇dS = O(�) as � ! 0

0  ��1
Ë =

Z

⌦
{��1

Z S3

S1

̇ · (W)̇dS +��1
o(�)}da

Z

⌦
��1[

Z S3

S1

a0 ·R(W)R
ta0dS]da � 0



Z S3

S1

a0 ·R(W)R
ta0dS !

Z S2

S1

g ·R(W)R
tgdS + ✓2

(1�✓)2

Z S3

S2

g ·R(W)R
tgdS

The Legendre-Hadamard condition

��1

Z S3

S1

a0 ·R(W)R
ta0dS ! ✓

⇥
g ·R(W)R

tg
⇤
1
+ (1� ✓) ✓2

(1�✓)2

⇥
g ·R(W)R

tg
⇤
2

��1

Z S3

S1

a0 ·R(W)R
ta0dS ! ✓

1�✓g ·R(W)R
tg

Recalling that a0 ! f 0g we have

We obtain

where [·]1,2 are mean values in the intervals (S1, S2) and (S2, S3),

Hence, we conclude that 

which proves the claim.



The Legendre-Hadamard condition

✓
1�✓

Z

⌦
g ·R(W)R

tgda � 0,

g ·R(W)R
tg � 0 at all X 2 

R(W)R
t = (@2W/@i@j)di ⌦ dj

@2W/@2
1 � 0 and (@2W/@↵@�) is positive definite.

These are the Legendre-Hadamard necessary conditions for the present model.

g 2 Span{d} or g 2 Span{d↵}

Accordingly,

The constraints require

where

Finally,

and the arbitrariness of ⌦ yields



Example: Torsion of a right circular cylinder

X = rer(✓) + zk

�(X) = rer(�) + zk, where � = ✓ + ⌧z

F = Q[I+ r⌧e✓(✓)⌦ k]

where Q = er(�)⌦ er(✓) + e✓(�)⌦ er(✓) + k⌦ k 2 Orth+

�d = Fk = k+ r⌧e✓(�); � =
p

1 + r2⌧2

We use cylindrical coordinates in reference and current placement:

where ⌧ - the twist per unit length - is constant.

Deformation gradient:

This is isochoric. Hence, we consider the incompressibility constraint to be operative.

: The unit tangent,

D = k

The fibers are aligned with the axis of the cylinder in the reference placement.

Fiber derivative: (·)0 = @(·)/@z

d : The fiber stretch�

Then,



Example: Torsion of a right circular cylinder

W1(E) = 1
2µ(I1 � 3), W2(E) = 1

2T and W3(E) = 1
2F

� = µE and m = T (k · )d+ Fd⇥ d0

m0 + �d⇥ � = 0 and �0 + µdivB = gradp

B = FFt = I+ r⌧ [e✓(�)⌦ k+ k⌦ e✓(�)] + r2⌧2e✓(�)⌦ e✓(�)

divB = �r⌧2er(�)

p(r) = p0 � 1
2µ⌧

2r2

For fiber reinforced solids, we suppose

and obtain response functions



d⇥ d0 = ��2r⌧2[r⌧k� e✓(�)]

m0 = ��1r⌧2(��1F ⌧ � T1)er(�)

� = (� · d)d+ d⇥ (�⇥ d) = ���3r⌧2(��1F ⌧ � T1)[r⌧k� e✓(�)]

1 = ��1(F/T )⌧

m = F ⌧k

Example: Torsion of a right circular cylinder



(R� � pF⇤)er(✓) = 0 at r = a

µBer(�) = per(�) at r = a

(R�)Ft � pI = µ[ 12⌧
2(r2 � a2)� 1]I+ µB

Example: Torsion of a right circular cylinder



Example: Torsion of a right circular cylinder

The Overall Response

t = [(R�)Ft � pI]k = 1
2µ⌧

2(r2 � a2)k+ µr⌧e✓(�)Traction on a cross section:

f =

Z 2⇡

0

Z a

0
trdrd� = f(⌧)kResultant force:

f(⌧) = � 1
4⇡a

4µ⌧2where

is a manifestation of the well-known normal-stress effect in nonlinear elasticity theory 

Torque: ⇢ =

Z 2⇡

0

Z a

0
(�⇥ t+m)rdrd� = ⇢(⌧)k

⇢(⌧) = ⇡a2⌧(F + 1
2µa

2)where



Example: Flexure of a rectangular block

X = xi+ yj+ zk and �(X) = rer(✓) + zk, where r = f(x) and ✓ = g(y)

F = f 0er ⌦ i+ fg0e✓ ⌦ j+ k⌦ k

We use Cartesian coordinates in the reference and polar coordinates in the current placement:

Deformation gradient:

1 = J = f(x)f 0(x)g0(y)yielding

g = Cy and f =
p

C

�1
x+BFor incompressibility:

where B is a constant and  C > 0

We consider two cases:

(a) D = i

�d = Fi = f

0(x)er d = er(✓) and � = f

0(x)yielding



Example: Flexure of a rectangular block

Then, d0 = d
,x

= e
✓

✓
,x

, vanishes  because ✓ is a function of y alone. 

m = TerThe constitutive equation:

0 = d ·m0 = e
r

·m
,x

= T
,x

We have



Example: Flexure of a rectangular block

0 = d ·m0 = e✓ ·m,y = T,yUsing
we conclude 0

(= ,y) vanishes.

If no twisting couples are applied at the horizontal boundaries, then

m = FCk.

m0 = 0yielding and � = 0,

(b) D = j

�d = Fj = fg0e✓ d = e✓ and � = fg

0 = C

p
C

�1
x+Byielding

Then, d0 = d,y = e0✓g
0(y) = �Cer

m = Te✓ + FCkThe constitutive equation:

The fibers are initially vertical.



Example: Bending, stretching and shearing of a block

x2 = �2(x1) = rer(✓) + &k, where & = z + �✓

First we deform the block by flexure to the configuration x1 = �1(X),

Then the block is sheared to the configuration

with � a positive constant.

F2 = I+ �r�1k⌦ e✓We obtain F = F2F1 with F1 as before and

�d = Fj = C(re✓ + �k) yielding � = C
p
r2 + �2

d0 = d,y = �Crp
r2+�2

er(✓) and d⇥ d0 = Cr2

r2+�2 (k� �r�1e✓)

0(= ,y) = 0We obtain which yields Td0 + Fd⇥ d00 = ��⇥ d,

�⇥ d = ��1(F C2�r
r2+�2 � T Crp

r2+�2
)er



Example: Bending, stretching and shearing of a block

� = d⇥ (�⇥ d)This yields in terms of 
(x)

A force-free solution (� = 0) with fiber twist is given by

(x) = F
T

C�p
r2+�2

, where r = f(x)



Thank You


