
A Kinetic Vlasov Model for Plasma Simulation Using

Discontinuous Galerkin Method on Many-Core Architectures

Noah Reddell

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2016

Reading Committee:

Uri Shumlak, Chair

Richard Milroy

Sett You

Program Authorized to Offer Degree:
Aeronautics and Astronautics

c©Copyright 2016

Noah Reddell

University of Washington

Abstract

A Kinetic Vlasov Model for Plasma Simulation Using Discontinuous Galerkin Method on
Many-Core Architectures

Noah Reddell

Chair of the Supervisory Committee:
Professor Uri Shumlak

Aeronautics and Astronautics

Advances are reported in the three pillars of computational science achieving a new capability

for understanding dynamic plasma phenomena outside of local thermodynamic equilibrium.

A continuum kinetic model for plasma based on the Vlasov-Maxwell system for multiple

particle species is developed. Consideration is added for boundary conditions in a truncated

velocity domain and supporting wall interactions. A scheme to scale the velocity domain

for multiple particle species with different temperatures and particle mass while sharing

one computational mesh is described. A method for assessing the degree to which the

kinetic solution differs from a Maxwell-Boltzmann distribution is introduced and tested on

a thoroughly studied test case.

The discontinuous Galerkin numerical method is extended for efficient solution of hyper-

bolic conservation laws in five or more particle phase-space dimensions using tensor-product

hypercube elements with arbitrary polynomial order. A scheme for velocity moment integra-

tion is integrated as required for coupling between the plasma species and electromagnetic

waves.

A new high performance simulation code WARPM is developed to efficiently implement

the model and numerical method on emerging many-core supercomputing architectures.

WARPM uses the OpenCL programming model for computational kernels and task paral-

lelism to overlap computation with communication. WARPM single-node performance and

parallel scaling efficiency are analyzed with bottlenecks identified guiding future directions

for the implementation.

The plasma modeling capability is validated against physical problems with analytic

solutions and well established benchmark problems.

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . xi

Chapter 1: Introduction . 1

1.1 A Kinetic Description of Plasma . 1

1.2 Simulation Architecture and Numerical Method for Next Generation of High
Performance Computing . 2

1.3 Study of Plasma in the Presence of a Magnetic Field: Planar Wave Propaga-
tion, Current Sheet Instabilities, and Magnetic Reconnection 3

Chapter 2: Plasma Models . 5

2.1 Vlasov - Maxwell Kinetic Model . 7

2.2 Euler - Maxwell Fluid Model . 7

Chapter 3: Numerical Method . 9

3.1 Particle-In-Cell dominance . 9

3.2 Motivation for discontinuous Galerkin versus alternatives 10

3.3 The discontinuous Galerkin method . 12

3.4 Nodal Discontinuous Galerkin Semi-Discrete Implementation 15

3.5 Element Type and Basis functions . 17

3.6 Optimizations for tensor product hypercubes 18

3.7 High-Accuracy Discontinuous Galerkin Working Matrix Initialization 23

3.8 Types of Errors With Discontinuous Galerkin Method 28

3.9 Advanced discontinuous Galerkin Schemes 36

Chapter 4: WARPM Simulation Code for Many-Core Architectures 41

4.1 Next-Generation Simulation Code . 42

i

4.2 Multi-Level Domain Decomposition . 43

4.3 Dynamic OpenCL Code Assembly . 43

4.4 Minimized Data Movement . 48

4.5 Support for different numerical methods, physical models, and domain geome-
tries . 51

Chapter 5: Kinetic Implementation Details . 55

5.1 Considerations for discretized velocity dimension 55

5.2 Shared rectilinear velocity space mesh among species with tailored stretching
and offset velocity . 57

5.3 Domain decomposition that does not distribute velocity space 59

5.4 Solid Wall Boundary Condition for the Vlasov Equation 60

5.5 Symmetry Plane Boundary Condition . 65

5.6 Sequencing of physical-space and phase-space evaluation 67

Chapter 6: Planar Plasma Waves . 69

6.1 Planar wave propagation in a uniform unmagnetized plasma 69

6.2 Spatially uniform plasma gyration in the Vlasov-Maxwell model 81

6.3 Planar Wave Propagation Perpendicular to Magnetic Field 85

6.4 Streaming Weibel instability . 87

Chapter 7: Current Sheets . 90

7.1 Harris Current Sheet Equilibrium . 90

7.2 Lower-Hybrid Drift Instability . 92

Chapter 8: Magnetic Reconnection . 107

8.1 GEM Magnetic Reconnection Challenge Problem 107

Chapter 9: WARPM Computational Performance 127

9.1 Weak Scaling . 129

9.2 Strong Scaling . 131

9.3 Single Node Performance . 135

Chapter 10: Conclusion . 142

10.1 Contributions . 142

ii

10.2 Suggestions for Future Study . 145

iii

LIST OF FIGURES

Figure Number Page

3.1 Illustration of the 2D reference square element including node ordering for
element order (2nd × 3rd). The element modal basis set is a tensor product
of two 1-D Legendre polynomial basis sets. When the reference element is
projected into physical space as a quadrilateral the transformation is bilinear
such that lines through nodes in reference space remain lines through nodes
in physical space. 20

3.2 This series of plots presents the projections of the function 1 + cos(πr) onto
the Legendre basis function set of indicated order versus r. The Legendre
basis functions are ortho-normal on the domain r ∈ [−1, 1]. 30

3.3 The L2 norm of the projection error resulting from projecting the function
1 + cos(πr) onto the Legendre basis function set. The domain of integration
is r ∈ [−1, 1]. The horizontal axis is the polynomial order of the basis set. An
even-odd trend is made clear by the stair-step results beyond order one. . . . 30

3.4 The L2 norm of the projection error resulting from projecting the function 1+
cos(π(x−vt)) onto the Legendre basis function set. The domain of integration
is one square reference element, x ∈ [−1, 1] and v ∈ [−1, 1]. Basis polynomial
order in x is constant and sufficient, while multiple order in v are tested:
[4th, 7th, 10th, 13th]. 31

3.5 Gauss-Lobatto quadrature error for integration of 1 + cos(2πx) over the in-
terval x ∈ [0, L] (Absolute value of Eq. (3.25)). Multiple cases of quadrature
order are tested: [4th, 7th, 10th, 13th]. Also apparent is a numeric noise floor is
observed around 1× 10−16 consistent with 64-bit floating point arithmetic. . 32

3.6 This figure repeats the analysis performed for Figure 3.5 except that the float-
ing point precision is improved to about 20 decimal digits using an arbitrary
precision math tool. The floating point noise floor is reduced while the results
otherwise remain unchanged. 33

3.7 The error as L2 norm per Eq. (3.26) for the constant linear advection system
with initial condition u0(x) = 1 + 1

2
cos
(

1
2
x
)

on the domain x ∈ [0, 4π]. . . . 35

iv

4.1 The WARPM code decomposes the domain among available nodes and fur-
ther subdivides the domain on a node into patches suitable for GPU com-
putation. Current hardware supports simultaneous calculation and to/from
memory transfer of other patches. 44

4.2 Organization of a dynamically assembled OpenCL program created by WARPM. 49

4.3 Compute assignments (patches) for one MPI process/node participating in a
block-structured simulation. The node’s compute hardware consists of a CPU
and GPU. Each compute device is responsible for advancing the simulation
of a fixed subdomain of the node’s overall assignment (green). The patches
assigned to the GPU are internal and the buffer arrangement on the GPU
facilitates large-block contiguous transfers over the PCI bus. 52

4.4 NACA 0012 airfoil simulation domain set up as a structured mesh of quadri-
lateral elements. This is an ‘O’ mesh, that wraps around the airfoil with
periodic boundary seam at the trailing edge. The simulation domain is much
larger than the airfoil (center) in order to minimize boundary effects and is
decomposed into quadrilateral elements (nr, nθ) = (60, 128). 53

4.5 Steady-state flow conditions around a NACA 0012 airfoil with zero angle-of-
attack. Gas density is plotted. 54

5.1 Relationship between truncated velocity space and the three moments of a
modeled species with Maxwellian distribution. 58

5.2 Depiction of the solid wall boundary condition for the phase space pdf with
one physical dimension. The normal component of incident momentum is
reflected. 61

5.3 Solid walls oblique to the physical coordinate cannot be implemented with the
same simple reflection procedure. Some region of incident normal momentum
would be reflected outside the modeled velocity space (hashed green area).
This results in loss of conservation of mass, momentum and energy. Addi-
tionally, some emitted momentum region also has no corresponding incident
momentum (blue), but this can be simply handled by assuming the pdf is zero
there. 62

5.4 Incident and emitted pdf integration regions for an oblique wall. 64

6.1 Weak Landau damping resulting time series of electric field energy compared
to predicted decay rate. Simulation domain is decomposed into rectangular
elements (nx, nv) = (20, 80). Polynomial basis function order are (Px, Pv) =
(7, 10). 71

v

6.2 Weak Landau damping resulting time series of electric field energy compared
to predicted decay rate. Simulation domain is decomposed into rectangular
elements (nx, nv) = (20, 80). Polynomial basis function order are (Px, Pv) =
(7, 7). Time 70ω−1

p corresponds with feature size in the velocity direction
becoming smaller than that resolvable with the selected grid resolution and
polynomial order. 72

6.3 Strong Landau damping affect on distribution function in phase space pre-
sented as velocity versus position for multiple times as annotated. Simulation
domain is decomposed into rectangular elements (nx, nv) = (20, 80). Polyno-
mial basis function order are (Px, Pv) = (7, 7). 74

6.4 Strong Landau damping affect on electric field energy time series. Simulation
domain is decomposed into rectangular elements (nx, nv) = (20, 80). Poly-
nomial basis function order are (Px, Pv) = (7, 7). Additionally, two zones of
linear growth are identified and plotted along with fit lines γ1 = −0.5904 and
γ2 = 0.1688 (dashed lines). 75

6.5 Two stream initial conditions with unstable conditions, k = 0.5. Simulation
domain is decomposed into rectangular elements (nx, nv) = (20, 80). Polyno-
mial basis function order are (Px, Pv) = (7, 7). 76

6.6 Electric field energy time series subject to the same conditions as in Figure 6.5.
Simulation domain is decomposed into rectangular elements (nx, nv) = (20, 80).
Polynomial basis function order are (Px, Pv) = (7, 7). Also plotted is the the-
oretical linear growth rate γ = 0.4817 . 77

6.7 Two stream initial conditions with stable conditions, k = 2. Simulation do-
main is decomposed into rectangular elements (nx, nv) = (20, 80). Polynomial
basis function order are (Px, Pv) = (7, 7). 79

6.8 Two-stream instability fully developed vortex at time t = 45 presented as
phase space representation of distribution function (velocity versus position).
Initial condition and domain are setup as per Ref. [21]. Simulation domain is
decomposed into rectangular elements (nx, nv) = (20, 80). Polynomial basis
function order are (Px, Pv) = (7, 7). 80

6.9 ω2
p/ω

2
c = 3 . 85

6.10 ω2
p/ω

2
c = 3 . 86

6.11 Streaming Weibel instability result for parameter ‘Case 1’ reported in Figure
5.3 of Ref. [13] copied here for comparison purposes. 87

6.12 Mean field energy time series for streaming Weibel instability result simulated
by WARPM Vlasov-Maxwell model with the same conditions as the published
result in Figure 6.11. 88

vi

6.13 Mean kinetic energy time series for streaming Weibel instability result sim-
ulated by WARPM Vlasov-Maxwell model with the same conditions as the
published result in Figure 6.11. 89

7.1 Harris Current Sheet problem setup with number density, transverse current
density and magnetic field all functions of x between the two conductors. . 90

7.2 Zero-contour intersections indicate potential eigenvalues for the odd-mode so-
lutions of Eq. (7.34) with parameters M = 1836, R = 100, U = 1, τ = 0.1
consistent with those for the solutions presented in Figure 3 of Ref. [49]. The
lower-right branch intersections agree with the eigenvalues in the figure cited. 99

7.3 Zero-contour intersections indicate potential eigenvalues for the odd-mode so-
lutions of Eq. (7.34) with parameters M = 25, R = 100, U = 1, τ = 0.1. Only
the intersection at ω = 0.16 + 0.24̂i seems to correspond with an eigenmode
from Ref. [49] with M = 1836. 100

7.4 Full set of even and odd mode eigenvalues identified and labeled for parameter
set M = 25, R = 100, U = 1, τ = 0.1. 101

7.5 Odd mode eigenfunction solutions for the eigenvalues presented in Figure 7.4
with parameter set M = 25, R = 100, U = 1, τ = 0.1. Note that only Mode
A has perturbation concentrated in the current sheet region Z < 1 associated
with the LHDI . 102

7.6 Even mode eigenfunction solutions for the eigenvalues presented in Figure 7.4
with parameter set M = 25, R = 100, U = 1, τ = 0.1. Note that only Mode
A has perturbation concentrated in the current sheet region Z < 1 associated
with the LHDI. 103

7.7 Eigenfunction solutions for δEy in Eq. (7.34) associated with the corresponding
eigenvaluse in Figure 7.4. 104

7.8 Typical WARPM Vlasov-Maxwell simulation result with initialized with equi-
librium perturbation adhearing to the solution for even mode ‘A’. The image
shows the Ey electric field component amplitude. 105

8.1 Representative structured velocity mesh in vx and vy dimensions utilized in the
GEM challenge simulations. There are twelve finite elements in each velocity
dimension. The interior nodes are also depicted for the tensor-product 3rd-
order polynomial elements so there are four points per element per dimension.
Element faces are the darker lines. Element vertex spacing is stretched per
Eq. (8.9) to improve resolution near the centroid. 112

vii

8.2 Ion number density at four representative time points during the simulation.
The initial sheet peak density is n0 = 1.0 plus an additional uniform back-
ground fraction of nb = 0.2. Over the course of the reconnection event, the
bulk plasma retreats along the sheet axis away from the X-point resulting in
a higher number density. 113

8.3 Net charge density at four representative time points during the simulation.
The ion number density in Figure 8.1.4 at the same time points is useful
for establishing relative scaling. Some structures with net charge density are
consistent over the duration of the magnetic reconnection event with regions
of positive charge density collocated with the magnetic field separatrix and a
region of negative charge surrounding the O-point containing the bulk plasma
density. Also visible are small scale structures inside of the separatrix most
pronounced at the time of fastest reconnection. 114

8.4 Total ion momentum as r.m.s. magnitude at four representative time points
during the simulation. As the current sheet separates and retreats from the
X-point, significantly more momentum is located at the retreating edge with
sharp fall-off. An emerging asymmetry across the current sheet is visible at
the final frame of simulated time. 115

8.5 Composite presentation of current density out of plane (jz) along with mag-
netic field streamlines for in-plane Bx and By. At the initial condition, the
applied magnetic field perturbation is noticeable as necking in the field lines
mid-plane while the plasma is uniform along the sheet. At time t = 32 ω−1

ci ,
the separatrix and X-point are both clear features in the magnetic topology.
In the bulk current density region there are actually two magnetic islands giv-
ing clearest indication of broken symmetry along the current sheet and across
the X-point. The out-of-plane current density is much less uniform than the
ion number density in Figure 8.1.4 might lead one to guess. At final time
t = 40 ω−1

ci , a slight asymmetry across the current sheet is also visible as a
kink near the right domain edge. 116

8.6 Normalized reconnected magnetic flux versus time per Eq. (8.10). Three
WARPM Vlasov-Maxwell simulations are presented as well as three other pub-
lished kinetic simulation model results [56, 57, 58]. Two WARPM simulations
have comparable resolution; the one labeled HW or half-width implements
a symmetry boundary condition along the current sheet mid-plane. A quite
course simulation was also made with about half the resolution in all dimen-
sions and also using the symmetry boundary condition. The fast reconnection
rate and onset time are still well recovered. 118

viii

8.7 Deviation of a any distribution (red) from the Maxwell-Boltzmann distribution
(blue) can be assessed by the 1-norm, or shaded area in this cartoon with one
velocity dimension. 120

8.8 Normalized Maxwell-Boltzmann error for ions per Eq. (8.17) at the times
indicated. Over the course of the reconnection event, the hotter ion species’
distribution deviates most from Maxwellian in the diffusion region and in the
low density region along and outside the magnetic separatrix. 122

8.9 Normalized Maxwell-Boltzmann error for electrons per Eq. (8.17) at the times
indicated. Over the course of the reconnection event, the colder electron
species’ distribution deviates most from Maxwellian in the diffusion region
and along the magnetic separatrix. 123

8.10 Physical points at which the probability distribution functions have been sliced
and analyzed in three-dimensional velocity space. Point labels overlay the
Normalized Maxwell-Boltzmann error per Eq. (8.17) for ion species (top) and
electron species (bottom) at the time t = 25.6 ω−1

ci 124

8.11 Probability distribution function for ions (top) and electrons (bottom) at slice
point ‘A’ in Figure 8.1.6 at time t = 25.6 ω−1

ci . Isovolumes indicate 0.75 and
0.25 fractions of the specie’s number density at the slice point. The crosshairs
are centered at the fluid velocity moment. 125

8.12 Probability distribution function for ions (top) and electrons (bottom) at slice
point ‘E’ in Figure 8.1.6 at time t = 25.6 ω−1

ci . Isovolumes indicate 0.75 and
0.25 fractions of the specie’s number density at the slice point. The crosshairs
are centered at the fluid velocity moment. 126

9.1 Representative problem geometry for parallel scaling performance studies. In
all cases the simulated domain is square and surrounded by perfectly conduct-
ing solid walls with uniform element size, ∆x. The domain size Lx is constant
for the strong scaling problems. For weak scaling problems, the domain area
increases linearly with number of processors, Lx ∝

√
Nnodes. 129

9.2 Weak scaling experiment results with tile of 3× 3 elements per compute node
with 8 elements in each velocity dimension. 132

9.3 Weak scaling experiment results with tile of 16 × 16 per compute node with
8 elements in each velocity dimension. 133

ix

9.4 Strong scaling performance for problems based on 48 × 48 rectilinear mesh
elements in physical space and 8 elements in each velocity dimension. Element
polynomial order and number of velocity dimensions in the Maxwell-Vlasov
model are indicated by the legend. Speedup is defined as the reduction in
wall-time to compute one unit of time advance relative to single-node time.
The purple annotations indicate the domain decomposition tile size on each
node. 134

x

LIST OF TABLES

Table Number Page

3.1 Linear index to multi-index conversion function M(n, d) for the 2nd-order ×
3rd-order square element depicted in Figure 3.1. 19

3.2 Summary of floating point operations for DG element evaluation of time
derivative on a hypercube element. The number of nodes per ND-dimensional
element with polynomial order P is Np = (P + 1)ND and the number of face
points is Nfp = 2ND(P + 1)ND−1. 21

3.3 Example reduction in FLOP and storage requirements for DG tensor product
hypercube element with element order, P = 3, and four-dimensional hyper-
cube, ND = 4. 21

3.4 Example reduction in FLOP and storage requirements for DG tensor product
hypercube element with element order, P = 3, and five-dimensional hyper-
cube, ND = 5. 22

3.5 Example reduction in FLOP and storage requirements for DG tensor product
hypercube element with element order, P = 3, and six-dimensional hypercube,
ND = 6. 22

3.6 Number of sub-steps required versus accuracy in explicit Runge-Kutta methods 36

5.1 Conditions associated with sausage mode or even symmetry along the x = 0
plane in the Vlasov-Maxwell model. 66

6.1 Mean velocity phase diagrams and electric field spectrum for spatially uniform
plasma oscillation perpendicular to a magnetic field. The left column shows
velocity normalized by the thermal velocity, with v̄x on the horizontal and v̄y
vertically. The right column frequency spectrum is normalized to cyclotron
frequency, ωc. Each row represents a different initial condition that select both
or single mode dynamics based on the initial electric field strength. For these
examples, ωp = 1, ωc = 1√

20
. 84

9.1 NERSC Edison Configuration . 128

xi

9.2 Performance metrics collected from one two-socket 24-core Ivy Bridge node
of Edison at NERSC. Domain geometry is 16 × 16 element tile in all cases,
and 8 elements per velocity dimension. Hardware performance metrics were
collected by the Intel VTune Amplifier 2016 performance sampling tool. . . 137

xii

ACKNOWLEDGMENTS

The author has deep appreciation for the guidance and feedback from his disser-

tation committee and especially for his committee chair, Professor Uri Shumlak. The

support that he has provided during the course of the author’s graduate career, in

all forms, was most influential in ultimate success. The support and organization of

the William E. Boeing Department of Aeronautics & Astronautics was quite helpful

making it through the program milestones.

The author would like to acknowledge the immeasurable contributions to physical

understanding and mental health provided by fellow research lab students including

Robert Lilly, Bhuvana Srinivasan, Eder Sousa, Sean Miller, and Genia Vogman.

It is unlikely much of this research would have been achievable without the ter-

rific support from the Computational Science Graduate Fellowship program. The

CSGF provided financial support, specialized high performance computing training,

networking opportunities, and access to computing resources. The CSGF also orga-

nized a summer practicum at Princeton Plasma Physics Laboratory in 2011. The

author is thankful to Dr. Guo Yong Fu for hosting the practicum and providing some

of the author’s early exposure to kinetic model simulations.

The author is grateful for opportunity to attend the Computational Methods in

High Energy Density Plasmas long program hosted by the Institute of Pure and

Applied Mathematics at UCLA in 2012. The technical program and deep interaction

with other attendees were a terrific source of ideas at a formative time in this research

endeavor.

This research used resources of the National Energy Research Scientific Computing

xiii

Center, a DOE Office of Science User Facility supported by the Office of Science of the

U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The NERSC

technical support staff were extremely helpful over the years.

This research used resources of the Oak Ridge Leadership Computing Facility at

the Oak Ridge National Laboratory, which is supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

The author is grateful for the unwavering support and encouragement from family,

friends, and fellow graduate students that enabled graduate school experience to be

enjoyable and reach the end-goal.

xiv

DEDICATION

This work is dedicated to my community of teachers who

have nurtured, challenged, and inspired me to explore the

unknown. The interactions have spanned decades, some

will have eternal entanglement and others may never

know where their support has lead me.

Thank you all the same.

xv

1

Chapter 1

INTRODUCTION

The study of plasma, or the ionized state of matter, has been rich with discovery leading

to both new understanding and new questions in contemporary theory. The real emergence

of plasma science research was coincident with the beginnings of scientific computing and

the two fields have been closely tied for more than half-a-century since.

Plasma phenomena of interest, especially in the application area of controlled fusion

energy, have consistently proven to be more complex than each subsequent generation of

models could capture. At the same time, computing capabilities and numerical methods have

rapidly advanced to unlock the possibility of newer more complete models. This research

intended to continue the trend from a point where both a change in modeling paradigm and

computational approach were needed.

1.1 A Kinetic Description of Plasma

Most plasma modeling has considered the plasma to be a compressible fluid influenced ad-

ditionally by electromagnetic forces [1, 2]. The behavior of the plasma is approximated by

the bulk behavior of many individual particles’ positions and velocities and the collective

interaction with electric and magnetic fields. A fluid model imposes an additional restriction

on the form of the distribution in velocity space. In local thermodynamic equilibrium, the

velocity distribution of particles at a particular point in space is known to be a Maxwell-

Boltzmann distribution which can be analytically expressed and is completely characterized

by just three parameters: number density, average velocity, and temperature. The modeled

fluid tracks the evolution of these parameters of the velocity distribution (commonly called

the fluid variables) as a function of position and time.

2

The primary plasma model studied in this thesis is a kinetic model as opposed to a fluid

representation. A statistical approximation is applied to the distribution of particles in both

position and velocity space. The combination of dimensions is often called phase space and

is most generally twice the number of spatial dimensions. A complete description, then,

would be six-dimensional describing the probability density function (pdf) for particles over

three space dimensions and three velocity dimensions. In the kinetic model, the pdf function

is arbitrary and can take on any form. The distribution itself is evolved in time, greatly

expanding the number of degrees of freedom and computational work, but capturing rich

and important phenomena when the plasma is not in local thermodynamic equilibrium.

To further complicate the model, plasma is characterized by at least two particle species

with differing charge and mass characteristics. For physical realism, the model must include

at least separate electron and ion species. Sometimes it will be adequate to treat just one

species with a kinetic model and the other with a fluid model. Either way, there is an open

area for investigation into modeling the interaction between separate particle species.

The physical model is more fully described in Chapter 2.

1.2 Simulation Architecture and Numerical Method for Next Generation of
High Performance Computing

The substantial increase in the physical model complexity paired with new trends in high

performance computing architectures require careful numerical method selection and de-

velopment of a new simulation code architecture. The code is WARPM: the Washington

Approximate Riemann Problem Solver – Many-core edition.

Improvements in computing performance through increases in core clock frequency has

been stalled for several years. Performance continued to improve, especially in scientific

computing, through increased parallelism – first with many-node distributed memory clusters

using Message Passing Interface, then with multiple shared memory cores on each node.

Industry pressures and physical limitations on power density have started a new many-core

architecture era with currently two main classes of devices. First, there are the modern

3

graphics processors largely fueled by the gaming industry. A typical GPU might have over

one-thousand compute cores[3], but the cores are lightweight. A lightweight core is not as

functionally equipped or able to operate as independently as a traditional CPU core. One

common reduction is that several cores are slaved lock-step to a single instruction scheduler;

each core must execute the same instruction, but with independent data. Another reduction

is that memory consistency for certain memory regions is not maintained between cores.

Second, there are the new and upcoming CPU devices with sixty or more cores [4], supporting

a greater number of threads per core and larger vector-width floating point operations. The

clock speeds for these devices are considerably lower, requiring good use of the vector units

and threads to realize improved performance.

Three important characteristics are common between both types of many-core devices.

Memory movement is very expensive in terms of time and energy use compared to numeric

operations, and multiple memory hierarchies exist including: memory accessible by a single

core, memory shared among a few cores, memory accessible by all cores. Lastly, the highest

floating point arithmetic performance is only achievable with vectorized operations. Software

architecture and numerical methods that are well adapted to these three characteristics are

best suited to perform well on today’s and future high performance computing resources.

A numerical method well suited for the physical model and new high performance com-

puting architectures is developed in Chapter 3 while a new simulation code designed to

implement the numerical method with good performance is presented in Chapter 4.

1.3 Study of Plasma in the Presence of a Magnetic Field: Planar Wave Prop-
agation, Current Sheet Instabilities, and Magnetic Reconnection

The advanced plasma model paired with high performance numerical method and simulation

code opens up many new areas for investigation in plasma physics. Three general problem

types are investigated in this thesis as both a proof of principle and to contribution to their

physical understanding. The set is not accidental in that each type exercises a different model

dimensionality in position or velocity space and thus also different computational problem

4

scale.

First, planar plasma wave propagation and related limited cases are investigated in Chap-

ter 6. These problems are adequately described with one physical dimension. For planar

longitudinal plasma waves propagating parallel to a unidirectional magnetic field, only one

velocity dimension is required to model the pdf dynamics; the modeled phase space is called

(1D + 1V). For planar plasma waves propagating perpendicularly to a unidirectional mag-

netic field, two velocity dimension are required to model the pdf dynamics including Larmor

motion; the modeled phase space is called (1D+2V). And for planar plasma waves propagat-

ing obliquely to a unidirectional magnetic field, three velocity dimensions are required and

the modeled phase space is (1D+ 3V). Each of these sub-types has a spatially uniform limit

where the wave number k is zero and only plasma gyration occurs with analytical solution.

Magnetic current sheets confine a plasma pressure gradient balanced by the Lorentz force

and consistent current density along the sheet [5]. Current sheet instabilities that can develop

due to perturbations along the current sheet direction are investigated in Chapter 7. With a

magnetic field always perpendicular to the current-sheet plane, the problem can be modeled

in (2D + 2V).

Finally, the current sheet problem is rotated so that the magnetic field is in the simulation

plane while the current flow is out of plane. This configuration allows the interesting kinetic

study of magnetic reconnection[6] which is described in Chapter 8. The problem modeling

is in (2D + 3V).

The reconnection study proved to push the limit of currently available supercomputing

resources. At the same time, experience gained studying WARPM performance at this scale

resulted in ideas for new code optimizations and optimistic outlook that (3D + 3V) simula-

tions will soon be achievable. Performance analysis of relevant problem sizes is presented in

Chapter 9.

5

Chapter 2

PLASMA MODELS

In considering development of a model for plasmas, there are several options for level

of complexity and scale possible. The model should be intelligently selected to capture

the significant physical processes in the problem at hand. Nevertheless, some models are

more general than others and often the scope of physics is not fully known in advance.

This work emphasizes kinetic model flexibility rooted in principled derivation and avoidance

of overly restrictive approximations. At the same time, the ultimate goal is to analyze

engineering systems of interest such as fusion plasma confinement, space propulsion systems,

and industrial processes. At this scale, N -body[7] or molecular dynamic models[8] are still

far out of reach of computational capability.

Instead of simulating the dynamics of every plasma particle directly, a kinetic simulation

aims to capture the macroscopic behavior of the ensemble of particles. This is possible when

the concentration of particles is very high compared to the physical scale of interest giving

a statistically smooth distribution of particle states. A kinetic model then describes the

evolution of the statistical average of many particles’ states in both position and velocity.

This statistical average is called the probability distribution function (pdf) with units of

particles per space volume per velocity volume, m−6s3 in real-world (3D + 3V) dimensions.

For kinetic models, the Vlasov equation system presents the simplest evolution of a single

particle species affected by external forces and no collisions. The probability density function,

fs(x,v), evolves in time according to,

∂fs

∂t
+ v · ∂fs

∂x
+

F

ms

· ∂fs

∂v
= 0, (2.1)

where s identifies the species, F is the force vector, and ms is the species’ particle mass.

6

A more general implementation of the Boltzmann equation may be appropriate where

collisions, radiation, and other physical effects necessitate the addition of a source term to

the hyperbolic Vlasov equation [9]. When considered, the functional source term S (x,v, . . .)

replaces the right-hand side of Eq. (2.1). The exact form of S could be quite complicated,

perhaps causing the kinetic evolution to be stiff, operating non-locally in velocity, and may

couple multiple plasma species.

In collisionless plasma, the most distinguishing forces are the macroscopic electromagnetic

forces. The fields generally have spatial variation but are constant for any velocity coordinate,

v.

In some applications, the magnetic field does not change or changes so slowly compared

to the time scale of interest; Poisson’s simplified model for electrostatics can be used. The

electric field E, local charge density σ and potential ψ are simply related by

∇ · E =
σ

ε0
, (2.2)

E = −∇ψ, (2.3)

∇2ψ = − σ
ε0
. (2.4)

In applications with dynamic magnetic field, B, the full electromagnetic dynamics of

Maxwell’s equations are required

∇ · E =
σ

ε0
, (2.5)

∇ ·B = 0, (2.6)

∂E

∂t
=

1

µ0ε0
∇×B− 1

ε0
J, (2.7)

∂B

∂t
= −∇× E. (2.8)

Fluid velocity us and the plasma number density ns are reduced moments of the probability

density function integrated over all velocity.

The local charge density σ is the summed contribution of all species with charge qs and

number density ns,

7

σ =
Ns∑
s=1

qsns. (2.9)

The current density J likewise results from the net effect of all charged species flowing at

average velocity us,

J =
Ns∑
s=1

qsnsus. (2.10)

Plasmas are typically made up of multiple particle species. Often models consider two:

ions and electrons. Most real plasmas involve multiple elements at many different charge

states. In some plasmas, a neutral gas population is significant. Such complexities are not

considered in this work.

2.1 Vlasov - Maxwell Kinetic Model

A complete kinetic model for collisionless plasma is attained by combining the Vlasov model

Eq. (2.1) with the Maxwell’s Equations (2.5)-(2.8), and the local charge relations Eqs. (2.9)

and (2.10). The evolution of the distribution function is then more completely specified as

∂fs

∂t
+ v · ∇fs +

qs

ms

(E + v ×B) · ∂fs

∂v
= 0. (2.11)

2.2 Euler - Maxwell Fluid Model

In some systems, a plasma species is adequately approximated in local thermodynamic equi-

librium where the probability density is a Maxwellian completely characterized by local

number density n, average velocity u, and temperature T . The probability density function

is the Maxwell-Boltzmann distribution, including the famous Boltzmann constant k,

fM(n,u,v, T) = n
(m

2πkT

) 3
2

exp

(
−m|u− v|2

2kT

)
. (2.12)

With fluctuations in physical space propagating only as perturbation of these macroscopic

parameters, a fluid model is appropriate [2, 10, 11, 12]. The Euler-fluid plasma model

equations adequately describe compressible inviscid fluid,

8

∂ρs

∂t
+∇ · (ρsus) = 0, (2.13)

∂ρsus

∂t
+∇ · (ρsusus + psI) =

ρsqs

ms

(E + us ×B), (2.14)

∂εs
∂t

+∇ · ((εs + ps)us) =
ρsqs

ms

us · E. (2.15)

An assumed closure relation such as the ideal gas law is required to complete the system

with a relationship between kinetic energy density and momentum density.

Due to the extreme disparity between ion and electron mass, in many cases a fluid model

is appropriate for one species while a kinetic model is necessary for another. A modeling

system that can support a coupled combination of both fluid and kinetic models for different

species could be useful.

9

Chapter 3

NUMERICAL METHOD

Having established the plasma model characterized by hyperbolic partial differential equa-

tions in high dimensional phase space, an appropriate numerical method must be selected

to implement the model computationally.

The discontinuous Galerkin method is selected for its robustness to work well for kinetic

equations in phase space, Maxwell’s electromagnetic equations, and fluid equations in physi-

cal space with multiple contemporary examples for these application areas [12, 13, 14, 15, 16,

17, 18]. Additionally, the explicit method is straightforward to implement and well suited

for emerging high performance computing architectures as described in Chapters 4 and 9.

3.1 Particle-In-Cell dominance

Before discussing discontinuous Galerkin, it must be acknowledged that there is a much more

prevalent method in use for kinetic simulations. Particle-In-Cell (PIC) methods [19, 20]

have been in use for kinetic simulations of plasma for a longer time. PIC is not just a pure

numerical scheme – it is intertwined with the kinetic model.

For a system of N point particles, the probability distribution function, f , within phase

space is given by the Klimontovich-Dupree equation,

f(x,v, t) =
N∑
j=1

δ(x− xj)δ(v − vj), (3.1)

where each particle j has position xj and velocity vj and δ is the Dirac delta function. Each

particle advances according to Lagrangian equations of motion,

dxj
dt

= vj,
dvj
dt

=
F(xj)

mj

, (3.2)

10

where mj is the particle mass and F(xj) is the force experienced by particle j.

Solving the above equations with a very large number of particles should converge to the

equivalent problem of solving the Vlasov Eq. for a smooth f(x,v, t). PIC does not implement

the Klimontovich-Dupree equation, however. The implementation of the force term, F(xj),

distinguishes PIC form N-body simulations. It is developed through the statistical contribu-

tion to charge density or current density by many nearby particles and then deposited on a

physical grid of cells [20]. The number of particles per grid cell and cell size directly relates

to statistical noise limitations.

Three limitations of PIC motivate search for an improved numerical method. The sta-

tistical noise problem has already been mentioned and is most prevalent in regions of the

simulated system where the number density of particles is small. Additionally, PIC codes are

able to conserve mass or conserve energy, not both. Finally, PIC codes have a challenge for

good scaling on modern computing architectures due to the unpredictable communication

involved when particles stream across computational domain boundaries of the physical grid.

3.2 Motivation for discontinuous Galerkin versus alternatives

In solving a continuous approximation of the conservative Vlasov equation system or a fluid

model, possible methods include finite volume, semi-Lagrangian, discontinuous Galerkin, and

continuous finite element method. All can be used to solve nonlinear systems of hyperbolic

conservation laws of the type,

∂q

∂t
+∇ · f(q) = g, x ∈ Ω, (3.3)

q(x, 0) = q0(x). (3.4)

Non-linear systems of conservation laws starting with continuous initial data can evolve

into discontinuous solutions. Finite element methods that enforce solutions with C0 conti-

nuity at cell boundaries can be eliminated from consideration due to their unsuitability to

capture shock formation. They do offer many favorable qualities when it comes to developing

high-order-of-accuracy methods and boundary conditions.

11

Semi-Lagrangian schemes for kinetic methods initially represent both particle distribu-

tion and field values on an Eulerian grid. The particle distribution is then advanced in a

Lagrangian frame without restriction for time-step before final projection back onto the Eu-

lerian grid. See Refs. [21] and [17] for a description of a semi-Lagrangian scheme applied

to the Vlasov-Poisson system. The interpolation between Lagrangian and Eulerian frame

introduces the most significant solution error in this scheme. Extending the scheme to higher

dimensions than (1D+1V) is complicated by the method’s reliance on operator splitting tech-

niques. Additionally, little progress is available for high temporal order-of-accuracy. When

used with the Vlasov-Maxwell system of interest, the Lagrangian time-step advantages may

not be significant compared to the speed of light CFL limit in the Eulerian frame.

The comparison of the remaining finite volume and discontinuous Galerkin methods war-

rants more careful evaluation. Overall, the formulation of a finite volume method is more

straightforward but discontinuous Galerkin shows advantages when high spatial order-of-

accuracy is desired. Finite volume methods store a single cell average value for each system

variable between time steps. DG methods store multiple reconstruction coefficients per cell

or element for each system variable. To achieve the same spatial accuracy, a finite volume

approach would be required to use more (smaller) grid cells for the same problem domain.

To achieve higher spatial order of accuracy in finite volume methods, larger stencils are

used in the reconstruction. Larger stencils require moving more data from more cells across

every level of the communication hierarchy. DG utilizes a single-width stencil (meaning

central element and adjacent neighbor elements only) requiring the fewest number of elements

to be copied. One DG cell, however, must store a number of reconstruction coefficients

proportional to the selected order of accuracy. At zeroth-order then, the actual amount

of data required to be transferred could be the same for finite-volume and discontinuous

Galerkin. (i.e. moving 5 stencil cells with one floating point value each is the same net

movement as one cell with five floating point weighting values.) However, computer hardware

effects lead DG to excel in this regard. For instance, in the implementation for this thesis,

multiple DG nodal values for an element are stored contiguously in memory at all levels.

12

This is not true for finite volume cell values over a multi-dimensional stencil. Memory and

cache systems are designed to fetch and store contiguous bytes in memory with fixed size

called the read-line size. Typical read-line size for x86 CPU is 64 Bytes while for GPU they

can by 128 Bytes or 32 Bytes [3]. An additional restriction is that read lines are always

aligned to 64-byte address boundaries. A DG method may be implemented to use more data

elements from the read-line than finite volume schemes.

Discontinuous Galerkin method is also better suited to achieve high-order-of-accuracy in

complex geometries due to the more compact stencil compared to finite volume methods [22].

High-order finite volume methods using the arbitrary high-order schemes using derivatives

(ADER) [23, 24] or weighted essentially non-oscillatory (WENO) [25] reconstruction tech-

niques rely on quality stencil selection surrounding the evaluated cell. This becomes more

difficult in higher dimensions, in the presence of grid distortion, and along physical bound-

aries. In the vicinity of a boundary the stencil must be one-sided or implemented to affect

the boundary condition with multiple ghost cells.

For these reasons, the discontinuous Galerkin method was selected as the primary nu-

merical method for PDE utilized in this thesis.

3.3 The discontinuous Galerkin method

3.3.1 Discontinuous Galerkin method background

The beginnings of the discontinuous Galerkin scheme started with development for steady

neutron transport models by Reed and Hill [26]. Cockburn and Shu extended DG to gen-

eral hyperbolic conservation laws in papers such as Refs. [27] and [28]. The description

below follows the notation and order of operations of the instructive text by Hestaven and

Warburton [22].

In a DG method, the global problem domain is approximated by a collection of K non-

overlapping elements,

Ωh =
K⋃
k=1

Dk. (3.5)

13

The elements Dk could be tetrahedral, hexahedral, or other shapes that tile the plane or fill

the multidimensional volume.

In the DG approach, the global solution to Eq. (3.3) is approximated by piecewise recon-

structions within each element. Inside one element Dk, the solution is assumed to be a linear

combination of basis functions. The approximation can specified as modal linear expansion

using Np weights q̂n(t) on basis functions ψn(x),

x ∈ Dk : qkh(x, t) =

Np∑
n=1

q̂kn(t)ψn(x), (3.6)

or as a nodal reconstruction with known nodal values qh(xi, t) at each of Np points weighting

the Lagrange interpolation polynomials `i(x),

x ∈ Dk : qkh(x, t) =

Np∑
i=1

qkh(xki , t)`
k
i (x). (3.7)

The modal and nodal representation are connected through the Vandermonde matrix,

q = Vq̂, where, VT `(x) = ψ(x) and Vij = ψj(xi). (3.8)

To develop a scheme that solves Eq. (3.3), a space of test functions Vh is defined and the

residual is required to be orthogonal to all test functions in the space expressed as

∫
Dk

residual︷ ︸︸ ︷(
∂qkh
∂t

+∇ · fkh − gkh
)
φh(x)dx = 0, ∀φh ∈ Vh. (3.9)

From this requirement, a system of equations local to each element is established and

will be developed here for the nodal approach. This equation system is transformed into the

DG numerical scheme through some manipulation. The Galerkin naming distinguishes that

the space of test functions φh will be the same as the space of the set of basis functions ψn.

The flux term is separated into an integral and then integration by parts is applied to

transfer the spatial derivative from the flux term to the basis function. One equation results

for each basis function, ψn,∫
Dk

(
∂qkh
∂t

ψn − fkh · ∇ψn − gkhψn
)
dx = −

∫
∂Dk

n̂ · fkψndx, 1 ≤ n ≤ Np. (3.10)

14

For a consistent system across all elements Dk, the surface flux on the right hand side

must be in agreement for neighboring elements. The surface flux term is replaced, then, with

an evaluated numerical flux, f ∗, in the face-normal direction and based on the states from

both sides of the element-element surface, generally a Riemann problem solution. This is

the weak form expression for the discontinuous Galerkin method,∫
Dk

(
∂qkh
∂t

ψn − fkh · ∇ψn − gkhψn
)
dx = −

∫
∂Dk

f ∗ψndx, 1 ≤ n ≤ Np. (3.11)

An alternative but equivalent form can be developed by applying integration by parts

once again. This is the strong form expression for the discontinuous Galerkin method,∫
Dk

(
∂qkh
∂t

+∇ · fkh − gkh
)
ψndx =

∫
∂Dk

(
n̂ · fkh − f ∗

)
ψndx, 1 ≤ n ≤ Np. (3.12)

3.3.2 Basic steps for DG

To implement a scheme to solve the weak form in Eq. (3.11) or strong form in Eq. (3.12), a

system of equations for all basis functions ψn and all elements Dk is constructed. Preliminary

work can be done for a reference element leading to straightforward evaluation at run-time.

First a set of basis functions is identified that should be orthonormal. The normalized

Legendre polynomials is a popular choice but not the only choice.

A coordinate transformation is performed for every element k, reshaping the general

element into a reference element, e.g. square or equilateral triangle. By doing so, required

basis function derivatives and products can be pre-computed.

The semi-discrete form of the DG scheme is an ordinary differential equation that involves

explicit and local calculations of the hyperbolic equation flux functions within the element

as well as a numerical flux consistent between two elements sharing a face. Many choices

of numerical flux are possible and the use of approximate Riemann solvers as used in finite

volume methods is a popular choice. The semi-discrete form is developed with more detail

in the next section leading to Eq. 3.21.

Finally, the semi-discrete ODE is integrated forward in time using an ODE integrator

15

selected to achieve order-of-accuracy balanced with the spatial order and stability compatible

with the stiffness and oscillatory characteristics of the ODE system.

3.4 Nodal Discontinuous Galerkin Semi-Discrete Implementation

The discontinuous Galerkin strong form of equation Eq. (3.12) is developed here as a compact

linear algebra system per-node and per-element to evaluate the time derivative
dqki
dt

, where

superscript k denotes the element index and subscript i is the node index within the element.

The nodal implementation solves for the time derivative at specific node locations within

the element, xki , using the flux and source terms evaluated at node locations satisfying a

numerical integration (quadrature) rule and additionally a numerical flux at each node on

each face. The numerical flux is normal to the face and must be consistently evaluated for

two adjacent elements.

It is more practical to implement the DG equation system in terms of a standard size

reference element. The volume and surface integrals of Eq. (3.12) can be implemented using

the reference element in reference coordinates r and coordinate transformation, ∂r
∂x

.∫
Dk

qdx =

∫
I

qJkdr, (3.13)

where the geometric Jacobian Jk =
∣∣ ∂r
∂x

∣∣.
The volume and surface integration from Eq. (3.12) are computed using a numeric quadra-

ture rule with weights wi,

Np∑
i=1

wiJ
k
i ψn(ri)

(
dqk(ri)

dt
− gk(ri)

)
=

−
Np∑
i=1

wiJ
k
i ψn(ri)∇x · f−(ri) +

Nfp∑
m=1

wsmJ
k
m

(
n̂ · f−(rm)− f ∗(rm)

)
ψn(rm), (3.14)

1 ≤ n ≤ Np.

Equation (3.14) can be expressed as a linear system of equations,

16

[ψn(rj)] [diag(wi)]
[
diag(Jki)

]([dqk(ri)
dt

]
−
[
gk(rj)

])
=

−
Ndims∑
d=1

[ψn(rj)] [diag(wi)]
[
diag(Jki)

] [∂r

∂x
|ri
] [

∂(f− · n̂d)
∂rd

|ri
]

(3.15)

+ [ψn(rm)] [diag(wsm)]
[
diag(Jkm)

] [
n̂ · f−(rm)− f ∗(rm)

]
.

The matrix [ψn(rj)] is the transpose of the Vandermonde matrix, V , connecting the basis

functions to interpolation functions. The Vandermonde matrix has elements,

Vij = ψj(ri). (3.16)

Left-hand multiplying Eq. (3.15) by
(
VT
)−1

, the inverse of the volume integral quadrature

weights, and the inverse of the Jacobian determinate yields,

[
dqk(ri)

dt

]
−
[
gk(rj)

]
=

−
Ndims∑
d=1

[
∂r

∂x
|ri
] [

∂(f− · n̂d)
∂rd

|ri
]

(3.17)

+
[
diag(Jki)

]−1
[diag(wi)]

−1 (VT)−1

[ψn(rm)] [diag(wsm)]
[
diag(Jkm)

] [
n̂ · f−(rm)− f ∗(rm)

]
.

To evaluate the flux divergence term, properties of the reconstructed polynomial flux

function are utilized exactly as for the conserved variable.

fh(ri) =

Np∑
n=1

f̂nψn(ri). (3.18)

∂fh
∂rd
|ri =

Np∑
n=1

f̂n
ψn
∂rd
|ri . (3.19)

This introduces the Grad-Vandermonde matrix, Vrd =
[
ψj

∂rd
|ri
]
. With that and the con-

nection of mode weights to nodal values described in Eq. (3.8), the flux divergence term

is,

17

[
∂(f− · n̂d)

∂rd
|ri
]

= VrdV−1
[
f− · n̂d

]
= Drd

[
f− · n̂d

]
, (3.20)

where Drd is the differentiation matrix in direction d.

The full linear system for the semi-discrete ODE can now be compactly expressed,

dqk

dt
= gk −

Ndims∑
d=1

DrdJ
kf− + L(n̂ · f− − f∗)

Js
Jk
. (3.21)

3.5 Element Type and Basis functions

The element shape directly impacts the ease by which complex simulation domain geometries

can be partitioned into an element mesh. The elements must tile or fill the domain without

overlap or gaps. A mixture of element shapes is readily possible.

Triangles, tetrahedra, etc. are good for automated mesh generation of complex geometries

and several free tools exist to assist the process [29, 30]. One draw back for this class of

element shape is that the resulting mesh is unstructured, meaning that an ordered logical

connection between elements does not exist. Instead, connectivity between one element

face to another adjacent element must be established through a more sophisticated means.

Square, cubes, and hypercubes are more challenging to use in mesh generation but can be

utilized in structured meshes improving localized communication and data storage.

For the studied Vlasov-Maxwell application, hypercubes are used exclusively to discretize

n-dimensional phase space. There are several benefits specific to this application. Quality

sets of basis functions are easy to establish. A direct relationship between physical-space

elements and phase-space elements of the same class is established making projections of

electromagnetic fields and reduction of probability distribution function moments straight-

forward. Structured mesh discretization of velocity space is important for high performance

implementation of the scheme where all of velocity space for a given physical point is con-

tained in a shared memory domain and tens or hundreds of processor cores compute the DG

update and moments in parallel.

18

Focus is on structured arrangements of hexahedra for this thesis due to straightforward

workload decomposition and adaptability to GPU architectures targeted by the WARPM

code. A capability for block structured meshes will be developed later to significantly improve

flexibility to model complex physical domains.

The normalized Legendre polynomials as basis functions for the DG scheme are described

in detail in Ref. [22]. In one variable, the nth-order Legendre polynomials are the nth-order

Jacobi polynomials, P
(α,β)
n (r), when α = β = 0.

Tensor-product hypercube elements represent the solution through a set of basis functions

made by linear products of the one-dimensional Legendre polynomials,

Ψn(r) =

ND∏
d=1

P
(0,0)
M (rd), (3.22)

where M(n, d) is a function that converts the multi-dimensional mode linear index, n, to

a one-dimensional mode index in dimension d. Generally a row-major ordering scheme is

utilized throughout. A two-dimensional example is depicted in Figure 3.1. For this example,

the function M(n, d) is listed in Table 3.1.

3.6 Optimizations for tensor product hypercubes

Generally, the flux at each node affects the solution’s time derivative at all other nodes within

the element. The working matrices Drd , L, and geometric Jacobian Jk are dense.

The selection of element class (e.g. triangles, hypercubes, etc.) and nodal location

can have an extremely significant impact on practical storage requirements, cache locality,

and operation count when working in higher dimensional space such as the five- and six-

dimensional phase space required for the kinetic Vlasov model.

Tensor-product hypercubes yield potential for significant optimizations due to the linear

combination of one-dimensional basis function polynomials and resulting orthogonal deriva-

tive operators. The floating point operations required per element and storage requirements

are reduced as summarized in Table 3.2 due to predictable sparsity in the operator matrices.

19

Table 3.1: Linear index to multi-index conversion function M(n, d) for the 2nd-order × 3rd-

order square element depicted in Figure 3.1.

Dim. 1 mode Dim. 2 mode

M(1, 1) = 1 M(1, 2) = 1

M(2, 1) = 1 M(2, 2) = 2

M(3, 1) = 1 M(3, 2) = 3

M(4, 1) = 1 M(4, 2) = 4

M(5, 1) = 2 M(5, 2) = 1

M(6, 1) = 2 M(6, 2) = 2

M(7, 1) = 2 M(7, 2) = 3

M(8, 1) = 2 M(8, 2) = 4

M(9, 1) = 3 M(9, 2) = 1

M(10, 1) = 3 M(10, 2) = 2

M(11, 1) = 3 M(11, 2) = 3

M(12, 1) = 3 M(12, 2) = 4

20

r1

r2

4 128

1 95

2 106

3 117

1

5

9

4

8

12

2 6 10

3

7

11

x

y

Figure 3.1: Illustration of the 2D reference square element including node ordering for ele-

ment order (2nd×3rd). The element modal basis set is a tensor product of two 1-D Legendre

polynomial basis sets. When the reference element is projected into physical space as a

quadrilateral the transformation is bilinear such that lines through nodes in reference space

remain lines through nodes in physical space.

Specific examples are given in Tables 3.3 through 3.5 highlighting the significance for high

dimensional domains.

The practical performance improvement is ultimately limited by memory bandwidth.

This optimization does not change the number of inputs (nodal flux evaluations) or outputs

(nodal time derivatives) stored in global memory. It does reduce the storage size of the

operator matrices Dr and L which reduce the pressure on memory read bandwidth and

makes more cache available to the nodal data.

21

General Dense Hypercube Tensor Product Hypercube

Dr Storage ND(P + 1)2ND P odd: 1
4
(P + 1)2

P even: (P
2

+ 1)2

L Storage 2ND(P + 1)2ND−1 (P+1)

Volume Integral FLOP O(2ND(P + 1)2ND) O(2ND(P + 1)(ND+1))

Surface Integral FLOP O(4N2
D(P + 1)2ND−1) O(4ND(P + 1)ND)

Table 3.2: Summary of floating point operations for DG element evaluation of time derivative

on a hypercube element. The number of nodes per ND-dimensional element with polynomial

order P is Np = (P + 1)ND and the number of face points is Nfp = 2ND(P + 1)ND−1.

General Dense

Hypercube

Tensor Product

Hypercube

Reduction

Number of nodes Np 256 256

Number of face points Nfp 512 512

Dr Storage 2048 kB 128 B 6× 10−5

L Storage 1024 kB 32 B 3× 10−5

Volume Integral FLOP 5× 105 8× 103 1.6× 10−2

Surface Integral FLOP 1× 106 4× 103 4× 10−3

Table 3.3: Example reduction in FLOP and storage requirements for DG tensor product

hypercube element with element order, P = 3, and four-dimensional hypercube, ND = 4.

22

General Dense

Hypercube

Tensor Product

Hypercube

Reduction

Number of nodes Np 1024 1024

Number of face points Nfp 2560 2560

Dr Storage 42 MB 128 B 3× 10−6

L Storage 21 MB 32 B 2× 10−6

Volume Integral FLOP 1.0× 107 4.1× 104 3.9× 10−3

Surface Integral FLOP 2.6× 107 2.0× 104 8× 10−4

Table 3.4: Example reduction in FLOP and storage requirements for DG tensor product

hypercube element with element order, P = 3, and five-dimensional hypercube, ND = 5.

General Dense

Hypercube

Tensor Product

Hypercube

Reduction

Number of nodes Np 4096 4096

Number of face points Nfp 12288 12288

Dr Storage 805 MB 128 B 1.6× 10−7

L Storage 403 MB 32 B 3.2× 10−7

Volume Integral FLOP 2× 108 2.0× 105 9.8× 10−4

Surface Integral FLOP 6× 108 9.8× 104 1.6× 10−4

Table 3.5: Example reduction in FLOP and storage requirements for DG tensor product

hypercube element with element order, P = 3, and six-dimensional hypercube, ND = 6.

23

3.7 High-Accuracy Discontinuous Galerkin Working Matrix Initialization

As one part of reducing global solution error, it is worthwhile to give extra effort to prepar-

ing working matrices of the discontinuous Galerkin scheme with high accuracy. Even though

the matrices are utilized with 64-bit double-precision floating point values repeatedly during

time integration for computational efficiency, improved error performance can be gained by

calculating the working matrix values initially using a precision higher than native double-

precision floating point arithmetic provides. Then, after evaluation at high precision, the

working matrices are down-converted to native double-precision numbers with net improve-

ment in accuracy.

Use of an arbitrary precision tool or symbolic math manipulations can be used to conduct

the high precision evaluations. The below list summarizes the required steps for initializing

the discontinuous Galerkin working matrices based on the algorithms described in Ref. [22].

• Compute reference element node locations and quadrature weights associated with P th-

order Gauss-Lobatto quadrature (P + 1 quadrature points). Points and weights are

associated with roots of the Jacobi polynomial of type α = 0 and β = 0.

r1D = [−1, JacobiGQ(1, 1, P − 2), 1] .

Above, P is the quadrature order with respect to the reference dimension, r. The

function JacobiGQ(1, 1, N) returns a vector of length N + 1. It can be evaluated as

follows. Construct the diagonal matrix Q which is size (N + 1) × (N + 1) and is all

zeros except for the following 2N entries adjacent to the main diagonal:

Qn,(n+1) = Q(n+1),n =
2

2n+ 2

√
n4 + 4n3 + 5n2 + 2n

4n2 + 8n+ 3
,

where n ∈ [1, N]. The sorted eigenvalues of Q are the quadrature points, or the

returned vector from JacobiGQ(1, 1, N).

Quadrature weights are expressed,

24

w1D =

[
2

P 2 + P
,

2P + 1

(P 2 + P)(JacobiP(JacobiGQ(1, 1, P − 2), 0, 0, P))2
,

2

P 2 + P

]
.

The function JacobiP(x, α, β, P) is the normalized Jacobi polynomial of order P and

type α, β.

• Compute the multi-dimensional reference element node locations. The aim is to sup-

port simulation domains decomposed into elements that are quadrilaterals, hexahedra,

or a higher dimensional generalization thereof. Many properties for the DG scheme

can be pre-computed for a single reference element that is a line, square, cube, or

hypercube with side length of 2 and centered on the origin.

The reference element node coordinates are established by a rectilinear mesh from the

one-dimensional quadrature points. For example, a two-dimensional (square) reference

element is represented in Cartesian reference coordinates r1 and r2. Element polynomial

order in r1 is P1 and order in r2 is P2. The coordinates are stored in two vectors r1

and r2 of length Nnodes = (P1 + 1) × (P2 + 1). Node ordering is arbitrary but must

be consistent. Here we use a row-major ordering scheme. The vector of quadrature

weights w has the same length and ordering. At each node, the quadrature weight

is the product of the two corresponding 1D weights. The below equivalent Matlab

code describes the row-major node ordering and Figure 3.1 provides an illustration for

a particular case of 2D quadrilateral.

25

1 for i=1:(P1+1)

2 for j=1:(P2+1)

3 n = (i-1)*(P1+1)+j;%row-major ordering

4 r1(n) = r_1D_1(i); %node position in coordinate r0

5 r2(n) = r_1D_2(j); %node position in coordinate r1

6 w(n) = w_1D_1(i) * w_1D_2(j); %quadrature weight

7 end

8 end

• Evaluate Vandermonde matrix V for the polynomial basis set that is the tensor product

of 1D Legendre polynomial basis sets at the desired reference element node locations.

Matrix V is size Nnodes × ((P1 + 1)(P2 + 1)).

V|col=(i−1)∗(P1+1)+j = JacobiP(r1, 0, 0, i− 1) JacobiP(r2, 0, 0, j − 1),

where i ∈ [1, P1 + 1] and j ∈ [1, P2 + 1] and the right hand side operator is an element-

by-element multiplication. The below equivalent Matlab code may provide some

clarity to the above notation.

1 for i=1:(P1+1)

2 for j=1:(P2+1)

3 n = (i-1)*(P2+1)+j;

4 V(:,n) = JacobiP(r1(:),0,0,i-1).*JacobiP(r2(:),0,0,j-1);

5 end

6 end

• The inverse of the Vandermonde matrix V−1 is required when continuing further setup

for DG evaluation. In this case V is square – the interpolation points are the reference

element nodes. The Vandermonde matrix is also used when interpolating the DG

26

nodal solution to different points in the element. In this usage, the matrix inverse of

the non-square matrix is not required.

• Evaluate the gradient-Vandermonde matrices Vr and Vs for the polynomial basis set

that is the tensor product of 1D Legendre polynomial basis sets at the desired node

locations. Element polynomial order in r1 is P1 and order in r2 is P2. The size of Vr1

and Vr2 is Nnodes × ((P1 + 1)(P2 + 1)).

Vr1|col=(i−1)∗(P2+1)+j =
∂

∂r1

(
JacobiP(r1, 0, 0, i− 1)

)
JacobiP(r2, 0, 0, j − 1)

=
√
i2 − i JacobiP(r1, 1, 1, i− 2) JacobiP(r2, 0, 0, j − 1),

where i ∈ [1, P1 + 1] and j ∈ [1, P2 + 1].

• Evaluate the differentiation matrices Dr1 and Dr2.

Dr1 = Vr1V
−1.

Dr2 = Vr2V
−1.

• Evaluate a face Vandermonde matrix for each reference element face, Vf , for points t

along the face. The number of points on each face depends on the element order in

every other dimension. For each of the two faces in dimension-α,

Nα
fp =

Ndims∏
d=1
d 6=α

Pd + 1.

For square elements, each face is one-dimensional

Vf |col=j = JacobiP(t, 0, 0, j − 1),

where j ∈ [1, Pt + 1].

• Evaluate the 1D Mass matrix for each reference element face, Mf .

Mf = (VfV
T
f)−1.

27

• The edge mass matrix, E, is size Np ×Nfp where

Nfp =

Ndims∑
α=1

2Nα
fp.

Each column of E is populated by one column from a face mass matrix, Mf , according

to a whole-element face-node indexing scheme.

• The LIFT matrix, size Np × Nfp, is used to calculate surface flux contribution to the

element.

L = VVTE.

3.7.1 Example for 2D reference element of 2nd-order by 3rd-order.

To demonstrate the reference element construction, the following results are for a square

element that is 2nd-order in r0 and 3rd-order in r1.

r2nd

1D =
(
−1, 0, 1

)
.

w2nd

1D =
(

4
3
, 1

3
, 4

3

)
.

r3rd

1D =
(
−1, −

√
1
5
,
√

1
5
, 1

)
.

w3rd

1D =
(

1
6
, 5

6
, 5

6
, 1

6

)
.

28

r1 =



−1

0

1

−1

0

1

−1

0

1

−1

0

1



, r2 =



−1

−1

−1

−
√

1
5

−
√

1
5

−
√

1
5√

1
5√
1
5√
1
5

1

1

1



3.8 Types of Errors With Discontinuous Galerkin Method

Several different types of error are introduced using the discontinuous Galerkin scheme to

discretize and solve hyperbolic partial differential equations. They are distinguished and

described in the following sections.

3.8.1 Projection Error

Any exact solution not contained within the space of basis functions for the DG scheme

will have an associated projection error – the difference between the exact solution and the

reconstructed polynomial solution, uh, that shares the same nodal values. This error can be

quantified by the L2 norm over an element Dk,

‖Eproj.‖2 =

∫
Dk

(uh(r)− u(r))2dr. (3.23)

29

This error is independent of the time integration by the discontinuous Galerkin scheme.

Projection error can be introduced even in the initial condition of a simulation if the ini-

tial condition function is not in the space spanned by the basis functions. It is helpful to

characterize this error, then, before considering error caused by the DG time integration

scheme.

To illustrate projection error, a useful example is to look at the Legendre polynomial basis

function projection onto the trigonometric function u(r) = 1 + cos(πr). Figure 3.2 depicts

the basis function projection, uh(r) and exact function, u(r), for several different order basis

sets. Improved agreement with increasing order is visually obvious. To quantify the quality

of the projection, Figure 3.3 presents the L2 norm of the projection error as expressed by

Eq. (3.23).

An even-odd trend is observed in Figure 3.3, where error improvement is only achieved

with each new even-order of polynomial basis for the even example function u(r). Similar

behavior occurs for the odd function 1 + sin(πr), except that improvement occurs with each

new odd-order polynomial basis. This behavior is a special case not expected for general

functions that are not odd nor even.

Projection error may also be introduced as a simulation is advanced in time if the exact

solution leaves the space spanned by the basis set. The Vlasov-Advection equation is a useful

example of this effect and relevant to the greater work of this thesis. The hyperbolic PDE

describes the advection of a quantity u in a two-dimensional space (x, v) where the advection

speed is the velocity coordinate v. Advection parallels the x-axis.

∂u

∂t
+ v

∂u

∂x
= 0. (3.24)

This is a particularly useful system to study because it has an analytical solution. On an

infinite domain, u(x, v, t) = u0(x− vt, v). A function periodic in x remains periodic with the

same wave number, kx, and the wave number kv increases as the initial condition becomes

increasing striated or shears repeatedly. Based on the previous observations, projection error

should increase with time for a given element order in velocity.

30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

order 1

order 2

order 3

order 4

order 5

order 6

order 7

order 8

order 9

order 10

order 11

order 12

order 13

1+cos(π r)

Figure 3.2: This series of plots presents the projections of the function 1 + cos(πr) onto the

Legendre basis function set of indicated order versus r. The Legendre basis functions are

ortho-normal on the domain r ∈ [−1, 1].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Figure 3.3: The L2 norm of the projection error resulting from projecting the function

1 + cos(πr) onto the Legendre basis function set. The domain of integration is r ∈ [−1, 1].

The horizontal axis is the polynomial order of the basis set. An even-odd trend is made clear

by the stair-step results beyond order one.

31

Figure 3.4 demonstrates this effect showing increasing projection error as time increases,

wave number in the velocity dimension increases, and the analytical function becomes under-

sampled. The initial condition under test is u0(x, v) = 1 + cos(πx). Increasing the order of

basis functions reduces the projection error, but for all cases, L2 norm of projection error

eventually grows to be on par with the L2 norm of the analytical solution itself – the error

is as big as the solution. L2 norm of projection error is evaluated per Eq. (3.23), where

r = [x, v].

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−20

10
−15

10
−10

10
−5

10
0

time, t

L
2
 e

rr
o

r

order 13, 4

order 13, 7

order 13,10

order 13,13

Figure 3.4: The L2 norm of the projection error resulting from projecting the function

1 + cos(π(x − vt)) onto the Legendre basis function set. The domain of integration is one

square reference element, x ∈ [−1, 1] and v ∈ [−1, 1]. Basis polynomial order in x is constant

and sufficient, while multiple order in v are tested: [4th, 7th, 10th, 13th].

3.8.2 Quadrature Error

The discontinuous Galerkin scheme involves the use of numeric quadrature rules for integra-

tion of such quantities as surface flux and terms specific to the Vlasov equation system. In

this work, the Gauss-Lobatto quadrature rule [31] is utilized giving accuracy for polynomials

of order up to 2N − 3, where N is the number of quadrature points. The Gauss-Lobatto

32

rule is well suited for the nodal DG scheme because the quadrature points include the ex-

tremum of the range of integration. In some cases, the N -point rule is also referred to as

(N − 1)-order.

Integration by quadrature rule introduces error for polynomials exceeding the accuracy

limit for the rule or non-polynomial integrands. The error is readily characterized,

Equad =

∫ x2

x1

u(x)dx− x2 − x1

2

Np∑
n=1

wnu(xn). (3.25)

Integration error for the non-polynomial function u(x) = 1 + cos(2πx) serves as a useful

example. The error is presented in Figure 3.5 illustrating improved accuracy with increasing

quadrature order as well as increasing error with increase of the integration domain length.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−20

10
−15

10
−10

10
−5

10
0

Element Length, L

In
te

g
ra

ti
o
n
 E

rr
o
r

order 4

order 7

order 10

order 13

order 17

Figure 3.5: Gauss-Lobatto quadrature error for integration of 1 + cos(2πx) over the interval

x ∈ [0, L] (Absolute value of Eq. (3.25)). Multiple cases of quadrature order are tested:

[4th, 7th, 10th, 13th]. Also apparent is a numeric noise floor is observed around 1 × 10−16

consistent with 64-bit floating point arithmetic.

33

3.8.3 Floating Point Arithmetic Precision

Also observed in Figure 3.5 is the limit on accuracy caused by the limited precision of floating

point arithmetic. A numeric noise floor is observed around 1× 10−16 consistent with 64-bit

floating point arithmetic.

Figure 3.6 repeats the same quadrature analysis as Figure 3.5 except that the arithmetic

is done using an arbitrary precision tool allowing the user to specify a level of numeric

precision to maintain. The numeric noise floor is reduced to around 1 × 10−20 by directing

the tool to maintain twenty decimal digits of precision.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−20

10
−15

10
−10

10
−5

10
0

Element Length, L

In
te

g
ra

ti
o

n
 E

rr
o

r

order 4

order 7

order 10

order 13

order 17

Figure 3.6: This figure repeats the analysis performed for Figure 3.5 except that the floating

point precision is improved to about 20 decimal digits using an arbitrary precision math tool.

The floating point noise floor is reduced while the results otherwise remain unchanged.

The example here is quadrature evaluation, but the limits of floating point precision

affect discontinuous Galerkin solution in many ways. In general, the error is unavoidable

and just something to be aware of. Certain types of calculations like summing large and

small numbers are more error prone.

It is generally not practical to perform time integration of a large scale simulation using

34

arbitrary precision arithmetic. The computational cost compared to native double-precision

calculations is very high.

Certain key working matrices of the discontinuous Galerkin scheme are pre-computed

and utilized many times over in evaluating each time integration step. For these matrices,

it is practical and beneficial to pre-compute their double-precision values using enhanced

precision arithmetic. Doing so helped to eliminate very small but constantly growing errors

in the conserved moments of the Vlasov-Poisson system. More details for this technique is

described in Section 3.7.

3.8.4 Discretization Error

Like all numerical solvers for partial differential equations, the discontinuous Galerkin method

is subject to discretization error for both discretized time and space.

For systems with analytical solution, ũ, the global solution error by the numerical scheme

can be characterized by the L2 norm,

‖E(t)‖2 =

∫
Ω

(uh(x, t)− ũ(x, t))2 dx. (3.26)

The distinction between Eq. (3.23) and Eq. (3.26) considered here is that the later is a global

evaluation over the full domain Ω which is discretized by many elements and error introduced

by discrete time integration is also included.

Figure 3.7 presents this error characterization for the simple constant advection system,

∂u

∂t
+ a

∂u

∂x
= 0, (3.27)

with a = 10 and periodic boundaries. Six different simulation test cases are presented by

varying the number of elements making up the domain and for two different element spatial

order. Increasing the element order or increasing the number of elements decreases the

global solution error. Since the solution to this system maintains the same shape as the

initial condition, simply translated, any projection error should be effectively capped at an

initial level allowing focus on the discretization error specifically.

35

0 5 10 15 20 25 30 35 40 45 50
10

−22

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

time, t

L
2
 E

rr
o
r

40 elements. (5
th

 order)

20 elements. (5
th

 order)

10 elements. (5
th

 order)

40 elements. (4
th

 order)

20 elements. (4
th

 order)

10 elements. (4
th

 order)

Figure 3.7: The error as L2 norm per Eq. (3.26) for the constant linear advection system

with initial condition u0(x) = 1 + 1
2

cos
(

1
2
x
)

on the domain x ∈ [0, 4π].

36

3.9 Advanced discontinuous Galerkin Schemes

Generally, the discontinuous Galerkin spatial discretization is paired with a multi-step Runge-

Kutta numerical ODE solver for temporal discretization [27, 28, 32, 33, 22, 34]. RKDG is

conceptually simple and easy to implement, but it has drawbacks. First, being a multi-step

method, it faces scaling challenges relative to single-step methods for large computations on

distributed machines. Between each sub-step, data communication is required between ad-

jacent elements. Second, when high order-of-accuracy is required, RK schemes become less

efficient. Above fourth-order-of-accuracy the Butcher-barrier[35] is encountered; the number

of sub-steps required exceeds the order of accuracy as seen in Table 3.6.

Order O(∆t4) O(∆t5) O(∆t6) O(∆t7) O(∆t8) O(∆t9) O(∆t10)

sub-steps 4 6 7 9 11 12-17 13-17

Table 3.6: Number of sub-steps required versus accuracy in explicit Runge-Kutta methods

One-step numerical methods tailored to discontinuous Galerkin and finite volume meth-

ods have been developed over the last ten years that may prove more computationally scalable

than RKDG while high order in space and time [36, 37, 38, 39].

3.9.1 One-Step High Order Methods

Based on manipulations of the equation system of interest, several one-step methods have

been developed that can achieve, in principle, any order of temporal accuracy [40, 24, 41].

The common theme is the following. First, perform a Taylor series expansion of the base

PDE system in time. Then, replace higher order time derivatives and mixed time and space

derivatives with spatial derivatives only using the differentiated PDE and Lax-Wendroff (also

Cauchy-Kowalewski) procedure [42, 43]. The resulting truncated Taylor series PDE is then

solved using the presented DG method. Schemes as described were originally called Lax-

37

Wendroff discontinuous Galerkin (LWDG) and more recently are referred to as arbitrary

high order schemes using derivatives (ADER) discontinuous Galerkin (ADER-DG).

The resulting method is single-step and thus the Butcher barrier is avoided. Even for

fourth-order accuracy, higher performance can be achieved compared to RKDG. The ADER-

DG method developed by Michael Dumbser[41], for example, reports 35% performance im-

provement over RKDG on a single-node simulation. The performance benefits are most

pronounced when each step involves expensive computations like non-linear limiter applica-

tions.

The main disadvantage of the Lax-Wendroff based one-step methods is that the resulting

scheme is more complex. Implementing a new temporal order of accuracy requires both ana-

lytical development which can be complicated for multidimensional systems and translation

of the resulting new PDE system into computer software for the numerical method.

3.9.2 Suitability to many-core and GPU computation

As will be discussed more in the following chapter, GPU systems are characterized by high

numerical performance limited by multiple memory hierarchies and bandwidth restrictions.

ADER-DG is more memory space efficient than RKDG as only one time history is re-

quired instead of a number fractional time steps based on the order of accuracy. In the

aggregate, this not only means fitting a larger problem, it also means less memory commu-

nication and better scaling.

RKDG methods with high order accuracy in time are less suitable for GPU and many-

core architectures due the multi-step approach in time. Implementing an explicit multistep

method for PDE is disadvantaged in that global ghost cell syncing is required for each sub-

step. Global ghost cell synching exercises every communication hierarchy including the inter-

node network with the slowest bandwidth and greatest latency. Excess global communication

versus the quantity of local computation degrades the scaling performance of the scheme on

an HPC system.

38

3.9.3 Identified challenges

Qiu et al. pointed out in Ref. [40] that ADER-DG is not as developed for stiff PDE systems

or those with diffusive parts. RKDG has much more developed literature in support of such

PDE systems. They do claim ADER-DG could be made suitable through, “careful Taylor

expansions.”

The ADER-DG method applied to the Vlasov equation requires development of a gen-

eralized Riemann problem solution. Review of current literature has not identified existing

published work. This is expected to be tenable given the simple nature of the flux terms in

the Vlasov equation.

3.9.4 Prototype ADER-DG development for 2D Vlasov system

To demonstrate the Lax-Wendroff procedure and ADER-DG PDE preparation for a system

of interest, the basic steps applied to the two-dimensional Vlasov PDE system are outlined

below to third-order accuracy in time. The procedure follows that detailed by Qiu et al. [40].

The notation fx(q) means ∂f
∂x

and notation f ′(q) means df
dq

.

The two-dimensional (position x and velocity v) Vlasov system is a conservation law of

the form,

qt + fx(q) + gv(q) = 0, (3.28)

where

f(q) = qv,

g(q) = q
qc
m
E(x, t).

(3.29)

The evolution of Eq. (3.28) can be evaluated through Taylor series expansion,

q(x, v, t+ ∆t) = q(x, v, t) + ∆tqt +
1

2
∆t2qtt +

1

6
∆t3qttt + · · · . (3.30)

Differentiation rules and algebraic manipulations are used to reformulate the higher order

time derivatives needed in the Taylor series expansion. The particular final forms expressed

39

below are useful in the Lax-Wendroff procedure,

qt = −fx(q)− gy(q) = −f ′(q)qx − g′(q)qy,

qtt = −ftx(q)− gty(q) = −(f ′(q)qt)x − (g′(q)qt)y

= −(f ′′(q)qxqt + f ′(q)qxt + g′′(q)qyqt + g′(q)qyt),

qxt = −
(
f ′′(q)(qx)

2 + f ′(q)qxx + g′′(q)qxqy + g′(q)qxy
)
,

qyt = −
(
g′′(q)(qy)

2 + g′(q)qyy + f ′′(q)qxqy + f ′(q)qxy
)
,

qttt = −(f ′(q)qt)xt − (g′(q)qt)yt

= −
(
f ′′(q)(qt)

2 + f ′(q)qtt
)
x
−
(
g′′(q)(qt)

2 + g′(q)utt
)
y
.

Truncating the expansion Eq. (3.30) yields an approximation expressed as

q(x, v, t+ ∆t) = q(x, v, t)−∆t(Fx +Gy), (3.31)

where for third-order approximation,

F = f +
∆t

2
f ′(q)qt +

∆t2

6
(f ′′(q)(qt)

2 + f ′(q)qtt),

G = g +
∆t

2
g′(q)qt +

∆t2

6
(g′′(q)(qt)

2 + g′(q)qtt).

q(x, v, t+ ∆t) ≈ q(x, v, t)−∆t(Fx +Gy)

= q(x, v, t) + ∆t(fx + gy)

+
∆t2

2
(f ′′(q)qxqt + f ′(q)qxt + g′′(q)qyqt + g′(q)qyt)

+
∆t3

6

((
f ′′(q)(qt)

2 + f ′(q)qtt
)
x
−
(
g′′(q)(qt)

2 + g′(q)utt
)
y

)
= q(x, v, t) + ∆tqt +

1

2
∆t2qtt +

1

6
∆t3qttt.

The Vlasov-Poisson equation system has only linear dependence on q, so the required

40

terms are particularly straight-forward to calculate,

f ′(q) = v,

f ′′(q) = 0,

g′(q) =
qc
m
E(x),

g′′(q) = 0.

To complete the ADER-DG scheme, equation Eq. (3.31) is developed into the discon-

tinuous form using the same process as described in Section 3.3.2, but with the new flux

functions F and G.

41

Chapter 4

WARPM SIMULATION CODE FOR MANY-CORE
ARCHITECTURES

WARPM is a new simulation code developed as a principal component of this research and

to enable improved simulation of plasmas and other systems of hyperbolic conservation laws.

It has been designed from the ground-up targeting emerging many-core architectures. These

modern architectures include GPU-accelerated systems and are characterized by multiple

levels of memory hierarchy and high cost of data movement. Between memory levels, there is

an increasing penalty for moving data as it moves farther from the functional unit relative to

the numerical operation performance. This is easy to imagine given energy and bandwidth

considerations and is the most significant trend in HPC affecting computational science.

While raw floating-point arithmetic performance continues to increase, memory bandwidth

to functional units and between distributed nodes lags FLOPS and will continue to do so.

At the same time, the energy cost for a floating-point calculation is far outweighed by the

energy needed to move the operand data.

In contemporary processors, the energy consumed in one floating point operation is

around 50 pJ while memory movement and other overhead associated with the operation can

consume 1000-10,000 pJ if the operands come from outside the processor’s register space. In

future computing roadmaps, this disparity only grows.

Current GPU systems have the GPU interconnected to the host CPU through a Periph-

eral Component Interconnect (PCI) express bus with up to 8 GB/s host-to-GPU and 8 GB/s

GPU-to-host simultaneous data transfer rate. Using the specifications for the NVIDIA Fermi

M2050 with peak double-precision floating point performance of 515 GFLOP/s:

• 515 floating point operations needed per operand transferred between GPU and host

42

to achieve peak FLOPS

(515 GFLOP/s ÷ 8 GB/s × 8 bytes/double)

• 28 floating point operations are needed per operand transferred between GPU RAM

and core to achieve peak flops

(Global Memory bandwidth: 148 GB/s to cores)

It is clear that for a code to effectively utilize the GPU numerical capabilities, it must involve

a high degree of calculation compared to the amount of data transferred.

4.1 Next-Generation Simulation Code

WARPM is based on the operational principles of its predecessor WARPX [44] developed in

the same research group and shares a significant amount of infrastructure source code. The

functional characteristics and features maintained include:

• Key properties of the simulation are chosen at run-time by the user

Physical model

Numerical model

Boundary Conditions

• Designed for simulation on HPC distributed memory systems

• Provides common infrastructure for hyperbolic problems

Loading initial conditions

Saving snapshots of simulation conditions at specified times

Variable time stepping based on CFL condition

Logging capabilities

43

WARPM builds on these capabilities. It was developed as a pairing between C++ host

code to orchestrate the simulation and OpenCL source for calculations implementing the

numerical method and physical equations on GPUs or many-core CPUs. Significant new

technologies implemented in the code include multi-level domain decomposition, dynamic

OpenCL code assembly, and task parallelism.

4.2 Multi-Level Domain Decomposition

The problem domain is divided among nodes in the cluster and then again further subdivided

on each node into smaller patches. This provides several benefits. Exterior patches on

a given node are sequenced first and generally processed by the CPU so that ghost cell

communication over MPI between nodes occurs while interior patch computation continues.

This hides the MPI communication bottleneck. The GPU, if available, is assigned a fixed

region of the interior of the node’s region of responsibility. This region is divided into two

patches – one is smaller and surrounds the exterior interface with the CPU patches the other

is much larger and purely internal. This scheme is illustrated in Figure 4.1.

Another scheme was first tested in which the work domain on a given node was subdivided

into many patches. The patch was served to available compute devices (e.g. installed GPU

and CPU) as they are available for more work giving a form of dynamic load balancing on

the node and heterogeneous computation. Actually, on GPU devices, three patches were

processed in a pipeline to utilize simultaneous compute and bi-directional PCI bus transfer

capabilities. This scheme required 100% of patch data used by the GPU to be transferred

round trip on the PCI bus each step. The impact was much more data movement than the

current scheme and performance was only about 10% of the current patch-resident scheme

with static compute assignments on the same hardware.

4.3 Dynamic OpenCL Code Assembly

WARPM supports a variety of physical models, numerical methods and simulation domain

geometries in one compiled application through use of C++ object-oriented mechanisms,

44

Figure 4.1: The WARPM code decomposes the domain among available nodes and further

subdivides the domain on a node into patches suitable for GPU computation. Current

hardware supports simultaneous calculation and to/from memory transfer of other patches.

45

namely polymorphism. However, the vast majority of numerical evaluations in WARPM

are implemented with the OpenCL language which is based in the C99 language and does

not include any object-oriented features. Even if OpenCL supported the same polymorphic

model, which it does not, the approach is not suited for high performance. The WARPM im-

plementation takes advantage of natural support for runtime compilation of OpenCL source.

The OpenCL kernel source code is dynamically assembled from segments of source code

contributed by a paired C++ class during the initialization phase of simulation execution.

This all takes place in the first few seconds of execution (including the run-time compilation

of the fully assembled OpenCL kernel). The result is a compiled OpenCL kernel targeted for

the actual hardware that implements the precise physics and numerical method selected by

the user in one compilation unit. The OpenCL compiler ideally sees a completely predictable

kernel execution sequence.

There is another important benefit of this consolidated kernel approach over another

technique used in the alternative CUDA language. One could sequence multiple smaller

kernels as steps selected at run-time to match the numerical method and physical model.

Between kernel execution, register space, cache, and shared memory on the device is cleared.

This means data passed from kernel to kernel must be via GPU global memory.

The single consolidated kernel minimizes memory movement between the computational

cores and device global memory as well as reduces the storage requirements for intermediary

results. Rather than computing and storing the intermediary results of x→ y = f(x)→ w =

g(y), WARPM computes w = g(f(x)) with better performance and smaller global memory

footprint. The tradeoff for this is that the compiled kernels can have a large local and private

memory footprint on the compute hardware and more complex control flow. If the kernel

is too big, a core may not have enough register space or local memory available to launch

the kernel. This may cause ”register spilling” of fast private memory to much slower global

memory, or perhaps worse, the kernel will not run at all.

The combination of C++ host code and dynamically assembled OpenCL code increases

the complexity of WARPM and adds to the learning curve for developers who would im-

46

plement new models and numerical methods for WARPM. For users of existing capability,

the added complexity is largely hidden. The simulation configuration input file make-up is

almost the same as for the preceding code WARPX. A new and separate compute config-

uration input file has been created with WARPM to allow the user to parameterize how

the simulation kernels will be mapped to the available compute hardware. Currently, per-

formance can be significantly improved by using this compute configuration file versus the

default behavior.

Every WARPM run will create one or more dynamically assembled OpenCL programs

reflecting the model and numerical method. The OpenCL program has a common structure

as depicted in Figure 4.2. Each section of the program is described as follows:

Device Specific and User Specified Macro Definitions The compiled program is tai-

lored to the compute hardware by three macro parameters adjusting the number of

work items per workgroup, the number of work items that collectively process an ele-

ment in parallel, and the number of serial element sets per workgroup. Additionally,

the developer can define custom macros through the compute configuration file useful

in troubleshooting.

Code Module Macro Definitions Every code module can declare and define macros.

This is more useful in code modules that should only have one instance in an OpenCL

program such as the domain geometry.

Common Utility Function Declarations Every program has access to several useful

functions for interacting with the WARPM patching system and variable buffers. These

functions are declared to allow use by all code modules and the kernel itself.

#include Code Module Source Files Each code module is developed with both a C++

.cc and .h file for the host code and a single OpenCL .cl source file to encapsulate

the module’s source code in one easy to read and modify text file. A series of #include

statements here include module’s source code as part of the declaration pass. Each

47

code module source file is divided into a declaration section and a definition section

only active if the macro DEFINITION PASS is defined.

constant Instance Variables Initialized For code modules that support multiple in-

stances in the same OpenCL program, an instance is characterized by an instance

structure defined by the code module. All instances access the corresponding instance

structure in an array of such structures in constant memory by the instance index.

An example use of this scheme is how multiple instances of the Vlasov equation is

supported in one hyperbolic equation set for multiple species. Each instance of Vlasov

equation is characterized by different species mass and charge. The Vlasov equation

instance structure includes a particle mass and particle charge value.

#define DEFINITION PASS At this point, a universal macro is defined that disables

subsequent declaration sections of code modules and enables the definition sections.

Kernel: Function Name The kernel function name is specified to match the name of the

compute sequenced group in the user’s input file for clarity.

Kernel: Arguments List Code modules declare variables expected as input and output

arguments to the kernel. These, as well as a few common arguments such as time and

step size, are combined to form the kernel function arguments list. For better clarity,

the variable buffer argument name matches the simulation variable’s name.

Kernel: Common Work Item Setup The first kernel code translates the scalar global

work item id and global offset to a base element id that the workgroup will process.

Kernel: local Memory Declarations Local memory used in any OpenCL functions

must be declared inside the kernel function body or supplied as a kernel argument.

Code modules can declare local memory needs which are then declared in the kernel

48

body here. A pointer to each local memory variable has to be passed to the code

module function that is going to use it.

Kernel: Subsolver Step Calls A kernel is the serial sequence to process one compute

sequenced group declared in the simulation input file. Each subsolver in the compute

sequenced group will relate to a Code Module instance and will declare one or more

function names and argument lists known as the sub solver step call. This series of

function calls leads to the vast majority of processing done by the kernel.

Kernel: Reduced Output Processing Some kernels produce special output that involves

a reduce operation over all of the elements processed by the workgroup. The reduce

function is specified in this section. Existing examples are the suggested time step

minimum reduce and the moment integration of current density from phase space

probability density function in the kinetic systems.

Common Utility Function Definitions Definitions of the already declared utility func-

tions.

#include Code Module Source Files Again, the code module files are included but

with DEFINITION PASS defined, the function definitions are active.

4.4 Minimized Data Movement

The plasma models developed in this thesis use high-order explicit numerical methods involv-

ing only predictable nearest-neighbor communication and maximally utilize floating point

operations per operand in order to minimize data movement at every scale.

Already discussed are the benefits of a single consolidated compute kernel reducing the

amount of memory transfer from device global memory to the compute core.

Several different memory hierarchies are exposed in the WARPM model:

49

Code Module Macro Definitions

Common Utility Function Declarations

#include Code Module Source Files
(declaration pass)

constant Instance Variables Initialized

Kernel Function

Common Utility Function Definitions

#define DEFINITION_PASS

#include Code Module Source Files
(definition pass)

Name

Arguments List

local Memory
Declarations

Subsolver Step
Calls

Common Work
Item Setup

Device Specific and User Specified Macro
Definitions

Reduced Output
Processing

Figure 4.2: Organization of a dynamically assembled OpenCL program created by WARPM.

50

• Distributed memory is shared and reduced by MPI.

• Host DRAM is managed by C++ new / malloc allocations.

• Device OpenCL global memory corresponds to DRAM on the GPU / Accelerator. This

is allocated and copied through the OpenCL API calls made by the WARPM C++

code. Device constant memory acts in the same way, but can only be read by the

kernel.

• Device OpenCL local memory is accessible by all work items in a workgroup. This

corresponds on a GPU to around 32kB of CUDA shared memory on a Streaming

Multiprocessor. local memory is allocated when the kernel is executed, based on either

compile-time fixed array sizes in the OpenCL program and/or kernel arguments which

are local memory arrays.

• Device OpenCL private memory is only accessible by one work item. This corresponds

to registers on a GPU core and may be just a few kB on a CUDA Streaming Multi-

processor.

• In our programming model, distributed memory always has to be transferred to/from

host DRAM.

Pairing an explicit numerical scheme with multi-level domain decomposition means that

only ghost-cell values need to be transferred between neighboring regions at each level of

domain decomposition. At the highest level, ghost-cell values are transferred between nodes

using MPI communication over the interconnect. On a given node, ghost-cell values are

loaded to device memory with every patch.

The arrangement of variable data in GPU device memory is per patch assignment which

is more conducive to fast transfer of contiguous regions of memory. In current AMD and

NVIDIA GPU hardware, a special direct memory access (DMA) controller is able to transfer

51

data between the host and GPU at near maximum PCI bus throughput and without slow-

down of GPU computation if certain conditions are met [3]. WARPM is designed to satisfy

these conditions by using complementary host-side buffers that are ‘pinned’ by the operating

system kernel paging system and by transferring data in large contiguous chunks.

The WARPM design aspects to minimize the impact of data movement between host

and GPU are highlighted in Figure 4.3 which depicts the compute assignments for CPU and

GPU on one node for a hypothetical multiblock structured mesh simulation. One process

per compute node is ideal. The mesh region assigned to the MPI process is subdivided

into separate patches. A patch represents one assignable work range for an OpenCL kernel.

The GPU work is divided into two patches: one with smaller volume adjacent to the CPU

patches and one with most of the volume which can be processed without any data transfer

or synchronization with the host. The GPU device global memory buffer arrangement for

a variable is optimized for fast contiguous transfer from host to device of dependent ghost

elements and from device to host of periphery elements. The remaining interior region follows

the same row-major array arrangement as host memory.

4.5 Support for different numerical methods, physical models, and domain
geometries

While this thesis almost exclusively focuses on the simulation of the Vlasov-Maxwell kinetic

model with the discontinuous Galerkin numerical method. It must be pointed out that

WARPM was developed to support a flexible combination of numerical methods, physical

models, and domain geometries. Each of these can be selected by the user at run-time based

on a simulation configuration file largely similar to the predecessor code WARPX.[44]

As an illustrative example of capability not generally covered in this thesis, airflow over

a wing cross section is simulated. The finite volume scheme and Euler fluid model in two-

dimensions are combined along with a structured quadrilateral mesh discretization of the

simulation domain. All of this is specified by the user in the simulation configuration file as

well as which boundary conditions to apply.

52

CPU Patch 0

CPU Patch 4

CPU Patch 2

GPU Patch 0

GPU Patch 2

Block 0

Block 1

Block 2

Block 3Block 4

Process 1, Block 4 Process 1, Block 3

CPU Patch 1

CPU Patch 5

CPU Patch 3

GPU Patch 1

GPU Patch 3

Multiblock Structured Mesh

Interior Elements (row-major array ordering)Periphery Elements (shell ordering)Dependent Ghost Elements (shell ordering)

GPU Shell Buffer Linear Memory Arrangement

Figure 4.3: Compute assignments (patches) for one MPI process/node participating in a

block-structured simulation. The node’s compute hardware consists of a CPU and GPU.

Each compute device is responsible for advancing the simulation of a fixed subdomain of the

node’s overall assignment (green). The patches assigned to the GPU are internal and the

buffer arrangement on the GPU facilitates large-block contiguous transfers over the PCI bus.

53

At runtime, the Euler fluid model, finite volume scheme, and quadrilateral mesh code

modules each provide OpenCL source code segments that are assembled into a single compiled

kernel at runtime. The compiled program for simulation has run successfully on CPU, GPU,

and both.

Figures 4.4 and 4.5 illustrate the structured quadrilateral domain capabilities and results

for an exemplary simulation in WARPM. Starting from an initially uniform flow field, this

steady state solution develops for Mach 0.9.

Figure 4.4: NACA 0012 airfoil simulation domain set up as a structured mesh of quadrilateral

elements. This is an ‘O’ mesh, that wraps around the airfoil with periodic boundary seam at

the trailing edge. The simulation domain is much larger than the airfoil (center) in order to

minimize boundary effects and is decomposed into quadrilateral elements (nr, nθ) = (60, 128).

54

Figure 4.5: Steady-state flow conditions around a NACA 0012 airfoil with zero angle-of-

attack. Gas density is plotted.

55

Chapter 5

KINETIC IMPLEMENTATION DETAILS

5.1 Considerations for discretized velocity dimension

5.1.1 Truncated velocity extent

Solving the kinetic Vlasov equation directly on a realizable discretized phase space grid

requires truncating velocity space to some restricted extent, ±Vmax. In the most common

and straightforward representation, the modeled probability distribution function is assumed

to have compact support within the restricted extent, such that f(v) = 0|x/∈[−Vmax,Vmax].

Particle-in-cell methods do not involve such a truncation requirement as each macro-particle

can represent an arbitrary velocity vector without any bound.

Maxwellian functions are desirable probability distribution functions to resolve and sim-

ulate despite their lack of compact support due to their representation of species in local

thermodynamic equilibrium. In light of this, it is worth looking at the impact of velocity

space truncation on the three moments of the Maxwellian distribution. With a better un-

derstanding of the impacts of restricted velocity extent, the velocity domain can be scaled

appropriately to well capture the physics of thermalized systems.

The Maxwellian distribution in full three velocity dimensions can be expressed as a prod-

uct of one-dimensional Maxwellian distributions.

f(x,v, t) = n(x, t)fvx(vx)fvy(vy)fvz(vz), (5.1)

where,

fvi(vi) =

√
m

2πkTi
exp

(
−m(vi − ūi)2

2kTi

)
. (5.2)

The total distribution can have different fluid drift velocity ūi and temperature Ti in each

56

dimension. Alternative expression can use the so-called thermal velocity, vT =
√

kT
m

, which

in a statistical context is also the standard deviation for the distribution.

Analysis of the impact of a truncated velocity space on the distribution moments can

be simplified to just one velocity dimension and no spatial variation without loss of utility.

Additionally, it is easiest to assume zero drift velocity but this assumption must be remem-

bered when modeling drifting species especially if the drift velocity is comparable or faster

than the thermal velocity. The drift velocity directly shifts the Maxwellian centroid away

from zero and closer to the velocity domain extent.

As a consideration for the velocity mesh resolution of the Maxwellian, note that the full-

width at half-maximum of a Maxwellian distribution scales linearly with the thermal velocity

or square root of temperature, FWHM = 2
√

2 ln 2vT ≈ 2.355vT.

Number density

The number density, or number of particles per unit of spatial volume, is evaluated as the

0th-moment of the distribution. For the Maxwellian,

n =

∫ ∞
−∞

f(v)dv =

∫ ∞
−∞

n0

vT

√
2π

exp

(
−v2

2v2
T

)
dv = n0. (5.3)

The truncated Maxwellian captures a smaller part of the number density,

ñ =

∫ Vmax

−Vmax

f(v)dv = n0 erf

(
Vmax

vT

√
2

)
. (5.4)

To capture a specified fraction of the Maxwellian number density, γn = ñ
n
, then the

velocity domain extent is set as follows,

Vmax

vT

=
√

2 erf−1(γn). (5.5)

Notice that Vmax scales linearly with vT.

Momentum density

For assessing the truncation impact on the first-moment, or momentum density, consider

only the positive-directed momentum since the net momentum is zero.

57

p+ =

∫ ∞
0

mvf(v)dv =

∫ ∞
0

mvn0

vT

√
2π

exp

(
−v2

2v2
T

)
dv =

n0mvT√
2π

. (5.6)

The truncated Maxwellian captures a smaller part of the momentum density,

γp =
p̃+

p+
=

∫ Vmax

0
mvf(v)dv

p+
= 1− exp

(
−V 2

max

2v2
T

)
. (5.7)

To capture a specified fraction of the Maxwellian momentum density, γp, then the velocity

domain extent is set as follows,

Vmax

vT

=
√
−2 ln(1− γp) (5.8)

Thermal energy density

For assessing the truncation impact on the second-moment, or thermal energy density,

e =

∫ ∞
−∞

1

2
mv2f(v)dv =

∫ ∞
−∞

1
2
mv2n0

vT

√
2π

exp

(
−v2

2v2
T

)
dv =

1

2
mv2

Tn0. (5.9)

The truncated Maxwellian captures a smaller part of the thermal energy density,

γe =
ẽ

e
=

∫ Vmax

−Vmax

1
2
mv2f(v)dv

e
= erf

(
1√
2

Vmax

vT

)
− Vmax

vT

√
2

π
exp

(
−1

2

V 2
max

v2
T

)
. (5.10)

A close form solution for Vmax

vT
as a function of γe is not provided. Instead, notice the

asymptotic approach to just the error function term; the term makes up 99.9% of γe by

Vmax

vT
= 4.

In summary, for all three moments, the error effect of the truncated velocity space can be

expressed as functions of the ratio Vmax

vT
. Additionally, the ratio equal to 5 gives a adequate

ballpark range that encloses about 99.999% of mass, momentum, and thermal energy relative

to the Maxwellian. Each fraction is plotted in Figure 5.1.

5.2 Shared rectilinear velocity space mesh among species with tailored stretch-
ing and offset velocity

Given the reality that particle different species have quite different different mass, temper-

ature, thermal velocity, and mean fluid velocity, it is regularly appropriate to model the

58

Figure 5.1: Relationship between truncated velocity space and the three moments of a mod-

eled species with Maxwellian distribution.

59

pdf of separate species on a different truncated velocity domain. In terms of computational

implementation, it is beneficial to compute the numerical solution of both species on the

same mesh. This includes moment integral calculations.

To satisfy both, a customized scaling is introduced for each specie’s velocity coordinate

based upon a common shared velocity-like mesh. The common mesh is chosen to always

have extents w ∈ [−1, 1] for each velocity dimension.

Each species’ Vlasov equation is rescaled linearly based on an additional selected scaling

property that becomes associated with the species just as its mass or charge. Then the actual

implemented equation becomes Eq. (5.14).

∂fs

∂t
+∇x · [vfs] +∇v · [

qs

ms

(E + v ×B)fs] = 0. (5.11)

v = γvw (5.12)

∇v =
1

γv
∇w (5.13)

∂fs

∂t
+∇x · [γvwfs] +∇w · [(

q

γvm
E +

qs

ms

w ×B)fs] = 0. (5.14)

Typically, we will want to model two species with different mass but similar temperature.

In order to resolve both distributions similarly, i.e. same number of velocity elements over

the Maxwellian half-width, then γv = 1√
ms

.

5.3 Domain decomposition that does not distribute velocity space

All of 3V velocity space is held by a compute unit, including being on a GPU. Large contigu-

ous transfers of ghost cell data for position space ghost elements only. Moment integration

operates on locally held data only.

60

5.4 Solid Wall Boundary Condition for the Vlasov Equation

There is interest in supporting an idealized solid wall boundary condition imposed on the

Vlasov equation model for plasma. An idealized solid wall should perfectly reflect incident

particles with opposite momentum to the wall and not affect momentum tangential to the

wall. The main motivation to support the idealized solid wall is that several benchmark prob-

lems for plasma simulation specify it. To compare to the benchmark results, the boundary

condition should be implemented. There is not so much justification to use this boundary

condition for structurally confined plasmas with wall temperatures much colder than the

plasma temperature.

When using an upwind numerical flux, an idealized solid wall can be simply implemented

by imposing exterior face node values on the probability distribution function, f , such that

f+(x,v) = f−(x,−(n̂ · v)v̂), where the plus-sign superscript indicates the exterior element

face value and the negative-sign superscript indicates the interior element face value. This

will have the affect that probability density advecting into the wall does so freely, but then

emerges from the wall with opposite normal momentum and the same tangential momen-

tum. Implementation of the boundary condition for one physical dimension is depicted in

Figure 5.2.

The one-dimensional implementation is straight-forward, but does not generalize to two

or three physical dimensions. The approach will still work if the idealized wall boundary is

perpendicular to a physical coordinate (i.e. x̂, ŷ, or ẑ). With velocity space discretized as

a rectilinear mesh perpendicular to the physical coordinates, the same reflection of normal-

momentum can be done as in one-dimension. If the wall is oblique to any physical coordinate,

then the reflection approach cannot be implemented correctly. Parts of the incident normal

momentum space do not reflect back into the modeled momentum space. The difficulty

is depicted in Figure 5.3. The region reflected out of the domain represents loss of mass,

momentum, and energy. In addition to this problem, when using high-order nodal elements,

the reflection procedure would require sophisticated interpolation of the reconstructed poly-

61

x

vx

Unused

Emerging

Incident

n̂

wall

interior

Figure 5.2: Depiction of the solid wall boundary condition for the phase space pdf with one

physical dimension. The normal component of incident momentum is reflected.

62

nomial solution in the incident region onto the nodal locations in the reflected region – the

node mapping is not one-to-one.

n̂

wall
interior

vx= 0

vy= 0

x̂

ŷ
✓

Incident

Reflected✓

Momentum reflected
out of velocity domain

Figure 5.3: Solid walls oblique to the physical coordinate cannot be implemented with the

same simple reflection procedure. Some region of incident normal momentum would be

reflected outside the modeled velocity space (hashed green area). This results in loss of

conservation of mass, momentum and energy. Additionally, some emitted momentum region

also has no corresponding incident momentum (blue), but this can be simply handled by

assuming the pdf is zero there.

One alternative boundary condition that maintains similar properties as the idealized

solid wall would be to have the wall thermalize the incident pdf The emitted pdf would be

Maxwellian in the face-normal direction with matching number density, opposite momen-

tum, and matching kinetic energy as the incident distribution. This technique would be

63

conservative, but destroys the velocity space structure of the incident pdf

The flux of number density normal to the face, F̂ , must balance between the incident

and emitted integrals,

F̂incident =

∫
Ωincident

(v · n̂)f−dv = F̂emitted =

∫
Ωemitted

(v · n̂)f+dv. (5.15)

The flux of momentum density in the face normal direction normal to the face, P̂ , must be

opposite between the incident one emitted integrals for elastic collisions with the wall,

P̂incident =

∫
Ωincident

(v · n̂)(v · n̂)f−dv = −P̂emitted =

∫
Ωemitted

(v · n̂)(v · n̂)f+dv. (5.16)

The flux of total kinetic energy density normal to the face, Ê, must balance between the

incident and emitted integrals,

Êincident =

∫
Ωincident

v2(v · n̂)f−dv = Êemitted =

∫
Ωemitted

v2(v · n̂)f+dv. (5.17)

For the above equations, the integration domains are depicted in Figure 5.4. A Maxwellian

pdf for f+ can be parameterized such that the above constraints are satisfied.

Integration of f− over the incident domain would require development of a new quadra-

ture rule which would be a function of wall angle θ.

64

n̂

wall
interior

vx= 0

vy= 0

x̂

ŷ
✓

✓

⌦incident

⌦emitted

Figure 5.4: Incident and emitted pdf integration regions for an oblique wall.

65

5.5 Symmetry Plane Boundary Condition

For problems with a physical plane of symmetry analytically maintained, half of the com-

putational effort can be eliminated by implementing a symmetry boundary condition at the

plane of symmetry rather than simulating the full domain. The current sheet problems in

Chapter 7 and 8 are examples of this case.

Considering a sausage mode or even symmetry along the plane x = 0 and the modeled

domain is x ≥ 0, then the associated conditions are as summarized in Table 5.1. The

discontinuous Galerkin method makes imposing such a condition on the solution quite easy

and precise with an adjustment. Rather than place an element edge at the symmetry plane,

center the element on the symmetry plane. Thus these elements centered along the plane

should always demonstrate the desired symmetry in there internal solution. The boundary

condition can be imposed though appropriate copy and perhaps negative of Dirichlet values

from the face nodes of the second interior element to the mirrored face nodes on the ghost

element. For each property, g
(
−
(

∆x
2

)
, y, z

)
= ±g

((
∆x
2

)
, y, z

)
. The boundary condition for

the pdf is slightly more complicated but simply repeats the idea already presented for the

solid wall boundary,

f

(
−
(

∆x

2

)
, y, z, vx, vy, vz

)
= ±f

((
∆x

2

)
, y, z,−vx, vy, vz

)
(5.18)

66

Table 5.1: Conditions associated with sausage mode or even symmetry along the x = 0 plane

in the Vlasov-Maxwell model.

n ∂
∂x

= 0

jx jx|x=0 = 0

jy, jz
∂
∂x

= 0

Ex Ex|x=0 = 0

Ey, Ez
∂
∂x

= 0

Bx
∂
∂x

= 0

By, By|x=0 = 0

Bz Bz|x=0 = 0

67

5.6 Sequencing of physical-space and phase-space evaluation

Evaluation of physical space hyperbolic system (i.e. Maxwell’s equations) is performed as

a separate computation step than the evaluation of the phase-space hyperbolic system

(i.e. Vlasov’s equation). The implementation has the evaluation performed by separate

instances of the discontinuous Galerkin scheme. The combination of the Vlasov-Maxwell

model is still one coupled system, however. Coupling is through the first-moment (current

density).

The current density term leaves a couple options for when to evaluate the first-moment

integration over velocity-space. In ether case, it is desirable to implement the moment

integration at the same time as Vlasov’s equation evaluation. This allows the algorithm to

traverse velocity space just once and gives reuse of the distribution function values while

held locally in memory.

Two sequencing options are presented below with some tradeoffs identified. The compute

stages are represented by the following symbols and three time periods, n, ∗, and n+ 1.

• M - evaluation of Maxwell’s equations in physical space.

• V - evaluation of Vlasov’s equation in phase space.

• A - integration of the pdf first-moment

In this first sequence option, the initial jn must be boot-strapped by separate evaluation

68

of the pdf 1st-moment.

boot strap: A(fn)→ (jn)

M(En, jn)→ (E∗)

V (fn, En)→ (f ∗)

A(f ∗)→ (j∗)

M(E∗, j∗)→ (En+1)

V (f ∗, E∗)→ (fn+1)

A(fn+1)→ (jn+1)

The next sequence option does not require a preliminary boot-strap evaluation of A() but

on the other hand may need a special final evaluation if it is desired to save the current

density state at end of simulation consistent with the final pdf. The sequencing should be

more easily extended to add a collision model provided the model conserves momentum.

The steps integrating the previous current moment in function A could also potentially cal-

culate correlation or higher-moment terms supporting the collision operator to apply to f ∗

in parallel with other evaluations.

V (fn, En)→ (f ∗)

A(fn)→ (jn)

M(En, jn)→ (E∗)

V (f ∗, E∗)→ (fn+1)

A(f ∗)→ (j∗)

M(E∗, j∗)→ (En+1)

69

Chapter 6

PLANAR PLASMA WAVES

This chapter considers preliminary problems and simplified one-dimensional geometries

to demonstrate the core technologies and numerical method implementation. Work presented

here serves as a stepping stone to later higher-dimension simulations.

6.1 Planar wave propagation in a uniform unmagnetized plasma

A prototype implementation of the discontinuous Galerkin method was developed to validate

solution of Vlasov-Poisson model problems for longitudinal waves with known analytical

solution.

The Vlasov-Poisson model described in Chapter 2 has been specified for the simplified

case of one particle species, one physical space dimension and one velocity space dimension

(1D+1V). A nodal discontinuous Galerkin method was implemented in Matlab to solve the

time evolution of the model system. The implementation provided ability to adjust the finite

element basis set to arbitrary polynomial order and independently in physical dimension and

velocity dimension. The initial conditions were chosen to reproduce classic test cases of weak

Landau damping, strong Landau damping, and the evolution of the two-stream instability

with results in Ref. [45], which also provides a more thorough analytical treatment.

6.1.1 Weak Landau damping

Landau damping describes a stabilizing phenomena in plasma where waves in the plasma

interact with charged particles with velocity close to the wave phase velocity [46]. For a

particle velocity distribution that is approximately Maxwellian, there will be more particles

with velocity slightly less than the wave phase velocity than particles with velocity slightly

70

greater. Thus more particles are accelerated by the wave than give up energy to the wave;

the wave is damped (exponential decay in time).

A rich set of analytical work has been done exploring this phenomena; the damping factor

can be analytically determined. This makes for a nice benchmarking problem for the kinetic

model and numerical method.

The problem is set up as a perturbed Maxwellian distribution on a periodic spatial domain

x ∈ [−2π, 2π]. The initial distribution function is,

f =
1√
2π
e(−v2/2)(1 + α cos(kx)), (6.1)

where α = 0.01 is the amplitude of initial perturbation and k = 1
2

is the wave number of

the initial perturbation. The velocity domain is truncated at ten times the thermal velocity,

v ∈ [−vmax, vmax] with vmax = 10vT and zero-flux boundary conditions applied at ±vmax.

Landau damping can be readily confirmed by time evolution of the domain electric field

energy,

UE =
ε

2

∫ 2π

−2π

E2(x)dx. (6.2)

The Landau damping rate for the prescribed conditions is predicted to be −0.3066 in

Ref. [45]. The electric field energy time series are plotted for two different velocity dimension

order of accuracy in Figures 6.1 and 6.2 along with the analytical damping rate, y(t) =

7× 10−4 × exp(−0.3066t).

The results show good agreement with theory and previously published works which

used different numerical methods such as Refs. [45], [21], and [47]. The pair of simulation

conditions producing Figures 6.1 and 6.2 are chosen to highlight the long-time limitation of

the discontinuous Galerkin numerical method applied to this model. The simulations only

differ by the basis functions’ polynomial order in the velocity dimension. With Figure 6.2

using lower order polynomials (7th versus 10th), continued adherence to Landau damping

breaks down around t = 70ω−1
p . This is because the system solution becomes increasingly

striated in the velocity dimension until the basis set and grid resolution combination can no

longer resolve the smallest feature size.

71

0 10 20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Electric Field Energy vs. time (ω
p
−1)

sim. results
γ = −0.3066

Figure 6.1: Weak Landau damping resulting time series of electric field energy compared to

predicted decay rate. Simulation domain is decomposed into rectangular elements (nx, nv) =

(20, 80). Polynomial basis function order are (Px, Pv) = (7, 10).

72

0 10 20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Electric Field Energy vs. time (ω
p
−1)

sim. results
γ=−0.3066

Figure 6.2: Weak Landau damping resulting time series of electric field energy compared to

predicted decay rate. Simulation domain is decomposed into rectangular elements (nx, nv) =

(20, 80). Polynomial basis function order are (Px, Pv) = (7, 7). Time 70ω−1
p corresponds with

feature size in the velocity direction becoming smaller than that resolvable with the selected

grid resolution and polynomial order.

73

In reality, some amount of collisions occur between particles of the same species that work

to smooth out the smallest features in the velocity dimension. Thus, such a high resolution

of velocity space is not generally required.

6.1.2 Strong Landau damping

Strong Landau damping [46] follows the same setup as the previous section, except that the

initial perturbation is larger, α = 0.5, such that the transition to non-linear behavior occurs.

Onset time of non-linear effects is approximately 1/
√
α [47].

Figures 6.3 and 6.4 present simulation results for strong Landau damping in a manner

mimicking that of Ref. [21] in order to facilitate qualitative comparison showing very good

agreement. Figure 6.4 also plots the fit linear damping rates in two regions. Initially linear

damping occurs (γ1 = −0.5904) until particle trapping dominates and linear growth (γ2 =

0.1688) begins. These slopes agree with the semi-Lagrangian results published by Rossmanith

and Seal [21], and compare well to the results of Cheng and Knorr (-0.562 and 0.168) [45].

6.1.3 Two-stream instability

Cheng and Knorr also consider the dynamics of two opposing warm particle beams [45]. The

problem is set up as two opposing perturbed Maxwellian beams on a periodic spatial domain

x ∈ [0, 2π/k]. The initial distribution function is,

f =
1√
2π
e(−v2/2)(1 + α cos(kx)), (6.3)

where α = 0.05 is the amplitude of initial perturbation and k is the wave number of the

initial perturbation. The velocity domain is truncated at ten times the thermal velocity,

v ∈ [−vmax, vmax] with vmax = 10vT and zero-flux boundary conditions applied at ±vmax.

Different values of k give unstable (k < 1) and stable (k > 1) behavior for the linear

mode. A commonly analyzed unstable case k = 0.5 was used in the simulations producing

Figures 6.5 and 6.6.

74

Figure 6.3: Strong Landau damping affect on distribution function in phase space presented

as velocity versus position for multiple times as annotated. Simulation domain is decomposed

into rectangular elements (nx, nv) = (20, 80). Polynomial basis function order are (Px, Pv) =

(7, 7).

75

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

 time (ω
p
−1)

U
E

Figure 6.4: Strong Landau damping affect on electric field energy time series. Simulation

domain is decomposed into rectangular elements (nx, nv) = (20, 80). Polynomial basis func-

tion order are (Px, Pv) = (7, 7). Additionally, two zones of linear growth are identified and

plotted along with fit lines γ1 = −0.5904 and γ2 = 0.1688 (dashed lines).

76

Figure 6.5: Two stream initial conditions with unstable conditions, k = 0.5. Simulation do-

main is decomposed into rectangular elements (nx, nv) = (20, 80). Polynomial basis function

order are (Px, Pv) = (7, 7).

77

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

time (ω
p
)−1

U
E

Figure 6.6: Electric field energy time series subject to the same conditions as in Figure 6.5.

Simulation domain is decomposed into rectangular elements (nx, nv) = (20, 80). Polynomial

basis function order are (Px, Pv) = (7, 7). Also plotted is the theoretical linear growth rate

γ = 0.4817

78

Figure 6.7 shows the results for a stable case, k = 2 in which small scale striation develops

in the velocity profile, but the two steams remain stable.

Lastly, unstable conditions matching that of Ref. [21] are simulated resulting in Figure 6.8

which agrees qualitatively with the published result and highlights the fine scale structures

in the solution that is resolved by the DG method.

79

Figure 6.7: Two stream initial conditions with stable conditions, k = 2. Simulation domain

is decomposed into rectangular elements (nx, nv) = (20, 80). Polynomial basis function order

are (Px, Pv) = (7, 7).

80

Figure 6.8: Two-stream instability fully developed vortex at time t = 45 presented as phase

space representation of distribution function (velocity versus position). Initial condition

and domain are setup as per Ref. [21]. Simulation domain is decomposed into rectangular

elements (nx, nv) = (20, 80). Polynomial basis function order are (Px, Pv) = (7, 7).

81

6.2 Spatially uniform plasma gyration in the Vlasov-Maxwell model

An interesting physical reduction for the Vlasov-Maxwell model is to study the dynamics of

a spatially uniform plasma in the presence of electric and magnetic fields. Without spatial

variation, the shape of the pdf cannot change; in velocity space it can only translate and

rotate about the line v×B = 0. This problem has utility because it has an analytic solution

and can be configured to focus on the effects of velocity space discretization or the truncated

velocity extent. Additionally, oscillation modes are admitted by the model that are not

present in the electrostatic case.

Taking the first moment of the Vlasov equation in a coordinate system with the magnetic

field oriented along the z-axis and limited to the spatially uniform case, ∂·
∂x

= 0, yields the

following PDE system for the evolution of the centroid v̄x, v̄y, and v̄z.

∂v̄x
∂t

=
q

m
(Ex + v̄yBz) (6.4)

∂v̄y
∂t

=
q

m
(Ey − v̄xBz) (6.5)

∂v̄z
∂t

=
q

m
Ez. (6.6)

The relevant remaining terms for Maxwell’s equations are,

∂Ex
∂t

= − 1

ε0
jx = −qn0

ε0
v̄x (6.7)

∂Ey
∂t

= − 1

ε0
jy = −qn0

ε0
v̄y (6.8)

∂Ez
∂t

= − 1

ε0
jz = −qn0

ε0
v̄z. (6.9)

Equations (6.4) through (6.6) can be transformed into second order PDE.

82

∂2v̄x
∂t2

=
q

m
(−qn0

ε0
v̄x +

∂v̄y
∂t

Bz) (6.10)

∂2v̄y
∂t2

=
q

m
(−qn0

ε0
v̄y −

∂v̄x
∂t

Bz) (6.11)

∂2v̄y
∂t2

= −q
2n0

mε0
v̄z. (6.12)

Using wx = ∂v̄x
∂t

, wy = ∂v̄y
∂t

, and wz = ∂v̄z
∂t

the following linear first order ODE system can

be created of the form ∂U
∂t

= AU ,

∂

∂t



v̄x

v̄y

v̄z

wx

wy

wz


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−q2n0

mε0
0 0 0 qBz

m
0

0 −q2n0

mε0
0 −qBz

m
0 0

0 0 −q2n0

mε0
0 0 0





v̄x

v̄y

v̄z

wx

wy

wz


(6.13)

The eigenvalues of the matrix A in Eq. (6.13) are complete with three purely imaginary

pairs yielding three oscillation frequencies. Expressed in terms of ω2
p and ω2

c they are,

±ı̂ωp

±ı̂ 1√
2

√
2ω2

p + ω2
c + sgn (qBz)

√
ω2
c (4ω

2
p + ω2

c)

±ı̂ 1√
2

√
2ω2

p + ω2
c − sgn (qBz)

√
ω2
c (4ω

2
p + ω2

c).

(6.14)

The corresponding eigenvectors are not orthogonal, but are linearly independent. These

algebraic substitutions are useful for compactness: A =

√
2ω2

p + ω2
c +

√
ω2
c (4ω

2
p + ω2

c), B =

(ωc +
√
ω2
c + 4ω2

p), C =

√
2ω2

p + ω2
c −

√
ω2
c (4ω

2
p + ω2

c), and D = (ωc −
√
ω2
c + 4ω2

p). The

vector ordering follows that of the eigenvalues, with the negative imaginary eigenvalue coming

83

before its pair. 

0

0

−ı̂
ωp

0

0

1


,



0

0

ı̂
ωp

0

0

1





−2
B

−ı̂
√

2
A

0

−ı̂
√

2A
B

1

0


,



−2
B

ı̂
√

2
A

0

ı̂
√

2A
B

1

0


,



2
D

−ı̂
√

2
C

0

ı̂
√

2C
D

1

0





2
D

ı̂
√

2
C

0

−ı̂
√

2C
D

1

0


. (6.15)

Solutions to the linear system have the form,

v̄x

v̄y

v̄z

wx

wy

wz


=

6∑
i=1

civi exp(λit), (6.16)

where the purely imaginary eigenvalues λi lead to harmonic oscillation. Clearly, displacement

along the magnetic field direction leads to simple plasma frequency oscillation. Displacement

perpendicular to the magnetic field leads to one or two excited oscillation modes with fre-

quencies greater than both the plasma frequency and cyclotron frequency. With just one

perpendicular mode excited, electric field energy and kinetic energy remain constant, whereas

when both modes are excited, an oscillating exchange of the two types of energy occurs. Ta-

ble 6.1 shows demonstrative phase diagrams for the plasma mean velocity for different mode

combinations.

84

2 1 0 1 2
v̄y/vth

2

1

0

1

2

0 1 2 3 4 5 6
ω/ωc

10-3

10-2

10-1

100

101

102 4.00 5.00

2 1 0 1 2
v̄y/vth

2

1

0

1

2

0 1 2 3 4 5 6
ω/ωc

10-3

10-2

10-1

100

101

102

103
4.00

2 1 0 1 2
v̄y/vth

2

1

0

1

2

0 1 2 3 4 5 6
ω/ωc

10-3

10-2

10-1

100

101

102
5.00

Table 6.1: Mean velocity phase diagrams and electric field spectrum for spatially uniform

plasma oscillation perpendicular to a magnetic field. The left column shows velocity normal-

ized by the thermal velocity, with v̄x on the horizontal and v̄y vertically. The right column

frequency spectrum is normalized to cyclotron frequency, ωc. Each row represents a different

initial condition that select both or single mode dynamics based on the initial electric field

strength. For these examples, ωp = 1, ωc = 1√
20

.

85

6.3 Planar Wave Propagation Perpendicular to Magnetic Field

[48]

Figure 6.9: ω2
p/ω

2
c = 3

86

10 20 30 40 50 60 70 80
time

0.0008

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

E
 f

ie
ld

Ex(x=0)
Ey(x=0)

Figure 6.10: ω2
p/ω

2
c = 3

87

6.4 Streaming Weibel instability

The Streaming Weibel instability result for parameters labeled ‘Case 1’ in Ref. [13] was

reproduced as one means to validate the WARPM Vlasov-Maxwell model implementation in

(1D + 2V).

The domain discretization utilized was 100 elements in all three dimension, and the DG

finite elements were second-order polynomial tensor products with 27 nodes each.1042 Y. CHENG, I. M. GAMBA, F. LI, AND P. J. MORRISON

t

K
E

0 50 100 150 200

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Kinetic energy
K1 energy
K2 energy

(a) Parameter Choice 1. Kinetic energies

0 20 40 60 80 100 120 140 160 180 200
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

t

2γ=0.11032

4γ=0.22846

Electric energy
Magnetic energy
E1 energy
E2 energy

(b) Parameter Choice 1. Field energies

t

K
E

0 50 100 150 200

0.005

0.01

0.015

0.02

0.025

0.03

Kinetic energy
K1 energy
K2 energy

(c) Parameter Choice 2. Kinetic energies

t
0 50 100 150 200

10-8

10-7

10-6

10-5

10-4

10-3

10-2 Electric energy
Magnetic energy
E1 energy
E2 energy

(d) Parameter Choice 2. Field energies

Fig. 5.3. Streaming Weibel instability. The mesh is 1003 with piecewise quadratic polynomials.
Time evolution of kinetic, electric, and magnetic energies by alternating flux for the Maxwell’s
equations.

parable to that of Table I of [10]). Saturation occurs when the electric and magnetic
energies simultaneously peak at around t = 70 in agreement with [10]; however, in
our case we achieve equipartition at the peak, which may be due to better resolution.
Here we have also shown the longitudinal component E2, not shown in [10], which in
Figure 5.3(b) is seen to grow at twice the growth rate. This behavior was anticipated
in [11] in the context of a two-fluid model and seen in kinetic VM computations of
the usual Weibel instability [49]. It is due to wave coupling and a modulation of the
electron density induced by the spatial modulation of B2

3 . The growth at twice the
growth rate of the magnetic field B3 is seen in Figure 5.3(b), and the density modula-
tion, including the expected spikes, is seen in Figure 5.4. We have also calculated the
first four Log Fourier modes of the fields E1, E2, B3, and these are shown in Figure

Figure 6.11: Streaming Weibel instability result for parameter ‘Case 1’ reported in Figure

5.3 of Ref. [13] copied here for comparison purposes.

88

Figure 6.12: Mean field energy time series for streaming Weibel instability result simulated

by WARPM Vlasov-Maxwell model with the same conditions as the published result in

Figure 6.11.

89

Figure 6.13: Mean kinetic energy time series for streaming Weibel instability result simulated

by WARPM Vlasov-Maxwell model with the same conditions as the published result in

Figure 6.11.

90

Chapter 7

CURRENT SHEETS

7.1 Harris Current Sheet Equilibrium

The Harris current sheet is an equilibrium condition that is useful for both verification and as

a building block for more sophisticated simulations. The physical setup can be represented

in one physical dimension and two velocity dimensions. The physical simulation space exists

between two perfectly conducting walls with a transverse magnetic field and current-carrying

fluid velocity transverse to both as depicted in Figure 7.1.

Per
fec
t'
Con
duc
tor'

Per
fec
t'
Con
duc
tor'

Periodic(Boundary(

Periodic(Boundary(

n,(jy(

Bz(

Figure 7.1: Harris Current Sheet problem setup with number density, transverse current

density and magnetic field all functions of x between the two conductors.

The magnetic field gradient is balanced by a tangential current density so ∇×B = µ0jnet

and no electric field is generated. The magnetic field strength varies across the sheet as

91

B = B0 tanh(x/λ)ẑ, where λ is the sheet width scaling parameter.

Each plasma species is in thermodynamic equilibrium, i.e. a Maxwellian distribution.

The equilibrium condition with no electric field requires that each species’ pressure be in

balance with the qv × B force. We’ll consider a uniform fluid velocity, ūy, and species

temperature across the domain such that the number density varies with position,

fs(x, vx, vy, t = 0) =
n0

2πv2
Ts

exp

(
−(v2

x + (vy − ūsy)
2)

2v2
Ts

)
1

cosh2(x/λ)
. (7.1)

The 1D−2V Vlasov equation is then solved for an equilibrium condition for each species,

�
�
��7

0
∂fs

∂t
+

1
∂vxfs

∂x
+
qs

ms

∂

∂vx

2(
fs�
�>

0
Ex + vyBzfs

)
+
qs

ms

∂

∂vy

3(
fs�
��

0
Ey − vxBzfs

)
= 0. (7.2)

which requires,

B0 = −2msv
2
Ts

qsūsyλ
. (7.3)

The current density required for equilibrium balance of Ampere’s law is,

jy =
B0

µ0λ cosh2(x/λ)
. (7.4)

Under the prescribed conditions with two species, ion and electron, at uniform fluid

velocities, the current density is equivalently,

jy = (qinūiy + qenūey) =
B0

µ0λ cosh2(x/λ)
. (7.5)

One notable solution for proton and electron plasma at the same temperature and zero

net charge density requires that each species carry an equal fraction of the net current density.

An initial condition in which the electrons carry all the current and thus protons have no

fluid velocity cannot be an equilibrium without an electric field Ex to balance the proton

pressure.

92

7.2 Lower-Hybrid Drift Instability

It is interesting to consider the stability of the previously described Harris current sheet

equilibrium. This question has been studied in several contexts and research efforts giving

opportunity to compare the developed model to existing predictions and simulations. Lower-

hybrid drift instability (LHDI) refers to a perturbation growing in the intermediate frequency

between electron and ion gyro-frequencies and driven by the different drift speeds of the two

species.

Some analytical predictions can be made using the results of linear perturbation analysis.

The analysis presented by Yoon, Lui, and Sitnov in Ref. [49] is repeated here with adaptation

to a lower mass ratio and m.k.s. units.

7.2.1 Physical Scaling

Before proceeding with the linear perturbation analysis, the non-dimensional scaling condi-

tions defined in Ref. [49] are repeated here and related to the equilibrium conditions already

presented.

X ≡ x/λ, w ≡ ω/ωLH , q ≡ cky
ωpe0

, R ≡
ω2
pe0

Ω2
e0

, (7.6)

U ≡ ūiy/vA, M ≡ mi/me, τ ≡ Te/Ti.

Appearing in the above are the lower-hybrid frequency, ωLH = |Ωi0Ωe0|1/2, the electron

cyclotron frequency outside of the sheet, Ωe0 = qeB0

me
, the electron plasma frequency at

the sheet’s peak density, ωpe0 =
√

n0q2e
ε0me

, and the Alfvén speed also at the peak density,

vA = B0√
µ0n0mi

. Two terms to be introduced in more detail in the next section are the

complex mode frequency, ω, and the perturbation wavelength along the sheet, ky. They do

not affect the equilibrium condition.

Each of the non-dimensional parameters above have a fixed value for the linear perturba-

tion analysis in the following section. The Harris current equilibrium conditions expressed

93

in terms of these parameters are as follows:

R =
ω2
pe0

Ω2
e0

=
n0me

ε0B2
0

,

B2
0 =

n0me

ε0R
,

B0 =

√
n0me

ε0R
. (7.7)

(7.8)

From Eq. (7.7),

ūiy = UvA. (7.9)

From the ratio of pressure balance Eq. (7.3) for both species,

qeūey

qiūiy

=
Te
Ti

= τ. (7.10)

From Eq. (7.5),

λ =
B0

µ0n0(qiūiy + qeūey)
=

B0

µ0n0qiūiy(1 + τ)
(7.11)

In the above, this leaves unspecified the physical constants mi, ε0, µ0, qi and a seemingly

arbitrary peak number density, n0.

Examining the relationship between the equilibrium physical scaling and the dimen-

sionless quantities reveals the following relationships are fixed only by the dimensionless

parameters, i.e. no other physical scaling has an effect.

(
v2
Ti

c2

)
=

1

2MR(1 + τ)
. (7.12)(

v2
Te

c2

)
=

τ

2R(1 + τ)
. (7.13)

94

7.2.2 Linearized Euler-Maxwell Equations for Plasma

Assume small amplitude two-dimensional perturbations from the Harris current sheet equi-

librium condition of the form,

δp(x, t) = δp(x) exp (−ı̂ωt+ ı̂kyy) . (7.14)

The linearized Euler-Maxwell system for plasma is presented below, where for compact-

ness,

Ωj =
qjB

mj

, Wj = ω − k · uj

.

The system of linearized equations for electric field δE, magnetic field δB, and for each

species number density δnj, and momentum mjδuj are listed below.

Linearized Faraday’s law:

ωδB = −ı̂∇× δE. (7.15)

Linearized Ampere’s law:

ωδE− ı̂c2∇× δB = −ı̂
∑
j

qj
ε0

(nδuj + δnjuj) . (7.16)

Linearized Gauss’s law:

∇ · δE =
1

ε0

∑
j

qjδnj. (7.17)

Absence of magnetic field divergence:

∇ · δB = 0. (7.18)

Linearized continuity equation:

Wjδnj = −ı̂∇ · (nδuj). (7.19)

Linearized momentum equation:

mj

[
Wjδuj + ı̂Ωj(b̂× δuj)

]
= ı̂qj(δE + uj × δB)− ı̂Tj∇

(
δnj
n

)
. (7.20)

95

For compactness and alternate expression of the linearized momentum equation, it is

useful to define

δaj = δE + uj × δB−
Tj
qj
∇
(
δnj
n

)
, (7.21)

and

Uj = δaj −
(
ı̂Ωj

Wj

)(
b̂× δaj

)
−
(

Ωj

Wj

)2 [(
b̂ · δaj

)
b̂
]
. (7.22)

Now the linearized momentum equation can be equivalently expressed,

mjδuj = ı̂qj
Wj

W 2
j − Ω2

j

Uj. (7.23)

7.2.3 Approximated solution for LHDI

Define the following three spatial parameters

χj =
ωpj

W 2
j − Ω2

j

, ηj =
Ωj

Wj

χj, σj =
Ω2
j

W 2
j

χj. (7.24)

The term δaj can be equivalently expressed as

δaj = δE + uj × δB− nλ2
Dj∇ρj. (7.25)

Dj = χjδaj − ı̂ηjb̂× δaj − σj
(
b̂ · δaj

)
b̂ (7.26)

= χjUj. (7.27)

A useful transformation,
Tj
ej
∇
(
δnj
n

)
= nλ2

D∇ρj. (7.28)

With the following physical quantities,

ω2
pj =

nq2
j

ε0mj

,N =
ck

ω
,Vj =

uj
c
, ρj =

qjδnj
ε0n

, λ2
Dj =

ε0Tj
nq2

j

. (7.29)

The linearized system with the above definitions transforms to the following.

nρj = ∇ ·Dj. (7.30)

96

ωδB = −ı̂∇× δE. (7.31)

∇ · δE =
∑
j

∇ ·Dj. (7.32)

ωδE− ı̂c2∇× δB =
∑
j

[ω (1−N ·Vj) Dj − ı̂cVj∇ ·Dj] . (7.33)

The authors of Ref. [49] make a simplifying approximation neglecting the λ2
Dj term in the

definition of δaj, Eq. (7.25). The validity of this approximation is considered in Section 7.2.6.

Taking into account the assumed perturbation form of Eq. (7.14), a complete linear

equation system is formed by taking the spatial derivative of Eqs. (7.31) and (7.33) z-

component with respect to position across the current sheet, x. The system is presented in

Eq. (7.34). The solution of this system along with the relations for momentum perturbation

Eq. (7.23) fully specify the perturbation eigen-mode based on the solution of δEy only.



−ky ω

−ky ω

−1 qi
ε0

qe
ε0

ı̂Wiηi

+ı̂Weηe

−ı̂Wiηiuiy

−ı̂Weηeuey
ı̂c2 −ı̂ 1

ε0
qiuiy −ı̂ 1

ε0
qeuey

−ω

+Wiχi

+Weχe

c2ky

−χiuiyWi

−χeueyWe

Wiχ
′
i

+Weχ
′
e

−Wiχ
′
iuiy

−Weχ
′
euey

−ω

+Wiχi

+Weχe

c2ky

−Wiχiuiy

−Weχeuey





δEz

δBx

δE ′z

δB′x

δni

δne



=

97



ı̂δE ′y

ı̂δE ′′y

ı̂kyδEy

δEy (ω −Wiχi −Weχe)

δEy (̂ıWiηi + ı̂Weηe)

(̂ıWiη
′
i + ı̂Weη

′
e) δEy + (̂ıWiηi + ı̂Weηe) δE

′′
y



(7.34)

98

7.2.4 Numerical solutions for LHDI Eigenmodes

Solution of the linearized system Eq. (7.34) proved quite challenging due to the stiffness of the

equation system. Focus was directed toward odd modes solutions only. Ultimately a shooting

method was used to solve for the complex eigenvalues of the system. In all cases, shooting

from the current sheet centerline resulted in the eigenfunction growing unboundedly to ±∞

a few sheet widths away from centerline. It turns out that a manifold could be detected

near the eigenvalue depending on which direction the solution diverged. One example set

of solutions is presented in Figure 7.2 of which a subset (the lower right arm) agree well

with the solutions presented in Ref. [49]. Additional potential eigenvalues are identified

by this method, all with potentially higher growth rate based on the imaginary part. The

implications of these should be explored further.

The realistic mass ratio of M = 1836 is quite high for a numerical simulation at this

time and so the solution approach was repeated with M = 25. Actually, the approach was

repeated for numerous mass ratios in the range 1836 to 25. The eigenvalues were tracked

during the parameter progression. The final eigenvalues are presented in Figure 7.3. Only

one eigenvalue value was identified that evolved from one at M = 1836.

The full set of eigenvalues identified with mass ration M = 25 are presented in Figure 7.4.

To solve for the eigenfunction, a different technique was utilized based on Chebyshev

polynomial solution to the boundary value problem. First a mode of interest was identified

and the eigenvalue refined to five or more significant digits by successive graphical reduction

of the search space centered around the previous solution.

7.2.5 Numerical solution with WARPM Vlasov-Maxwell model

With one motivation being to validate the WARPM Vlasov-Maxwell model implementation

in (2D + 2V), it was attempted to simulate the single even eigenmode ‘A’ identified by the

linearized analysis. This ultimately proved unsuccessful for reasons warranting further study.

Rather than observing the predicted linear growth rate or eigenfunction form as predicted

99

Zero Contours of Real (red) and Imaginary (blue) δ Ey(Zrhs)

Re[w]
0.1 0.2 0.3 0.4 0.5 0.6

Im
[w

]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 7.2: Zero-contour intersections indicate potential eigenvalues for the odd-mode

solutions of Eq. (7.34) with parameters M = 1836, R = 100, U = 1, τ = 0.1 consistent with

those for the solutions presented in Figure 3 of Ref. [49]. The lower-right branch intersections

agree with the eigenvalues in the figure cited.

100

Zero Contours of Real (red) and Imaginary (blue) δ Ey(Zrhs)

Re[w]
0.1 0.2 0.3 0.4 0.5 0.6

Im
[w

]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 7.3: Zero-contour intersections indicate potential eigenvalues for the odd-mode

solutions of Eq. (7.34) with parameters M = 25, R = 100, U = 1, τ = 0.1. Only the

intersection at ω = 0.16 + 0.24̂i seems to correspond with an eigenmode from Ref. [49] with

M = 1836.

101

0

0.1

0.2

0.3

0.4

A B

C

D

E
F

G
H

I

Re
 w

Odd−symm. (kink) modes

0

0.1

0.2

0.3

0.4

0.5

A

B C
D

E
F

G H IIm
 w

0

0.1

0.2

0.3

0.4

A

B

C

D

E
F

G
H

Even−symm. (sausage) modes

0

0.1

0.2

0.3

0.4

0.5

A

B C
D

E
F

G H

Figure 7.4: Full set of even and odd mode eigenvalues identified and labeled for parameter

set M = 25, R = 100, U = 1, τ = 0.1.

102

0 1 2 3 4 5 6 7 8

A

B

C

D

E

F

G

H

I

Odd Eigenfunction solutions Re{δ Ey} (blue) Im{δ Ey} (red)

Z

Figure 7.5: Odd mode eigenfunction solutions for the eigenvalues presented in Figure 7.4

with parameter set M = 25, R = 100, U = 1, τ = 0.1. Note that only Mode A has

perturbation concentrated in the current sheet region Z < 1 associated with the LHDI

103

0 1 2 3 4 5 6 7 8

A

B

C

D

E

F

G

H

Even Eigenfunction solutions Re{δ Ey} (blue) Im{δ Ey} (red)

Z

Figure 7.6: Even mode eigenfunction solutions for the eigenvalues presented in Figure 7.4

with parameter set M = 25, R = 100, U = 1, τ = 0.1. Note that only Mode A has

perturbation concentrated in the current sheet region Z < 1 associated with the LHDI.

104

Figure 7.7: Eigenfunction solutions for δEy in Eq. (7.34) associated with the corresponding

eigenvaluse in Figure 7.4.

105

by linear analysis, a growth rate 2-3 times faster was observed with the electric field energy

exclusively outside of the current sheet region. An exemplary early developing simulation

result is presented in Figure 7.8. This type of result seems to develop for a variety of initial

conditions.

Figure 7.8: Typical WARPM Vlasov-Maxwell simulation result with initialized with equi-

librium perturbation adhearing to the solution for even mode ‘A’. The image shows the Ey

electric field component amplitude.

Two possibilities explored were that the initial perturbation amplitude was too strong or

imprecise and that the simplifying assumptions made in Yoon’s linearized analysis are not

satisfied.

To consider the first case, it is possible to evaluate the time derivative of the Vlasov-

Maxwell system analytically given the eigenfunction initial perturbation and compare that

result to the time derivative predicted by the eigenvalue linear growth rate. It was discovered

that the two only balanced when the perturbation amplitude was extremely small – on the

order of one part per million for the out-of-plane magnetic field perturbation. A potential

cause for this sensitivity is discussed in the next section.

Such a small perturbation is not achievable with any accuracy in the presence of dis-

cretization and projection errors for the initial field components and pdf. One strategy that

could be pursued would be to implement a so-called delta-f method, which only tracks devi-

ation from an initial condition. There would be no initial discretization or projection error

106

associated with the equilibrium.

7.2.6 Considerations for the simplifying approximation

This term in Eq. (7.25) must be small to satisfy the Yoon linear perturbation approximation.

For the electron ŷ-component,∣∣∣∣(u2
the

c2

)
cq

√
me√
ε0

√
n0

n

(
δne
δEy

)∣∣∣∣ << 1. (7.35)

For ion ŷ-component, ∣∣∣∣(u2
thi

c2

)
cq
|qe|
qi

mi√
meε0

√
n0

n

(
δne
δEy

)∣∣∣∣ << 1. (7.36)

The x̂-component approximation has less utility due to the gradient component across

the sheet. Each species requires,∣∣∣∣∣∣−
Tj
n0qj

(
∂δnj

∂x
cosh2(x/λ) + δnj

2
λ

cosh(x/λ) sinh(x/λ)
)

δEx + uyjδBz

∣∣∣∣∣∣ << 1. (7.37)

For all parameters explored, the ŷ-component of the dropped second-order term in

Eq. (7.25) was in fact three to five times larger than the retained first-order terms. No

physical scaling parameter was identified that affected this condition. An attempt was made

to continue the linearized analysis with the term retained, but was ultimately unsuccessful.

107

Chapter 8

MAGNETIC RECONNECTION

A natural extension to the current sheet physics described in Chapter 7 is the study of

magnetic field reconnection [50]. A now thoroughly studied configuration for reconnection

experiments is also based on perturbation of the Harris current sheet equilibrium [6] .

Magnetic reconnection is characterized by a change in topology or connection of magnetic

field lines in different closed domains. In a perfectly conducting medium, this is not possible.

In very low resistivity plasma, observed reconnection rates far exceed predictions of resistive

MHD. The developed Vlasov-Maxwell model can be applied to the fast magnetic reconnection

phenomena to improve understanding of the dynamics. The problem geometry is rotated

compared to the earlier Harris current sheet setup with an out-of-plane current and thus

requires a 2D + 3V phase space simulation.

8.1 GEM Magnetic Reconnection Challenge Problem

The Geospace Environmental Modeling (GEM) magnetic reconnection challenge initially

specified in Ref. [6] describes a two-species plasma initial configuration targeted for the

study of reconnection. The problem has been studied many times with models ranging from

ideal MHD, multi-fluid plasma [12], extended moment models [51, 52, 53, 54], and kinetic

models. Kinetic models include Particle-in-Cell [55, 56], Vlasov-Darwin [57], and Vlasov-

Maxwell [58].

8.1.1 Initial Condition

The initial condition and physical domain setup for the GEM Challenge is very similar to the

Harris current sheet equilibrium described in Chapter 7. The primary difference is that the

108

current sheet is rotated such that current is out-of-plane in the ẑ-direction while magnetic

field is in-plane in the ŷ-direction. In addition to the two-species plasma current sheet, a

background two-species uniform plasma with zero fluid velocity is introduced with 20% of

the number density of the current-carrying plasma and same uniform temperature.

fs(x, vx, vy, vz, t = 0) =
n0

(2π)
3
2 v3

Ts

exp

(
− (v2

x + v2
x + (vz − ūzs)2)

2v2
Ts

)
1

cosh2(x/λ)

+
nb

(2π)
3
2 v3

Ts

exp

(
−(v2

x + v2
x + v2

z)

2v2
Ts

)
. (8.1)

where the current sheet width is again given the symbol, λ, the each species’ thermal velocity

is vTs, and each species mean velocity is [0, 0, ūzs].

The bulk magnetic field satisfies the equilibrium requirement described in Chapter 7 and

includes a perturbation in the planar field components,

B = −B0 tanh(x/λ)ŷ + δB. (8.2)

The perturbation has spatial dependence on the width between conductors, Lx, and the

length in the periodic direction, Ly.

δB = −ẑ ×∇ψ, (8.3)

where

ψ(x, y) = ψ0 cos

(
πx

Lx

)
cos

(
2πy

Ly

)
. (8.4)

The expanded expression for the perturbation makes clear the periodic nature along

the sheet and half-period across the conductors. The perturbed field is tangential to the

conducting walls and normal to the centerline with zero net flux across the centerline.

δB = −2π

Ly
ψ0 cos(

π

Lx
x) sin(

2π

Ly
y)x̂ (8.5)

+
π

Lx
ψ0 sin(

π

Lx
x) cos(

2π

Ly
y)ŷ. (8.6)

109

8.1.2 Normalization

It is common for the GEM magnetic reconnection challenge to be presented in normalized

units. Time is normalized to the ion cyclotron radial frequency, ω−1
ci , and distance by the

ion inertial length per radian, di, with definitions based on bulk conditions.

ωci =
qiB0

mi

. (8.7)

di =
c

ωpi
=

c√
n0q2i
miε0

. (8.8)

110

8.1.3 Physical Parameters

B0 = 1

n0 = 1

nb = 0.2n0

qi = 1

qe = −1

mi = 1

M =
mi

me

= 25

τ =
Te
Ti

= 0.2

ψ0 = 0.1B0

λ = 0.5di

Lx = 12.8di

Ly = 25.6di

ε0 = 0.015

µ0 = 0.015

c = 66.6666

di = 8.1649658

8.1.4 Simulated Solution

The 2D+3V domain is discretized in a rectilinear arrangement of hyper-rectangles as follows:

Across the sheet and between the perfectly conducting walls, Nx = 48 elements. The

element spacing is not uniform. Element spacing is smallest at the centerline, x = 0, and

grows linearly until the elements along the conducting wall are twice as wide. Along the

111

sheet, Ny = 30 elements are arranged with uniform spacing and periodic boundaries at the O-

point. The number of elements in each velocity dimension are equal, Nvx = Nvy = Nvz = 12.

The total extent of each truncated velocity dimension is limited to 2Vmax,i = 12vth,i and

2Vmax,e = 12vth,e. For each species, the velocity mesh is centered and symmetric around a

non-zero offset v0. To efficiently utilize the limited discretized velocity space, v0 is chosen

to be the initial fluid velocity for each species. Thus, for out-of-plane equilibrium current

density the velocity vz ∈ [−Vmax + vz0, Vmax + vz0]. The velocity mesh is rectilinear but non-

uniform. The element spacing is smallest at the velocity center v0 and stretches up to a

factor of 3 at the extrema according to the cubic polynomial,

an3 + bn2 + cn+ d = 0, (8.9)

where n is the element index. The factors a,b, and c are solved to give desired stretch,

smallest elements at the velocity center and symmetry about the velocity center. This is

done to improve the velocity domain resolution about the centroid of each pdf with trade-

off of less resolution near the Vmax extrema where smaller features are less expected. The

resulting rectilinear mesh is shown in Figure 8.1.

Each high-order element is a tensor product of 3rd-order Legendre polynomials. The total

degrees of freedom for each species’ probability distribution function is 48× 30× 123× 45 =

2.55× 109 nodes.

Physical solution results from the full domain simulation are presented in Figures 8.1.4

through 8.5 with more discussion in each figure caption. Considering the magnetic field

streamlines in Figure 8.5, no magnetic island formation is observed nor expected. Numerical

models with greater numerical dissipation can introduce anomalous stable magnetic islands

at or in vicinity of the X-point [12].

8.1.5 Reconnected Flux

In expanded form, it is clear that the initial magnetic field has net zero flux through the

centerline, in the x̂-direction. This will remain true and thus the absolute value is taken to

112

Figure 8.1: Representative structured velocity mesh in vx and vy dimensions utilized in the

GEM challenge simulations. There are twelve finite elements in each velocity dimension.

The interior nodes are also depicted for the tensor-product 3rd-order polynomial elements so

there are four points per element per dimension. Element faces are the darker lines. Element

vertex spacing is stretched per Eq. (8.9) to improve resolution near the centroid.

113

Figure 8.2: Ion number density at four representative time points during the simulation.

The initial sheet peak density is n0 = 1.0 plus an additional uniform background fraction

of nb = 0.2. Over the course of the reconnection event, the bulk plasma retreats along the

sheet axis away from the X-point resulting in a higher number density.

114

Figure 8.3: Net charge density at four representative time points during the simulation.

The ion number density in Figure 8.1.4 at the same time points is useful for establishing

relative scaling. Some structures with net charge density are consistent over the duration of

the magnetic reconnection event with regions of positive charge density collocated with the

magnetic field separatrix and a region of negative charge surrounding the O-point containing

the bulk plasma density. Also visible are small scale structures inside of the separatrix most

pronounced at the time of fastest reconnection.

115

Figure 8.4: Total ion momentum as r.m.s. magnitude at four representative time points

during the simulation. As the current sheet separates and retreats from the X-point, signif-

icantly more momentum is located at the retreating edge with sharp fall-off. An emerging

asymmetry across the current sheet is visible at the final frame of simulated time.

116

Figure 8.5: Composite presentation of current density out of plane (jz) along with magnetic

field streamlines for in-plane Bx and By. At the initial condition, the applied magnetic field

perturbation is noticeable as necking in the field lines mid-plane while the plasma is uniform

along the sheet. At time t = 32 ω−1
ci , the separatrix and X-point are both clear features in

the magnetic topology. In the bulk current density region there are actually two magnetic

islands giving clearest indication of broken symmetry along the current sheet and across the

X-point. The out-of-plane current density is much less uniform than the ion number density

in Figure 8.1.4 might lead one to guess. At final time t = 40 ω−1
ci , a slight asymmetry across

the current sheet is also visible as a kink near the right domain edge.

117

assess the gross flux,

θ(t) =
1
2

∫
x=0
|Bx| dy
Ly

. (8.10)

Simulation results for this reconnected flux metric are plotted in Figure 8.6 along with

other kinetic model simulation results for comparison.

8.1.6 Assessing Kinetic Qualities of the Solution PDF

For this GEM magnetic reconnection challenge problem and many other plasma physics in-

vestigations, it is a useful and relevant question to consider what level of model complexity

is sufficient to capture the relevant physical processes. The kinetic simulation with three ve-

locity dimensions is certainly more computationally expensive than a fluid model simulation

of the same problem.

One of several possible ways to consider this question can be made after the kinetic solu-

tion has been computed as a post-processing step. With the full kinetic solution probability

density function available at many simulated time points, an analysis is made to consider how

much the pdf deviates from a Maxwell-Boltzmann distribution with the same fluid moments.

Other researchers have considered considered diagonal and off-diagonal pressure ten-

sor components such as the Vlasov-Darwin simulation results presented in Ref. [57]. A

ten-moment fluid model simulation presented in Ref. [53] demonstrates good qualitative

agreement with the kinetic simulation reduced result. One question that cannot be di-

rectly considered in comparing these two results is how much specific qualities of the kinetic

solution agree with the the reduced 10-moment distribution. A new metric is developed

and described here to consider how well the kinetic solution agrees with a reduced moment

model. For most straightforward explanation, the kinetic solution is compared to a corre-

sponding five-moment fluid distribution though the method could readily be extended to

higher-moment comparison.

The five-moment Maxwell-Boltzmann probability distribution function for species s with

118

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

time ω−1
ci

R
ec

on
ne

ct
ed

 F
lu

x

Pritchett 2001
Schmitz 2006
Umdeda 2009
48x30x123 FW
24x30x123 HW
12x12x83 HW

Figure 8.6: Normalized reconnected magnetic flux versus time per Eq. (8.10). Three

WARPM Vlasov-Maxwell simulations are presented as well as three other published kinetic

simulation model results [56, 57, 58]. Two WARPM simulations have comparable resolution;

the one labeled HW or half-width implements a symmetry boundary condition along the cur-

rent sheet mid-plane. A quite course simulation was also made with about half the resolution

in all dimensions and also using the symmetry boundary condition. The fast reconnection

rate and onset time are still well recovered.

119

particle mass ms, number density ns, mean velocity us, and scalar temperature Ts is expressed

as,

fM =
ns(√

2π
√

kBTs
ms

)NV exp

(
−(v − us) · (v − us)

2kBTs
ms

)
, (8.11)

where the number of velocity dimensions NV = 3 for the case at hand. The temperature for

a monatomic gas relates to average random particle velocity, or thermal velocity, as

kBTs =
NV

2
msv

2
Ts. (8.12)

The necessary parameters can be evaluated by three moments integrals for any distribu-

tion as

ns =

∫
fsdv, (8.13)

us =

∫
vfsdv

ns

, (8.14)

and

U = Ux + Uy + Uz =

∫
ms

2
(v · v)fsdv. (8.15)

Total kinetic energy is the sum of thermal energy associated with random motion about

the mean velocity vector us and the fluid mean flow energy,

U = nskBTs + ns
1

2
ms(us · us). (8.16)

For any distribution function fs a corresponding Maxwell-Boltzmann distribution is de-

termined through evaluation of the above integrals and algebraic solution of Eq. (8.16) for

temperature.

To assess deviation from the Maxwell-Boltzmann distribution, 1-norm error integral is

evaluated and normalized by number density,

120

χs =

∫
Ωv
|fs − fM | dv

ns

, (8.17)

where the domain of integration, Ωv, is the truncated velocity space. The error integral is de-

picted in Figure 8.7. For the GEM magnetic reconnection challenge problem, the discretized

velocity space is centered about the initial fluid velocity vector and so,

Ωv = [−Vmax, Vmax]× [−Vmax, Vmax]× [−Vmax + uz0, Vmax + uz0] . (8.18)

Figure 8.7: Deviation of a any distribution (red) from the Maxwell-Boltzmann distribution

(blue) can be assessed by the 1-norm, or shaded area in this cartoon with one velocity

dimension.

Figures 8.8 through 8.9 show the error χi and χe at select time points over the duration

of the magnetic reconnection event. Even the initial condition for protons is significantly

non-Maxwellian around the edges of the current sheet. This is due to the initial background

population with 20% of the current sheet peak number density, but no mean flow velocity.

The initial condition is thus a sum of two Maxwell-Boltzmann distributions with different

mean velocity centers.

Once particular physical locations are identified for further investigation, another anal-

ysis can be made by taking slices of the distribution function at that location reducing the

five-dimensional pdf to a three-dimensional slice in (vx, vy, vz). A Maxwell-Boltzmann dis-

tribution iso-volume would present as a sphere in this analysis. For examples, slices of both

121

species’ distributions are made at two points as labeled in Figure 8.10. The point labeled

‘A’ is the X-point and is dead-center in the domain; pdf slices are presented in Figure 8.11.

The point labeled ‘E’ is initially outside of the current sheet and the separatrix but ends up

inside the separatrix over the course of the reconnection event; pdf slices are presented in Fig-

ure 8.12. To aid the reader in visually understanding the pdf structure, two iso-volumes are

rendered for each slice. The innermost is adjusted to encompass 25% of the number density

at that location while the outer iso-volume encompasses 75% of the number density. Both

species’ pdf in Figure 8.11 have complicated structures that are neither spherical nor oblate

spheroids which can be characterized by a 5-moment or 13-moment fluid model. Each has

some aspect of counter-streaming populations across the current sheet. In Figure 8.12, the

electron species is most kinetic with a multi-humped distribution and significantly different

temperature along the magnetic field sheet than transverse to it.

122

Figure 8.8: Normalized Maxwell-Boltzmann error for ions per Eq. (8.17) at the times indi-

cated. Over the course of the reconnection event, the hotter ion species’ distribution deviates

most from Maxwellian in the diffusion region and in the low density region along and outside

the magnetic separatrix.

123

Figure 8.9: Normalized Maxwell-Boltzmann error for electrons per Eq. (8.17) at the times

indicated. Over the course of the reconnection event, the colder electron species’ distribution

deviates most from Maxwellian in the diffusion region and along the magnetic separatrix.

124

Figure 8.10: Physical points at which the probability distribution functions have been sliced

and analyzed in three-dimensional velocity space. Point labels overlay the Normalized

Maxwell-Boltzmann error per Eq. (8.17) for ion species (top) and electron species (bottom)

at the time t = 25.6 ω−1
ci .

125

Figure 8.11: Probability distribution function for ions (top) and electrons (bottom) at slice

point ‘A’ in Figure 8.1.6 at time t = 25.6 ω−1
ci . Isovolumes indicate 0.75 and 0.25 fractions

of the specie’s number density at the slice point. The crosshairs are centered at the fluid

velocity moment.

126

Figure 8.12: Probability distribution function for ions (top) and electrons (bottom) at slice

point ‘E’ in Figure 8.1.6 at time t = 25.6 ω−1
ci . Isovolumes indicate 0.75 and 0.25 fractions

of the specie’s number density at the slice point. The crosshairs are centered at the fluid

velocity moment.

127

Chapter 9

WARPM COMPUTATIONAL PERFORMANCE

WARPM was designed to compute solutions of large kinetic simulations on modern su-

percomputers and emerging many-core architectures. A suite of scaling studies and single-

node performance sampling demonstrate observed performance on one supercomputer, the

Cray XC30 Edison operated by the National Energy Research Scientific Computing Center

(NERSC). Technical characteristics of Edison are summarized in Table 9.1.

A simple two-dimensional square physical domain with perfectly conducting solid walls

is simulated as depicted in Figure 9.1. Multiple physical models are simulated on the same

domain with two different DG element basis function polynomial orders. Two kinetic models

both include two species, protons and electrons, with an artificial mass ratio of 25. The model

labeled as “2D+2V” includes two velocity dimensions in phase space, so x, y, vx, vy, and 82

velocity space elements per physical element. The model labeled as “2D+3V” includes all

three velocity dimensions in phase space, so x, y, vx, vy, vz, and 83 velocity space elements per

physical element. This discretization of phase space is coarser than other simulated problems

of physical interest in this dissertation, but sufficient to demonstrate the relevant scaling

effects. The weak scaling studies also consider relatively small simulations of Maxwell’s

equations in a planar vacuum labeled as “Maxwell-only”.

Two different element polynomial reconstructions are considered. For results labeled

“P=2”, the computed solution is a piecewise quadratic polynomial projection in each di-

mension. For those labeled “P=3”, it is piecewise cubic in each dimension. The number of

nodal values per element is (P +1)Ndims and thus the two sets of computations represent very

different levels of work in terms of both floating point operations and data movement.

The square domain allows WARPM to subdivide each process’s assigned elements into

128

Total Compute Nodes 5576

CPU Two-socket 12-core Intel Ivy Bridge processors at

2.4 GHz.

Threads SMT Hyperthreads with 48 active threads per

node.

Floating Point Units 256 bits wide vector unit. (Four double-precision)

19.2 GFLOPS/core, 460.8 GFLOPS/node peak.

Memory 64 GB DDR3 1866 MHz memory per node.

Cache Each core has its own L1 and L2 caches, with

64 KB (32 KB instruction cache, 32 KB data)

and 256 KB, respectively; A 30 MB L3 cache

shared between 12 cores on the Ivy Bridge

processor

Cache bandwidth per core:

L1/L2/L3 = 100/40/23 GB/s

Node Operating System Cray Linux Environment 5.2

Interconnect Cray Aries Interconnect with Dragonfly topology

with approximately 8 GB/s bandwidth per node.

Working Storage Cray Sonexion 1600 Lustre file system.

Installed Summer 2013

Table 9.1: NERSC Edison Configuration

interior and exterior patches. The benefit of overlapping MPI communication of ghost el-

ement data with interior patch computation is clear in both the strong scaling study and

weak scaling studies.

In addition to parallel scaling performance, the reported simulations also demonstrate

WARPM’s capability to compute very large simulations. The largest simulation reported

129

contained 620 billion degrees of freedom advanced in time over 302 million DG elements.

Perfect Conductor

Perfect Conductor

Lx

�x

Figure 9.1: Representative problem geometry for parallel scaling performance studies. In all

cases the simulated domain is square and surrounded by perfectly conducting solid walls with

uniform element size, ∆x. The domain size Lx is constant for the strong scaling problems.

For weak scaling problems, the domain area increases linearly with number of processors,

Lx ∝
√
Nnodes.

9.1 Weak Scaling

To assess the weak scaling performance of WARPM, a constant tile size is maintained per

compute node (one MPI process element) while the number of nodes is increased. The

degrees of freedom, domain area, and computational work all increase linearly with number

130

of nodes.

Two different tile sizes are chosen purposefully to examine the impact of the tile surface

area to volume ratio or more precisely the ratio between the number of elements adjacent

to the tile boundary and the total number of tile elements. Only elements on the tile

exterior require ghost value communication using MPI message passing and the machine

high-speed interconnect while all tile elements have equal computational cost in floating

point operations. As described in Section 4.4, WARPM is designed for good weak scaling

performance by overlapping ghost communication with continued computation of tile interior

elements.

The two tile sizes studied are 3× 3 and 16× 16 with exterior element to interior element

ratios of 8 : 1 and 60 : 196, respectively. Comparing Figures 9.2 and 9.3, it is clear that

better weak-scaling efficiency is maintained at large scale in the 16 × 16 tile computations.

The data also demonstrates that the more complex models with five phase-space dimensions

maintain better scaling at the largest problem size than the four-dimensional models. This is

expected as more computational work is required relative to the ghost communication data

size.

In Figures 9.2 and 9.3 parallel scaling efficiency is calculated relative to the wall time

required to advance one time step on a single tile on one node,

η =
t0
tstep

. (9.1)

Between six and ten time steps are averaged depending on the physical model. The ideal

efficiency is unity representing no incurred overhead due to ghost element communication or

other factors.

The largest calculations utilized nearly one-half of the machine Edison. Machine allo-

cations of this size are difficult to schedule and costly and so the data presented represent

single-run observations rather than averaged performance and no attempt is made to as-

sess performance variance across one machine allocation to the next. It is understood that

specifics of the machine allocation can have an impact on the repeatability of the results pre-

131

sented. The machine’s Aries high-speed network interconnect has a three-tier topology [59]

and so both the set of nodes allocated and MPI rank ordering among the nodes allocated

can have a significant impact on the effective nearest-neighbor ghost element communica-

tion bandwidth and latency. In all studies presented, a custom MPI rank reordering was

performed in attempt to maximize communication performance considering the specific sim-

ulated domain decomposition and Cray Aries network topology. WARPM runs best in the

configuration of one MPI rank per node, with thread parallelism utilizing all cores on the

node with simultaneous multi-threading (SMT) (two hyperthread per core) enabled.

The result of this study confirms the capability of WARPM to simulate very large kinetic

problems efficiently and gives guidance to choosing the right balance of node count versus

net simulation wall time.

9.2 Strong Scaling

Often a problem of interest has a particular domain decomposition and computational size

based on physical scales and accuracy requirements. A question becomes how fast can we

efficiently compute the simulation to arrive at desired answer. This is a strong scaling study

where the problem size is fixed and more computational resource is applied.

Strong scaling experiments for multiple physical models were performed on a fixed domain

decomposed into 48 × 48 elements and the results are summarized in Figure 9.4. We see

very good speedup for only the largest tile sizes and significant roll-off in efficiency starting

at 6 × 6 tile size. Similar to the indications in the weak scaling studies, the larger models

with five phase-space dimensions maintain better scaling efficiency than those with four at

smaller tile sizes.

The strong scaling experiments highlight the importance of overlapped ghost data com-

munication with element time advance computation. Several potential code changes should

be considered in more detail to further improve this design feature of WARPM:

• The current implementation transfers every nodal value for each ghost element during

132

No. Cores
101 102 103 104 105

Pa
ra

lle
l E

ffi
ci

en
cy

0.5

0.6

0.7

0.8

0.9

1

1.1

Ideal
2D+2V P=3
2D+3V P=3
2D+2V P=2
2D+3V P=2
Maxwell-only P=3

No. Nodes
1 4 16 64 256 484 2304

Figure 9.2: Weak scaling experiment results with tile of 3 × 3 elements per compute node

with 8 elements in each velocity dimension.

133

No. Cores
101 102 103 104 105

Pa
ra

lle
l E

ffi
ci

en
cy

0.5

0.6

0.7

0.8

0.9

1

1.1

Ideal
2D+2V P=3
2D+3V P=3
2D+2V P=2
2D+3V P=2
Maxwell-only P=3

No. Nodes
1 4 16 64 256 484 2304

Figure 9.3: Weak scaling experiment results with tile of 16 × 16 per compute node with 8

elements in each velocity dimension.

134

No. Cores
102 103 104

Sp
ee

du
p

10-1

100

101

102

103

104

Ideal
2D+2V P=3
2D+3V P=3
2D+2V P=2
2D+3V P=2

No. Nodes
1 4 16 64 256 1024 2304

48x48

24x24

12x12

6x6
3x3 ~1x2 1x1

Figure 9.4: Strong scaling performance for problems based on 48 × 48 rectilinear mesh

elements in physical space and 8 elements in each velocity dimension. Element polynomial

order and number of velocity dimensions in the Maxwell-Vlasov model are indicated by the

legend. Speedup is defined as the reduction in wall-time to compute one unit of time advance

relative to single-node time. The purple annotations indicate the domain decomposition tile

size on each node.

135

the ghost synchronization while the existing numerical scheme only utilizes the sur-

face node values in computing the surface numerical flux. Transferring only surface

nodal values would reduce the data volume by a factor of (P + 1). Ghost element

synchronization for the kinetic models are limited by interconnect bandwidth so this

optimization would likely be significant.

• The current implementation does not commence ghost element synchronization in

phase space until all velocity space elements are completed. This reduces the number

of messages and increases the contiguous message size but delays the commencement

of communication. An alternative implementation to consider would commence com-

munication as soon as a given element face is ready rather than wait for all velocity

space elements.

• A different time discretization scheme might be used making better use of the full

ghost element solution such as a one-step ADER method with high-order temporal

reconstruction of numerical flux [41].

• Taking advantage of the one-directional nature of the Vlasov equation’s advection flux

across physical faces, a purely upwind numerical flux can be fully specified with one ele-

ment nodal value alone. Through specialized treatment considering the normal velocity

coordinate, this numerical flux scheme could reduce the volume of data synchronized

by a factor of two.

9.3 Single Node Performance

Computational performance of a fluid dynamics domain decomposition code like WARPM

relies fundamentally on achieving best single-node performance that maximally utilizes the

floating-point capability of the hardware to implement the numerical method. Good weak

and strong scaling efficiency can still be achieved with poor single-node performance but the

136

cheapest and sometimes most surprising performance gains can be achieved by understanding

the hardware bottlenecks and making implementation adjustments to ease them.

Core performance sampling tools enable powerful insight into the inner-workings of the

compute core and memory system during application execution. They utilize hardware

performance counters incorporated in the core circuitry intended to count a variety of core

architecture events during the otherwise normal execution of a user application. The tool

briefly interrupts the application execution periodically to observe the region of program

instructions being execution and to save this along with the performance counter snapshot

for later analysis.

WARPM was studied with the Intel VTune Amplifier performance sampling tool on the

same NERSC Edison compute nodes used in the scaling studies. Tests only considered

the Vlasov-Maxwell model problems and only 16 × 16 physical elements on the node. The

simulated problem setup was the same as in the scaling studies. Sampling was enabled over

the period of the second of two time advance frames in order to allow a warm-up before

collection. For the P = 2 models, five time steps with four Runge-Kutta sub-steps are

sampled; for the P = 3 models, the advance is ten time steps.

Important problem size attributes, time step performance, and hardware counter obser-

vations are summarized in Table 9.2 with discussion and analysis for each item as follows.

For each of the sampling experiments, over 90% of instructions are associated with the single

combined OpenCL kernel evaluating internal flux, numerical (face-normal) flux, and kinetic

moment integration leaving the remaining instructions mostly to the boundary condition

application and 2nd-stage moment integration kernels. The metrics can thus be largely con-

sidered specific to the main OpenCL compute kernel.

137

(2D + 2V) (2D + 3V)

Polynomial Order per dim.: P = 2 P = 3 P = 2 P = 3

Nodes per element 81 256 243 1024

Face nodes per element 216 512 810 2560

PDF Solution Storage (MB) 21.2 67.1 509.6 2147.4

Wall time per node-step (s) 2.96× 10−8 2.64× 10−8 3.58× 10−8 3.19× 10−8

Wall time per face node-step (s) 1.11× 10−8 1.32× 10−8 1.07× 10−8 1.28× 10−8

Instructions per node-step 5.06× 103 4.81× 103 6.84× 103 6.21× 103

CPU Utilization 93.0% 94.8% 98.5% 98.6%

Hardware GFLOPS 10.56 12.95 13.06 14.99

FPU Utilization 2.1% 2.5% 2.5% 2.8%

Memory Bound 12.5% 14.0% 13.1% 13.3%

L1 Bound 18.2% 20.0% 18.9% 19.4%

Core Bound 43.2% 41.9% 43.2% 42.8%

Front-End Bound 8.4% 8.1% 7.7% 7.0%

Back-End Bound 55.7% 55.9% 56.3% 56.1%

Table 9.2: Performance metrics collected from one two-socket 24-core Ivy Bridge node of

Edison at NERSC. Domain geometry is 16 × 16 element tile in all cases, and 8 elements

per velocity dimension. Hardware performance metrics were collected by the Intel VTune

Amplifier 2016 performance sampling tool.

138

Element node count: It is informative to note the ratio of face nodes to element

nodes. Face nodes are simply element nodes which additionally require a numerical face-

normal flux evaluation in conjunction with the adjacent element. An element node on an

edge or corner can be multiple face nodes. The ratio increases with increasing number of

phase dimensions. Higher-order polynomial elements reduce the ratio of communication to

floating point operations.

Probability distribution function (PDF) storage: The memory footprint of the

two-species pdf for each problem size is indicated. It is important to observe that the

footprint in all but the smallest case exceeds the L3 cache size. The DG consolidated kernel

design was intended to reuse data as much as possible while computing the time advance for

one element in order to maximize cache reuse.

Wall time per node-step: This is computed as the average time to advance one

Runge-Kutta sub-step divided by the total number of nodes. The time is surprisingly flat

for each test case given that higher polynomial order and higher dimensions both require

more floating point operations in the numerical method. This is the first of several metrics

listed that suggests a performance bottleneck unrelated to floating point performance.

Wall time per face node-step: This is computed as the average time to advance one

Runge-Kutta sub-step divided by the total number of face nodes. Remarks are same as for

the above.

Instructions per node-step: This is computed dividing the hardware counters for

instructions retired by all cores for one Runge-Kutta sub-step divided by the total number

of nodes. This metric actually decreases for the higher polynomial order cases even though

more floating point operations required by the numerical method.

CPU Utilization: This metric reports the fraction of time in which all CPU cores are

occupied with work over the observation period and is an assessment of how well threaded

the application is versus serial code. It does not assess how effectively the CPU resources

are utilized, only that it is occupied by a thread.

GFLOPS: The number of floating point operations tallied by the hardware counters

139

divided by the observation period. The test hardware provides 460.8 GFLOPS ideal peak,

and thus the observed performance for all cases falls far below the processor peak capabilities.

FPU Utilization: The fraction of observed GFLOPS versus ideal peak.

Memory Bound: This composite metric measures a fraction of clocks where the core

functional pipelines are stalled due to load or store instructions. It shows how memory

subsystem issues affect the performance and accounts mainly for incomplete memory loads

that coincide with execution starvation. This fraction is surprisingly low for all tests cases

in that it was anticipated that the numerical method would be memory bandwidth bound.

L1 Bound: The core L1 cache has the shortest latency in general but in certain cases

like loads blocked on older stores to the cache, a load might suffer a high latency even though

it is being satisfied by the L1. The observations are nominal and consistent for each test

case.

Core Bound: This composite metric represents how much core non-memory issues were

a bottleneck. It can indicate the core ran out of out-of-order resources, certain execution

units are overloaded, or dependencies for long-latency arithmetic operations are limiting per-

formance. Combined with the low FPU utilization result, this high indication of on-core bot-

tleneck unrelated to memory bandwidth suggests the core functional units are overwhelmed

by integer, logical, and pointer operations such array index calculations, masks, and branch

conditions.

Front-End Bound: The Intel Ivy-Bridge (Xeon) processor used in this study can be

conceptually divided into the ‘front-end’, where instructions are fetched and decoded into the

micro operations that constitute them, and the ‘back-end’, where the operations are carried

out by a limited number of pipelines. Each clock cycle, the front-end generates up to four

of these micro operations placed into pipeline slots and moved to the back-end. With this

metric quite low for all test cases, instruction decoding and branch mis-prediction are not

leading the delays that starve the back-end pipelines of work.

Back-End Bound: This metric identifies the fraction of time in which new micro-

operations cannot be issued to a processing pipeline due to a lack of required resources –

140

pipelines with the needed functional units are all full. A pipeline can stall due to data-cache

misses which by a separate metric is observed to be the case only about half of the time.

Long-latency operations or other contention for execution resources is understood to make

up the remaining delay with particular focus on non-floating point operations.

9.3.1 Reflection on observations

The combined observations of very low floating point unit utilization and low fraction of

memory bound execution reveals performance problems in the kinetic compute kernel as

implemented and opportunity for significant improvement.

Inspection of the assembly code produced by the Intel OpenCL compiler for the kernels

studied revealed that only 128-bit vector instructions are being generated even though the

studied processor is capable of 256-bit vector operations (e.g. four double-precision floating

point multiplies or adds simultaneously). Further experimentation with very simple kernels

revealed that the compiler does not vectorize even trivial loop operations beyond 128-bit

unless the OpenCL vector intrinsic types are explicitly specified. (i.e. double4, double8, etc.)

This is not a natural way to express the DG algorithm, but could be done with some effort

in order to better utilize the hardware capabilities. Newer processors with 512-bit vector

widths make this an important aspect to consider in any re-design work for the compute

kernels.

The high back-end utilization without delivering floating-point performance suggests the

kernel implementation is too complex to utilize the hardware effectively. The experience

suggests a new implementation splitting the combined compute kernel into multiple kernels

with more specialized function and simpler code expression could significantly improve the

on-core performance. As mentioned previously, there are additional scaling and physical

model reasons motivating adoption of a distinct kernel for numerical flux evaluation.

In considering options to sequence multiple kernels, two possibilities have been considered.

Compact groups of elements could be processed through all compute stages in entirety by

the same compute unit. This is closest to the current implementation. Or, a compute stage

141

could be applied over the entire patch before moving on to the next compute stage. There

are two hardware trends to be considered in making such a design choice. First, latest GPU

hardware and many-core CPU roadmaps do not have an L3 cache. Second, the number of

simultaneous threads in the hundreds or thousands means a lot of parallel work must be

exposed. Threading in units of physical elements may not be sufficient to assign work to all

cores. Different parts of the DG algorithm and moment integration in the Vlasov Maxwell

model would be best decomposed for threads in different ways. This all suggests that the

simpler sub-stage kernels and sequencing applying to whole patches would ultimately perform

better.

142

Chapter 10

CONCLUSION

10.1 Contributions

10.1.1 WARPM code developed

The open-source research code WARPM was developed to achieve a new level of compu-

tational scale supporting advanced kinetic plasma simulations. WARPM was based on the

principle flexibility and user interface of its predecessor WARPX [44]. Both codes are meant

to support a variety of physical models, domain geometries, numerical methods.

WARPM is based on a new computational kernel and memory buffer management model

targeting new and emerging supercomputing architectures based on GPU accelerator and

many-core CPU with multi-level memory hierarchy.

During scaling studies, WARPM computed the highest number of degrees of freedom

for any Vlasov simulation to date [60, 58, 57]. Through the course of this thesis WARPM

was used to evaluate both fluid and kinetic models, DG and finite volume methods, and

geometries from one to six dimensions.

Run-time flexibility with compile-time optimization benefits to DG numerical method

Flexibility for the user to specify physical model, domain geometry, and numerical method

is maintained with improved compiler performance, vectorization, and thread parallelism.

The user parameterizes existing kernel templates and chains together input and output

variables before the final OpenCL source code is compiled at run-time just before the start

of simulation.

WARPM additionally adds support for task-level parallelism that the user can express

143

in terms of startup, per-step, finishing, and restart graphs. This is one way the data com-

munication and file I/O can now be overlapped with computation.

New CFD code architecture designed to maximize performance on both GPU accelerated

supercomputers and future ‘many-core’ machines

WARPM implements computational kernels and memory buffer models using the OpenCL

computing language and API. Data communication between nodes is through the Message-

Passing-Interface (MPI) standard. These two programming models are supported by every

major supercomputing architecture currently and in the near future. The same computa-

tional kernels compile for both GPU and CPU.

10.1.2 Discontinuous Galerkin implementation in four, five, and six-dimensional phase

space

The nodal Discontinuous Galerkin method based on hyper-cubes and tensor-product or-

thonormal Legendre polynomial basis functions was developed and implemented in a way

such that the number of dimensions could be varied from one to six. Thus, full 3D + 3V

phase space can be discretized with high order finite elements.

The tensor-product basis set is not optimal in terms of minimizing degrees of freedom for

a given error convergence rate. However, a surprising property was discovered that reduces

volume integral and surface integral operations to an effective line integral in the direction

normal to each face. This enables a dramatic reduction in the number of floating point

operations required and the storage space needed for the constant DG operator matrices. The

reduction scales geometrically with the number of dimensions making it especially beneficial

for Vlasov model simulations.

The DG kernel implements an algorithmic way to compute internal and external flux

integrals supporting a variety of domain and mesh types at different number of dimensions.

Implementation of the geometric Jacobian is also custom to each mesh type such that op-

timizations can be made when the matrix is not fully general. For example, the rectilinear

144

velocity space Jacobian is understood to be diagonal and computed by evaluating expressions

of the element indices rather than reading mesh vertex coordinates from memory.

10.1.3 Boundary condition developments for Vmax

Vlasov model simulations in a discrete phase space introduce complex boundary condition

requirements along both physical boundaries and at the extrema of the truncated velocity

domain, Vmax.

The implemented Vmax boundary condition is conservative for mass and gives qualitatively

better numerical stability than solid wall (i.e. zero flux).

The solid wall boundary condition is conservative and implemented in such a way that a

more sophisticated wall interaction could be computed such as scattering, charge exchange,

or knock-off interactions.

10.1.4 Component contributions to numerical error in DG solutions

To support analyzing the overall solution accuracy and moment conservation properties of

discontinuous Galerkin method, first the different contributions to numerical error in the DG

method were studied.

Highly accurate evaluations of the DG operator matrices were developed. This helped to

lessen asymmetries in the surface and volume flux numerical integration, improving equilib-

rium solution quality, and reducing one source of conservation error.

10.1.5 Highest resolution kinetic simulation of the GEM Challenge magnetic reconnection

The Geospace Environmental Modeling (GEM) reconnection challenge problem was simu-

lated for the first time combining the Vlasov-Maxwell model and discontinuous Galerkin

numerical method. The combination of element count, concentrated resolution in vicinity

of the current sheet, and high-order polynomial elements results in the highest resolution

magnetic reconnection simulation in both physical space and velocity space [60, 58, 57]. The

145

magnetic reconnection rate predicted agrees well with other published kinetic models and

numerical methods simulating the same problem. This simulation result served to validate

the model and numerical method implementation in 2D + 3V dimensions.

The improved physical and velocity space resolution enabled by the WARPM design and

effective utilization of more powerful computational resources revealed new qualities of this

well studied problem.

Both the ion and electron species were shown to qualitatively and quantitatively deviate

from thermal Maxwell-Boltzmann distribution and even probability distributions captured

by extended moment fluid models.

A new post-processing analysis for assessing the probability distribution function de-

viation from an associated Maxwell-Boltzmann distribution was introduced. Utilizing the

kinetic solution moments of number density, momentum density, and kinetic energy density, a

thermal Maxwell-Boltzmann distribution is parameterized to have matching moments. Then,

a 1-norm of the difference between the two distributions over velocity space is computed at

each point in the physical plane and normalized to number density. The result proved to be

an effective metric to assess and discover solution regions that are more ‘kinetic’ than others.

Guided by the new metric, slices of the pdf solution were collected at choice physical

locations resulting in samples of the pdf in three velocity space dimensions. Computed and

rendered iso-volumes revealed pdf structures that were indeed far from Maxwellian and even

higher-moment fluid distributions.

10.2 Suggestions for Future Study

With promising results, there are clear and exciting opportunities to continue this line of

research. A few of them are suggested below out of recent memory and collective experience

working with the numerical method, computational implementation, and physical model. A

perspective motivating all of the following suggestions is that Vlasov-Maxwell simulations of

full 3D + 3V problems is nearing reasonable possibility with trends in supercomputing. An

approach designed for 1D + 1V or 2D + 2V problem can be quite different than 3D + 3V .

146

In design trade-off decisions, the later should be favored.

10.2.1 Split DG kernel into multiple parts

The current WARPM implementation assembles multiple component parts into a single

numerical OpenCL kernel implementing a Runge-Kutta time step. The original idea was

that input components, i.e. nodal solution values, could be reused repeatedly in lowest level

cache reducing demands on global memory bandwidth. The values are used for evaluating

the source terms, internal flux, numerical (surface) flux, and velocity moment integrands.

Experience has revealed that the resulting monolithic compute kernel is complicated, difficult

to maintain, and problematic for the GPU compilers. More importantly, with DG element

exceeding one thousand nodes, the techniques to maintain data locality and cache presence

must be different.

It is planned to implement separate kernel stages for each of the following:

• Surface flux evaluation kernel

• Runge-Kutta time integration

• Discontinuous Galerkin right-hand-side evaluation

• Velocity moment integration

Separating the surface flux evaluation from the DG kernel also opens up more flexibility

to impose Von Neumann boundary conditions which impose a specified flux value directly.

Currently, boundary condition flux has to be indirectly achieved through applied Dirichlet

values and knowledge of the numerical flux method. This will open more options for the

Vmax boundary physics and wall boundaries.

147

10.2.2 Initiate inter-zone communication as a wave

The WARPM domain decomposition and patching algorithm was tailored for Vlasov model

calculations in phase space by only patching in the physical dimensions. In doing so, it is

assured that velocity space storage is contiguous and local at any physical dimension. This

greatly simplifies the efforts required to integrate the pdf velocity moments needed evaluate

current density as a source term to Maxwell’s equations.

The current implementation does not initiate ghost or halo communication until all patch

periphery elements have been updated. No halo exchange is required across velocity faces,

but very large amounts of data must be transferred across physical faces at patch boundaries.

In the limiting case of 3D + 3V , data volume on the order of 100MB must be exchanged

every step per element physical face.

Whether considering the inter-node network or the PCI bus between GPU and host, this

data volume results in significant delay limiting strong scaling performance of WARPM as

more and more interior element computation is required to mask the halo exchange time.

This halo exchange algorithm could be modified in conjunction with the patch processor

element sequence to start halo communication sooner as smaller chunks complete. This

would result in more smaller messages exchanged over the full duration of the time step.

Strong scaling performance should improve.

10.2.3 Adopt communication pattern tailored for Vlasov-Maxwell upwind flux

Memory bandwidth at all levels limits the computational performance of WARPM and the

Vlasov-Maxwell model. A somewhat specialized halo exchange algorithm and numerical flux

method could be adopted considering that Vlasov-Maxwell system flux in all dimensions is

purely upwind. Across physical faces, the flux direction is always determined by the veloc-

ity coordinate and across velocity faces the direction is determined by the time dependent

Lorentz force.

A new halo exchange algorithm leveraging this property could reduce exchanged data

148

volume by one half.

10.2.4 Implement collisions as a source term

Incorporating intra-species and inter-species collisions into the physical model would expand

the range of model validity and open the possibility to study new and interesting problems.

A Vlasov code should be more readily adaptable to incorporate a collision operator than a

Particle-In-Cell method because the velocity space slice of a species’ probability distribution

functions at a particular position is compactly known and resolved with the same resolution

everywhere. Different collision operators could be implemented balancing computational

effort with the inner product integration and physical accuracy.

149

BIBLIOGRAPHY

[1] J P Freidberg. Ideal magnetohydrodynamics. January 1987.

[2] Uri Shumlak and J Loverich. Approximate Riemann solver for the two-fluid plasma

model. Journal of Computational Physics, 187(2):620–638, May 2003.

[3] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110. Technical

report, NVIDIA Corporation, 2012.

[4] Intel. Knights Corner: Your Path to Knights Landing, September 2014.

[5] E G Harris. On a Plasma Sheath Separating Regions of Oppositely Directed Magnetic

Field. Nuovo Cimento, 23(1):115–+, 1962.

[6] J Birn, J F Drake, M A Shay, B N Rogers, R E Denton, M Hesse, M Kuznetsova, Z W

Ma, A Bhattacharjee, and A Otto. Geospace Environmental Modeling (GEM) magnetic

reconnection challenge. Journal of Geophysical Research: Space Physics (1978–2012),

106(A3):3715–3719, 2001.

[7] L Greengard and V Rokhlin. A Fast Algorithm for Particle Simulations. Journal of

Computational Physics, 135(2):280–292, August 1997.

[8] B J Alder and T E Wainwright. Studies in Molecular Dynamics. I. General Method.

The Journal of Chemical Physics, 31(2):459–466, August 1959.

[9] AGR Thomas, M Tzoufras, A P L Robinson, R J Kingham, C P Ridgers, M Sher-

lock, and A R Bell. A review of Vlasov-Fokker-Planck numerical modeling of inertial

confinement fusion plasma. Journal of Computational Physics, 231(3):1051–1079, 2011.

150

[10] Ammar Hakim, J Loverich, and Uri Shumlak. A high resolution wave propagation

scheme for ideal Two-Fluid plasma equations. Journal of Computational Physics,

219(1):418–442, November 2006.

[11] Ammar Hakim and Uri Shumlak. Two-fluid physics and field-reversed configurations.

Physics of Plasmas, 14(5):055911, 2007.

[12] John Loverich, Ammar Hakim, and Uri Shumlak. A Discontinuous Galerkin Method

for Ideal Two-Fluid Plasma Equations. Communications in Computational Physics,

9(2):240–268, February 2011.

[13] Yingda Cheng, Irene M Gamba, Fengyan Li, and Philip J Morrison. Discontinuous

Galerkin Methods for the Vlasov-Maxwell Equations. SIAM Journal on Numerical

Analysis, 52(2):1017–1049, April 2014.

[14] Yingda Cheng, Andrew J Christlieb, and Xinghui Zhong. Energy-conserving discon-

tinuous Galerkin methods for the Vlasov–Ampère system. Journal of Computational

Physics, 256(C):630–655, January 2014.

[15] Yingda Cheng, Irene M Gamba, Fengyan Li, and Philip J Morrison. Discontinuous

Galerkin Methods for the Vlasov-Maxwell Equations. arXiv.org, February 2013.

[16] Yingda Cheng, Irene M Gamba, and Philip J Morrison. Study of conservation and

recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems.

Journal of Scientific Computing, 56(2):319–349, January 2013.

[17] David C Seal. Discontinuous Galerkin methods for Vlasov models of plasma. PhD thesis,

University of Wisconsin - Madison, University of Wisconsin - Madison, May 2012.

[18] R E Heath, I M Gamba, Philip J Morrison, and C Michler. A discontinuous Galerkin

method for the Vlasov–Poisson system. Journal of Computational Physics, 231(4):1140–

1174, February 2012.

151

[19] John M Dawson. Particle simulation of plasmas. Rev. Mod. Phys., 55(2):403–447, 1983.

[20] Charles K Birdsall and A Bruce Langdon. Plasma physics via computer simulation.

McGraw-Hill, New York, NY, 1985.

[21] J A Rossmanith and David C Seal. A positivity-preserving high-order semi-Lagrangian

discontinuous Galerkin scheme for the Vlasov-Poisson equations. Journal of Computa-

tional Physics, 230(16):6203–6232, July 2011.

[22] Jan S Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods, vol-

ume 54 of Texts in Applied Mathematics. Springer New York, New York, NY, 2008.

[23] Michael Dumbser and Martin Käser. Arbitrary high order non-oscillatory finite volume

schemes on unstructured meshes for linear hyperbolic systems. Journal of Computational

Physics, 221(2):693–723, February 2007.

[24] Vladimir A Titarev and Eleuterio F Toro. ADER schemes for three-dimensional non-

linear hyperbolic systems. Journal of Computational Physics, 204(2):715–736, April

2005.

[25] Vladimir A Titarev and Eleuterio F Toro. Finite-volume WENO schemes for three-

dimensional conservation laws. Journal of Computational Physics, 201(1):238–260,

November 2004.

[26] W H Reed and T R Hill. Triangular mesh methods for the neutron transport equation.

Proceedings of the American Nuclear Society, January 1973.

[27] B Cockburn and Chi-Wang Shu. TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws II: General Framework. Math

Comput, 52:411–435, 1989.

[28] B Cockburn, Suchung Hou, and Chi-Wang Shu. The Runge-Kutta local projection

152

discontinuous Galerkin finite element method for conservation laws IV: the multidimen-

sional case. Math. Comp, 54(190):545–581, 1990.

[29] Jonathan Shewchuk. Triangle.

[30] Christophe Geuzaine and Jean-François Remacle. Gmsh.

[31] Irene A Stegun and Milton Abramowitz. Handbook of mathematical functions with for-

mulas, graphs, and mathematical tables. Dover books on intermediate advanced math-

ematics. US. Nat. Bureau Stand., New York, NY, 1964.

[32] B Cockburn. Discontinuous Galerkin methods. ZAMM, 83(11):731–754, November

2003.

[33] Jianxian Qiu and Chi-Wang Shu. Runge–Kutta Discontinuous Galerkin Method Using

WENO Limiters. SIAM Journal on Scientific Computing, 26(3):907–929, January 2005.

[34] Jun Zhu, Xinghui Zhong, Chi-Wang Shu, and Jianxian Qiu. Runge-Kutta discontinuous

Galerkin method using a new type of WENO limiters on unstructured mesh. Technical

Report 2012-8, Brown University, Providence, RI, March 2012.

[35] J Butcher. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta

and General Linear Methods. Wiley, January 1987.

[36] Michael Dumbser and Claus-Dieter Munz. Building Blocks for Arbitrary High Order

Discontinuous Galerkin Schemes. Journal of Scientific Computing, 27(1-3):215–230,

December 2005.

[37] Michael Dumbser, Cedric Enaux, and Eleuterio F Toro. Finite volume schemes of very

high order of accuracy for stiff hyperbolic balance laws. Journal of Computational

Physics, 227(8):3971–4001, April 2008.

153

[38] Gregor Gassner, F Lörcher, and Claus-Dieter Munz. A Discontinuous Galerkin Scheme

based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions.

Journal of Scientific Computing, 34(3):260–286, December 2007.

[39] Gregor Gassner, Michael Dumbser, Florian Hindenlang, and Claus-Dieter Munz. Ex-

plicit one-step time discretizations for discontinuous Galerkin and finite volume schemes

based on local predictors. Journal of Computational Physics, 230(11):4232–4247, May

2011.

[40] Jianxian Qiu, Michael Dumbser, and Chi-Wang Shu. The discontinuous Galerkin

method with Lax–Wendroff type time discretizations. Computer Methods in Applied

Mechanics and Engineering, 194(42-44):4528–4543, October 2005.

[41] Michael Dumbser. Arbitrary high order schemes for the solution of hyperbolic conserva-

tion laws in complex domains. Stuttgart University Ph.D. Thesis. Shaker Verlag GmbH,

Germany, August 2005.

[42] Michael E Taylor. Partial Differential Equations I: Basic Theory, volume 115 of Applied

Mathematical Sciences. Springer, New York, 2011.

[43] Jianxian Qiu. A Numerical Comparison of the Lax–Wendroff Discontinuous Galerkin

Method Based on Different Numerical Fluxes. Journal of Scientific Computing,

30(3):345–367, September 2006.

[44] Noah Reddell, Robert Lilly, Uri Shumlak, Eder Sousa, and Bhuvana Srinivasan. Com-

putational Algorithm for the Multi-Fluid Plasma Model - WARPX. APS Meeting Ab-

stracts, November 2010.

[45] C Z Cheng and Georg Knorr. The integration of the vlasov equation in configuration

space. Journal of Computational Physics, 22(3):330–351, November 1976.

[46] L D Landau. On the vibrations of the electronic plasma. J. Phys.(USSR), 10:25–34,

1946.

154

[47] F Filbet and Eric Sonnendrücker. Comparison of eulerian Vlasov solvers. Computer

Physics Communications, 150(3):247–266, 2003.

[48] J A Tataronis and F W Crawford. Cyclotron harmonic wave propagation and insta-

bilities: I. Perpendicular propagation. Journal of Plasma Physics, 4(02):231–248, May

1970.

[49] Peter H Yoon, Anthony T Y Lui, and Mikhail I Sitnov. Generalized lower-hybrid drift

instabilities in current-sheet equilibrium. Physics of Plasmas (1994-present), 9(5):1526–

1538, 2002.

[50] Eric Priest and Terry Forbes. Magnetic Reconnection. Magnetic Reconnection, by Eric

Priest , Terry Forbes, Cambridge, UK: Cambridge University Press, 2007, February

2007.

[51] Liang Wang, Ammar Hakim, A Bhattacharjee, and K Germaschewski. Comparison

of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic

reconnection. Physics of Plasmas, 22(1):012108, January 2015.

[52] E A Johnson and J A Rossmanith. Magnetic reconnection for 10-moment two-fluid

versus kinetic simulations. Physics of Plasmas, 2006.

[53] E Alec Johnson and J A Rossmanith. Ten-moment two-fluid plasma model agrees well

with PIC/Vlasov in GEM problem. arXiv.org, October 2010.

[54] Evan Alexander Johnson. Gaussian-Moment Relaxation Closures for Verifiable Numer-

ical Simulation of Fast Magnetic Reconnection in Plasma. PhD thesis, University of

Wisconsin - Madison, September 2014.

[55] Michael Hesse, Karl Schindler, Joachim Birn, and Masha Kuznetsova. The diffusion

region in collisionless magnetic reconnection. Physics of Plasmas, 6(5):1781–16, 1999.

155

[56] P L Pritchett. Geospace Environment Modeling magnetic reconnection challenge: Sim-

ulations with a full particle electromagnetic code. Journal of Geophysical Research:

Space Physics (1978–2012), 106(A3):1–16, 2001.

[57] H Schmitz and R Grauer. Kinetic Vlasov simulations of collisionless magnetic recon-

nection. Physics of Plasmas, 13(9):092309, 2006.

[58] Takayuki Umeda, Kentaro Togano, and Tatsuki Ogino. Two-dimensional full-

electromagnetic Vlasov code with conservative scheme and its application to magnetic

reconnection. Computer Physics Communications, 180(3):365–374, March 2009.

[59] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob Alver-

son, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard. Cray Cascade: a

Scalable HPC System based on a Dragonfly Network. In Supercomputing 2012, pages

1–9, August 2012.

[60] T Minoshima, Y Matsumoto, and T Amano. A finite volume formulation of the multi-

moment advection scheme for Vlasov simulations of magnetized plasma. Computer

Physics Communications, 2015.

156

VITA

Noah Reddell grew up outside the town of Darrington in rural western Washington. He

was born to parents Jerry and Mary Ann and provided a brother Eli to torment until his

superior growth rate prevailed. Noah moved far away for college – earning a B.S. in Electrical

Engineering at the United States Naval Academy and appreciation for all things nautical. He

developed an interest in research at Stanford University studying plasma-wave interactions in

the Earth’s magnetosphere and earned an M.S. in Electrical Engineering. He left academics

for applied science and sailor-management as a U.S. Navy submarine officer for six years.

On this last pass as an bona fide student, he traveled, he married, he settled in, and he took

the long road.

	List of Figures
	List of Tables
	Introduction
	A Kinetic Description of Plasma
	Simulation Architecture and Numerical Method for Next Generation of High Performance Computing
	Study of Plasma in the Presence of a Magnetic Field: Planar Wave Propagation, Current Sheet Instabilities, and Magnetic Reconnection

	Plasma Models
	 Vlasov - Maxwell Kinetic Model
	 Euler - Maxwell Fluid Model

	Numerical Method
	Particle-In-Cell dominance
	Motivation for discontinuous Galerkin versus alternatives
	The discontinuous Galerkin method
	Nodal Discontinuous Galerkin Semi-Discrete Implementation
	Element Type and Basis functions
	Optimizations for tensor product hypercubes
	High-Accuracy Discontinuous Galerkin Working Matrix Initialization
	Types of Errors With Discontinuous Galerkin Method
	Advanced discontinuous Galerkin Schemes

	WARPM Simulation Code for Many-Core Architectures
	Next-Generation Simulation Code
	Multi-Level Domain Decomposition
	Dynamic OpenCL Code Assembly
	Minimized Data Movement
	Support for different numerical methods, physical models, and domain geometries

	Kinetic Implementation Details
	Considerations for discretized velocity dimension
	Shared rectilinear velocity space mesh among species with tailored stretching and offset velocity
	Domain decomposition that does not distribute velocity space
	Solid Wall Boundary Condition for the Vlasov Equation
	Symmetry Plane Boundary Condition
	Sequencing of physical-space and phase-space evaluation

	Planar Plasma Waves
	Planar wave propagation in a uniform unmagnetized plasma
	Spatially uniform plasma gyration in the Vlasov-Maxwell model
	Planar Wave Propagation Perpendicular to Magnetic Field
	Streaming Weibel instability

	Current Sheets
	Harris Current Sheet Equilibrium
	Lower-Hybrid Drift Instability

	Magnetic Reconnection
	GEM Magnetic Reconnection Challenge Problem

	WARPM Computational Performance
	Weak Scaling
	Strong Scaling
	Single Node Performance

	Conclusion
	Contributions
	Suggestions for Future Study

