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Kirchhoftf rod theory

Single fiber: I'(S ) - Position field

r'(S) = Ad;, where X=|r'(9) d; = A(S)D;
Curvature and twist of the rod N Orth™
d; =axd;
\ Axial vector

Curvature Frame-invariant formulation: strain-energy function W (A, K)

K = AtOé = /ﬁliDi K; = %eijkdk y d;
Equilibrium equations: m' +ow=Ffxr and f + g=20
m = (Ow/0k;)d; f =\ (Ow/ONr + fod,



Kirchhoftf rod theory

Strain-energy function most commonly used for isotropic rods of circular section

w(l, k) = 2GJkT + L Elkqkq

Then

1M — GJHJldl + Elliada = GJKJldl + Eldl X dll
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Fibers and matrix are kinematically independent; their interface convects as
a material surface




Cosserat elasticity theory

Hadamard's compatibility condition requires that

Fr—F =f®QN
e ~

Deformation gradients in the fiber Unit normal to the interface

and the matrix at the interface

It followsthat FTD =F D, but F'D, # F D,

If a fiber is sufficiently stiff relative to the matrix, its deformation gradient is given
approximately by a rotation field R

Thus FD = ARD where A(= |FD|)

Consider a referential energy density U (F, R, S; X) Rotation gradient

rd

F:FiAei®EA, R:RiAef,;@)EA and S:SiABei®EA®EB
with
Fia=xia and Siap=Riap  where  ():a=0()/0Xa
z; = xi(Xa)



Cosserat elasticity theory

The rotation field acts on the orthonormal triad field {D,(X)}
D(= D,) Unit tangent to a fiber in the reference configuration
{Dz} — {Dv Da} <
D, Cross-sectional vectors embedded in the fiber

Thus d; = RD;

The fiber is regarded as an embedded curve

FD =Xd, where d=RD and \=|FD|

Constraints:

RD, - FD=0;: a=23




Cosserat elasticity theory

Reduced strain-energy function
U(F,R,S;X) = U(QF,QR, QS; X)

The restriction

U(F, R.,S; X) — W(E, I'; X)
where
E = R'F = FEapEA®EpR;, FEaip = R;aF;p
I' = FDCED X Ec; FDC — %eBADRiARiB,C
The associated axial vectors
1

Ypc) = 53¢BADRAR;B C

yielding

I' =7¢ ® Ec




Cosserat elasticity theory

Stationary energy and equilibrium

The potential energy: b = / Wdv — L
§ B Load potential

Consider the dead load problem, such that

L:/ t - yda + m, - d;da
&+ O&.

The virtual work of the force and couples is

L:/ t-)°(da+/ c - wda
O&+ &

where ¢ = az[(D; ® m;)R — R'(m; ® D;))] w = az(2)

One parameter family: {F(X;e¢), R(Xj;e)}




Cosserat elasticity theory

Virtual-work statement

/de:/ t-;’gda—l—/ c - wda
3 &+ &

Global balance statements: Consider a rigid body motion Orth™

/
X(X;5€) = Qle)xo(X) +ble), R(X;e) = Q(e)Ro(X),

Strain energy invariance gives
/ (t-x+c-w)da=0
o¢

where

XZ&X(Xo—bO)+B and w=—-Rja

To obtain the second result we use

(RtR)RtV = R'(axv)=R'ax R'v



Cosserat elasticity theory

Using R'R=-Q weconclude a=—Ruw

Thus ]
(b—axb)-/ tda—l—a-/ (x xt —Rec)da =0
o€ o0&

vielding

tda =0 and /(th—Rc)da:O
2l

/de—

=W +A_D,  -ED
\ Lagrange multipliers

o0&

General case




Cosserat elasticity theory

Virtual work () = 0 reduces to

/{AaDa .ED + w - (Divp + 2azSkw[(c + A @ D)E' + uI']) — x - Div(Ro + A @ D) }dv
3

:/ )’(-[t—(R0+)\®D)n]da+/ w - (c+ pn)da
8£t 850

where A=A,D,, A=RA, oc=Wg and u=Wr

Hence the equilibrium equations:

Div(Ro +A®D) =0, Divp+ ax{2Skw[(c + A@D)E" +uI']} =0 in ¢

and the boundary conditions

t=(Ro+A®D)n on 0§, and c+pun=0 on O0&




Remarks

1. Fiber inextensibility is accommodated by appending the constraint RD - -FD =1

A and )\ aregivenby A;D; and A;d;

A1 is a kinematically undetermined density of axial force exerted on the fibers

2. Incompressibility entails the constraint ~ det F(=detE) =1

Accommodated by
W =W +A,D, -ED — p(detE — 1)

Relevant modified equations are

Div(Ro —pF*+A®D)=0 and t=(Ro—pF*"+A®D)n

3. The conventional theory of elasticity may be regarded as a special
C vanishes

W' is independent of I

R is constrained to be the rotation in the polar factorization of F



Remarks

Then E=U c-U=W=R'P.U where P(:FH):WF
o = Sym(R'P) (Biot stress)

Skw(R'F)=0 and W=W+ W -R'F

We obtain

(W) =(P+RW) - F+WU - Q+W-.-RF

The associated Euler equations are

Div(P+RW)=0 and Skw(WU)=0




A simple model for fiber-reinforced material

The kinematics of embedded fibers may be described in this framework by using
Ky = %eijka -R'R'D,

Fibers are straight and untwisted D;- =0

Use ;A = R;a,BDp  toderive

R'R’' = RicSiapDEc @ Ea = eacplppDpEc @ E4
—> K = k;D; isdetermined by I

Thus the strain energy is described by a (different) constitutive function W (E, k)

To determine the associated response function

ki =d;-a’, where a= ax(RRt)
ki =D, -R'a’ = —D; - RY(Rw)’  vielding

ki = (R'RD; - w — w), where w; =w - D;



A simple model for fiber-reinforced material

w; = w; aD 4 E=0 — W=M- &
where M = M;D; with M; = 0W/0k;
W =w- [Div(M®@D) + (R'R')M] — Div[(M ® D)'w]
=MD
The moment-of-momentum balance specializes to
M’ + (R'R')M + az{2Skw[(c + A @ D)E’]} =0, where M’ = (VM)D
The associated boundary condition becomes ¢ = —(D - n)M,

The model may be recast in a form more easily recognizable from rod theory by introducing the field

This vields M’ + (R'RYM = R'm’




A simple model for fiber-reinforced material

We observe that

ax{2Skw[(A @ D)E']} = az[2Skw(R'A @ R'X')], where x' =FD
Using the easily derived rule ar(a®b—-—b®a)=—-axb

Weobtain ~ az[2Skw(R'A @ R x)] = Rfx’ x R'A = R (x/ x A)
and hence
m’ +x' x A +R{az(cE' —Ec")} =0, where m’ = (Vm)D
The linear-momentum balance may be recast as
A + Div(Ro — pF*) =0, where X = (VA)D
The contribution to the net moment from the embedded fibers reduces to
—Rc=m(D - n)

To the leading order
W(E,k) =W(E,0)+ sk -K(E)k where K(E) = W, (E,0)



Material symmetry and transverse 1sotropy

Two references £ — > U Fe=F,H, where H=VY
Y (X)

detH=1 impose Y(X,) =X
R:=R,L where L=G;, ® D,
D s a material vector, thus impose HD = |[HD|LD

The rotation-gradient fields are related by

S8 =8 Lea+ RYWLoap|Hps, where Leap=0Loa/0YD

Given Ug(Fe, Re, S¢; X))

Uu(F RSP0 X)) = Ue(F{R Hpa, RY Lpa, [SitpLoa + Ryt Loa,p)Hpp; X3)
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Symmetry transformations for an isotropic fiber
embedded in an isotropic matrix



Material symmetry and transverse 1sotropy

Suppose now that the two references respond 1dentically to given deformation and director rotation fields

Us(F,R,S: X,) = U,(F,R,S; X,)
Ue(Fia, Ria, Siap; Xa) =Us(FipHpa,RipLpa,|SicpLca + RicLca,p|Hpp; Xa)

Confine attention to proper-orthogonal H

We remove an inessential orientational degree of freedom 1n the local change of reference

D =HD =LD
Application to the simplified model and specialization to transverse isotropy

. t
Curvature twist vectors related by ke = L'k,

whereas Ec = LtEMH

The associated strain-energy functions satisfy We(E, k) =W,(E, k)
at the pivot point X where W, (E,, k) = We(E¢, k)

Hence the restriction We(E, k) = We(L'EH,L'k)



Material symmetry and transverse 1sotropy

If the reinforced material 1s transversely isotropic, with the fibers perpendicular to the planes of isotropy,
then this holds for all rotations

H,LcS, where §={QcOrth™ with QD = D}.
For example, Kirchhoff’s theory suggests strain-energy of the type

W(E, k) = Wi(E) + Wo(E)(k - D)2 + W3(E) |1k|°, with 1=I-D® D,

Thus, we have kD=L'k-D and |[1k|=|1L's| forall LeS
Symmetry condition becomes W (E) = W,,;(LtEH); i=1,2,3.

This is a non-standard representation problem

A list [ of functionally independent scalars that satisfy the symmetry condition individually, for all

LHeS
I =Al,..., 1y},



Material symmetry and transverse isotropy

where
I = tr(E'E), I, = tr[(E'E)?], I; = detE, I, =D -ED, I; =D - (E'E)D,
Is=D-(EE"D,I; =D -E*D, Iy =D - (E'E)°D, I, = D - (EE")°D,

where E* = (detE)E™", detE=detF, E'E=C, EE'=R'BR
with C=F'F and B = FF! are the right and left Cauchy-Green deformation tensors.
The response function: o = Wg = (Wi)g + (k- D)2(Wa)g + |1k|° (Ws3)g

with (Wz)E = Z Wz‘j (Ij)E, where Wij = 8WZ/8IJ
J

(I;)r  are obtained using the chain rule




Material symmetry and transverse isotropy

Useful identities:
tr(AB) = tr(BA) = tr(B'A') and A -BC=AC'-B=B'A.-C
for arbitrary tensors A,B,C. Thus,

(1) =2E, (I)g=4EC, (I)e=E", (I4)e=D®D, (I5)=2ED ® D),

(Is)g =2(D®D)E, ([;)g=LE'-LE ' D® D)E_t, (Is)g =2E[(D® D)C + C(D ® D)],
(Io)g = 2[(D ® D)EC + EE'(D @ D)E].

By requiring, (k-D), =D and (11K, = 21k.

The response function M =W, =2W3(E)(k-D)D + 2W;3(E)1x and

m = 2W5(E)(k - D)d + 2W3(E)kqd,, where ro,dy, =dxd with d' = (Vd)D,

We impose  Ws3 > 0,= the tensor K(E) is positive definite



The Legendre-Hadamard condition

Consider / W(E, k)
The first variation: / (Wg -E 4+ Wy - £)dv

The second variation:

E:/(WEE—l—WnIi)dU

i / (B Wes[E] + (Wee)i-E+ (Wep)E - & + & - (Wi }do.

Since'. B =QRF+R'Vu, with u=%, and Q=RR.

: ¢ .t
Then E=R (Vu—aF), where a=RR.
Further k= k;D;, where £;=d;-a’ and a=ara
The latter yields k£ =R'a’



The Legendre-Hadamard condition

The second variations are
¥ =R'D + Rla’ = R'b' — R'aRk where b =ax3 with G =& and
E=R!(Vv - 8F)-R'a(Vu+RE) where v=%

Accordingly

/(WE E+ W, - &)dv = /[WE .RYVv — BF) + W, -R'D|dv

KR

— /[WE .Rla(Vu+RE) + W, - (RtaR)#|dv

At equilibrium: 0=F = / [Wg - RY(Vu — aF) + W, - Rfa’]dv

forall u and a such that

0=D, -ED=D, R{(Vu—aF)D=4d, (v —axx)



The Legendre-Hadamard condition

Admissible second variations satisfy
0=D, -ED=D, -R{Vv—-8F)D-D, -R'a(Vu+RE)D
=d, - (v =bxx')—d, -ax (u+RED).

Second variations satisfying  d, - (v —=b x x') =0. become
b= /{E WeE[E] + Wek)k -E+ (Weg)E & + k- (Wee)k}dv

- [ W Ria(Vu+ RE) + W, - (R'aR)&)do

Subjectto  dg -a x (u' + RED) =0

Recall ' =FD =)d where X is the fiber stretch.

The variational derivative yields u =)\ +a x X’



The Legendre-Hadamard condition

We have ED = Rt(u’ —axx')

and hence 0=d,-ax(2Ad +a x x').

This requires ¢ € R suchthat 2Xa x d 4+ dax(a x d) = ed
Taking the inner product with a xd yields A =0. That is

u=axyxy and ax(axx')=cd
Let e=a/|a]
Using the identity x' = (e-x)e+e x (x xe) we get

(c+ Ma]>)d = X|al’ (e - d)e.
The possibilities are:

i) e-d=0, and c=-\al*, or(ii) e-d=+1 and c¢=0

We conclude ac Span{d} or a € Span{d,}



The Legendre-Hadamard condition

S—Sl, Sl SSSSZ
HS)= (55 S5,
0, Sel0,L]\(S1,Ss),

S3
/ R+ (Wge)kdS =0(A) as A —0
S

1

S3
0<A1f— /{A—lf i - (Wi )FedS + A~o(A)}da
Q S1

S3
/ A_l[/ a' - R(Wy,)R'a'dS]da > 0
Q S

1




The Legendre-Hadamard condition

Recalling that a’ — f'g  we have

S S , S
/S a’- R(W.e)R'a'dS — . g R(Wiw)R'gdS + 7557 /S g - R(We..)R'gdS
We obtain

S3 2
AT /S a'- R(Wee)R'a'dS — 0 [g- R(Wes)R'g]| + (1 - 0) 7555 [g- R(Wee)R'g],

1

where ||, , are mean values in the intervals (S1,S52) and (S2,953),

Y

Hence, we conclude that

S
A1 a' - R(Wy,)R'a'dS — -Lg- R(We)R'g
S1

which proves the claim.



The Legendre-Hadamard condition

Finally,
—1f9 / g - R(Wg..)R'gda > 0,
Q

and the arbitrariness of (2 yields

g- RW..)R'g>0 atall Xcx

where

R(Wew ) R! = (0°W/0k;0k,)d; ® d;

The constraints require
g € Span{d} or g€ Span{d,}
Accordingly,
O*W/0ki >0 and (0°W/0k.Okg) is positive definite.

These are the Legendre-Hadamard necessary conditions for the present model.



Example: Torsion of a right circular cylinder

We use cylindrical coordinates in reference and current placement:

X =re.(0) + zk
X(X) =re.(¢) + zk, where ¢ =0+ 1712

where 7 - the twist per unit length - is constant.

Deformation gradient: F = Q[I + r7eq(6) ® K]

where Q=-¢e, (¢)®e.(0) +es(d)®e (0) +k®k c Orth™
This 1s 1sochoric. Hence, we consider the incompressibility constraint to be operative.
D=k

The fibers are aligned with the axis of the cylinder in the reference placement.

Fiber derivative: (.)' = 9(-)/0z

Then, M =Fk =k +r7reg(d); = \/1 4272

d : The unit tangent, A : The fiber stretch



Example: Torsion of a right circular cylinder

For fiber reinforced solids, we suppose

Wl(E) = l,u(ll — 3), WQ(E) = 1T and Wg(E) =

2 — 2 3

1
2

and obtain response functions
oc=pE and m=T(k-k)d+ Fdxd’

m +AdxA=0 and M\ + udivB = gradp
B =FF =I1+7r7leg(s) @k +k®eq(¢)] + 1’1 ep(¢) @ eq(o)
divB = —r7?e,(¢)

p(r) =po — ur’r®



Example: Torsion of a right circular cylinder

d xd = A"?rr?[rrk — ep(9)]

m' =\ 'rr* (AT P — Thy e (9)
A=A -d)d+dx (Axd)=-A"rr?(AFr — Tky)[rrk — e4(9)]

K1 =— )\_1(F/T)7'

m = F'7k




Example: Torsion of a right circular cylinder

(Ro—pF*)e () =0 at r=a

nBe.(¢) = pe.(¢) at r=a

(Ro)F' — pI = plim?(r* —a®) — 11+ uB




Example: Torsion of a right circular cylinder

The Overall Response

Traction on a cross section: t = [(RO’)Ft — pllk = %/LTQ (r* — a®)k + prreq (o)

2m a
Resultant force: f = / / trdrdg = f(7)k
0 0

where f(r) = —ima*pr

2

1s a manifestation of the well-known normal-stress effect in nonlinear elasticity theory
27 a
Torque: p = / / (x Xt +m)rdrd¢ = p(7)k
0 0

where p(1) = ma’7(F + pa®)



Example: Flexure of a rectangular block

We use Cartesian coordinates in the reference and polar coordinates in the current placement:

X=zxi+yj+zk and x(X)=re.(0)+ zk, where r= f(zx) and 0= g(y)

Deformation gradient: F=fe ®it+fdesj+kok
yielding 1=J=f(z)f'()g'(y)
For incompressibility: g=Cy and [ = VC-1lz + B

where B isaconstantand C > 0

We consider two cases:

(@A) D=1

M =Fi= f'(r)e, yielding d=e.(0) and = f'(x)



Example: Flexure of a rectangular block

Then, d'=d_, =egf,, vanishes because § isa functionof Y alone.

The constitutive equation: m = 1T're,

We have 0=d-m' =e, - m, =Tk,




Example: Flexure of a rectangular block

(b) D=

The fibers are initially vertical.

M =Fj= fgey vyielding d=ep and \=f¢ =C/C-lz+ B

Then, d'=d_, =epg'(y) = —Ce,

The constitutive equation: m = Treg + FCk

. / .
Using 0=d-m =ey-m, =Tk,  weconclude k'(=x,) vanishes.

If no twisting couples are applied at the horizontal boundaries, then
m = FCKk.

yielding m’'=0 and A=0,



Example: Bending, stretching and shearing of a block

First we deform the block by flexure to the configuration x31 = X (X),
Then the block is sheared to the configuration

Xo = Xo(x1) =re.(0) + ¢k, where ¢=2z+4 36

with [ a positive constant.

We obtain F = FyF; with F; as beforeand Fo =1+ ﬁr_lk R ey

A = Fj = C(reg + fk) yielding \=C+/r2+ 52

d=d,=-—7¢e.(f) and dxd = Z(k-—pFr'ey
We obtain K (=k,) =0 which yields Tkd' + Fd x d” = A\ x d,

_y—1 C?Br kCr
Axd=A"(Fg T\/m)er




Example: Bending, stretching and shearing of a block

Thisyields A=d x (Axd) intermsof k(x)

A force-free solution (A = 0) with fiber twist is given by

k(z) = £ <2 where r = f(x)

T /52




Thank You




