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Abstract

Development and Application of a Multi-Block High Order Finite Element Modeling
Code as an Engineering Design Tool

Weston B. Lowrie

Chair of the Supervisory Committee:
Professor Uri Shumlak

Aeronautics and Astronautics

An engineering design tool is developed to streamline the process of creating, verify-

ing, and using complex computational meshes for use with numerical simulations. A

fully three-dimensional high order finite element code is developed and verified with

several different types of physics equations including anisotropic thermal conduction,

and magnetohydrodynamcis (MHD). A multi-block framework and CAD/mesh genera-

tor interface is developed such that complex, non-axisymmetric, and non-simply con-

nected topologies are possible with minimal complexity for the user. An a priori error

estimation technique is developed using mesh quality metrics and is included as a

step in the engineering design tool. One can assess a mesh’s quality prior to numerical

simulation and determine if it will yield acceptable results. It is found that the mesh

quality analysis can predict the global error norms in the solution and therefore can

be used as an a priori guide to improving computational meshes.

The multi-block framework is verified by solving a m = 1 kink mode in a Z-pinch

and comparing to a linear stability analysis, yielding a positive agreement. Further

studies of the Z-pinch include wall stabilization in a cylindrical geometry, and subse-

quently, a study of wall stabilization in a non-axisymmetric geometry made possible by

the multi-block framework. The mesh deformation analysis is applied to the Z-pinch

meshes and previous results are confirmed.





A non-axisymmetric and non-simply connected geometry representing the HIT-SI

experiment is created using the CAD and mesh generator interface and multi-block

framework. A mesh deformation analysis is applied to identify degenerate and poor

mesh regions during mesh creation. Methods for repairing the mesh from degen-

eracies and further improvement for more accurate simulations is demonstrated. A

spheromak MHD solution is computed on the HIT-SI mesh as a demonstration of the

practicality of using the developments in this dissertation as an engineering design

tool.
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Chapter 1

INTRODUCTION
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One of the grand challenges of the 20th and continuing into the 21st century is

human-engineered, controlled thermonuclear fusion on a scale large enough for com-

mercial energy production. Controlled thermonuclear fusion has been demonstrated

on a small scale, but it remains a challenge to have a commercially viable, economic,

and environmentally clean means of obtaining fusion on earth. A major hurdle in this

grand challenge is the understanding of plasma physics, which is the dominant field of

study in the fusion community. Like many of the science fields, plasma science benefits

greatly from the use of computer-aided design and numerical modeling. It is generally

considered a necessary and essential aspect of plasma research and development to

use such computational resources.

The focus and purpose of this dissertation is to contribute in development of a state

of the art numerical tool for the advancement of computational plasma physics and

apply the tool to problems of interest to the thermonuclear fusion community. The

research is conducted through the Plasma Science and Innovation Center (PSI-Center)

[1], and funded by U.S. Department of Energy, which aims to improve computational

predictability of fusion devices.

The contributions made in this dissertation are all in light of creating a user-

friendly engineering design tool with the ability to accurately model complex three-

dimensional geometries with relative ease. There is a particular focus on problems

involving fusion energy science and plasma physics. The main contributions are:

• A priori mesh quality error analysis

The ability to analyze and quantify the errors associated with a mesh before

running a simulation and predicting a priori potential solution errors is a useful

design tool. This allows one to analyze a mesh prior to simulation with minimal

computational effort, and identify areas of a mesh that need improvement. One

can then improve problem mesh areas before simulation, which results in more

accurate simulations and less wasted computational effort in poor simulations.

• Multi-block framework

A multi-block framework is designed such that many structured element blocks



3

can be combined into a single computational domain in an unstructured arrange-

ment. This enables significantly more complex geometries to be represented,

while preserving the fundamental structured block elements. The ability to cre-

ate complex geometries that are non-axisymmetric, and non-simply connected is

essential to be a viable design tool. This is especially true in the fusion commu-

nity where many of the experiments have complex geometries.

• CAD and mesh generator interface

A useful design tool must have a user-friendly interface where one can quickly

load or create the desired geometry, create a mesh, and run the simulation. Hav-

ing a computer-aided design (CAD) and mesh generator interface accomplishes

this requirement. The CUBIT [2] software is used as a CAD interface and mesh

generator that can create the desired files for use in simulations.

1.1 Summary of Document

The use of high performance computing resources makes this development and re-

search possible. A brief history of both the finite element method and high perfor-

mance computing is thus first discussed in Chapter 2. The motivation for the develop-

ment and the contributions made in this dissertation are discussed in Chapter 3. The

main computational tool developed for this dissertation is the HiFi [3, 4] code and is

discussed in more detail in Chapter 4, including the flux-source formulation, the high-

order finite (spectral) element spatial discretization, implicit time advance, boundary

condition, and initial condition formulation. A verification of HiFi with a visco-resistive

MHD equation system is described in Chapter 5. A study of a mesh quality analysis is

presented in Chapter 6, where an a priori error detection approach is discussed.

The multi-bock framework, and a CAD and mesh generator interface integration

is discussed in Chapter 7. An application of the multi-block framework on Z-pinch

simulations is discussed next in Chapter 8, and an application of the mesh quality

metrics analysis to a Z-pinch problem is discussed in Chapter 9. A further exercise of

the multi-block framework with a simulation using more complex HIT-SI geometry is
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discussed in Chapter 10. Finally conclusions about the development and application

work done in this dissertation are discussed in Chapter 11.
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Chapter 2

HISTORY OF HIGH PERFORMANCE COMPUTING AND THE FINITE
ELEMENT METHOD
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Historically the finite element method and digital computer advancements have

been intertwined. Dealing with large amounts of arithmetic is necessary in solving

problems using the finite element method, and a digital computer is the only econom-

ical means of dealing with these large calculations. As computational power has in-

creased over the decades, so has the ability to solve larger and larger problems. Both

the origins of the finite element method and the use of high performance computing

machines in the context of scientific computing is described below. This is meant to be

a brief overview of each, and not an all inclusive description of their history. The goal

is to give a better understanding of how the research in this dissertation fits into the

current state of the art.

2.1 Finite Element Method

Despite the finite element method’s name being coined by Clough [5] in 1960, the

method’s principles and use extend much further back in history. Leibniz in 1696

used the variational principle along with a piecewise polynomial approximation to de-

rive the governing differential equation for the brachistochrone problem [6]. Although

Leibniz was attempting to find a differential equation and not solve one, the variational

principle and piecewise polynomial approximations are fundamental to the finite ele-

ment method. Similarly, at the same time as Leibniz, Euler used these principles in

the derivation of the Euler equations, named after himself. In 1851 Schellbach [7] used

a finite element like method to solve for the minimum surface area enclosed by some

arbitrary curve using a mesh of triangles and piecewise linear functions within the

triangles.

Structural problems like plane elasticity was solved by Hrennikoff [8] in 1941, by

breaking the domain into finite pieces and representing the connections between the

pieces as bars, beams, and springs [9]. In 1943 McHenry also solved a plane stress

problems, but used piecewise linear and cubic approximations over rectangular cells.

Courant was also studying structural problems at this time and used variational meth-

ods for equilibrium and vibration solutions [10].
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In the 1940s and 1950s a significant effort went into analyzing aircraft structures

[11, 12, 13] and this lead to work at Boeing [14] of vibration and flutter analysis of

a delta wing structure. The method used stiffness matrices of a collection triangular

plates assembled into arbitrary shapes and was called the “direct stiffness method”

[12]. Having the piecewise triangular elements allowed for strong agreements with the

laboratory measurements of the physical models. It wasn’t until 1960 when Clough [5]

used the term “finite element method (FEM)” in a paper written to demonstrate the

procedure for the civil engineering profession [12]. This paper also demonstrated that

the approximate solution would converge to the exact solution as the element size

decreased [15]. This mathematical property is essential to the method and allowed it

to be used successfully in solving many difficult engineering problems.

The early structural analysis of aircraft provided much of the foundation for the

FEM and many different methods were proposed by private industry in the 1960s [9].

By 1962 the spectral finite element method had been proposed, and by the late 1960s

bi-cubic splines were used for polynomial interpolation. It was also realized in the

late 1960s that finite element methods could be used for unsymmetric, or non-self-

adjoint operators found in fluid mechanics problems [15]. Oden in 1968 and 1970 [16,

17] and later Heinrich [18] published work on finite element used for fluid dynamics

applications including the Navier-Stokes equations. Since the 1970s fluid problems

have been solved extensively using the FEM. Algorithmic techniques like ‘upwinding’

further improved the computational efficiency, and led to more widespread use of finite

element in fluid applications [15, 18]

As computing power increased over the decades, so did the size of problems at-

tempted with FEM. In the early 1960s problems involving hundreds of variables were

common, and by the late 1960s a three-dimensional FEM calculation of a pressure ves-

sel involved approximately 18,000 variables [15]. By the 1980s fluid dynamics prob-

lems with millions of variables were possible. At this point a sweet spot of compu-

tational resources and algorithm efficiency made it possible to study with detail and

precision complex fluid problems, including supersonic aircraft, automobile aerody-

namics, as well as the MHD equations [19]. Solving systems with millions of variables
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was routine throughout the 1990s and 2000s [20], and now it is possible to solve prob-

lems with billions of variables. The performance of computing resources is expected

to increase further as petascale computing becomes more frequent, and exascale com-

puting is on the horizon [21], and surely larger and larger problems will be solved on

these machines.

2.2 High Performance Computing

High Performance Computing (HPC), also known as supercomputing, originated out

of the early days of electronic computers. Early computers were designed to perform

mathematical calculations, like the Complex Number Calculator (CNC) in 1940 [22].

It did not take long to realize the scientific possibilities of the early machines, and

in 1945 the ENIAC [23, 24] computer was built at the University of Pennsylvania to

compute firing tables for the U.S. Army, which involved repeatedly solving complex

mathematical expressions. In 1951 the first commercial computer appeared: the Uni-

vac I [13] and were first sold to US Government agencies. Soon afterward in 1952 the

Univac 1103 was sold, which had scientific computation in mind. IBM also launched a

commercial machine in 1953: the 701 model [13].

In these early days of scientific computing, large aircraft companies purchased com-

puters for analysis, but it was not until 1957 when a high level language called FOR-

TRAN (short for “formula translation”) was introduced. FORTRAN made it practical

for engineers and scientists to use the computational machines of those days. This al-

lowed scientists and engineers to solve problems of hundreds of variables in the early

1960s [13], and by the late 1960s problems with many thousands of variables were

possible.

By the mid 1970s the first “supercomputer” was built by Seymour Cray, called the

Cray-1 [25]. The Cray-1 was considered a vector computer, which could perform more

than one operation at a time (as opposed to scalar processors). These vector opera-

tions can be thought of as the first type of parallel processing. This allowed for much

faster calculations then the scalar processors when dealing with large arrays, but the



9

programmer must understand the process of “vectorization”, which was a cumbersome

programming technique. These machines were developed over the 1980s and 1990s,

and did allow for large fluid dynamics problems to be solved, as well as many other

scientific applications.

By the mid 1990s a shift from vector computing to parallel computing took place.

The parallel machines used many off-the-shelf processors configured to compute a

problem simultaneously. The term “massively parallel” refers to this type of comput-

ing, where thousands of processors could be used at once to solve a particular prob-

lem. These parallel machines represent the current state of the art, and continue to

add more and faster processors. Much like the vector computers, programming for

these machines requires writing software in parallel. Fortunately standards like MPI

(message passing interface) [26, 27] were developed to manage processor-to-processor

communication in these machines to ease the burden of programming. The current

paradigm of increasing the total number of processors to increase performance seems

to be a continuing trend as the field advances, but lately mixing specialized processors,

and other types of computing hardware like graphical processing units (GPUs) to gain

performance has become more common [21].
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Chapter 3

MOTIVATION
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The goal of the work in this dissertation is to be able to model physical systems of

interest with predictive capabilities in a user-friendly manner for use as an effective

engineering design tool. For complex geometries and complex equation systems, this

is a challenging task, but having a state of the art numerical tool moves us closer

to success in that direction. All of the features described are necessary for a useful

numerical tool that has potential for predictive modeling.

The main numerical tool, HiFi, has been a work in progress throughout the work in

this dissertation. Some features were present before the work began, and other were

developed in parallel. A motivation for the code’s features, and a brief description of

each is described in this Chapter. Additionally, a motivation and description for the

main contributions made to the advancement of the code are made.

3.1 Motivation and Description of Numerical Tool

3.1.1 Three Dimensional (3D) Spatial Representation:

Many physical phenomena are inherently 3D, and thus in order to understand the

physics involved, simulations must also include all three dimensions. HiFi is a fully

3D high order finite (spectral) element code and has the ability to model these types of

systems.

3.1.2 High Accuracy:

The finite element method is way of approximating a system of partial differential

equations (PDEs) and in order for the approximation to be valid, the solution must be

close to the actual PDE solution. Sufficient spatial accuracy is one of the necessary re-

quirements to achieve an accurate approximation. HiFi has a spectral representation

within each element, which means it can use an arbitrarily high polynomial degree.

It can also have an arbitrary number of elements like linear finite element. Both the

number of elements and spectral polynomial degree are used to achieve the desired

spatial accuracy in HiFi.
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3.1.3 Nonlinear Time Advance:

Another important aspect of the PDE approximation in the finite element method is

its temporal accuracy. For a time dependent solution to be accurate, it must also have

a sufficiently accurate time advance scheme. This becomes especially true when the

system of equations is highly nonlinear. HiFi uses a second order nonlinear implicit

Θ method to advance solutions in time (when θ = 0.5 it is also known as the Crank-

Nicholson method). The implicit time advance allows dynamically relevant time-steps

rather than CFL imposed time-step limits. This is of great importance when dealing

with systems of equations like MHD, that can have disparate spatial and temporal

scales.

3.1.4 Scalable, Portable, and Extensible:

The state of the art computing resources use massively parallel architectures, and

have a fairly short life cycle (3-5 years). This means the algorithms employed must

take advantage of the large number of processors, and be able to keep up with the

upgrade cycle of the computational resources. It is also desirable to have portability

across a diverse range of machine architectures. HiFi uses the portable, extensible,

toolkit for scientific computation (PETSc)[28, 29] libraries. These libraries include a

large number efficient parallel linear and nonlinear solvers, as well as preconditioners,

diagnostics, and a data structure framework for simple use of their libraries. They are

available on many different systems, and employ state of the art linear algebra tech-

niques, with a simple means of switching to different types of solvers, preconditioners,

etc. HiFi uses these libraries to avoid “reinventing the wheel” while taking advantage

of the latest mathematical solver techniques.

3.1.5 Simple PDE, Initial and Boundary Condition Specification:

A simple and straightforward means of specifying the governing equations, initial and

boundary conditions allows a user to focus on the physics, rather than the numerics.

This makes for a more efficient use of time spent formulating a model and time spent
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using computational resources. HiFi uses the flux-source equation form, which allows

simple specification of a large class of PDEs. Hundreds of different equation systems

are possible, and small changes to previously formulated equation systems are trivial

to make. This allows the user great flexibility in formulating a model for a physical

system of interest. Initial and boundary conditions are equally simple to formulate,

and follow the same flux-source framework. Additionally, the physics equation specifi-

cation has been modularized and separated from the main solver library. This enables

a user to focus on the physics without having to deal with the “guts” of the code.

3.2 Major Contributions

The major contributions made are described below. A brief motivation for each is de-

scribed as well as some of the details of the development.

3.2.1 A priori Error Estimation

An important aspect of numerical simulations is the ability to quantify if a mesh is

of acceptable quality and whether or not it needs refinement. Large deformations

in a mesh can yield unacceptable errors in a simulation solution, and need careful

consideration. An a priori mesh quality metric analysis is used to quantify the quality

of a mesh. If the metrics detect unacceptable levels of distortion, the mesh can be

refined before any simulation is performed in order to improve solution accuracy, and

reduce wasted CPU usage on inaccurate simulations. The description of the mesh

quality analysis is described in Chapter 6. A more practical application of the mesh

quality analysis is described in Chapter 9.

3.2.2 Complex Geometries with Multi-Block Formulation:

In the magnetic confinement fusion community, many plasma experiments do not have

trivial geometries. They can be non-axisymmetric, non-simply connected, and often

have features that cannot be modeled as simple geometric structures (i.e. cylinder,

cube, torus, etc.). To accurately model complex geometric systems, the computational
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domain must be sufficiently complex to capture the intended geometry. A multi-block

framework has been developed such that more complex geometries can be modeled.

HiFi performs its calculations on unit logical cubes (blocks) and applies a logical-to-

physical coordinate transformation in order to achieve domain shapes of interest. The

computational domain geometry is specified by the user, either by external mesh file

or manual geometric specification of the blocks. Each block must logically be a cube

with a structured mesh, but the code allows for unstructured block connections. This

multi-block development further increases the geometric flexibilities, and allows for

more accurate representations of the modeled physical system. Section 7.1 describes

the development of this multi-block framework.

In addition to development of the multi-block framework, application of the code

improvements are included. Z-pinch simulations taking advantage of multi-block ge-

ometries are discussed in Chapter 8. Additionally a simulation with the HIT-SI [30,

31, 32, 33] geometry is discussed in Chapter 10.

3.2.3 Advanced Mesh Generation and CAD interface

With complex geometries comes complex mesh generation needs. Specifying the logical-

to-physical coordinate transformation of a computational domain can be a tedious ex-

ercise, and sometimes practically unfeasible. It is therefore desirable to have a CAD

interface for specifying the computational domain geometry. Coupled with the multi-

block formulation is a CAD interface and advanced mesh generation abilities. It is

important to be able to create high quality meshes of complex geometries and the CU-

BIT [2] mesh generator is employed to do this. CUBIT is an external mesh generator

where a user can create a high quality mesh and export for use in HiFi simulations.

Additionally, CUBIT has CAD file importing features, as well as its own minimal CAD

interface, and is used as a CAD interface and mesh generator. It fits well into the

multi-block framework and additionally a user can specify the boundary condition type

graphically, greatly reducing the workload of a comparable manual specification. Sec-

tion 7.3 describes the mesh generator interface.
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Chapter 4

OVERVIEW OF THE HIFI HIGH-ORDER FINITE (SPECTRAL)
ELEMENT MODELING CODE
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The HiFi code was originally formulated by Glasser and Tang [3] at Los Alamos Na-

tional Laboratory in 2002 as the two-dimensional SEL code. It was further developed

by Glasser and Lukin [34] from 2003 to 2007. It was then brought to the University

of Washington’s PSI-Center [1], where Glasser, Lowrie, Lukin, and Shumlak [4] devel-

oped the three-dimensional version and called it HiFi. The development as of 2011 is

continuing jointly at the University of Washington and the Naval Research Laboratory

in Washington, DC.

An overview of the features of HiFi are described below. Specifically its partial

differential equation (PDE) formulation, its means of spatial discretization: the high-

order finite (spectral) element method, its implicit time advance scheme, as well as its

boundary and initial condition formulation are described below.

4.1 Partial Differential Equation (PDE) Formulation - Flux-Source Form

The HiFi code uses the flux-source formulation, such that varying the PDEs is a simple

task. This enables modeling of various PDE systems while using the same main solver

formulation. The flux-source equation form is a generic equation class and has the

form
∂ ~Q

∂t
+∇ · ~F = ~S, (4.1)

where ~Q is a vector of primary variables, and ~F and ~S are vectors of fluxes and sources

associated with each of the primary variables. The fluxes and sources can be functions

of time, space, the primary variables themselves, and the spatial derivatives of the

primary variables,

~F = ~F (t, ~x, ~Q,∇ ~Q), (4.2)

~S = ~S(t, ~x, ~Q,∇ ~Q). (4.3)

This formulation allows for a wide range of applicable equation sets that is free form

for the user to decide how to implement. This is useful for instance in testing different

equation sets with the same solver, or simply making small modifications to an existing
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Figure 4.1: A one-dimensional representation of two adjacent spectral elements us-
ing the Jacobi polynomial basis functions Λi along with the linear functions used
in the HiFi code spectral element spatial discretization. The domain range is x ∈
[x0 + nδx, x0 + (n+ 1)δx]. Each element has Jacobi polynomials ranging from 1st order
up to 8th order (np = 8) with the linear functions providing the C0 continuity between
elements.[34].

equation set.

4.2 High-Order Finite (Spectral) Element Spatial Discretization

The method of spatial discretization of the PDEs in HiFi is a high-order finite (spectral)

element method. Each element makes up a piecewise continuous solution of the whole

solution domain. The elements are C0 continuous across elements, which means conti-

nuity of the PDE functions is enforced between elements, but does not enforce continu-

ous first or second derivatives. Within each element there is a spectral representation

using basis functions of arbitrary polynomial degree. HiFi uses the Jacobi polynomials

[35] as the basis functions for its spectral representation within elements, and linear

functions to provide the C0 continuity between elements. Figure 4.1 shows a one-

dimensional picture of two adjacent elements. Notice the high-order basis functions go

to zero at the element boundaries, while the linear basis functions are non-zero, and

thus provide the continuity between elements.
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4.2.1 Logical to Physical Grid Transformation

In order to allow the user to specify a physical domain shape of interest, a logical-

to-physical transformation is used in the HiFi code. This transformation allows the

code to make calculations on a logical cube, while the user can specify their equations,

initial and boundary conditions on a physical domain of their choice. In 2D the logical

coordinates are defined as

(ξ, η) ∈ Ωe : [0, 1]× [0, 1]. (4.4)

The logical dimensions are transformed to some physical coordinates x and y of arbi-

trary range, such that x = x(ξ, η) and y = y(ξ, η).

To demonstrate how the transformation fits into the solver consider Poisson’s equa-

tion

∇2φ(x, y) = S(x, y), (4.5)

where φ(x, y) is some scalar variable and S(x, y) is some source forcing function. For

this equation to fit into the flux-source form, it is rewritten as

�
�
�7

0
∂φ

∂t
+∇ · ~F (x, y) = S(x, y), (4.6)

where ~F (x, y) = ∇φ(x, y). The equation is rewritten in terms of the logical coordinates

ξ and η, and multiplied by the Jacobian J . This multiplication by the Jacobian is

important, because J can potentially become singular for certain grid distortions. In

logical metric space, the equation is written as

∂

∂ξ

[
(∇φ · ∇x)J

∂ξ

∂x
+ (∇φ · ∇y)J

∂ξ

∂y

]
+
∂

∂η

[
(∇φ · ∇x)J

∂η

∂x
+ (∇φ · ∇y)J

∂η

∂y

]
= JS, (4.7)

where

J =

∣∣∣∣∣∣
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣∣ =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
. (4.8)
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4.2.2 Weak Form of Equations

In the solver, PDEs are transformed into the weak form by projecting the solution onto

a polynomial basis. With the Galerkin discretization, the 2D Equation 4.7 in weak

form becomes

∫
Ωe

[
Fx

(
∂ξ

∂x

∂αi

∂ξ
+
∂η

∂x

∂αi

∂η

)
+ Fy

(
∂ξ

∂y

∂αi

∂ξ
+
∂η

∂y

∂αi

∂η

)
+ boundary− Sαi

]
Jdξdη = 0

(4.9)

where αi(ξ, η) is a 2D basis (trial) function polynomial defined in the domain Ωe, and

Fx =
∂φ

∂x
and Fy =

∂φ

∂y
. (4.10)

The weak form equation is solved for every element in the domain. Notice the fluxes

Fx and Fy are multiplied by derivatives of the logical coordinates with respect to the

physical coordinates, and the whole equation is integrated in the logical metric space.

The derivatives of the basis functions (∂α
i

∂ξ and ∂αi

∂η ) are known exactly, assuming

the basis functions chosen have analytical derivatives. The derivatives ∂ξ
∂x , ∂ξ∂y , ∂η∂x , and

∂η
∂y must also be known in order to integrate the equation and solve for φ(x, y). These

derivatives can be represented in terms of the Jacobian and derivatives of the physical

coordinates with respect to the logical coordinates.

∂ξ

∂x
=

1

J

∂y

∂η

∂ξ

∂y
= − 1

J

∂x

∂η

∂η

∂x
= − 1

J

∂y

∂ξ

∂η

∂y
=

1

J

∂x

∂ξ
, (4.11)

where the Jacobian J is given by equation 4.8

4.3 Implicit Temporal Advance

A Newton-Krylov iterative method is used to advance the system of PDEs in time.

After Equation 4.1 is cast in the weak form (as done for Poisson’s equation in Section
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4.2.2), it can be rewritten as a matrix-vector equation

Mq̇ = r(t,q) (4.12)

where M is a matrix representing the equation, q is a vector of the primary variables,

and r is called the right hand side. Two well known algorithms for temporal advance

are available in HiFi: the Θ scheme, and the second order backward differencing for-

mulation (BDF2).

4.3.1 Θ Scheme

Equation 4.12 is temporal discretized as:

M
(

qn+1 − qn

∆t

)
= θr(tn+1,qn+1) + (1− θ)r(tn,qn), (4.13)

where θ is the method’s time-centering parameter, and n is the time-step number. The

Θ scheme is a second order accurate, non-dissipative method when θ = 0.5, and also

known as the Crank-Nicholson method. Throughout the work in this dissertation θ =

0.5 is used.

Using equation 4.13, the goal is now to solve for qn+1. This is done by using a

Newton-Krylov method. This method uses a combination of a nonlinear Newton it-

eration, along with a linear Krylov subspace method within each Newton iteration.

Equation 4.13 is recast as

R(qn+1
i ) ≡M(qn+1

i − qn)−∆t[θr(tn+1,qn+1) + (1− θ)r(tn,qn)], (4.14)

where i is the nonlinear iteration count, and R is called the residual. The goal of the

Newton iteration is to drive R→ 0 by successive linear Krylov iterations. Each Krylov

iteration involves solving a large matrix-vector equation that takes most of the HiFi

algorithm’s computing time.

Both the nonlinear and linear solvers are performed in the PETSc framework. The

scalable nonlinear equation solvers (SNES) as well as the scalable linear equation
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solvers (KSP)[28, 29] are employed to handle the overhead in HiFi. Not only does

PETSc manage much of the parallelization of the algorithms, it also allows for sim-

ple switching of linear or nonlinear solvers. For instance from run-time command line

flags, the linear solver can be switched from the iterative GMRES method to the Su-

perLU direct solver method. Many more solvers are available through PETSc, and

using their framework makes it simple switch to different types.

4.4 Boundary Condition Formulation

The boundary conditions (BC) in HiFi are formulated in the same flux-source form as

the governing equations. This means any equation that can fit in the general flux-

source form can be imposed. Additionally the fluxes and sources can be functions of

the second spatial derivative of the primary variables and of an outward unit normal

vector,

~S = ~S(t, n̂, ~x, ~Q,∇~x ~Q,∇~x~x ~Q). (4.15)

This allows for a flexible BC specification, but also some special predetermined bound-

ary conditions are included. A flux BC where the normal flux through a boundary can

be specified, a “natural” BC where the interior PDEs determine the boundary flux, and

“zeroflux” where the flux through a boundary is set to zero. Another special case is an

integral BC, where a restriction on the integral of the solution along some face or edge

is imposed. This allows for global coupling of the solution along this boundary. An ex-

ample of an integral BC is the “polar” axis where a face is collapsed to a edge to allow a

cylindrical domain from a logical cube. Additionally periodic boundary conditions are

also included as a special case.

4.5 Initial Condition Formulation

The initial conditions in HiFi are specified either analytically or from a previous HiFi

computation. An analytic specification is written with respect to the spatial coordi-

nates

~Qi = ~Qi(~x). (4.16)
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where ~Qi is the initial condition for all equation system variables. The finite element

spatial representation is projected onto basis functions, and the coefficients of the func-

tions are computed and evolved in the code. The initial condition specified ~Qi must be

converted into the finite element space. To solve for the basis function coefficients, a

linear system is solved prior to the time advance of the solution. A linear system is

solved on each element for ~Qα,

A ~Qα = ~Qi (4.17)

where ~Qα are the basis function coefficients, and A is a matrix representing the partic-

ular basis functions.
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Chapter 5

VERIFICATION OF THE HIFI CODE
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In order to test the 3D HiFi code’s functionality, both a linear and nonlinear MHD

problem are chosen. A viscous, hyper-resistive MHD with isotropic heat conduction

module written in 3D Cartesian coordinates provides the basis for performing the tests.

The equations are written in flux-source form as

∂

∂t



ρ

ρ~v

~A

1
γ−1p

0


+∇ ·



ρ~v

ρ~v~v + p~I − µ∇~v

−ν∇~j
γ
γ−1p~v − κ∇T

(∇ · ~A)~I −∇ ~A


=



0

~j × ~B

~v × ~B − η~j

(~v · ∇p+ η~j ·~j + µ(∇~v : ∇~v)

~j


, (5.1)

where ρ is mass density, ~v is fluid velocity, ~A is magnetic vector potential, p is pressure,

and γ is the ratio of specific heats. The symbol : is the tensor double dot product

operator defined as

∇~v : ∇~v =

3∑
i=1

3∑
j=1

∇vij∇vji, (5.2)

resulting in a scalar value. The dissipative parameters µ, η, ν, and κ are viscosity, resis-

tivity, hyper-resistivity, and isotropic heat conduction respectively. These parameters

represent the inverse of the dimensionless parameters such as the Reynolds number

µ = 1/Re (See Appendix C for more details). The hyper-resistive parameter ν multi-

plies a fourth order term providing high-order dissipation. This is useful for damping

high-frequency noise in the current ~j and providing numerical stability. Additionally

the magnetic field intensity ~B = ∇ × ~A, current density ~j = ∇ ×∇ × ~A and tempera-

ture T = p/ρ are defined. The linear test problem investigates MHD wave propagation,

while the nonlinear test problem investigates the dynamics of a spheromak tilt insta-

bility using the system of equations in 5.1. These are described below.

5.1 Dissipative MHD Wave Speeds and Decay Rates

Dissipative MHD wave propagation is tested in HiFi by initializing both the slow and

fast magnetosonic waves in a doubly periodic box, and measuring the wave speed, as
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well as the wave decay over some time. This is done by computing the complex eigen-

system of a linearization of the dissipative MHD equations defined in Equation 5.1 and

using the resulting eigenvectors to construct a perturbation. Each of the eigenvectors

found from the linearized system of equations represent one of the waves (e.g. slow

magnetosonic, fast magnetosonic, or shear Alfvén) present in the system. This enables

“pure” waves to be perturbed, and when in the linear regime no other wave modes are

present. The system of equations is linearized using the form

u(~x, t) = u0 + δu1(~x, t), (5.3)

with u1 assumed in the form

u1(~x, t) ≡ e−i(~k·~x−ωt), (5.4)

and δ is the magnitude of the perturbed quantity. Using this form of the perturbation

and assuming all background quantities u0 are constant or zero allows for sufficient

linearization of the system of equations. Additionally the background magnetic field is

assumed to be constant and aligned in one direction (in this case the x̂ direction). The

eigensystem is then found from the linearized system of equations. The full details of

this linearization and eigensystem solve can be found in Appendix B.1. The assumed

form of the perturbation from Equation B.5 can be rewritten in terms of sines and

cosines and then applied to each of the system of equation’s primary variables.

~u(~x) = ~u0 + δ̂
[
Re(~R)cos(~k · ~x)− Im(~R)sin(~k · ~x)

]
, (5.5)

where ~u are the primary variables, ~u0 are the background quantities, δ̂ is the magni-

tude of the perturbation, ~k is the wave number, and ~R are the complex eigenvectors of

the system. The real and imaginary parts of the eigenvectors Re(~R) and Im(~R) result

from solving the linearized system of equations and are chosen for one of the particular

characteristics in the system. Figure 5.1 is an example of magnitudes of vy when one of

the “pure” waves are initialized in a doubly periodic box. Other variables have similar

forms, which are determined by their associated eigenvector magnitudes. In this case
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Figure 5.1: Pseudocolor plot of vy magnitudes in a doubly periodic box (x − y plane)
with lx = ly = 1/

√
2, kx = ky = 2π

√
2, and δ̂ = 1× 10−3.
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Table 5.1: Dissipative MHD wave percent error in decay rate after t = 10T for three
different dissipation parameter configurations. A grid resolution of nx = 4, ny = 4,
and nz = 1 with a polynomial degree of np = 5 is used in all cases, and a time step
∆t = ωRe/100.

µ η κ ωRe ωIm Analytic Numeric % Error
Fast 0.00e-0 0.00e-0 0.00e-0 19.08 0.00e+0 1.00e+0 9.954e-1 4.624e-1
Slow 0.00e-0 0.00e-0 0.00e-0 7.556 0.00e+0 1.00e+0 9.998e-1 2.020e-2
Fast 0.00e-0 1.00e-2 0.00e-0 19.06 -2.58e-1 4.27e-1 4.265e-1 4.582e-2
Slow 0.00e-0 1.00e-2 0.00e-0 7.544 -5.31e-1 1.20e-2 1.204e-2 5.203e-1
Fast 1.00e-2 1.00e-2 1.00e-2 19.06 -1.19e+0 1.97e-2 1.981e-2 4.213e-1
Slow 1.00e-2 1.00e-2 1.00e-2 7.551 -1.39e+0 1.00e-5 1.000e-5 2.926e+0

the dimensions are lx = ly = 1/
√

2 with a wavenumber kx = ky = 2π
√

2, which leads to

a 45o propagation of the wave across the x− y plane.

When changing the domain size, wave number ~k, or the magnitude of the dissi-

pative parameters (µ, η, ν, and κ), the resulting eigensystem will change. Hyper-

resistivity is excluded from this study since the solutions are smooth and are numeri-

cally stable. For the domain size and wave propagation shown in Figure 5.1, the slow

and fast magnetosonic waves are studied with varying dissipative parameters. For

several cases, it is shown that the correct wave speed and the correct wave decay rates

are calculated numerically in HiFi. Table 5.1 summarizes some of the results. The ta-

ble shows the percent error in decay rate when compared to the analytically expected

value, for both the slow and fast magnetosonic waves with three different dissipation

parameter configurations. The first case is for ideal MHD with all the dissipation pa-

rameters set to zero. In the ideal case, the eigensystem is all real, and analytically

there should be no wave decay. There is some numerical dissipation, and thus the

percent error is not zero for the ideal MHD case. The second case has only nonzero

resistivity, and the last has nonzero viscosity, resistivity, and heat conduction. For all

cases a resolution of nx = 4, ny = 4, and nz = 1 with a polynomial degree of np = 5 is

used.

The comparison made between the expected analytical values of decay and the com-
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Figure 5.2: One-dimensional slice of vy at t = 0 and after 2,4,6, and 10 wave periods.
This case has η = 1× 10−2 and all other dissipative parameters equal to zero.

puted numerical results were made by using the using the equation for amplitude

δanalytic = e
−(t

ωIm
ωRe

kxlx) (5.6)

where ωRe and ωIm are the real and imaginary eigenvalues.

With dissipation, the eigensystem becomes complex, having both complex eigenval-

ues and eigenvectors. This means that the wave speeds are modified by the dissipative

parameters. To demonstrate that the correct wave speeds are found, a slice of the so-

lution is plotted in time. Figure 5.2 shows the initial wave form at t = 0T and after

2,4,6, and 10 periods for the slow magnetosonic wave with resistivity η = 1× 10−2 and

other dissipative parameters equal to zero. It can be seen that the wave periods match

as they have the same positions after whole periods. The wave decay can be seen with

the different lines representing the solution after some number of periods. The peak

amplitude values correspond to what is found in Table 5.1
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5.2 Dynamics of a Nonlinear Spheromak Tilt Instability

The dynamics of a spheromak tilt instability is chosen due to its nonlinear nature. By

studying the tilt mode instability it can verify the nonlinear aspects of the equation

module and HiFi solver are working properly. The same dissipative MHD equation

system (Equation 5.1) are used, with a spheromak initial condition.

5.2.1 Spheromak Initial Conditions

The spheromak initial condition in a cylindrical flux conserver for magnetic field in-

tensity is the solution to a Bessel function, which in cylindrical coordinates looks like

Br = − π
lz
J1(αr)cos(πz/lz),

Bφ = −λJ1(αr)sin(πz/lz),

Bz = αJ0(αr)sin(πz/lz), (5.7)

where J0 and J1 are the Bessel functions, and λ is an eigenvalue for a particular Taylor

state. In this case λ =
√
α2 + (π/lz)2, and α = 3.8317. Additionally the initial density

and pressure are constant, ρvx and ρvy are zero, and ρvz has a perturbation of the form

ρvz = δrcos(φ)sin(πz/lz) (5.8)

where δ is the magnitude of the perturbation. This perturbation gives the initial

spheromak an upward velocity parallel to the cylinder axis on one side, and a down-

ward velocity on the other side. This velocity perturbation profile initiates the growth

of the tilt mode instability.

Since the system of equations is written using a vector potential formulation, and

the initial Taylor state Bessel function solution is in terms of magnetic field intensity,

the spheromak initial condition in terms of vector potential first had to be solved. This

is done by solving

∇× ~B = λ~B (5.9)
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with ~B = ∇× ~A. A Coulomb gauge ∇· ~A = 0 is chosen and the equation is simplified to

∇2 ~A = −λ~B (5.10)

where ~B is known from Equation 5.7. Equation 5.10 is solved for the initial vector

potential ~A conditions.

5.2.2 Spheromak Boundary Conditions

The velocity boundary conditions are chosen such that velocity has perfect slip along

the flux conserver walls. Zero normal velocity and zero normal gradient of the tangen-

tial velocity are

vn̂ = 0

∇n̂vt = 0. (5.11)

Perfect conductor boundary conditions are applied to the vector potential, and thus

the vector potential must be divergence free, and the tangential component of vector

potential must be static in time:

∇ · ~A = 0,

∂At
∂t

= −Et = 0, (5.12)

where Et is the tangential component of electric field. Additionally mass density and

current density have “natural” boundary conditions, where the flux at the boundary

is determined by the interior equations, rather than explicitly specifying a separate

boundary equation. Temperature has a zero normal gradient ∇n̂T = 0.

5.2.3 Spheromak Relaxing to Taylor State Lambda

A first check for the nonlinear spheromak tilt mode dynamics is a qualitative check.

When plotting the ~B field over time, it can be seen that the spheromak rotates from
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its initial condition to a configuration rotated approximately 90o counterclockwise (di-

rection is determined by the perturbation) and remains stable in this position. Figure

5.3 shows snapshots of the tilt mode evolution. This is the expected behavior, since the

Taylor minimum energy state predicts this configuration.

Another simple check for the spheromak tilt mode is tracking the kinetic energy.

Figure 5.4 plots the kinetic energy over time for various values of hyper-resistivity.

In the beginning of the trace, a small increase in kinetic energy can be seen due to

the perturbation. This small amount of kinetic energy is about 1000 times smaller in

magnitude then the initial magnetic energy, but is enough to initiate the growth of the

instability. It can be seen that the kinetic energy quickly increases to a peak much

larger than the perturbation magnitude, then falls at a similar rate as the increase,

and finally settles to a near zero kinetic energy.

Similarly a plot of the magnetic energy is shown in Figure 5.5 for different hyper-

resistivity values, although here the magnetic energy decays throughout the whole

tilt mode dynamics. Since magnetic energy is converted to kinetic energy during the

growth of this instability it makes sense it’s decaying throughout the time. Higher

values of hyper-resistivity also increase the rate of magnetic energy decay, and this

can be seen in this plot.

A more quantitative analysis is also performed to show the correct Taylor minimum

energy state is achieved with the spheromak tilt mode simulation. The ratio of mag-

netic energy to magnetic helicity λ, is tracked throughout the instability. This ratio is

defined by

< λ >=

∫
~B · ~B dV∫
~A · ~B dV

=
Magnetic Energy
Magnetic Helicity

, (5.13)

where ~B is the magnetic field intensity, and ~A is the magnetic vector potential. The

time trace of this ratio for different hyper-resistivity values is shown in Figure 5.6. It

can be seen that the initial λ =
√
α2 + (π/lz)2 = 4.141 given by the initial condition

described above, and relaxes to the approximate theoretical Taylor state of λtaylor =

3.978. The exception is when ν = 5× 10−5 and the value of λ relaxes more rapidly. This

is most likely due to an excessive amount of dissipation of the magnetic energy.
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(a) t=0 (b) t=20

(c) t=25 (d) t=30

(e) t=50 (f) t=200

Figure 5.3: Spheromak during a nonlinear tilt instability at t = 0, 20, 25, 30, 50 and 200
seconds (units are not normalized). Length to radius ratio is, L/R = 2.0, pressure is
held fixed to zero p = 0, and density is fixed at unity ρ = 1.0. Dissipative parameters
are: µ = 5× 10−2, η = 0, ν = 1× 10−5, and κ = 1× 10−1.
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Figure 5.4: Kinetic energy over time during a spheromak tilt mode, with different
hyper-resistivity values ν = 0.5× 10−5, 1.0× 10−5, 2.5× 10−5,and 5.0× 10−5.
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Figure 5.5: Magnetic energy over time during a spheromak tilt mode, with different
hyper-resistivity values ν = 0.5× 10−5, 1.0× 10−5, 2.5× 10−5,and 5.0× 10−5.
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Figure 5.6: Ratio of magnetic energy to magnetic helicity (λ) integrated over time dur-
ing a spheromak tilt mode, with different hyper-resistivity values ν = 0.5× 10−5, 1.0×
10−5, 2.5×10−5,and5.0×10−5. It can be seen that value of lambda relaxes to the Taylor
state minimum λ = 3.978 (dashed line).
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Chapter 6

A PRIORI MESH QUALITY ERROR ANALYSIS FOR DEFORMED
MESHES



37

6.1 Mesh Deformation Study Introduction

Mesh quality metrics have been used widely to quantify the amount and character of

distortion of computational meshes [36, 37, 38]. Many metrics do not show a strong

global correlation to solution accuracy, mainly because of the variety of problems that

have to be considered and complexity of correlating them to solution error [37, 38,

39, 40]. Nevertheless, they can be used to find approximate relationships between

mesh quality and solution error or to identify regions of a mesh that need repair. Here,

several different mesh quality metrics are explored with the goal of finding a “universal

metric” that can serve as a guide in predicting solution error magnitudes for different

systems of equations. This capability enables a quantifiable measure of whether or not

a mesh is of acceptable quality for a particular set of equations.

Little work has been performed on quantifying mesh quality for use in high-order

finite element simulations. Most of the research to date has either been with finite vol-

ume methods [41, 42, 43] or linear finite element methods [37, 38, 39, 44, 40], though

more recently quadratic finite elements have also been investigated [45]. In the finite

volume case, a truncation error estimate based on the finite volume spatial discretiza-

tion is commonly used. For the finite element method, the stiffness matrix condition

number has been analyzed [46, 47, 48], where the stiffness matrix is formed by con-

sidering gradients of the linear finite element basis functions. This method naturally

extends to high-order finite elements. More recent work [49] has examined a nodal

spectral stiffness matrix for finite elements. In the research presented here, the spec-

tral element stiffness matrix is calculated and used as one of the mesh quality metrics.

The approach chosen in this work is to study elemental grid deformations that im-

pact the shape of a single high order finite element or the interaction between two

neighboring high order finite elements. In doing so, the effects of such deformations

on the differential operators are isolated. Deformations are chosen that are commonly

encountered when numerically solving partial differential equations (PDEs). In the fol-

lowing sections, the global effects of the individual mesh distortions on solution quality

are explored for known analytic problems by independently varying both the degree of
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the distortions and the order of the finite elements. Several previously published mesh

quality metrics are compared to the measured global solution error generated from

high order finite element spatial discretizations.

In the following analysis, the HiFi/SEL [3, 34, 4] high-order finite element code is

used as described in Chapter 4. The code uses a flux-source formulation, which makes

specifying nearly any particular set of partial differential equations straightforward.

This enables analysis of various PDE systems while using the same formulation and

meshes. HiFi is three-dimensional (3D) and SEL is two-dimensional (2D); their for-

mulation is identical. The first part of the analysis is limited to the 2D code, and

subsequently extended to the 3D code.

Section 6.2 outlines several distortion classifications: stretch, shear and skew. For

each distortion type, a Jacobian is calculated to understand when a particular de-

formed mesh becomes degenerate. A degenerate element is defined as when the Ja-

cobian is less then or equal to zero. A degenerate element is problematic for finding

solutions on a mesh because the Jacobian multiplies the weak form integral (see Equa-

tion 4.9) and creates singularities.

Candidate mesh quality metrics are described in Section 6.3. These metrics are

used to analyze each of the different distortion types. A representative mesh is ana-

lyzed with the different metrics and then compared to solutions of three equation sets

(linear advection, Poisson’s equation, and linearized MHD). These test problems have

known analytic solutions. Section 6.4 outlines the three test problems, and Section 6.5

presents the analysis of the mesh metrics and the test problem solutions. The analysis

is extended to a 3D formulation and described in Section 6.6, and results described in

Section 6.7

6.2 Grid Distortions from a Logical Square

The logical to physical transformation introduces distortions, and often in order to

achieve the desired physical shapes, the distortions can be severe. Mapping the logical

square to a physical circle is an extreme example of this, where “the corners” of the
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(a) Square Mesh (b) Circular Mesh

Figure 6.1: An example 10 × 10 square mesh 6.1(a) and a circular mesh 6.1(b), where
the circular mesh has a square to circle mesh transformation.

circle have large and singular angle distortions. Figure 6.1 shows an example square

mesh distorted into a circular shape. Here, in order to capture most of the basic dis-

tortion types, the distortions are classified into stretch, shear, skew, large angle, and

small edge. This is not intended to be a complete set of distortions but provides a set

of typical elemental grid deformations that are commonly encountered in real meshes.

The goal of this study is to evaluate solution error due to such elemental distortions

of single high order elements (e.g. shear) and interactions between two neighboring

differently distorted high order elements (e.g. skew).

Definitions of these different distortions, the logical to physical mapping, and the

grid Jacobians for each type are shown in the following sections.
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Figure 6.2: A single element with stretch deformation magnitudes of lx and ly. The
dashed line represents the undeformed logical element, and the solid line represents
the deformed element.

6.2.1 Stretch

Stretching is the simplest mapping with

x(ξ, η) = lxξ (6.1)

y(ξ, η) = lyη (6.2)

where lx and ly are the respective stretching factors for the x and y dimensions (see

Figure 6.2). The values of lx and ly do not have to be equal, and situations could arise

where either lx or ly is much larger then the other. The resulting Jacobian is

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= lxly. (6.3)

It can be seen that the element approaches degeneracy as lx or ly approaches 0.
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Figure 6.3: A single element with a shear angle of θ. The dashed line represents the
undeformed logical element, and the solid line represents the deformed element.

6.2.2 Shear

The shear mapping can be defined as

x(ξ, η) = ξ + ηsinθ (6.4)

y(ξ, η) = ηcosθ (6.5)

where θ is the shear angle for the element (see Figure 6.3). The Jacobian is

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= cosθ. (6.6)

In this case when θ → π/2, J → 0 and the grid is considered degenerate. When the

shear angle approaches π/2, the quadrilateral element has both small angles as well

as obtuse angles, which can be problematic.

6.2.3 Skew

Skew involves an interaction between elements and cannot be classified in the same

way as the stretch, and shear transformations. The skew can be seen as two adjacent
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Figure 6.4: Adjacent elements with a skew angle ω.

elements with an angle ω between them (see Figure 6.4). In the case shown in Figure

6.4, the skewed mesh has a rectangular element adjacent to an element with a shear

deformation. Each element has a separate Jacobian defined. The rectangular element

has no deformation and the Jacobian is J = 1. The adjacent element is a sheared

element with a transformation:

x(ξ, η) = ξcosω (6.7)

y(ξ, η) = η + ξsinω, (6.8)

and the Jacobian is,

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= cosω. (6.9)

The important distinguishing feature of the skew case is that an undeformed element

is adjacent to a sheared element, and there is some skew interaction between the two

elements.
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Figure 6.5: A single element with a large angle deformation θ.

6.2.4 Large Angle

The large angle deformation mapping can be defined as

x(ξ, η) = ξ +mxη + bx (6.10)

y(ξ, η) = η +myξ + by (6.11)

where

mx = (1− 2ξ)
φ

2
(6.12)

my = −(1− 2η)
φ

2
(6.13)

bx = −(1− 2ξ)
φ

4
(6.14)

by = (1− 2η)
φ

4
. (6.15)
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Figure 6.6: A single element with a small edge deformation.

The deformation parameter φ is in the range [0, 1], where 0 is no deformation, and 1 is

deformed such that the angle θ in Figure 6.5 is 180◦. The Jacobian is

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1 + φ(ξ − η). (6.16)

In this case when φ = 0, J = 1, which is the undeformed case. When φ = 1 (θ = 180◦),

then J = 1 + ξ − η. This Jacobian does not necessary imply that the element will be

degenerate when the angle has opened up to 180◦.

6.2.5 Small Edge

The small edge deformation mapping is defined as

x(ξ, η) = ξ (6.17)

y(ξ, η) = η +myξ + by (6.18)
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where

my = (1− 2η)φ (6.19)

by = −(1− 2η)
φ

2
. (6.20)

The deformation parameter φ is in the range [0, 1], where 0 is no deformation, and 1

is deformed such that one vertical edge has collapsed to a length of zero (Figure 6.6).

The opposite edge increases its length by the same amount the shrinking edge loses

length. The Jacobian is defined as

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1− φ(2ξ − 1), (6.21)

and it can be seen that when φ = 1, the Jacobian will be zero in the element, and thus

it is degenerate.

6.3 Mesh Quality Metrics

In this study new mesh quality metrics are not defined, but instead previously pub-

lished metrics are explored with the intent of correlating them to solution error in an

a priori fashion. This does not mean that the metrics or the results of this study can

only be used for a priori analysis, but that is the focus of the analysis presented here.

(For instance, the same metrics could also be applied to a posteriori analysis of PDE

solutions.)

A unique aspect of a priori analysis is that the mesh quality metrics themselves de-

pend solely on the mesh geometry and are independent of the equations being solved

and of the solution itself. Here, the correlation between the solution error and the grid

metrics is estimated by using equations that are representative of a physical prob-

lem. The fact that the metrics are independent of the representative equations makes

correlation to solution error a challenge because there are no assumptions about the

physical problem at hand. At the same time, they can potentially be useful because

the analysis can be applied before any numerical simulations are performed.
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Three types of mesh quality metrics are explored. A set of metrics that deals with

element to element interaction based on Kallinderis and Kontzialis [42] is the first type

described in Section 6.3.1. A set of metrics based on an algebraic framework using the

mesh Jacobian from Knupp [39] is explored in Section 6.3.2. The third type is based on

the spectral element stiffness matrix condition number and described in Section 6.3.3.

6.3.1 Kallinderis/Kontzialis Metrics

The mesh metrics described in Kallinderis and Kontzialis [42] are based on analytic

forms of the truncation error for the gradient operator. The error E is defined in terms

of some variable u on the mesh,

E = ∇hu−∇au (6.22)

with the superscript h and a denoting the numerical and analytic gradients, respec-

tively. The error is expanded in a Taylor series and can be grouped into different order

terms. The coefficients for each order are used to calculate the metrics. For instance in

2D the first order terms are defined as

exxy =
1

2S

n∑
e=1

(∆xe,1∆ye,1 + ∆xe,2∆ye,2) ∆ye, (6.23)

exxx =
1

2S2!

n∑
e=1

(
(∆xe,1)2 + (∆xe,2)2

)
∆ye, (6.24)

exyy =
1

2S2!

n∑
e=1

(
(∆ye,1)2 + (∆ye,2)2

)
∆ye, (6.25)

where

(∆xe,k)
j (∆ye,k)

l =
1

Ne,k

Ne,k∑
m=1

(xm|e,k − x0)j (ym|e,k − y0)l , (6.26)

and xm|e,k − x0, ym|e,k − y0 are the coordinates offset from centroid, Ne,k is total num-

ber of nodes associated with a dual vertex averaging, and S represents the area of the

dual mesh. The subscript e represents the edge number and is defined on a dual mesh,

which spans four elements in the structured quadrilateral mesh case. The spanning of
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0 1

23

Figure 6.7: An example Knupp reference quadrilateral.

four elements is the basis for the metric quantifying element to element interactions.

Both first and second order metrics are defined (in 2D) and are normalized using a

length scale of the elements. Equations 6.27 and 6.28 show the first order metrics,

where the error coefficients defined in equations 6.23-6.25 are normalized by a char-

acteristic length scale. The characteristic length scales for a uniform structured mesh

are simply the element edge lengths. The normalized metrics are denoted with a over

bar.

Qx = |ēxxx|+ |ēxyy|+ |ēxxy| (6.27)

Qy = |ēyxx|+ |ēyyy|+ |ēyxy| (6.28)

More details about the the calculation of the metrics are in Kallinderis and Kontzialis

[42].

6.3.2 Knupp Metrics

Knupp’s metrics are defined by an algebraic framework described in [39], and in more

detail in [37]. They are based upon the mesh Jacobian Ak for linear finite elements.

The metric is a local (element wise) metric compared against some reference quadri-

lateral (see Figure 6.7). The indexing k is counterclockwise around the element, and is

modulo three, such that if k = 2, then k + 1 becomes 0, and k + 2 becomes 1 [39]. The
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Jacobian is defined as

Ak =

xk+1 − xk xk+3 − xk
yk+1 − yk yk+3 − yk

 . (6.29)

From this Jacobian Ak, four ‘metric’ tensor matrices are defined

λkij = (ATkAk)ij (6.30)

where the superscript T denotes transpose, and the λkij denotes the ijth element of

kth metric tensor. Additionally, the parameter αk is defined as the determinant of the

Jacobian matrix,

αk = det(Ak) (6.31)

and τk as

τk = (αk + αk+2)/2w (6.32)

where w is the total area of a reference quadrilateral, and the undeformed element

area is used as the reference quadrilateral in the subsequent analysis. From these

four parameters one can define three different mesh quality metrics.

A size metric is defined as:

fsize = min(τk, 1/τk) (6.33)

which compares the element of interest’s area to the area w of a reference quadrilateral

element. This metric has the property of being 1 if and only if the quadrilateral has

the same total area as the reference quadrilateral, and the metric is 0 if and only if the

quadrilateral has a total area of zero [39].

The second metric is a shape metric

fshape =
8∑3

k=0

(
λk11 + λk22

)
/(αk)

(6.34)

which compares the shape of an element to a square reference element. It has the prop-

erties of being 1 if and only if the quadrilateral is a square, and 0 if the quadrilateral
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is degenerate. It also has the property of being scale invariant [39].

The third metric is called the skew metric and is defined as

fskew =
4∑3

k=0

(√
λk11 + λk22

)
/ (αk)

(6.35)

which detects distortions based on angles within the element. It has a rectangular

reference element and has the properties of being 1 if and only if the quadrilateral is a

rectangle, and 0 if and only if the quadrilateral is degenerate. The metric is also scale

invariant and independent of element edge length ratios [39]. The name of the skew

metric should not be confused with the skew deformation as defined in section 6.2.3.

The metric measures angles in an element which could arise from either a shear or

skew deformation.

A unique feature of the Knupp metrics is their range from 1 (undeformed) to 0

(degenerate), which allows for a combined metric by forming their product. The range

of 1 to 0 remains and only the metrics that detect deformation will contribute to the

product. The products of the size and shape metrics, as well as the the size and skew

metrics, are useful because they do not require a choice of which metric to use for

different types of distortions. In the subsequent analysis these products are used as

metrics. The shape and skew metrics are not combined together because they both

account for the skew deformation.

6.3.3 Spectral Stiffness Matrix

The stiffness matrix condition number has previously been used to estimate the qual-

ity of a mesh. Zgainski et al. [48], as well as Tsukerman [47] explore properties of the

finite element stiffness matrix in order to estimate solution accuracy. Zgainski specif-

ically looks at the stiffness matrix condition number, while Tsukerman looks at the

eigenvalues of the stiffness matrix. As noted by Tsukerman, this is also related to the

“maximum angle” condition studied by Babuška and Aziz [44].

Here, the spectral element stiffness matrix is used as a metric. The matrix is de-
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fined globally (for the whole domain) and the eigenvalues then correspond to the prob-

lem area in the mesh. The method for creating the stiffness matrix and calculating its

condition number is described.

Matrix Construction

The 2D gradient operator is defined in terms of the logical coordinates as:

∇ =

 ∂
∂x

∂
∂y

 =

 ∂ξ∂x ∂
∂ξ + ∂η

∂x
∂
∂η

∂ξ
∂y

∂
∂ξ + ∂η

∂y
∂
∂η

 . (6.36)

Using the mesh metrics from equation 4.11, the gradient operator becomes

∇ =

 1
J
∂y
∂η

∂
∂ξ −

1
J
∂y
∂ξ

∂
∂η

− 1
J
∂x
∂η

∂
∂ξ + 1

J
∂x
∂ξ

∂
∂η

 . (6.37)

With the definition of the gradient operator from Equation 6.37, the elements of the

2D stiffness matrix K are,

Kij =

∫
Ω
∇αi(ξ, η) · ∇αj(ξ, η)dxdy =

∫
Ω
∇αi(ξ, η) · ∇αj(ξ, η)Jdξdη, (6.38)

where αi and αj are the 2D basis functions, and the integrand can be expanded as

∇αi(ξ, η) · ∇αj(ξ, η) =

∂ξ

∂x

∂ξ

∂x

∂αi

∂ξ

∂αj

∂ξ
+
∂η

∂x

∂η

∂x

∂αi

∂η

∂αj

∂η
+
∂ξ

∂x

∂η

∂x

∂αi

∂ξ

∂αj

∂η
+
∂η

∂x

∂ξ

∂x

∂αi

∂η

∂αj

∂ξ

+
∂ξ

∂y

∂ξ

∂y

∂αi

∂ξ

∂αj

∂ξ
+
∂η

∂y

∂η

∂y

∂αi

∂η

∂αj

∂η
+
∂η

∂y

∂ξ

∂y

∂αi

∂η

∂αj

∂ξ
+
∂ξ

∂y

∂η

∂y

∂αi

∂ξ

∂αj

∂η
. (6.39)

The integral is numerically approximated using Gaussian quadrature,

Kij =

∫
Ω

[
∇αi(ξ, η) · ∇αj(ξ, η)

]
Jdξdη =

nq∑
k=1

nq∑
l=1

JklWkl

[
∇αi(ξk, ηl) · ∇αj(ξk, ηl)

]
, (6.40)
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where nq is the the number of quadrature points along each dimension, and Wkl is an

array of weights at the quadrature points.

The full stiffness matrix can be constructed within the HiFi/SEL framework since

all the derivatives of the logical variables and derivatives of the basis functions are

known in the code.

Condition Number Calculation

The condition number of a matrix is defined as the ratio of the magnitude of its largest

eigenvalue to its smallest eigenvalue, |emax|/|emin|. In the case of the global stiffness

matrix, there is a null eigenvalue and therefore the smallest nonzero eigenvalue is

used. These eigenvalues are calculated in parallel using the SLEPc (Scalable Library

for Eigenvalue Problem Computations)[50] solver package.

The condition number generally increases with resolution and with increasing spec-

tral polynomial order, and must be normalized. A simple normalization by the total

number of degrees of freedom (nx×ny×np2) is sufficient for meaningful results, where

nx and ny are the number of elements in the x and y directions respectively and np is

the polynomial order of the basis function.

6.4 2D Test Problems

In order to correlate the mesh quality metrics with solution error, three test problems

are chosen. The advection equation is chosen to quantify mesh distortions on the ∇

operator, and Poisson’s equation is chosen for the ∇2 operator. These operators are

some of the most common differential operators to be encountered in PDEs in fluid

and plasma physics, and are therefore chosen to give the best indication of whether

the mesh quality metrics could possibly predict solution error for practical problems of

interest. Linearized MHD is also chosen to quantify solution error due to mesh distor-

tions for a more complex system of equations. All three test problems have simple an-

alytical solutions, and therefore error norms could easily be calculated and compared

to the different mesh quality metrics.
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6.4.1 Meshes for Testing Deformation

Several model meshes (Figure 6.8) are chosen for capturing the effects of different

mesh distortions. Each mesh is intended to capture the effects of one of the grid distor-

tions types described in Section 6.2. The meshes are chosen such that the distortion is

repeated over the whole domain in a tiled or tessellated pattern. This allows the solu-

tion error due to each particular distortion to be studied separately, while the solution

is evenly impacted by the distortion. It also allows for an arbitrarily large mesh at any

resolution without impacting the distortion shape, and thus the interesting solution

can be isolated from any solution boundary effects.

In order to eliminate boundary effects for both the advection equation and the lin-

earized MHD equations, a doubly periodic domain is chosen. Additionally, in the ad-

vection case, the density advected is near zero at the boundary using a Gaussian con-

centration in the domain centroid. Likewise, in the case of the Poisson equation, the

source is centered in the domain and falls off to a near zero value at the boundary.

Dirichlet boundary conditions are used to solve the Poisson equation.

6.4.2 Advection Equation

A 2D advection equation is solved:

∂φ

∂t
+∇ · (~cφ) = 0 (6.41)

where φ is the Gaussian “density concentration” scalar, and ~c = [cx, cy] is the advection

“wave” speed vector. The solution is the same Gaussian shape translated across the

domain at speed and direction ~c.

The Gaussian density concentration is translated the same total distance for each

mesh size. Additionally the time step is chosen to be small enough such that the

temporal accuracy has a negligible effect when compared to the spatial accuracy. In

the cases presented here a time step ∆t = 10−5 with 1000 steps and c = 1 is chosen

such that the Gaussian is translated a distance x = 0.01 in nominal domain size of
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(a) Stretch Deformation (b) Skew Deformation

(c) Large Angle Deformation (d) Small Edge Deformation

(e) Shear Deformation

Figure 6.8: Sample meshes for testing different distortion types. Grid resolution is
nx = ny = 8 with np = 3. The solid lines represent the element boundaries and the
dashed lines represent the interior distribution within the elements.
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1.0 by 1.0. The choice of the direction ~c depended on the mesh type. For all the test

meshes the propagation is chosen to be in the x-direction, except for the sheared mesh,

which is chosen in the y-direction. These propagation directions are chosen such that

the deformation is “experienced” by the Gaussian. For the sheared mesh case the y-

direction is chosen based on how the shear deformation is applied. In the stretched

mesh case either direction is acceptable.

6.4.3 Poisson’s Equation

A 2D Poisson’s equation is solved:

∇2φ = S (6.42)

where φ is a scalar field, and S is a source forcing function. In this case S is chosen

such that the solution is a Gaussian:

S = −4A
[
((x− x0)2 + (y − y0)2)/r4

c

]
e−((x−x0)2+(y−y0)2)/r2c (6.43)

where A is the amplitude of the Gaussian, x0 and y0 are the center coordinates, and rc

characterizes the width of the Gaussian. The source is initialized in the center (cen-

troid) of the mesh, such that the resulting solution is a Gaussian also at the centroid.

6.4.4 Linearized MHD Equations

A linearized MHD system of equations is solved:

ρ
∂v
∂t

= j×B−∇p, j = ∇× b

∂b
∂t

= ∇× (v×B), ∇ · b = 0

∂p

∂t
+ γP∇ · v = 0, (6.44)

where B ≡ Bn̂, b is the magnetic field perturbation, and p is the total pressure. The

form of a linear perturbation is: v(x, t) = v0exp[i(k · x − ωt)]. The eigensystem of

these equations is solved and used to initialize the simulation for a particular MHD
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Figure 6.9: Example linearized MHD initialization in a doubly periodic domain with a
stretch deformation.

wave. Using this technique a pure wave is initialized with a known frequency and

amplitude. In this study the slow magnetosonic wave is initialized and propagated in

a doubly periodic domain at a 45 degree angle with respect to a uniform magnetic field

aligned in the x̂-direction. The solution is known because it is simply the translation

of this wave in the domain propagated in the k̂-direction. Figure 6.9 shows an example

wave in a mesh with a stretch deformation.
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(c) Linearized MHD Equations

Figure 6.10: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c)
L2 norm versus grid resolution for varying degrees of stretch and for both np = 2 and
np = 4.
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Figure 6.11: Advection equation (a) and Poisson’s equation (b) L2 norm versus grid
resolution for varying shear angles and for both np = 2 and np = 4.
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(c) Linearized MHD Equations

Figure 6.12: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c) L2

norm versus grid resolution for varying skew angles and for both np = 2 and np = 4.
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(a) Advection Equation

10
2

10
3

10
−10

10
−8

10
−6

 Grid Resolution 

 L
2
 N

o
rm

 

 

 

 θ =90

 θ =110

 θ =127

 θ =147

 θ =169

 θ =180

np=2

np=4
 LARGE ANGLE DEFORMATION 

(b) Poisson’s Equation

10
1

10
2

10
−8

10
−6

10
−4

10
−2

 Grid Resolution 

 L
2
 N

o
rm

 

 

 

 θ =90

 θ =110

 θ =127

 θ =147

 θ =169

 θ =180
np=2

np=4
 LARGE ANGLE DEFORMATION 

(c) Linearized MHD Equations

Figure 6.13: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c)
L2 norm versus grid resolution for varying deformation degrees (large angle from 90 to
180 degrees) and for both np = 2 and np = 4.
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(c) Linearized MHD Equations

Figure 6.14: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c) L2

norm versus grid resolution for varying deformation degrees (small edge from length
1 to length 0) and for both np = 2 and np = 4.



61

6.5 Results from 2D Analysis

6.5.1 Order Accuracy with Varying Deformations

The three test problems are solved for each of the test meshes (Figures 6.10-6.14)

with varying degree of deformation, varying spatial resolution, as well as for different

polynomial orders of the basis function np of 2 (quadratic) and 4 (quartic). Boundary

effects are minimized by using periodic domains and limiting the solution to near the

domain centroid (advection and Poisson’s equations). Tiling the domain with uniformly

distorted meshes ensures the distortion affects all points of the solution and eliminates

any boundary effects.

A normalized time-step ∆t = 10−5, which is much smaller than the characteristic

time-scales of the test problems, is used to prevent the temporal order of the solver

(second order Crank-Nicholson) impacting the solution accuracy. Additionally, only

smooth solutions are chosen, since C0 finite elements inherently produce numerical

oscillations when attempting to resolve non-smooth solutions.

The resulting solutions are compared to the analytical solution and an L2 error

norm is calculated. The error norm is computed for varying spatial resolution, order

of the basis functions, and degree of grid deformation. Figures 6.10-6.14 show the L2

error norm versus spatial resolution on a logarithmic scale for the different deforma-

tion types solving the advection equation, Poisson’s equation, and the linearized MHD

equations.

Looking at the L2 error norm for each of the cases allows a baseline (no deformation)

result to be compared to the formal accuracy of the method, as well as to determine

how the different grid deformations deviate from the baseline calculation. For each

case it is observed that increasing the level of mesh deformation does not reduce the

order of the spatial accuracy of the method, but it does increase the magnitude of the

error. Notice the lines plotted on a logarithmic scale in Figures 6.10-6.14 are generally

parallel with the slope given by the polynomial order np, demonstrating the order does

not change. The distortions do however scale the solution error L2 error norm by some
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factor d

‖E‖2 = d‖E0‖2 = O(∆xn), (6.45)

where ‖E0‖2 is the L2 error norm of the undistorted mesh. This result is consistent

with theory and demonstrates that the convergence rates for different degrees of defor-

mation preserve the order of spatial discretization, although the total error magnitude

increases with higher degree of mesh deformation.

6.5.2 Solution Error and Mesh Quality Metrics

The mesh quality metrics depend solely on the mesh geometry and know nothing about

the equations being solved or the solution. Here a correlation between the metrics and

the solution error is investigated. The desired outcome is the determination of a metric

that can be used as the indicator of a potential solution error, or at least to identify

areas of the mesh that need improvement.

The error metrics defined in sections 6.3.1 and 6.3.2, as well as stiffness matrix

condition number defined in section 6.3.3 are plotted along with the solution error

norms calculated for test problems in Figures 6.15-6.19. The metrics as well as the

inverse of the L2 norm are normalized such that 1 is the undeformed case, and 0 is

the degenerate case. Knupp’s metrics are defined on the scale from 0 to 1, and thus

do not require normalization. Taking advantage of this characteristic, the products of

Knupp metrics is also plotted. Figures 6.15(a)-(b), 6.16(a)-(b), 6.17(a)-(b), 6.18(a)- (b),

and 6.19(a)-(b) are for the advection equation and Poisson’s equation on the stretched,

sheared, skewed, large angle, and small edge meshes respectively, and figures 6.15(c),

6.17(c), 6.18(c) and 6.19(c) are for the linearized MHD equations. Each of these cases

has a fixed resolution of 256× 256 with np = 4. For each of the mesh types and for the

three test problems it can be seen that the error norms follow the same trend as some

of the error metrics.

In order to quantify the correlation between the solution error norms and the mesh

deformation metrics, a χ2 goodness of fit test statistic is calculated for the error norms

compared to the expected mesh metric value. In this case the solution norm is the
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(c) Linearized MHD Equations

Figure 6.15: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c)
inverse error norms and mesh quality metrics (Section 6.3) for a stretch deformation.
Error norms and metrics are normalized (if necessary) to range from 1 to 0, where 1 is
an undeformed element, and 0 is degenerate element. Both the inverse L2 norm and
the inverse L∞ norm are plotted. Q−1

x and q−1
x are in the 1st and 2nd order inverse

Kallinderis/Kontzialis metrics, fsize, fshape, and fskew are the Knupp metrics. Prod-
ucts of the Knupp metrics are also included. Cond−1 is the inverse stiffness matrix
condition number.
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(a) Advection Equation
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(b) Poisson’s Equation

Figure 6.16: Advection equation (a) and Poisson’s equation (b) inverse error norms and
error metrics for a shear deformation. Error norms and mesh quality metrics (Section
6.3) are normalized (if necessary) to range from 1 to 0, where 1 is an undeformed ele-
ment, and 0 is degenerate element. Both the inverse L2 norm and the inverse L∞ norm
are plotted. Q−1

x and q−1
x are in the 1st and 2nd order inverse Kallinderis/Kontzialis

metrics, fsize, fshape, and fskew are the Knupp metrics. Products of the Knupp metrics
are also included. Cond−1 is the inverse stiffness matrix condition number.

observed quantity and the mesh deformation metric is the expected quantity. The

goodness of fit test statistic is defined as

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
(6.46)

where Oi are the observed solution error norms, and Ei are the expected mesh de-

formation metric values. Table 6.1 has the test statistic values for each of the mesh

metrics and different mesh deformation types for each of the test problems.

The closer the χ2 values are to 0 the higher the probability that the expected value

will be met. It is observed that for all but the skew deformation type the solution error

norm has the highest probability of following the Knupp metric for all test problems.

However, in the skew case the stiffness matrix condition number has the lowest χ2 test

statistic. In order to provide some context, when comparing the metrics to a problem

whose error does not increase with increasing deformation (e.g. metric is constant at
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(a) Advection Equation
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(b) Poisson’s Equation
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(c) Linearized MHD Equations

Figure 6.17: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c)
inverse error norms and mesh quality metrics (Section 6.3) for a skew deformation.
Error norms and metrics are normalized (if necessary) to range from 1 to 0, where 1 is
an undeformed element, and 0 is degenerate element. Both the inverse L2 norm and
the inverse L∞ norm are plotted. Q−1

x and q−1
x are in the 1st and 2nd order inverse

Kallinderis/Kontzialis metrics, fsize, fshape, and fskew are the Knupp metrics. Prod-
ucts of the Knupp metrics are also included. Cond−1 is the inverse stiffness matrix
condition number.
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(a) Advection Equation
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(b) Poisson’s Equation
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(c) Linearized MHD Equations

Figure 6.18: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c)
inverse error norms and mesh quality metrics (Section 6.3) for a large angle deforma-
tion. Error norms and metrics are normalized (if necessary) to range from 1 to 0, where
1 is an undeformed element, and 0 is degenerate element. Both the inverse L2 norm
and the inverse L∞ norm are plotted. Q−1

x and q−1
x are in the 1st and 2nd order inverse

Kallinderis/Kontzialis metrics, fsize, fshape, and fskew are the Knupp metrics. Prod-
ucts of the Knupp metrics are also included. Cond−1 is the inverse stiffness matrix
condition number.
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(a) Advection Equation
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(b) Poisson’s Equation
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(c) Linearized MHD Equations

Figure 6.19: Advection equation (a), Poisson’s equation (b), and Linearized MHD (c) in-
verse error norms and mesh quality metrics (Section 6.3) for a small edge deformation.
Error norms and metrics are normalized (if necessary) to range from 1 to 0, where 1 is
an undeformed element, and 0 is degenerate element. Both the inverse L2 norm and
the inverse L∞ norm are plotted. Q−1

x and q−1
x are in the 1st and 2nd order inverse

Kallinderis/Kontzialis metrics, fsize, fshape, and fskew are the Knupp metrics. Prod-
ucts of the Knupp metrics are also included. Cond−1 is the inverse stiffness matrix
condition number.
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Table 6.1: χ2 goodness of fit test values for Poisson’s equation, the advection equation,
and linearized MHD equation’s L∞ and L2 error norms compared to expected mesh
metrics values, where qx and Qx are the Kallinderis/Kontzialis 2nd and 1st order met-
rics respectively, Knupp is the f = fsize · fskew metric, and Cond No. is the stiffness
matrix condition number.

Poisson Stretch Skew Large Angle Small Edge

qx
L∞ 3.390 · 10−2 3.150 · 10−2 1.810 · 10−2 6.160 · 10−2

L2 2.661 · 10−2 3.161 · 10−2 6.795 · 10−2 4.505 · 10−2

Qx
L∞ 2.417 · 10−1 2.472 · 10−1 9.530 · 10−2 2.674 · 10−1

L2 2.168 · 10−1 2.480 · 10−1 3.618 · 10−2 1.868 · 10−1

Knupp L∞ 4.453 · 10−4 5.990 · 10−2 9.916 · 10−4 8.319 · 10−4

L2 1.395 · 10−3 9.467 · 10−2 2.458 · 10−2 2.165 · 10−2

Cond No. L∞ 1.572 · 10−1 5.875 · 10−4 2.038 · 10−1 2.050 · 10−1

L2 1.217 · 10−1 2.326 · 10−4 9.430 · 10−2 1.035 · 10−1

Advection Stretch Skew Large Angle Small Edge

qx
L∞ 1.550 · 10−2 1.092 · 10−1 9.200 · 10−3 7.000 · 10−2

L2 1.472 · 10−2 4.790 · 10−2 1.182 · 10−1 6.018 · 10−2

Qx
L∞ 1.621 · 10−1 3.224 · 10−1 1.132 · 10−1 2.884 · 10−1

L2 1.524 · 10−1 2.701 · 10−1 1.518 · 10−2 9.253 · 10−2

Knupp L∞ 1.250 · 10−2 2.095 · 10−1 2.700 · 10−3 3.774 · 10−4

L2 1.300 · 10−2 1.359 · 10−1 5.899 · 10−2 1.005 · 10−1

Cond No. L∞ 6.910 · 10−2 7.230 · 10−2 2.354 · 10−1 2.240 · 10−1

L2 6.010 · 10−2 1.087 · 10−2 4.242 · 10−2 1.837 · 10−2

MHD Stretch Skew Large Angle Small Edge

qx
L∞ 1.560 · 10−2 1.289 · 10−1 3.610 · 10−2 8.690 · 10−2

L2 1.632 · 10−2 1.159 · 10−1 1.784 · 10−1 3.762 · 10−2

Qx
L∞ 1.706 · 10−1 3.388 · 10−1 4.530 · 10−2 3.270 · 10−1

L2 1.729 · 10−1 3.283 · 10−1 1.210 · 10−2 1.587 · 10−1

Knupp L∞ 9.200 · 10−3 2.402 · 10−1 8.100 · 10−3 4.300 · 10−3

L2 6.903 · 10−3 2.490 · 10−1 9.704 · 10−2 2.918 · 10−2

Cond No. L∞ 8.030 · 10−2 9.230 · 10−2 1.263 · 10−1 2.831 · 10−1

L2 8.131 · 10−2 7.881 · 10−2 1.182 · 10−2 8.315 · 10−2
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1.0) the χ2 value is approximately 0.5. Thus, relative to χ2 = 0.5, it is reasonable to

assume that the metrics with χ2 < 0.25 provide statistically significant correlation to

solution error.

6.6 Mesh Deformation Analysis Extension to 3D

The mesh deformation work described in Sections 6.2-6.5 is only a 2D analysis. It is

necessary to extend the ability to calculate the different mesh metrics in 3D to be of

practical use in HiFi. The two metrics that provided the best predictive capabilities

in the 2D analysis, the Knupp metric and the stiffness matrix condition number, have

fairly straightforward extensions to 3D. These two metrics are used in a similar 3D

analysis.

The basic deformations of shear, stretch, skew translate easily to 3D meshes and

are used in the analysis. Additionally meshes with a controllable amount of ‘random-

ness’ are also included. These ‘random’ meshes include some amount of all the basic

deformations studied (stretch, shear, skew, and large and small angle). The amount

of deformation is controlled by a parameter that when large enough yields degenerate

elements. This gives meshes that are more complete in terms of the types of distor-

tions encountered, and are more representative of meshes that may be encountered

with complex geometries. Figure 6.20 shows an example mesh with a ‘random’ defor-

mation.

6.6.1 Knupp Mesh Metrics in 3D

The 2D quadrilateral Knupp metrics described in Section 6.3.2, were based on Knupp

[39]. Similarly the paper also describes the same metrics, size, shape, and skew, for

hexahedrons. It is therefore a straightforward extension to include the metric calcula-

tions in 3D.

The three Knupp metrics in 3D are defined as:

fsize = min(τ, 1/τ), (6.47)
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Figure 6.20: Example linearized MHD initialization in a triply periodic domain with a
‘random’ deformation.
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fshape =
24∑7

k=0

(
λk11 + λk22 + λk33

)
/
(
α

2/3
k

) , (6.48)

and

fskew =
8((√

λk11λ
k
22λ

k
33

)
/ (αk)

)2/3
(6.49)

where τ , λ, and α are defined in a similar way as their 2D counterparts. Based on

the 2D analysis, the product of these metrics was the best error indicator, so it makes

sense in 3D to use the same products

fsizefshape, (6.50)

fsizefskew. (6.51)

6.6.2 3D Spectral Stiffness Matrix

Construction of a 3D spectral element stiffness matrix is a straightforward extension of

the 2D formulation. The 2D matrix construction is described in Section 6.3.3. Similarly

a 3D stiffness matrix Kij is defined as:

Kij =

∫
Ω

[
∇αi(ξ, η, φ) · ∇αj(ξ, η, φ)

]
Jdξdηdφ =

nq∑
k=1

nq∑
l=1

nq∑
m=1

JklmWklm

[
∇αi(ξk, ηl, φm) · ∇αj(ξk, ηl, φm)

]
, (6.52)

where nq is the number of quadrature points along each dimension, Jklm is the grid

Jacobian, and Wklm is an array of weights at the quadrature points. Much like in the

2D case, the extreme eigenvalues of this matrix (for condition number calculation) will

be found using the SLEPc [50] libraries.

6.6.3 3D Test Problem

A linearized MHD test problem is used in the 3D analysis. The test problem is analo-

gous to the 2D test problem described in Section 6.4.4. A cube geometry is used with

the vector k propagated along the cube diagonal; 45 degrees from all axes. Similarly,
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Figure 6.21: Linearized MHD L2 norm versus grid resolution for varying degrees of
stretch for np = 4.

a numerical eigensystem is solved and used to initialize the problem. This ensures

a pure MHD wave is initialized and the solution is known as the propagation of this

wave.

6.7 Results from 3D Analysis

The results from the extension of the metric analysis to 3D confirmed that similar

properties exist, and the methodology can be applied in general to 3D meshes. The

same spectral convergence is seen, and increase of total error as the mesh deformations

increase. Additionally ‘random’ meshes are included to demonstrate that the specific

type of deformation is not important, and may resemble more realistic deformations.

Figures 6.21 - 6.23 show the L2 error norm versus grid resolution for stretched, skewed,

and ‘random’ meshes respectively. Figures 6.24 - 6.26 compare the error norms to

various mesh deformation metrics.
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Figure 6.22: Linearized MHD L2 norm versus grid resolution for varying degrees of
skew for np = 4.
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Figure 6.23: Linearized MHD L2 norm versus grid resolution for varying degrees of
randomness for np = 4.
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Figure 6.24: Linearized MHD inverse error norms and mesh quality metrics (Section
6.3) for a stretch deformation. Error norms and metrics are normalized (if necessary)
to range from 1 to 0, where 1 is an undeformed element, and 0 is degenerate element.
The inverse L2 norm, the inverse L∞ norm, and H1 semi-norm are plotted.
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Figure 6.25: Linearized MHD inverse error norms and mesh quality metrics (Section
6.3) for a skew deformation. Error norms and metrics are normalized (if necessary) to
range from 1 to 0, where 1 is an undeformed element, and 0 is degenerate element.
The inverse L2 norm, the inverse L∞ norm, and H1 semi-norm are plotted.
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Figure 6.26: Linearized MHD inverse error norms and mesh quality metrics (Section
6.3) for a random deformation. Error norms and metrics are normalized (if necessary)
to range from 1 to 0, where 1 is an undeformed element, and 0 is degenerate element.
The inverse L2 norm, the inverse L∞ norm, and H1 semi-norm are plotted.
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6.8 Mesh Deformation Conclusions

The results of this study show that for the typical types of elemental mesh distortions

and representative differential operators (namely, those in the advection, Poisson’s,

and linearized MHD equations) the spatial order of the spectral element method is

preserved with varying degrees of mesh distortion. However, the error is also shown

to be a function of overall resolution. By plotting the metrics along with solution error

norms, it is observed that the error trend is similar to that of the mesh metrics. This

gives a good indication of how the metrics can predict solution error. Knowing that the

spatial convergence rates are preserved, an appropriate mesh resolution and spectral

element polynomial order can also be chosen for target solution accuracy. This, in

turn, suggests that locally increasing the resolution in regions of high grid distortion

can improve the overall accuracy of the solution.

The variability of different equation sets and solutions increases the complexity of

evaluating the mesh distortion effects, and one should remain cautious about how the

mesh might influence their particular problem. Nevertheless, it has been shown that

some a priori metrics can provide a good estimate to potential error in the solution

and are a useful tool in mesh creation and analysis. Both the advection and linearized

MHD equations are solved and both are hyperbolic. The linearized MHD is signifi-

cantly more complicated then the advection equation and the results show meaningful

correlations between the solution error and the mesh quality metrics. Despite the dif-

ferences in the equation sets analyzed, the analysis does indicate general applicability.

One must note that the analysis presented here makes a careful attempt to min-

imize boundary effects by keeping the solution near zero at boundaries and/or use of

periodic boundary conditions. The present analysis also uses a regular tiling of the

mesh (with the exception of the ‘random’ mesh) which amounts to approximately ho-

mogenous sized elements. Additionally only smooth isotropic solutions are considered.

When one solves more realistic problems that have boundary effects, more complex

boundary conditions, non-smooth, and anisotropic solutions on more realistic heteroge-

nous meshes – the error predictions are naturally more difficult to quantify. However,
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even under such circumstances, the analysis presented here can lead to a reliable pre-

dictor of the location and magnitude of the highest solution error associated with the

greatest distortion of the computational mesh.

In this study, the spectral stiffness matrix condition number, and the product of

the Knupp metrics provided the most consistent metrics when comparing to the test

problem solution error. Both of these metrics are formulated for finite elements (linear

finite elements in the Knupp case), while the Kallinderis metric is formulated for a

finite volume type approach. The stiffness matrix condition number is a global mea-

sure and is the most computationally intensive metric to calculate. Since the Knupp

and Kallinderis metrics are local (element wise) measures, they are quick to calculate,

which makes them attractive when dealing with large meshes.
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Chapter 7

MULTI-BLOCK DEVELOPMENT AND CAD INTERFACE
INTEGRATION
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7.1 Motivation for Multi-Block Development

The motivation behind multi-block development is to allow for greater geometric flex-

ibility in computational domains, while preserving the structured mesh organization

within each block. A multi-block framework allows for a pseudo-unstructured mesh

that can handle complex geometries, but does not use a completely unstructured mesh,

and therefore does not suffer from some of the problems associated with unstructured

mesh elements.

The original single block HiFi code uses a logical cube as its computational domain,

which means any domains shape that the user specifies must also logically be a cube.

This greatly limits the geometric possibilities, and can result in severe mesh distor-

tions if one tries a logical-to-physical mapping that results in elements that are close

to being degenerate. The multi-block development framework allows for an arbitrary

number of blocks, connected in an unstructured fashion to be used as a single com-

putational domain. Many more geometries are possible, like non-axisymmetric, and

non-simply connected configurations.

7.1.1 Simple Cylindrical Geometry Improved

The multi-block geometries need not be complex in order to be useful. Take for in-

stance a cylindrical geometry: a logical cube must be severely distorted to create a

physical cylinder and degenerate elements result. Two possible configurations for a

single block to a cylinder are the ‘polar axis’ and ‘square-to-circle’ mappings. Figure

7.1 demonstrates these two possibilities. Notice that in both cases degenerate elements

exist. In the ‘polar axis’ case the center axis of the cylinder is one of the faces of the

logical cube collapsed to a line. The hexahedral elements become triangular prisms at

the center, and with increasing azimuthal resolution the angle decrease indefinitely.

In the ‘square-to-circle’ case, the logical corners of the mesh now must be fit to the

circular cross section. This yields elements where a logical 90 degree angle approaches

180 degrees as the circular curvature is resolved.

The cylindrical mesh can be improved by using multiple logical blocks. Using five
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(a) Polar Axis (b) ‘Square-to-Circle’

Figure 7.1: Two cylindrical geometries mapped from a single logical block.

blocks, a configuration where no degenerate elements exist can be created. Figure 7.2

shows an example mesh using a five block configuration. Notice that the mesh has

no degenerate elements, but is no longer a strictly structured mesh. Unstructured

connections exist at the corners of the block in the center of the cylinder. The single

block code would not be able to use this geometry and requires the special treatment

of the multi-block framework.

7.1.2 Complex Non-Axisymmetric and Non-Simply Connected Geometries

Other more complex configurations are desirable, including non-axisymmetric and

non-simply connected geometries. Normally these would require unstructured meshes,

but in the multi-block framework they are possible. For example the non-axisymmetric

case where a cylinder has extrusions spaced out azimuthally. Figure 7.3 shows an ex-

ample mesh with this configuration. This configuration uses 76 blocks. The spacing

between the extrusions is half the width of the extrusions and the large number of
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Figure 7.2: A multi-block cylindrical geometry consisting of five blocks.

blocks is used to keep the element sizes regular in the azimuthal plane. The flexibil-

ity to use an arbitrary number of blocks and have them connected in a unstructured

fashion make this type of mesh possible.

7.2 Multi-Block Collection of Logical Cubes

The multi-block framework uses a collection of logical blocks, which each undergo a

coordinate transformation to some physical shape of interest. Consider the diagram

in Figure 7.4, where a single uniform logical block with coordinates ξ, η and ψ are

transformed into a physical block with coordinates x, y, and z. The shape is no longer

a cube, although, logically it is still a cube and can easily accommodate a structured

mesh.

In the case of a multi-block geometry, there can be an arbitrary number of blocks,

and they can be connected so long as the faces are conformal. In multi-block develop-

ment, the code must keep track of which block faces are connected to other block faces,

and it must also keep track of the relative orientation. Each block has its own logical

coordinate system, and it can be arranged in any particular orientation relative to the
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Figure 7.3: A multi-block cylindrical geometry with non-axisymmetric protrusions con-
sisting of 76 blocks.
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ξ
η

ψ z
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x

Figure 7.4: Diagram of a logical to physical coordinate transformation.

other blocks. The diagram in Figure 7.5 illustrates a scenario where five blocks are

connected and the coordinate systems of each individual block are not aligned. Due to

the unique connections in this case, it would be impossible for all logical coordinates

on all blocks to always be aligned. This particular block configuration could be mapped

to the five block cylinder shown in Figure 7.2.

7.3 CAD Interface and Advanced Mesh Generation with CUBIT

As mentioned in Chapter 3 a user friendly interface is necessary, especially when the

computational domain geometry becomes complex. To avoid tedious manual specifica-

tion of the geometry, a CAD interface using the CUBIT [2] mesh generation software is

included in HiFi. The CUBIT mesh generator has the ability to import several differ-

ent CAD file types including ACIS, IGES, STEP, Granite, AVS, Genesis/Exodus, Facets,

STL, Patran, Ideas, Abaqus, Nastran, Catia, and Cubit (Native). Additionally CUBIT

has basic CAD capabilities for creating less complex geometries in its native format.

CUBIT has an advanced suite of mesh generating tools, and can create triangu-

lar/tetrahedral meshes but it specializes in quadrilateral/hexahedral meshes. It also
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Figure 7.5: Diagram of logical block connections for a 5 block configuration.
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has the ability to create both structured and unstructured meshes. HiFi domains are

structured and use hexahedral elements, making CUBIT capable of creating the nec-

essary meshes for use in HiFi.

A key feature in CUBIT is its ability to partition a geometry into several blocks

(each block is a logical cube or rectangle) and mesh each block independently, but

still maintain conforming elements between partitions. This feature is essential to

creating useful multi-block meshes. The multi-block development in HiFi is described

in Section 7.1. Figure 7.6 shows an example HIT-SI like geometry loaded into CUBIT

and its associated mesh. The different colors represent the logical cube partitions that

are used in the multi-block framework. A cutaway of the mesh also is shown so it can

be seen how each partition is a logical cube and structured mesh.

CUBIT also includes several mesh smoothing algorithms, to minimize tangled grids,

and improve distorted elements. In addition to these mesh smoothing algorithms in-

cluded in CUBIT, the mesh deformation metrics described in Chapter 6 are used during

the mesh creation process. After an initial mesh is created, the a priori mesh metrics

will analyze the mesh and provide some quantification for the quality. The user can

then decide if additional smoothing, partitioning, or resolution is necessary to improve

the quality of the mesh. This process can also be semi-automated by improving the

mesh in certain ways if it does not meet some mesh quality metric criteria.

Figure 7.7 shows a schematic of the CAD interface to the HiFi code. The schematic

shows the steps necessary to start with CAD drawing, and end up with an acceptable

mesh for use in the HiFi code. It includes a loop where the geometry is partitioned,

meshed, and then checked by the mesh quality metrics. If the calculated metrics are

acceptable, the resulting mesh can continue for use in HiFi, otherwise it is potentially

repartitioned, further resolved, and/or smoothed before the mesh metrics are checked

again.

Despite CUBIT’s advanced mesh generation and smoother algorithms, it does not

create high-order (spectral) element node information. It can at most produce the

internal nodes for quadratic elements. It is therefore necessary to create extra internal

nodes that correspond to the high order degrees of freedom present in the spectral
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Figure 7.6: HIT-SI geometry and mesh created with CUBIT. Each color represents
a logical cube partition or block. This type of mesh can be used in the multi-block
framework described in Section 7.1
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Figure 7.7: A schematic of the CAD interface to the HiFi code
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Figure 7.8: A 2D representation of a logical-to-physical transformation of a high-order
element. The high-order element boundaries are depicted in blue, and the internal
element boundaries that are generated by CUBIT for use in HiFi are in red. HiFi
solves a system for each element for the basis function amplitudes based on the CUBIT
generated geometry.

method of finite element. One method of achieving this is by creating the extra nodes

in CUBIT as linear elements. For instance if a polynomial degree np = 4 is chosen,

and the number of elements in one dimension nx = 3, then a total of nx ∗ np+ 1 nodes

are needed to create the high-order mapping. In CUBIT one would create 12 linear

elements in that dimension, rather than the 3 spectral elements that are specified

by HiFi. A 2D cartoon shown in Figure 7.8 depicts this situation with the high-order

element boundary in blue, and the internal “elements” that are created by CUBIT with

red lines. Once the mesh information is read into HiFi, it uses the extra node locations

as internal interpolation points for the particular element and solves for a continuous

mapping within the element. This mapping information that it has solved for are the

amplitudes of the spatial basis functions used in the high-order finite element method

(described in Section 4.2). This process allows the use of a low order mesh generator

like CUBIT to be used in a high-order code like HiFi.
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Chapter 8

APPLICATION TO A Z-PINCH
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It is well known that a close-fitting conducting wall has the ability to stabilize a

plasma pinch. Early work with arc sources in high temperature gases found a close-

fitting wall to provide stability [51, 52]. Subsequently early arcjet research in the 1960s

established wall stabilization techniques empirically [53] and many early designs used

a constrictor as a wall stabilization technique [54, 55, 56, 57, 58, 59, 60]. Much of this

early work focused on finding optimal parameters to operate arcjets as rocket engines,

while changing the constrictor diameter, input power, breakdown voltage, gas flow, etc.

The wall stabilization techniques developed throughout the gas arc and arcjet re-

search were extended to the Z-pinches and theta pinches [61, 62, 63, 64, 65, 66], and a

more theoretical understanding of the phenomenon was established. Later research by

Shumlak and Hartman [67] using a linear stability analysis found that a close-fitting

conducting wall around a diffuse pinch provides a stabilizing effect up to a point. When

the wall is moved beyond a threshold distance from the pinch, the wall no longer has a

stabilizing effect.

Wall stabilization has also been observed in tokamaks [68, 69] and can increase

attainable values of β. It is found that the effects of resistivity in the close-fitting

wall are destabilizing to tokamaks. Additionally a close-fitting wall in spheromaks are

found to stabilize the plasma [70].

The ZaP Z-pinch experiment [71] has made recent design modifications that breaks

the previous cylindrical axisymmetry. A 35 cm long section of outer electrode has slots

cut, leaving ‘rods’ of conducting material. Wall stabilization properties for a pinch with

a close-fitting conducting wall are well known, and the stabilization properties are

investigated in this non-axisymmetric configuration. This design change has coincided

with recent advancements in the HiFi [4] modeling code allowing for non-axisymmetric

geometries. The HiFi code is used to model the ZaP Z-pinch configuration in the more

complex geometry to better understand the stability properties of the pinch.

The Z-pinch m = 1 kink mode is explored as a verification of the HiFi code and the

multi-block geometry framework that makes non-axisymmetric geometries possible.

ZaP like experimental parameters are used in the simulations and compared to a lin-

ear stability analysis. The results of the simulation are compared to experimental data
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from the ZaP experiment to better understand the implications of the design change.

8.1 Z-Pinch Background

The Z-pinch is a one-dimensional configuration with a purely poloidal magnetic field

and axial current density [72]. Its name is derived by the fact that current only flows

in the axial ẑ direction. An equilibrium can be obtained by solving the radial pressure

balance equation
d

dr

(
p+

B2
θ

2µ0

)
+
B2
θ

µ0r
= 0 (8.1)

where r is the radial dimension, p is the pressure, Bθ is the poloidal magnetic field,

and µ0 is the permeability of free space. This equation represents the balance between

magnetic pressure and particle pressure.

8.1.1 m = 1 Kink Mode

Z-pinches are classically unstable to the m = 1 kink mode instability, and are well

known both theoretically and experimentally [73, 74, 75, 76, 77, 67]. Due to the ex-

tensive studying of this instability it makes a good test problem for code verification.

The kink mode instability grows when a locally higher magnetic field is experienced on

one side of the pinch and the ~J × ~B forces then push the plasma fluid in one direction.

A cartoon of this phenomenon is shown in Figure 8.1. The instability grows and is

predicted by linear stability analysis [78, 67].

8.2 The ZaP Z-Pinch Experimental Configuration

The ZaP experiment is a simple linear Z-pinch experiment with no applied magnetic

fields [71]. The experiment consists of a coaxial plasma accelerator region, beginning

at z = −75, and a pinch assembly region beginning at z = 0 moving from left to right

(see Figure 8.2). An approximately 100 cm long, and 1 cm radius plasma is formed

in the assembly region by injecting gas into the acceleration region and discharging a

capacitor bank across electrodes. Figure 8.3 is a schematic that illustrates the pinch

formation process. Typical experimental operating parameters are displayed in Table
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Figure 8.1: Cartoon diagram showing how locally higher magnetic field on one side of
a Z-pinch leads to the m=1 kink instability.

Figure 8.2: Diagram of the ZaP experiment configuration.
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Figure 8.3: Schematic illustrating the Z-pinch formation in the ZaP flow Z-pinch exper-
iment: (a) neutral gas injection, (b) breakdown and ionization of the gas and current
accelerates the plasma axially, (c) plasma moves radially towards the pinch axis, (d)
plasma forms on along the axis, (e) plasma attaches to outer electrode and end wall,
while inertia maintains the axial plasma flow [79].
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8.1.

Table 8.1: ZaP Operating Parameters [71]

Parameter Value
Accelerator Length (cm) 100

Outer Electrode Radius (cm) 10
Inner Electrode Radius (cm) 5 or 8

Pinch Radius, a (cm) 1
Length (cm) 100

Peak Current (kA) 300-400
Electron Density (m−3) 1022 - 1023

Total Temperature, Te + Ti (eV) 150 - 250
Magnetic Field (T) 1-2

Pinch Duration (µs) 30-70

The experimental apparatus is shown in Figure 8.2 in two configurations: (a) with-

out a ‘rod’ extension region, and (b) with a ‘rod’ electrode extension region. The ‘rod’

extension configuration has slots cut into the outer electrode, which removes approx-

imately 70% of material, leaving rods of electrode in the section. The purpose of the

‘rod’ extension is to investigate the impact the removal of the electrode wall material

has on the stability of the pinch, as well as to open up optical diagnostic access to the

plasma. The ‘rod’ extension region is precisely where the plasma confinement region

loses its axisymmetry and is modeled using the multi-block framework of HiFi. Section

8.4 below describes these simulations.

8.2.1 Diagnostic Configuration

There are three major diagnostics for the ZaP experiment: magnetic probe arrays for

magnetic field mode data, two multi-chord interferometers for density gradient mea-

surements, and a fast framing camera for optical light emissions. Each of these diag-

nostics take measurements as a function of time.
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Magnetic Probe Arrays

There are two azimuthal magnetic probe arrays with eight probes each located at ap-

proximately z = 35 cm and z = 70 cm. Additionally an axial magnetic probe array

consists of probes located every 5 cm along the length of the pinch assembly region.

The azimuthal and axial probe arrays can measure the field fluctuations as a func-

tion of time at their respective locations. The data is Fourier decomposed to isolate

magnetic mode contribution for the m = 0 (average magnetic field), m = 1 (radial

displacement), m = 2 (ellipticity), and m = 3 (triangularity).

Multi-Chord Interferometer

A helium-neon, Mach-Zehnder, heterodyne quadrature multi-chord interferometer is

used at two locations to measure the chord-integrated density. Both of these locations

are in the ‘rod’ section where there is easy optical access. The measurements are

taken at different impact parameters yielding a measurement of the density gradient

between the two measurements.

Fast Framing Camera

An Imacon 790 fast framing camera is installed at the ‘rod’ location for visible light

emission measurements. The camera has a 1 µs frame rate allowing for images of the

plasma as a function of time. The images are compared to interferometry and magnetic

probe array data for consistency and help determine the size, shape, displacement, and

stability of the plasma.

8.3 Linear Stability Analysis

A method following from Appert and Gruber [78] and Shumlak and Hartman [67] is

used to calculate the theoretical linear growth rates of the m = 1 kink mode in dif-

fuse Z-pinches. This method solves linearized ideal MHD equations as an eigenvalue
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problem, resulting in a pair of coupled first order differential equations:

Xr
∂p∗

∂r
+ C11p

∗ + C12(rξr) = 0, (8.2)

Xr
∂(rξr)

∂r
+ C21p

∗ + C22(rξr) = 0, (8.3)

where r is the radial distance, ξr is the radial displacement,

p∗ = 2
B2
θ

µ0

ξr
r
− ργ2

Y
∇ · ξ, (8.4)

Y =
ρ2γ4

XΓp+ ργ2B2
θ/µ0

, (8.5)

X = ργ2 +
F 2

µ0
, (8.6)

F =
m

r
Bθ, (8.7)

C11 = 2

(
F 2

µ0
+ Y

B2
θ

µ0

)
, (8.8)

C12 = X2 − 2X
Bθs

µ0

∂(Bθ/r)

∂r
− 2C11

B2
θ

r2µ0
, (8.9)

C21 = m2 + k2r2 + r2Y, (8.10)

C22 = −C11, (8.11)

and Γ = 5/3 is the ratio of specific heats. The boundary conditions used for the cylin-

drical geometry are

ξr|r=rwall = 0, (8.12)

∂ξr
∂r

∣∣∣∣
r=0

= 0, (8.13)

which corresponds to no displacement at the outer rigid wall, and a Neumann bound-

ary condition on displacement at the axis. The boundary value problem defined by

the differential equations 8.2 and 8.3 and the boundary conditions 8.12 and 8.13 are

solved using a shooting method. This yields a complex eigenvalue γ, where if γ2 is

greater then zero, the mode is unstable and the growth rate is γ. Otherwise γ2 is
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less then 0 and this represents a stable oscillation with a frequency ω = −iγ. This

boundary value problem is solved for a variety of conditions and then compared to the

simulations results.

8.4 Simulations of a Z-Pinch

A Z-pinch m=1 kink mode is modeled using the advantages of the multi-block features

of the HiFi code. A straight circular cylindrical geometry (Figure 8.4(a)) composed of

five blocks is used to model a periodic Z-pinch and verify the kink mode growth rates.

Simulations with a more complex non-axisymmetric geometry are performed (Figure

8.4(b)). This geometry represents recent changes made to the outer electrode of the

ZaP experiment [80] and is described earlier in Section 8.2. In both configurations the

kink growth rates are compared to results obtained from a linear stability analysis.

Additionally, in the cylindrical geometry, shear flow is introduced to demonstrate the

known stabilizing effects and to more closely match the conditions of the ZaP experi-

ment.

8.4.1 MHD Equation Model

A viscous, hyper-resistive MHD with isotropic thermal conduction HiFi module written

in 3D Cartesian coordinates provides the basis for performing the tests. The equations

are written in flux-source form as:

∂

∂t



ρ

ρ~v

~A

1
γ−1p

0


+∇ ·



ρ~v

ρ~v~v + p~I − µ∇~v

−ν∇~j
γ
γ−1p~v − κ∇T

(∇ · ~A)~I −∇ ~A


=



0

~j × ~B

~v × ~B − η~j

(~v · ∇p+ η~j ·~j + µ(∇~v : ∇~v)

~j


, (8.14)
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where ρ is mass density, ~v is fluid velocity, ~A is magnetic vector potential, and p is

pressure. The symbol : is the tensor double dot product operator defined as

∇~v : ∇~v =
3∑
i=1

3∑
j=1

∇vij∇vji, (8.15)

resulting in a scalar value. The dissipative parameters µ, η, ν, and κ are viscosity, resis-

tivity, hyper-resistivity, and isotropic heat conduction respectively. These parameters

represent the inverse of the dimensionless parameters such as the Reynolds number

µ = 1/Re (See Appendix C for more details). The hyper-resistive parameter ν multi-

plies a fourth order term providing high-order dissipation. This is useful for damping

high-frequency noise in the current ~j and providing numerical stability. Additionally

the magnetic field intensity ~B = ∇× ~A, current density ~j = ∇×∇× ~A and temperature

T = p/ρ are defined.

8.4.2 Bennett Pinch Initial Conditions

A Bennett Z-pinch equilibrium is used as the initial condition in the following analysis

and is a solution to the force balance equation 8.1. The form of the equilibrium is:

Bθ =
I0

2π

r

r2 + a2
(8.16)

Jz =
I0

µ0π

a2

(r2 + a2)2
(8.17)

p =
I2

0

µ08π2

a2

(r2 + a2)2
(8.18)

where I0 is the total current, r is the radius of the cylinder, and a is the characteristic

plasma pinch radius [81]. In order to use this initial equilibrium with equation 8.14,

the magnetic field must be represented as vector potential. Since ~B = ∇× ~A equation

8.16 can be integrated with respect to r:

Az =

∫
I0

2π

r

r2 + a2
dr ⇒ Az = − I0

4π
Log[r2 + a2]. (8.19)



100

(a) 5 Blocks

(b) 76 Blocks

Figure 8.4: Cross sections of the straight cylinder and cylinder with extrusions geome-
tries.
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These equations for Az, Jz, and p can be used as the initial condition, along with

some values for density ρ and momentum ρ~v. The fluid momentum is initialized to zero

with a small perturbation to initiate the m=1 kink mode growth. The perturbation has

the form

ρvy = δ̂
[
cos(2πz/lz)e

−(x2+y2)/(0.03)2
]
, (8.20)

where δ̂ is the normalized magnitude of the perturbation, lz is the axial wavelength

of the pinch, and the exponential is to ensure the perturbation drops to zero at the

radial boundary at r = rwall = 0.1. A perturbation normalized by the Alfvén speed

of δ̂ = δ/vA = 7.25 · 10−9 is given and is small enough that the dynamics remain in

the linear phase throughout the instability growth. This linear growth can then be

compared to theoretical linear growth rates calculated from a linear stability analysis.

For these simulations, conditions that closely match the operating parameters of the

ZaP experiment are used (see Table 8.1). The ZaP experiment pinch has a radius of

approximately a = 1 cm, has a peak current of I = 400 kA, a number density n = 1023

m−3, a magnetic field strength of B = 2 T, and the outer electrode radius r = 10 cm.

In these simulations, a hydrogen plasma is assumed, so the density is ρ = nMp =

1.6726 · 10−4, where Mp = 1.6726 · 10−27 is the mass of a proton. Equation 8.14 is

non-dimensional, and the normalization can be seen in Appendix C.

8.4.3 Boundary Conditions

The boundary conditions applied to the fluid velocity are perfect slip:

∇n̂vt̂ = 0 (8.21)

vn̂ = 0. (8.22)

where ∇n̂ is the normal gradient operator, vt̂ is the tangential fluid velocity, and vn̂ is

the normal fluid velocity. These conditions prevents boundary layers by limiting the

normal derivative of flow, and prevents normal flows into the wall. A conducting wall
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boundary condition is applied to the at the wall

∂At̂
∂t

= −Et̂ = 0 (8.23)

where At̂ is the tangential vector potential, t is time, and Et̂ is the tangential electric

field. Additionally the density is given a ‘natural’ boundary condition, and the temper-

ature at the wall is limited to the interior temperature.

∂

∂n̂
(p/ρ) = 0 (8.24)

where T = p/ρ.

8.4.4 Minimization of Dissipation

Viscosity, resistivity, hyper-resistivity, and isotropic thermal conduction are included

in the equation model described in equation 8.14. The ideal MHD linear stability

analysis does not include dissipative terms, and it is therefore important to minimize

these terms in the Z-pinch simulations to make a good comparison. The main function

of the dissipative terms in the simulations is to maintain numerical stability, and it

is found that both resistivity and isotropic thermal conduction are not needed. Only a

relatively small amount of both viscosity and hyper-resistivity are included.

The hyper-resistive terms are minimized, and Table 8.2 and Figure 8.5 shows the

effect on the kink mode growth rate. At high levels of hyper-resistivity it dramatically

affects the behavior of the kink mode. Once the hyper-resistivity is less then 10−6 it

does not significantly impact the solution to reduce it further.

Similarly the viscosity is reduced to measure the impact on the m = 1 kink mode

growth rate. Table 8.3 and Figure 8.6 show the results. Since the viscosity operates on

the fluid velocity, and thus the kinetic energy, it makes sense that with an increasing

amount of viscosity, the growth rates declines. Although, with only relatively small

amounts of viscosity, it does not have a drastic impact on the solution, and the kink

mode growth is qualitatively fairly consistent. To maintain numerical stability but not
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Table 8.2: Normalized growth rates calculated from Z-pinch simulations with varying
amount of hyper-resistivity. The characteristic plasma size a = 1.5 cm with a ka = π,
cylinder radius rwall = 10 cm, viscosity µ = 2.5·10−3, on a five block grid with the center
block resolution nx = ny = nz = 12 and np = 3. Linear stability analysis predicts the
growth rate (γ/kVA)ls = 0.38424

ν (γ/kVA)n

5.00e-4 0.25156
5.00e-5 0.34885
1.00e-6 0.36793
1.00e-9 0.36828

significantly damp the growth rate, a modest viscosity µ = 2.5 · 10−3 is chosen for the

remainder of the simulations.

Table 8.3: Normalized growth rates calculated from Z-pinch simulations with varying
amount of viscosity. The characteristic plasma size a = 1.5 cm, ka = π, cylinder radius
rwall = 10 cm, hyper-resistivity ν = 10−9, on a five block grid with the center block
resolution nx = ny = nz = 12 and np = 3. Linear stability analysis predicts the growth
rate (γ/kVA)ls = 0.38424

µ (γ/kVA)n

1.00e-2 0.33115
5.00e-3 0.35491
2.50e-3 0.36676
1.25e-3 0.37242
6.25e-4 0.37512
1.00e-4 0.37701
1.00e-6 0.37714

8.4.5 Convergence of Results

A spatial and temporal convergence study is done to insure the results are accurate.

For spatial convergence, the resolution is increased in the cross-section and then in the

axial direction. They are done independently of each other to see the impact of each

increase in resolution. The five block cylindrical geometry shown in Figure 8.4(a), with

varying resolution are used. Throughout the domain np = 3 is used. An increase in
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Figure 8.5: Kinetic energy of a Z-pinch simulation in time with varying amounts of
hyper-resistivity. The characteristic plasma size a = 1.5 cm, ka = π, cylinder radius
rwall = 10 cm, viscosity µ = 2.5·10−3, on a five block grid with the center block resolution
nx = ny = nz = 12 and np = 3.
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Figure 8.6: Kinetic energy of a Z-pinch simulation in time with varying amounts of
viscosity. The characteristic plasma size a = 1.5 cm, ka = π, cylinder radius rwall = 10
cm, hyper-resistivity ν = 10−9, on a five block grid with the center block resolution
nx = ny = nz = 12 and np = 3.
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cross sectional resolution from nx = ny = 4 to nx = ny = 12 and then nx = ny = 18 is

used. Additionally increases in axial resolutions from nz = 6 to nz = 12 and nz = 18

are used. Table 8.4 shows the results. Notice the axial resolution does not impact the

growth rate of the m = 1 kink mode as significantly as the cross sectional resolution.

Table 8.4: Normalized growth rates calculated from Z-pinch simulations with varying
spatial resolutions. The characteristic plasma size a = 1.5 cm, ka = 0.5, cylinder radius
rwall = 10 cm, viscosity µ = 2.5 · 10−3, and hyper-resistivity ν = 10−9. Linear stability
analysis predicts the growth rate (γ/kVA)ls = 0.38424

nx ny nz (γ/kVA)n

4 4 6 0.35040
4 4 12 0.35044

12 12 12 0.36825
12 12 18 0.36825
18 18 12 0.36674

The temporal convergence is studied by decreasing the time step ∆t with a fixed

spatial resolution. Table 8.5 shows the results. As the time step is reduced the value

for the growth rate converges.

Table 8.5: Normalized growth rates calculated from Z-pinch simulations with varying
time step. The characteristic plasma size a = 1.5 cm, ka = 0.5, cylinder radius rwall =
10 cm, viscosity µ = 2.5 · 10−3, hyper-resistivity ν = 10−9, and a spatial resolution of
nx = ny = nz = 12. Linear stability analysis predicts the growth rate (γ/kVA)ls =
0.38424

∆t (γ/kVA)n

8e-8 0.35120
4e-8 0.37384
2e-8 0.37068
1e-8 0.36942
5e-9 0.36885
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8.4.6 Circular Cylinder Geometry

A straight circular cylindrical geometry is used to study the Z-pinch m = 1 kink mode.

The mesh cross section is shown in Figure 8.4(a). Growth rates calculated from nu-

merical simulations of the m = 1 kink mode for several pinch conditions are shown in

Table 8.6 and are compared to the results from the linear stability analysis. Addition-

ally Figure 8.7 shows results from a linear stability analysis while holding ka fixed at

π/4, π/2, and π and varying rwall/a. Notice for larger ka the effect of wall stabilization

is minimized, even for large characteristic plasma radii.

Table 8.6: Normalized growth rates calculated from a numerical simulation of a Z-
pinch m = 1 kink (γ/kVA)n in a straight circular cylindrical geometry, rwall = 0.1,
compared to growth rates calculated from a linear stability analysis (γ/kVA)ls. Several
values for the characteristic pinch size a are compared, with values of ka = π/4, π/2
and π.

a (cm) (γ/kVA)n (γ/kVA)ls %error
1.0 0.57030 0.58405 2.35
1.5 0.57797 0.58405 1.04
2.0 0.57326 0.58396 1.83
3.0 0.56700 0.57787 1.88
4.0 0.52260 0.54035 3.29
5.0 0.42850 0.43274 0.98
1.0 0.50598 0.52125 2.93
1.5 0.51035 0.52125 2.09
2.0 0.51313 0.52125 1.56
3.0 0.51590 0.52123 1.03
4.0 0.51748 0.52050 0.58
5.0 0.51323 0.51604 0.54
6.0 0.49969 0.50271 0.60
7.0 0.47282 0.47533 0.53
8.0 0.42250 0.42948 1.63
1.0 0.36201 0.38424 5.79
1.5 0.36875 0.38424 4.03
2.0 0.37255 0.38424 3.04
3.0 0.37669 0.38424 1.97
4.0 0.37834 0.38424 1.54
5.0 0.37971 0.38423 1.17
6.0 0.37982 0.38406 1.11
7.0 0.37923 0.38335 1.07
8.0 0.37794 0.38137 0.90
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Figure 8.7: Normalized growth rates computed from a linear stability analysis (lines)
and from HiFi simulations (markers) for various values of rwall/a while holding con-
stant ka = π/4, π/2 and π.

8.4.7 Modified Outer Electrode Geometry

The modified outer electrode multi-block geometry aims to model the section of the

ZaP pinch region where there are cuts in the outer electrode. Figure 8.2 shows the

cuts and Figure 8.8 provides a more detailed look. The cuts in the electrode mean that

plasma could expand radially out of the original cylindrical volume and further into

vacuum vessel. To represent this in a computational domain, extrusions are added to

the cylindrical geometry such that in the simulation the plasma can have the ability to

move into these regions. The depth of the extrusions are considered to be long enough

such that the plasma interaction with ends of the extrusions is minimal.

Simulations with the modified outer electrode geometry are performed with a range

of wall radius to characteristic plasma size ratios like the straight cylinder results.

The pressure, current density and magnetic field profiles are comparable to the ZaP

experiment, and the case with a = 1.0 cm most resembles the size pinch seen in the

experiment. Additional larger pinch sizes are simulated to better understand how the

extrusions may impact the growth rate of the m = 1 kink instability.
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(a) (b)

Figure 8.8: Three-Dimensional rendering of the modification to the ZaP outer electrode
(a) and 2D drawing (b). (Credit J. Rohrbach)

Figure 8.9: Schematic diagram representing a sharp corner region of a geometry.

Special Treatment of Boundary Condition at Sharp Corners

The boundary conditions resulting from the addition of extrusions to the cylindrical

geometry require some special attention. There is a possibility for a discontinuity be-

tween vector quantities aligned with the azimuthal and radial walls. Consider the 2D

diagram shown in Figure 8.9. It is possible to set a velocity boundary condition where

the flow must instantaneously change direction at the corner. This would lead to a

boundary layer formation that must be resolved, otherwise noise will be introduced

into the system. Similar problems could result in other vector quantity boundary con-



109

ditions.

In the simulations here, a zero slip boundary condition is applied

n̂ · ~v = 0 (8.25)

t̂ · ~v = 0 (8.26)

where ~v is the fluid velocity, and n̂ and t̂ are the normal and tangential vectors respec-

tively. This boundary condition is used as opposed to a perfect slip to avoid the problem

of a velocity discontinuity. The fluid flows in the simulations are small enough at the

wall such that boundary layers do not form. The alternative perfect slip condition

would lead to a fluid layer propagating 45 degrees inward from the domain corner and

is undesirable.

A conducting wall boundary condition is applied

∂At̂
∂t

= −Et̂ = 0 (8.27)

where At̂ is the tangential vector potential, t is time, and Et̂ is the tangential electric

field. A divergence of ~A condition is also applied. In cylindrical coordinates:

∇ · ~A =
1

r

∂

∂r
(rAr) +

1

r

∂Aφ
∂φ

+
∂Az
∂z

= 0. (8.28)

If this divergence condition is also applied at the boundary it ensures that the respec-

tive Ar and Aφ terms go to zero at the boundary, regardless of the orientation of the

boundary wall. This condition reenforces the conducting wall condition and is compat-

ible with the sharp corners that exist in the extrusion geometry.

Results of Modified Outer Electrode Simulations

Table 8.7 displays the results of the normalized growth rates computed from HiFi sim-

ulations and compared to the linear stability analysis. All results have a wavenumber

times pinch size ka = π/2. It can be seen that the growth rates are negligibly impacted
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by the inclusion of the extrusions to the computational domain. With a pinch radius

of a = 8.0 cm approaching the wall radius, it can be argued that the extrusions have a

very small impact, and slightly increase the growth rate of the instability. Figure 8.12

shows the kinetic energy for cases with and without extrusions to demonstrate the

minimal effect on growth rate. Notice the case with rwall/a = 1.25, early in the linear

growth phase, the case with extrusions diverges from the straight cylinder case. This

is well before any nonlinear effects dominate, and is most likely a minimal modification

to the kinetic energy due to the extrusions.

Table 8.7: Normalized growth rates calculated from a numerical simulation of a Z-
pinch m = 1 kink (γ/kVA)n in a straight circular cylindrical geometry compared with
a cylinder with extrusions. Several values for the characteristic pinch size a are com-
pared, while keeping ka = π/2.

a (cm) (γ/kVA)n (γ/kVA)n(ext.)

1.0 0.52125 0.50651
4.0 0.51748 0.51669
6.0 0.49969 0.50136
8.0 0.42250 0.43661

Examining the pressure at the radial boundary shows a more concise distinction

between the case with and without extrusions. Table 8.8 shows a comparison of pres-

sure values at the axial kink wavelength midpoint at two azimuthal locations for both

the case with and without extrusions. The two azimuthal values are θgap = π/2, and

θrod = 3π/8 and are locations for the center of a ‘gap’ and ‘rod’ respectively. The ‘gap’

location is where one of the extrusions is centered, and the ‘rod’ is centered at one of

the locations where there are no extrusions. It is clear that the addition of the extru-

sions reduces the plasma pressure experienced at both the ‘gap’ and ‘rod’ radial wall

locations. As the pinch size increases, the ratio of the pressure at the ‘gap’ to ‘rod’ lo-

cations at first increases, and then decreases with larger pinch sizes. When the pinch

size is a larger fraction of the cylindrical volume, the wall plays a more important role.

Figure 8.13 shows pressure slices at the midpoint of the kink axial wavelength, at time

τA = 23.2. It can be seen that for the smaller pinch sizes, the pressure profile is more
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(a) τA = 0 (b) τA = 18.4

(c) τA = 0 (d) τA = 17.6

Figure 8.10: Pressure p in an extrusion cylinder with a characteristic plasma pinch
radius of a = 1.0 cm (a), (b) and a = 8.0 cm (c),(d). Data are repeated 8 times for the
a = 1.0 cm case and 2 times for the a = 8.0 cm case in the axial direction.
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(a) τA = 0 (b) τA = 18.4

(c) τA = 0 (d) τA = 17.6

Figure 8.11: Axial vector potential Az in an extrusion cylinder with a characteristic
plasma pinch radius of a = 1.0 cm (a), (b) and a = 8.0 cm (c),(d). Data are repeated 8
times for the a = 1.0 cm case and 2 times for the a = 8.0 cm case in the axial direction.
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Figure 8.12: Normalized kinetic energy computed from HiFi simulations for various
values of rwall/a while holding constant ka = π/2 for geometries with and without
extrusions.

elongated, and for the larger pinch sizes the profile is broadened. When extrusions

are added to the radial boundary, the wall effects diminish slightly, but then for larger

pinch sizes the wall stabilization returns. With larger pinch sizes, the plasma has

more contact with other ‘rod’ locations, which provide wall stabilization. Figure 8.14

shows pressure slices for the case with extrusions. Notice that for the case with a = 6.0

cm (Figure 8.14(c)) the pinch size is large enough to have interactions with the wall

and extrusions, but not broad enough to interact with many of the rod locations. In

this case the wall stabilization effect is the smallest. It is expected that this will vary

depending on the width and frequency of the extrusions compared to the pinch size.

8.5 Inclusion of Shear Flow for Stabilization

Pure Z-pinches are plagued by both the m = 0 sausage, and m = 1 kink mode in-

stabilities [77]. Stabilizing the modes by conventional techniques such as controlling

the pressure profile, having a close-fitting conducting wall or the addition of an axial

field have drawbacks. Flow shear can stabilize these MHD modes and do not have the
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(a) a = 1.0 cm (b) a = 4.0 cm

(c) a = 6.0 cm (d) a = 8.0 cm

Figure 8.13: Pressure profiles at the midpoint of the axial kink wavelength for char-
acteristic plasma sizes of a = 1.0, 4.0, 6.0, and 8.0 cm while keeping ka = π/2 using
a cylindrical cross section. All figures are at time τA = 23.2 normalized by the axial
wavenumber times the Alfvén speed kVA.
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(a) a = 1.0 cm (b) a = 4.0 cm

(c) a = 6.0 cm (d) a = 8.0 cm

Figure 8.14: Pressure profiles at the midpoint of the axial kink wavelength for char-
acteristic plasma sizes of a = 1.0, 4.0, 6.0, and 8.0 cm while keeping ka = π/2 using
a cylindrical cross section with extrusions added to the radial wall. All figures are at
time τA = 23.2 normalized by the axial wavenumber times the Alfvén speed kVA.
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Table 8.8: Pressure values for different pinch sizes a at the kink wavelength midpoint
at ‘gap’ and ‘rod’ azimuthal locations. Ratios of the pressure at the ‘gap’ and ‘rod’
locations are also shown. All results are for the case with ka = π/2 at a time τA = 23.2,
which is the end of the linear growth phase.

a (cm) pθgap pθgap (ext.) pθrod pθrod (ext.) pθgap
pθrod

pθgap
pθrod

(ext.)
1.0 0.6441e+3 0.6249e+3 0.6432e+3 0.6438e+3 1.0014 0.9706
4.0 0.3071e+6 0.2349e+6 0.2252e+6 0.1541e+6 1.3637 1.5243
6.0 1.0129e+6 0.9917e+6 0.8128e+6 0.5171e+6 1.2462 1.9178
8.0 1.2198e+6 1.2039e+6 1.1812e+6 1.0518e+6 1.0327 1.1446

drawbacks [67, 79, 82].

In the ZaP experiment, the shear flow profile is created during the formation of the

pinch. Figure 8.3 shows a schematic of this formation procedure. In the experiment

a strong, but very fine shear layer forms near the pinch radius. The profile has an

approximate mathematical shape of

v′z ∼ vs/ρ(r/a)6 (8.29)

where r is the radial coordinate and a is the characteristic plasma pinch radius, vs is

the magnitude of the shear flow velocity, and ρ is the fluid density. Figures 8.15 and

8.16 show the evolution of the out of plane momentum ρvz with a relatively small,

κ = v′z/kVA = 0.0013 and slightly larger κ = v′z/kVA = 0.0130 amount of shear flow

respectively. It is clear that for a small amount of flow, the shear profile is disrupted

and the pinch is not stabilized. Conversely, when the shear flow is significant enough,

the profile provides stability to the pinch. This agrees with theory where marginal

stability against the m = 1 mode is seen as κ approaches 0.10 for pinches with no wall

stabilization [67]. Figures 8.17 and 8.18 show the axial current density evolution for

the same conditions demonstrating when there is insufficient shear flow, and stabiliza-

tion when when shear flow is sufficient. Figure 8.19 is a plot of the kinetic energy for

the case of no shear flow, and three different magnitudes of shear flow while holding

the wall radius to characteristic plasma pinch radius ratio fixed rwall/a = 10. With
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rwall/a = 10 it resembles the size of the pinch in the ZaP experiment.

8.6 ZaP Experimental Results

The ZaP experiment operates with a plasma pinch size of approximately a = 1.0 cm,

and an outer electrode wall radius of rwall = 10 cm, giving a ratio rwall/a = 10. This ra-

tio is well beyond the wall stabilization limits predicted by the linear stability analysis

described in Section 8.3 and the numerical simulation results in Section 8.4, suggest-

ing that the pinch is not wall stabilized. When parts of the outer electrode are removed

in the ‘rod’ configuration described in Section 8.2, it is expected the effect will be min-

imal due to the fact that the pinch is not wall stabilized. Both the hypothesis that

the pinch is not wall stabilized, and that the ‘rod’ configuration will not significantly

impact the pinch stability are backed by experimental data from the ZaP experiment.

8.6.1 Experimental Evidence of Z-Pinch Stability with and without ‘rod’ Electrode

Configurations

Data from the ZaP experiment show that both with and without the ‘rod’ configuration

a stable pinch is maintained in the device. Figure 8.20 shows Fourier mode data of

the pinch magnetic field at both the z = 0 cm and z = 35 cm locations. Both m = 0

(B0) and the normalized m = 1 (B1/B0) mode data for each location are shown. The

data show that both with and without the ‘rod’ electrode configurations the magnetic

mode data is similar in magnitude and demonstrate similar stability properties. The

horizontal green line in the plots for the the m = 1 data signifies the ZaP stability

definition of B1/B0 ≤ 0.2. When the mode data are below the stability definition it

signifies the pinch is well centered and does not have significant portion outside this

radial extent. For both with and without the ‘rod’ section, the pinch has a similar

average magnetic field B0 and show similar stability properties for an same extended

period of time of about 30 µs to 85 µs. The similarity of the data suggests the pinch

has similar characteristics for both configurations.

The interferometry data and magnetic probe array data from the ‘rod’ location in-
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(a) τA = 0

(b) τA = 1.60

(c) τA = 1.90

Figure 8.15: Out of plane momentum ρvy with a small amount of shear flow κ =
v′z/kVA = 0.0013 at τA = 1.6, and τA = 1.9. Data are repeated 8 times in the axial
direction.
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(a) τA = 0

(b) τA = 4.5

(c) τA = 5.0

Figure 8.16: Out of plane momentum ρvy with a larger amount of shear flow κ =
v′z/kVA = 0.0130 at τA = 4.5, and τA = 5.0. Data are repeated 8 times in the axial
direction.
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(a) τA = 0

(b) τA = 1.6

(c) τA = 1.9

Figure 8.17: Axial current density Jz with a small amount of shear flow κ = v′z/kVA =
0.0013 at τA = 1.6, and τA = 1.9. Data are repeated 8 times in the axial direction.



121

(a) τA = 0

(b) τA = 4.5

(c) τA = 5.0

Figure 8.18: Axial current density Jz with a larger amount of shear flow κ = v′z/kVA =
0.0130 at τA = 4.5, and τA = 5.0. Data are repeated 8 times in the axial direction.
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Figure 8.19: Normalized kinetic energy computed from HiFi simulations for various
amounts of normalized shear flow κ = v′z/kvA while holding rwall/a constant.
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Figure 8.20: Fourier mode data from the azimuthal probe arrays located at (a) z = 0
cm and (b) z = 35 cm. The top figure for each location represents the average magnetic
fieldB0 as a function of time for cases with and without the ‘rod’ electrode configuration
using similar operating conditions. The bottom plot represents the normalized m = 1
mode (B1/B0). The horizontal green line indicates the stability definition for the ZaP
experiment.

dicate that a coherent pinch forms in the region. Figure 8.21 shows magnetic mode

data for the m = 0 and m = 1 modes as well as interferometry for the same period of

time in a similar axial location. The interferometry data show line integrated density

information both centered and at a point laterally 1.7 cm away. It can be seen that

the densities begin at the same value, and at about 35 µs diverge from each other.

The divergence signifies a density gradient and that a coherent pinch has formed. The

densities remain separated for a significant amount of time, indicating a stable period.

The magnetic mode data agree with the interferometry result and also suggest a stable

pinch during the same period of time.

The fast framing optical images shown in Figure 8.22 are consistent with both the

magnetic field and density data. In Figure 8.22 a time series of optical images are

shown. In the first frame (a) taken at time t = 35 µs a relatively uniform light emission

is seen, indicating a coherent pinch has not yet formed. The interferometry data at

this time also show that a pinch has not yet formed. Optical images from later times
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Figure 8.21: Fourier mode data from the azimuthal probe array located at z = 35 cm
and 2-chord interferometry data from a z = 40 cm location. The time is from t = 0 to 50
µs with the vertical green lines representing the beginning and end of the fast framing
optical images seen in Figure 8.22

clearly show that a coherent pinch has formed and also agree with the interferometry

and magnetic mode data.

Further Fourier mode data also suggests that in the region with the ‘rod’ configura-

tion a stable pinch is maintained. Figure 8.23 shows Fourier mode data for azimuthal

probe arrays located at z = 35 cm and z = 70 cm, which spans the ‘rod’ section. The

data show an average magnetic field B0 and normalized m = 1 mode B1/B0 that are

consistent with each other. Each of the traces in time show a stable pinch from about

40 µs to about 90 µs. These data also suggest that the ‘rod’ electrode does not impact

the stability of ZaP plasma pinches.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.22: Visible light images from fast framing camera from 35 µs to 42 µs with a
1 µs frame rate taken in the ‘rod’ electrode section of the pinch. The images correspond
to the data shown in Figure 8.21.
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Figure 8.23: Fourier mode data from the azimuthal probe arrays located at z = 35 cm
and z = 70 cm locations (upstream and downstream the ‘rod’ section). The magnetic
data indicates upstream and downstream have similar behavior throughout the pulse.
The data also indicates that the stability (quiescent) period is nearly the same for both
locations, suggesting axial uniformity of the pinch.
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8.7 Z-Pinch Simulation Conclusions

The Z-pinch simulations performed agree with the theoretical results obtained by a

linear stability analysis, which is a promising verification of the HiFi code and the

multi-block geometry framework. The error between theory and HiFi simulation re-

sults is mostly less then a few percent, and in the cases where it is higher a more

temporally resolved simulation might improve the result. The simulations using the

cylinder with extrusion geometry further verify the codes abilities and make use of a

more complex non-axisymmetric multi-block geometry. The results obtained show how

the extrusions affect the wall stabilization. No impact is seen when the pinch is small

and far enough away from the boundary. When the pinch is large enough to interact

with the boundary and on the order of the size of the extrusion gaps, the largest effect

is found. The case with the addition of a shear flow profile similar to that measured in

the ZaP experiment provides stabilizing effects as expected in theoretical analysis.

An experimental modification to the ZaP Flow Z-Pinch to evaluate the effects of a

conducting wall on pinch stability is performed. An outer electrode section is manufac-

tured that has about 70 % of the conducting wall surface removed. For ZaP conditions,

the ratio of the pinch radius to the conducting wall radius is in the range in which

simulations indicate the wall should have no effect. A coherent pinch structure is ob-

served in the ‘rod’ electrode section that persists for lengths of time similar to that

observed for a solid electrode section. Data from magnetic probe arrays indicate a

stable, axially-uniform magnetic structure through the ‘rod’ electrode section. Opti-

cal images and interferometry data also indicate a well-defined pinch structure in the

‘rod’ electrode section that persists for times much longer than the instability growth

time. The data all indicate that the removal of conducting wall material from the outer

electrode does not have a significant effect on the stability of the Z-pinch.
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Chapter 9

MESH DEFORMATION ANALYSIS APPLIED TO Z-PINCH
SIMULATIONS
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9.1 ZaP Z-Pinch as Practical Example

Analyzing different test meshes using mesh quality metrics and simple analytic prob-

lems as described in Chapter 6 is useful for establishing the feasibility of an a priori

error check, but a more realistic problem is more convincing. The ZaP Z-pinch geom-

etry is a good example problem that tests the mesh quality metrics with a realistic

physical geometry and sufficiently complex nonlinear physics. A careful study of the

meshes and resulting solutions demonstrates the a priori mesh quality analysis is use-

ful for typical problems that computational physicists might encounter.

The approach chosen here is to study the effect mesh distortions have on a suffi-

ciently complex and relevant problem. The ZaP Z-pinch with similar operating pa-

rameters to that of the experiment is used, as it represents a problem of interest to

both computational physicists and experimentalists. A Z-pinch m = 1 kink mode is

modeled similar to the analysis in Section 8.4 with a characteristic pinch size a = 1.0

cm. Several test meshes that have a varying amount of distortion are used, and the

meshes are characterized using the same mesh metric analysis described in Chapter

6. The solutions are compared to a fully resolved solution on an undeformed mesh.

This enables solutions at different degrees of deformation to be compared to the mesh

quality metrics and an a priori assessment of the mesh can be established based on

the metrics. This study also verifies that the analysis can be extended to nonlinear

physics models with experimentally relevant parameters.

9.2 Choice of Pinch and Mesh Size

The ZaP Z-pinch experiment described in Section 8.4 has a characteristic pinch radius

of approximately 1 cm and an outer electrode radius of 10 cm and these sizes are used

to create the computational domain. The same cylindrical geometry as in Section 8.4

is used with a five block configuration. Each block has a resolution of 12 × 12 × 12,

with np = 3, giving an effective resolution of nx × ny × nz = 36 × 36 × 12, np = 3.

The effective resolution is defined as the resolution across all blocks in the multi-block

configuration. In the five block case, three blocks span each physical dimension in the
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axial cross section giving nx = ny = 3 × 12 elements. This resolution is sufficient to

resolve all the necessary physics. For error norm comparison a very fine effective mesh

resolution of 72 × 72 × 24, with np = 3 is used. A periodic axial boundary condition is

chosen with a constant ka = π/2, giving the cylindrical domain height of four times

the characteristic plasma pinch size a. Figure 9.1 shows both the 3D meshes (a), (b) as

well as a 2D cross section showing the detail of the mesh near the pinch (c), (d).

9.3 Meshes with a ‘Random’ Distortion

The Z-pinch m = 1 kink mode instability is a linear phenomenon, but the HiFi model

evolves the full nonlinear physics. The pinch is initialized and given a small perturba-

tion of the desired wavelength to kick off the growth of the instability. This allows the

linear mode to grow while keeping the nonlinear terms small. However, noise in the

axial direction can trigger growth of higher order modes. These higher order modes

are undesirable in this case because the aim of this study is to analyze one particular

mode structure solution. As a result of this issue, the problem is particularly sensitive

to the distortions in the axial direction and a small amount of dissipation is necessary

to suppress grid level noise, such that higher order modes do not grow.

A feature in the CUBIT [2] mesh generator is a ‘randomized’ mesh smoother. The

smoother moves mesh nodes a random distance and direction up to a maximum tol-

erance set by the user. The tolerance is set using a parameter rand that controls the

degree of possible mesh distortions. It is a percentage measure of allowed random

movement of node locations from the original uniformly spaced mesh. With a higher

value of rand the mesh smoother has the ability to move node locations further away

from the uniform case. This feature is used to create meshes that have increasingly

severe distortions that characterize many commonly encountered distortion types (e.g.

stretch, shear, skew, etc). Several meshes with the same resolution, but a differing

degree of the ‘random’ deformation are created and used to study the Z-pinch m = 1

kink mode problem.

It does not make sense to have distortions in the axial direction that increase the
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(a) 36× 36× 12, np = 3 (b) 72× 72× 24, np = 3

(c) 36× 36× 12, np = 3 (d) 72× 72× 24, np = 3

Figure 9.1: 3D mesh and cross sections of the radial dimension x−y plane showing the
fine mesh (a), (c) and very fine mesh (b), (d) used in the mesh deformation analysis of
the Z-pinch m = 1 kink mode. The kinetic energy of the pinch is plotted on the mesh
as reference to the size of the pinch.
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Figure 9.2: Kinetic energy versus time for a m = 1 kink mode simulation with varying
amount of axial mesh distortion. The variable rand is a percentage measure of allowed
random movement of node locations from a uniformly spaced mesh.

likelihood of noise that can result in higher order mode growth. Figure 9.2 demon-

strates this effect. Only a small amount of axial mesh distortion is necessary to impact

the growth rate, since other higher order modes are non negligible due to the noise

generated. Consequently, in the subsequent analysis, mesh deformations are applied

only to the radial (x − y) plane. Figure 9.3 shows mesh cross sections near the pinch

center for various levels of the ‘random’ distortion. In each case the pinch is sufficiently

resolved, although there are increasingly severe distortions that lead to errors in the

solution.

9.4 Results

A Z-pinch m = 1 kink mode simulation is performed on an undeformed mesh as well as

several meshes with a ‘random’ deformation. These solutions are compared to the solu-

tion computed on the very fine mesh (Figure 9.1(b), 9.1(d)). In order to ensure that the
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(a) rand = 0.10 (b) rand = 0.20

(c) rand = 0.30 (d) rand = 0.40

Figure 9.3: Mesh cross sections of the radial (x− y) plane showing various levels of the
‘random’ mesh deformation. The kinetic energy of the pinch is plotted on the mesh as
reference to the size of the pinch. The variable rand is a percentage measure of allowed
random movement of node locations from a uniformly spaced mesh.
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Figure 9.4: Normalized kinetic energy computed from HiFi simulations for various
levels of a ‘random’ deformation in the x− y plane. The meshes used have an effective
resolution of 36 × 36 × 12 with np = 3. A simulation with no deformation and double
resolution in all dimensions (72 × 72 × 24 with np = 3) is shown for comparison and
considered to be a fully resolved solution. The final time is well into the linear growth
of the kink instability, but significantly before saturation and the nonlinear phase.

correct physical problem is solved, the kinetic energy is plotted for each of the meshes

in Figure 9.4. The kinetic energy is computed by integrating kinetic energy over the

entire simulation volume as a function of time. The final time is well into the linear

growth of the kink instability, but significantly before saturation and the nonlinear

phase. Notice that for all of the meshes with the exception of the fully resolved case,

there is an initial jump in the kinetic energy. This jump is the solution adjusting to

errors generated by the under resolved mesh, and is exacerbated by mesh distortions.

Dissipative terms in the equations damp this initial jump and keep the simulation nu-

merically stable. As the simulation progresses, the kinetic energy growth rates for all

meshes converge to the same physical result.

To explore the error associated with mesh distortions a L∞ norm is calculated.

Figures 9.5 through 9.9 show four time slices of a cross section of the L∞ norm plotted

on their respective meshes. Additionally the 3D structure of the L∞ error norm can be
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seen in Figures 9.10 and 9.11 for the cases of no mesh deformation and a random mesh

deformation (rand = 0.030) respectively. Notice that in areas of high mesh deformation

significant errors can result.

The L∞ norm is useful for studying the absolute error associated with a solution on

a mesh. It does not however, take into account the size of the mesh elements. The L2

norm can be calculated by integrating the absolute error over the domain volume. This

yields a quantitative result for the total global error of the solution. Figures 9.12 plots

the L2 error norm of the ŷ-momentum (ρvy) in time for several of the different meshes

with increasing amount of distortion. Additionally Figure 9.13 shows a semilog plot

of the L2 error norm of the kinetic energy in time for the same meshes. In both of

these figures it is clear that having larger mesh distortions yields solutions with larger

errors. This fact remains true throughout the duration of the simulation.

The aim of this study is not only to show how distortions impact the solution error,

but to be able to quantify the error a priori from the mesh itself. Similar to the study in

Chapter 6, various mesh metrics are computed for each of the meshes, and the results

compared to the global error norms. Figure 9.14 shows a comparison of the computed

mesh metrics to the normalized values of the global error norms for increasing degree

of mesh deformation. Notice that the error norms follows the trend of the product of

Knupp [39] metics well as in the analysis in Chapter 6.

Another important aspect of these results is the fact that the error metrics increase

when moving from the deformation degree of rand = 0.20 to rand = 0.25. This is merely

because the deformation applied is random, and by chance when creating the mesh,

it did not have as significant distortions as the rand = 0.20 case. If several meshes

with this amount of ‘random’ deformation were created, and the results for the error

metrics averaged, it would be expected to become more monotonic with respect to the

rand parameter. Figure 9.14 shows how the fsize metric increases when moving from

a deformation degree of rand = 0.20 to rand = 0.25, suggesting a better quality mesh.

The simulation L2 and L∞ error norms from rand = 0.20 to rand = 0.25 confirm the

more well behaved mesh predicted by the metrics.
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(a) τA = 0 (b) τA = 4

(c) τA = 8 (d) τA = 16

Figure 9.5: Time sequence of the cross sections of the radial dimension x − y showing
the L∞ error norm for the case of no deformation.



136

(a) τA = 0 (b) τA = 4

(c) τA = 8 (d) τA = 16

Figure 9.6: Time sequence of the cross sections of the radial dimension x − y showing
the L∞ error norm for the case with a ‘random’ mesh deformation (rand = 0.010).
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(a) τA = 0 (b) τA = 4

(c) τA = 8 (d) τA = 16

Figure 9.7: Time sequence of the cross sections of the radial dimension x − y showing
the L∞ error norm for the case with a ‘random’ mesh deformation (rand = 0.020).
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(a) τA = 0 (b) τA = 4

(c) τA = 8 (d) τA = 16

Figure 9.8: Time sequence of the cross sections of the radial dimension x − y showing
the L∞ error norm for the case with a ‘random’ mesh deformation (rand = 0.030).
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(a) τA = 0 (b) τA = 4

(c) τA = 8 (d) τA = 16

Figure 9.9: Time sequence of the cross sections of the radial dimension x − y showing
the L∞ error norm for the case with a ‘random’ mesh deformation (rand = 0.040).
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(a) τA = 0 (b) τA = 4

(c) τA = 8 (d) τA = 16

Figure 9.10: Time sequence the L∞ error norm for the case of no deformation showing
a cutaway of the 3D geometry.
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(a) τA = 0 (b) τA = 4

(c) τA = 8 (d) τA = 16

Figure 9.11: Time sequence the L∞ error norm for the case of a ‘random’ deformation
(rand = 0.30) showing a cutaway of the 3D geometry.
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Figure 9.12: L2 error norm of the y-momentum, ρvy in time for a nonlinear simulation
of a Z-pinch m = 1 kink mode simulation with varying levels of ‘random’ deformations
in the x − y plane. The meshes used have an effective resolution of 36 × 36 × 12 with
np = 3.
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Figure 9.13: L2 error norm of the kinetic energy in time for a nonlinear simulation of
a Z-pinch m = 1 kink mode simulation with varying levels of ‘random’ deformations
in the x − y plane. The meshes used have an effective resolution of 36 × 36 × 12 with
np = 3.
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Figure 9.14: Inverse error norms and mesh quality metrics for varying ‘random’ defor-
mation. Error norms and metrics are normalized to range from 1 to 0, where 1 is an
undeformed element, and 0 is a degenerate element. Both the inverse L2 norm and the
inverse L∞ norm are plotted. The Knupp fsize, fshape, and fskew as well as products of
the Knupp metrics are plotted. This result is for a normalized time τA = 5.417.

9.5 Conclusions

The technique here can be used in practice by computing the mesh metrics of a poten-

tial computational mesh, and then estimating the expected increase in solution error

for those particular metrics. Consider the case where the degree of random defor-

mation is rand = 0.20 (Figure 9.14). This correlates to an approximate metric value

fsizefshape = 0.3. Since inverse error is plotted the expected increase in error due to

this metric value is 0.3−1 = 3.33. The computed value of the normalized inverse L2

error norm for this case is about 0.35, which corresponds to an error approximately

2.86 times the undeformed case. This result is close enough to be useful in predicting

solution error and can be used as guide for determining a priori whether or not a mesh

is of acceptable quality.

The results here are promising as it provides consistency between the different

problems analyzed using this technique in chapter 6. Additionally it validates its via-
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bility for use in realistic problems with experimentally relevant solution magnitudes.
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Chapter 10

APPLICATION TO A HIT-SI GEOMETRY
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A major motivation throughout the recent developments of multi-block geometric

capabilities is to have the ability to model non-axisymmetric, and non-simply con-

nected complex geometries. The HIT-SI geometry fits this description, and the ability

to model HIT-SI with an accurate computational domain is a significant achievement.

All of the development advancements described in this dissertation are necessary to

accurately and successfully model problems with the HIT-SI geometry. The geometry

is sufficiently complex that a CAD drawing is needed for the geometric specification.

Figure 10.1 shows a CAD drawing of the HIT-SI computational domain imported into

CUBIT. Along with the ability to read the complex geometry, advanced mesh genera-

tion is needed. CUBIT will provide the necessary means of partitioning and meshing

the geometry. The geometry will also require an unstructured multi-block description

in order for HiFi to handle the domain. Additionally, since the geometry is complex,

mesh distortions are likely, and a means of quantifying the severity of the distortions is

necessary through the mesh quality metric analysis. All these pieces must be present

to have a successful simulation, and makes the simulation of HIT-SI geometry a good

milestone to meet in the development of a useful engineering design tool.

A detailed physics study of the HIT-SI experiment is not planned, but rather sim-

ulations that demonstrates all the code developments made that are described in this

dissertation. A study of the HIT-SI experiment requires a significant amount of spatial

and temporal resolution, and the amount of time and computational resources neces-

sary to perform a study is out of the scope of this dissertation. Although, an accurate

3D HIT-SI geometry is represented in the multi-block HiFi framework and has been

proven to work with MHD equations, and conducting wall boundary conditions. This

is a major milestone and is intended to be the ground work for future detailed physics

studies of HIT-SI with an accurate 3D representation.

10.1 HIT-SI Geometry Creation

In order to handle the complex geometry shown in Figure 10.1 for use in the multi-

block framework, the geometry is partitioned into blocks. These blocks must be logical
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Figure 10.1: Sample CAD file of HIT-SI geometry imported into CUBIT using an ACIS
file.
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cubes, and their faces conformal with the other blocks. With complex geometries, such

as the HIT-SI geometry, this can sometimes require many blocks. The CUBIT software

handles the partitioning and more details of this process are included in Appendix A.

Figure 10.2 shows both a top and side view of a resulting partitioning of the HIT-SI

geometry described in the CAD file. This particular case uses 101 blocks, and captures

all geometric aspects of the HIT-SI experimental configuration.

10.2 Mesh Assessment and Improvement

After creation of the block partitions of the geometry, the blocks are meshed to create

a global mesh of the domain. During this process careful consideration of the mesh

quality must be made in order to minimize the potential for introducing errors in the

solution.

In order to make the process of creating a mesh with minimal distortions more effi-

cient, some automation of the process is desirable. This is possible during some of the

stages of creating a mesh by using smoothers, a change in resolution, or a change in

block partitioning. Due to the fact that the multi-block framework was designed for

structured block elements only, it still requires manual partitioning or repartitioning

of the geometry. The mesh metric analysis can however guide the process of reparti-

tioning by calculating the mesh metrics of the original geometry, and identifying areas

that need improvement.

10.2.1 Identification of Problematic Mesh Areas

The first step to improving a mesh quality is to identify the problematic areas. One can

do this by visual inspection, but a more useful technique is to use mesh quality metrics

to analyze the mesh. A first check one could use is the Jacobian metric. This metric

has the property of being less then or equal to zero when elements are degenerate.

Having degenerate elements will typically not allow solvers to converge to a solution.

An example of where degenerate elements can occur is the region of the HIT-SI

geometry where the injectors meet the main confinement region. An isolated view of
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(a)

(b)

Figure 10.2: Top and side view of block partitions for the HIT-SI geometry.
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Figure 10.3: Isolated view of a region of the HIT-SI mesh with degenerate elements.

the surface mesh resulting in this region are shown in Figure 10.3. The Jacobian and

Shape metrics [2] are shown in Figure 10.4. Notice the Jacobian metric is negative in

the region, and subsequently the Shape metric is zero signifying the mesh elements

are degenerate.

Additionally, the mesh shown in Figure 10.3 has a simple injector footprint, with

two symmetrical blocks. This block shape is similar to that of the ‘square-to-circle’

mapping, and is prone to highly distorted elements, especially as the resolution is

refined. Table 10.1 shows the minimum mesh metric values for the Shape, Shear, and

Table 10.1: Minimum mesh metric values for the injector footprint surface mesh with
various resolutions.

Resolution Shape Shear Jacobian
2× 4 0.0850 0.105 0.1460
4× 8 0.0437 0.0537 0.0188
8× 16 0.0229 0.0282 0.00246
16× 32 0.0125 0.0154 0.000336

Jacobian metrics computed on various resolution of the injector footprint mesh. Notice

all of the metrics decline with increased resolution, and therefore the mapping for this

particular block is flawed.

The surface surrounding the injector footprint, as well as the injector footprint itself
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0.883

0.662

0.440

0.218

-0.0035

(a) Jacobian Metric

0.888

0.666

0.444

0.222

 0.000

(b) Shape Metric

Figure 10.4: Jacobian and Shape metrics computed on a region of the HIT-SI mesh
with degenerate elements.

both have problematic meshes. The level of distortion is determined by examining

the mesh metrics for these areas. In the case of the blocks surrounding the injector,

the mesh Jacobian is negative signifying that something must be done to improve the

mesh, otherwise the solution will not converge. In the case of the injector footprint, the

metric values are small, signifying a poor mesh. Additionally when the mesh is refined

the metrics decrease further, suggesting the area is problematic.

10.2.2 Mesh Improvement by Smoothers

A simple means of correcting the degenerate elements identified around the injec-

tor footprint (Figure 10.3) is to apply a smoother to the mesh. An elliptic Winslow

smoother [2] is applied, and the mesh is no longer degenerate. Figure 10.5 shows

the Jacobian and Shape metrics computed after applying a Winslow smoother. The

smoothing process improved the mesh and eliminated degenerate elements. Other

mesh smoothers could be used, and several of the available smoothers in the CUBIT

software were tested with this particular mesh. Table 10.2 shows results for various

smoothers and the resulting minimum mesh metric values for each.
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0.883

0.667

0.451

0.235

 0.019

(a) Jacobian Metric

0.888

0.673

0.459

0.244

 0.029

(b) Shape Metric

Figure 10.5: Jacobian and Shape metrics computed on a region of the HIT-SI mesh
after applying a Winslow smoother to degenerate elements.

Table 10.2: Minimum mesh metric values for various smoothers applied to the surface
with degenerate elements shown in Figure 10.3. The resolution of the surface is 12×18.

Smoother Shape Shear Jacobian
No Smoothing 0.0000 0.0000 -0.00732
Centroid Area 0.0379 0.0606 0.1230

Winslow 0.0516 0.0766 0.1420
Smart Laplacian 0.0000 0.0000 -0.2340

Mean Ratio 0.0953 0.1200 0.1750
Laplacian 0.0423 0.0620 0.1130

Condition Number 0.1440 0.1330 0.1660

10.2.3 Mesh Improvement by Introducing More Block Partitions

The block configuration shown in Figure 10.2 is acceptable for creating a mesh, but the

metric values indicate a poor mesh, and a refinement of the mesh further decreases the

metrics values. Smoothers in this case also do not improve the mesh. Another means of

improving the mesh is further partitioning of the geometry into more favorable block

shapes. The improved shape of the blocks subsequently can improve the resulting

mesh and the quality of the simulations on these meshes. Figure 10.6 shows a configu-

ration where the footprint of the injectors have increased partitioning. This increases
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Figure 10.6: Top view of an alternative block partitioning for the HIT-SI geometry
where the injector footprints have been further partitioned.

the total block count, but overall has the potential to reduce the simulation error when

using the mesh. Figure 10.7 shows example meshes of the original injector footprint,

and the more complex partitioning.

In order to improve the mesh in this circumstance, blocks are introduced to fur-

ther partition into shapes that have more favorable mesh mappings. Similar to the

five block cylinder mesh described in Section 8.4 and shown in Figure 8.4(a), the injec-

tor footprint can be partitioned as shown in Figure 10.6. Figure 10.7 shows example

meshes with both the simple and more complex injector footprint. With the same num-

ber of elements the minimum mesh metric values for Shape, Shear and Jacobian are

0.406, 0.533, and 0.0659 respectively. This is about a five times increase for the Shape

and Shear metrics, and it is expected that more accurate simulations result on this
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(a) (b)

Figure 10.7: Examples meshes with a simple 2 block injector footprint and a more
complex partitioning with 8 blocks.

mesh. Table 10.3 shows the comparison between the two injector footprint configura-

tions.

Table 10.3: Minimum mesh metric values for the two injector footprint surface meshes
shown in Figure 10.7.

Injector Shape Shear Jacobian
2 Block 0.0850 0.1050 0.1460
8 Block 0.4060 0.5330 0.0659

An example mesh using the 209 block configuration is shown in Figure 10.8, and

details of the mesh are shown in Figure 10.9.

10.3 Heat Equation Solution using a HIT-SI Mesh

An anisotropic heat equation solution is computed on the mesh shown in Figures 10.8,

and 10.9 to demonstrate the ability of the multi-block framework to handle the complex

geometric shape of the HIT-SI experiment. A Gaussian torus shape is initialized in the

domain, and falls off such that temperature is initially zero at the boundary. The

heat conduction anisotropy is aligned in the ŷ-direction and is considered the parallel
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Figure 10.8: Multi-block mesh of a HIT-SI geometry using 209 blocks and 676,512
linear finite elements



156

(a) (b)

(c) (d)

Figure 10.9: Cutaway and detail of the HIT-SI multi-block mesh
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direction. The thermal conduction is preferential along the parallel direction and is 10

times that of the perpendicular directions.

Figure 10.10 shows the solution evolution at 0, 2 · 10−3, 10−2, and 10−1 diffusion

times. The diffusion time is approximately τD ≈ D/L2, where D is the magnitude of

the diffusion operator, and L is the length scale of the domain. It can be seen that

as the solution evolves the initial torus shape elongates more in the ŷ-direction. A

zeroflux boundary condition prevents thermal conduction through the wall, and is ev-

ident as significant temperature reaches the boundary. By the end of the simulation,

the temperature has made it into the injectors, demonstrating that the multi-block

framework can deal with the complex geometry.

10.4 Global Error Reduction with Improved Mesh

The idea behind the improvements made to a mesh as described in Section 10.2 is

to have a reduction in total global error of the solution. This is tested by comparing

the error in solution when comparing the simple 2 block injector footprint partitioning

with that of the 8 block partitioning. The test problem is the same anisotropic heat

conduction equation as described above in Section 10.3. Both meshes are identical oth-

erwise and both have smoother applied to mesh blocks that have degenerate elements.

The only major difference is the injector footprint blocks, which penetrate through the

entire domain. Table 10.4 shows results for the different mesh metric values for each

of the meshes, and the corresponding global error norm |L2|.

Table 10.4: Minimum mesh metric values for the global volume and injector footprint
surface mesh with for the two injector footprint configurations.

Mesh Metric 2 Block 8 Block
Global Shear 0.0692 0.0692
Global Shape 0.0420 0.0420
Injector Shear 0.0850 0.5330
Injector Shape 0.1050 0.4060

Normalized Global Error |L2| 0.3852 0.3731
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(a) t = 0 (b) t = 2 · 10−3

(c) t = 10−2 (d) t = 10−1

Figure 10.10: Solution to the anisotropic heat equation using the 209 block HIT-SI
mesh. The anisotropy is aligned in the ŷ-direction, where the heat conduction is 10
times that of perpendicular directions.
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A noticeable reduction in the total global error is computed with the improved

mesh. The error reduction could be larger if the injector footprints were a larger part of

the global domain. The injector footprint blocks are only a fraction of the total volume,

and the rest of the mesh is identical to that of the simpler block configuration.

10.5 Further Mesh Improvement for MHD Simulations

The previous sections use the heat equation as a test problem. The heat equation is a

simple dissipative scalar system that can easily converge on distorted meshes. More

complex coupled equation systems with vector variables and dispersive operators have

a more difficult time converging on distorted meshes. With the MHD equation system

as described in Chapter 5 and 8.4.1, the same mesh used for the heat equations is

found to be problematic and does not properly converge to a solution.

After further investigation using the mesh metric analysis, a problem area of the

mesh was identified. The detailed HIT-SI mesh included features with rapid curvature

in a small area. Figure 10.11(a) shows a closeup of a region with the curvature. In this

scenario in order to have more well behaved elements either the curvature must be

resolved, or the curvature removed. In the case of the HIT-SI mesh, it would create an

unreasonably large mesh to fully resolve the curvature in the geometry, and therefore

makes the most sense to remove these regions.

The mesh metric values at these regions of rapid curvature proved to have the most

degenerate elements in the total mesh. After truncating these features from the mesh,

the metrics improved. Table 10.5 shows the values for the metrics before and after the

rapid curvature regions are truncated. Figure 10.11 shows the mesh with and without

the curvature. The shape metric about a 6.5 times larger then the case with poor

curvature, signifying an overall improvement of the mesh. With this mesh in place,

the MHD equation system converges properly.
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Table 10.5: Minimum mesh metric values for the global volume with and without the
fine curvature features in the geometry.

Mesh Metric w/ Curvature Features w/o Curvature Features
Global Shear 0.0692 0.0992
Global Shape 0.0420 0.2740

(a) Mesh with Poor Curvature Geometry (b) Mesh with Poor Curvature Removed from Ge-
ometry

Figure 10.11: A closeup cutaway view of a region of the HIT-SI geometry mesh where
the injector meets the main confinement region. Meshes with and without small cur-
vature features are shown and the arrow points to the region where the curvature is
poor. The mesh metrics are improved in the mesh without the curved region.

10.6 Toroidal MHD Pinch Simulation in the HIT-SI Geometry

A test problem to exercise the complex three dimensional geometry with the MHD

equation system is devised. It involves a pinch wrapped into a torus shape within the

HIT-SI geometry. This problem is sufficient to demonstrate that there are no geometry

and boundary issues associated with the complex mesh, and that the MHD solution

converges properly and provides the correct qualitative solution.

A torus is initialized with a pinch of magnetic field (via vector potential) and given

a uniform density and pressure. The initial condition is advanced in time and immedi-
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ately a ~j× ~B force from the toroidal current and poloidal magnetic field begins to pinch

the plasma. Additionally a pressure profile builds to balance the magnetic pressure

satisfying

∇p = ~j × ~B. (10.1)

After the pressure and magnetic field balance, the pinch begins to resistively decay.

Figure 10.12 shows a cutaway of the pressure in the domain over time. It can be seen

that the pressure rises to a peak pressure at t = 3.3 while pinching down on its axis.

After the pinch is in equilibrium, it can be seen that the pressure drops due to the

fact that the pinch is resistively decaying. Similarly the magnitude of the current

density is shown in Figure 10.13 for the same time sequence. By looking at the peak

current magnitude it can be seen that it peaks at t = 3.3 and then begins to drop due

to resistive decay. Cutaways profiles of the pressure and current density are shown in

Figures 10.12 and 10.13 because the solution is approximately axisymmetric around

the torus.

10.7 Spheromak MHD Simulation in HIT-SI Geometry

The HIT-SI experiment creates a spheromak in the confinement region and thus a

more interesting test problem in the geometry is evolving a spheromak equilibrium.

The full three-dimensional HIT-SI geometry with the injectors does not have a simple

analytical description for a spheromak equilibrium, but one can be found by solving

a Taylor minimum energy state eigenvalue problem. The Taylor minimum energy

state problem solution can be found numerically for a specific geometry, but requires a

specialized solver like PSITET. Interpolation errors when importing a PSITET equilib-

rium solution into HiFi are problematic and requires significant mesh resolution. An

approximate equilibrium can be found by ignoring the injectors and solving the Grad-

Shafranov equation in a 2D toroidal cross section, but this also involves a numerical

solution.

An even simpler approximation is the Grad-Shafranov solution for a cylindrical

geometry, which has an exact analytic description. The cylindrical equilibrium can
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(a) t = 0.5 (b) t = 1.0

(c) t = 2.0 (d) t = 2.5

(e) t = 3.3 (f) t = 4.1

Figure 10.12: Pressure values over time for a pinch in a torus shape. The initial
pressure is uniform at unity and over time it pinches to a balance the ~j × ~B forces at
t = 3.3. After the plasma reaches force balance, the pinch begins to resistively decay.
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(a) t = 0.5 (b) t = 1.0

(c) t = 2.0 (d) t = 2.5

(e) t = 3.3 (f) t = 4.1

Figure 10.13: Current magnitude over time for a pinch in a torus shape. The ~j × ~B
forces pinch the plasma until a pressure balance is met at t = 3.3 and then it begins to
resistively decay.
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be placed into the HIT-SI shape, and then a elliptic relaxation problem solved as de-

scribed in section 5.2 for the vector potential with additional boundary conditions. This

ensures the vector potential does not have a tangential component at the boundary and

gives good approximate spheromak equilibrium in the HIT-SI geometry.

Figure 10.14 shows a cutaway of the x̂-component of the vector potential in the

HIT-SI geometry. Notice the field drops to zero at the boundaries. Figure 10.15 shows

a vector field representation of the vector potential ~A, contours of the magnitude of

vector potential | ~A|, and streamlines of the current density ~J . This solution is after

approximately one tenth of an Alfvén time, which is not enough time to expect in-

teresting dynamics, but it does demonstrate the ability to solve MHD in a complex

geometry, with an experimentally relevant initial condition.

From here there are many possibilities to simulate relevant and interesting phe-

nomenon to the HIT-SI experiment. One could improve the initial condition to include

the injectors, drive the spheromak by including an RFP in the injectors, or add pertur-

bations to drive various instabilities. This simulation is meant to show that it is pos-

sible to run effective simulations in the complex fully three-dimensional multi-block

geometry and is intended to be a springboard for future investigations.
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Figure 10.14: Cutaway of the azimuthal component of the vector potential Aθ for a
spheromak equilibrium in the HIT-SI geometry



166

Figure 10.15: Vector plot of vector potential ~A, contours of the vector potential mag-
nitude | ~A|, and streamlines of the current density ~J of a spheromak initial condition
advanced in time with the MHD equations. The simulation time is t ≈ 0.2τA
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Chapter 11

CONCLUSIONS
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The main motivation for the work in this dissertation is to be able to model physical

systems of interest with predictive capabilities in a user friendly manner for use as an

effective engineering design tool. Its primary focus is a design and research tool for

plasma physics, but its applicability extends beyond the plasma science community.

The hope is that one will find the tool and methodology effective for solving a broad

range of scientific problems.

The work in this dissertation began with a two dimensional academic research code.

After the accomplishments made throughout this work, the code now allows a user to

use the developments as an engineering design tool with a three dimensional repre-

sentation, a CAD interface, mesh generator capabilities, and an a priori mesh quality

estimation technique to produce reliable and accurate simulations with complex ge-

ometries and equation systems. The individual pieces of development described are

important for an engineering design tool, but the methodology of starting from a CAD

drawing and completing an accurate and reliable solution is also a significant achieve-

ment. This dissertation can be used as a guideline for following this methodology. Each

of the major pieces are summarized.

11.1 HiFi Verification

The three-dimensional HiFi code had only recently been expanded from the SEL code

when beginning this dissertation, and no physics modules had been written. A resis-

tive MHD model was written for the 3D HiFi code and therefore needed to be verified

before it could be accepted for general use. A linear MHD wave problem and nonlinear

spheromak tilt instability were chosen as test problems. Both test problems exhibited

the correct behavior and thus verified the numerical model.

Dissipative MHD waves were analyzed and confirmed to have the correct wave

speed and decay rates. Pure waves were initialized by first linearizing the equation

system and solving for the eigensystem. These initialized waves have known analytic

solutions and could be compared to the results computed by HiFi. The solution errors

when compared to an analytic solution were almost always less then 1% error.
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A nonlinear evolution of a spheromak was also chosen to verify the HiFi resistive

MHD model. A spheromak Taylor state was initialized in a cylindrical flux conserver

geometry and given a small perturbation. The spheromak demonstrated the tilt insta-

bility and relaxed to the correct Taylor minimum energy state.

11.2 A priori Mesh Quality Error Estimation Analysis

The main finding from the mesh deformation analysis is that for increasing amount of

distortion in a mesh, the total error increased, but the spectral convergence rates re-

mained intact. Additionally it is shown that the global error in simulations correlated

to the mesh quality metrics, and they could be used a priori to estimate the solution

error. The product of the Knupp metrics proved to be the most useful metrics in de-

termining the approximate solution error. The method was initially performed in 2D

and extended to 3D with similar behavior. Several equation systems and test prob-

lems were investigated with similar conclusions, suggesting the analysis has broad

applicability.

11.3 Multi-Block Development

The multi-block development is successfully implemented in the HiFi code, and thor-

oughly tested with several test problems. The framework is mostly invisible to the

user, and is a useful numerical tool for simulations with complex geometries. Simple

geometries like a five block cylinder are successfully tested, as well as more complex

configurations like a cylinder with extrusions or the HIT-SI like geometry.

11.4 Application to a Z-Pinch

The multi-block development is put to use by studying a Z-pinch m = 1 kink mode with

ZaP experimental parameters. The results of simulations are compared to a linear sta-

bility analysis and are shown to be in good agreement. A more complex cylindrical ge-

ometry with extrusions is used to model a recent design change to the ZaP experiment.

The results are consistent with experimental observations. Additionally simulations
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with axial shear flow above and below the theoretical stabilizing criteria demonstrates

stabilization and confirms the model.

11.5 Z-Pinch Mesh Deformation Analysis

The success of the initial mesh deformation analysis laid the foundation for using the

same analysis on a more realistic problem. A Z-pinchm = 1 kink mode simulation with

ZaP experimental parameters is analyzed in a multi-block geometry. Similar results

are obtained to that of the initial more simplistic mesh deformation analysis, which

is promising. The Z-pinch problem is evolved using the full nonlinear hyper-resistive

MHD equations in a multi-block geometry with experimentally relevant operating pa-

rameters. The fact that the metrics provide a good correlation to solution error in this

configuration is promising for general applicability of the technique.

11.6 Application to HIT-SI

A major motivation for the multi-block development and mesh deformation metrics

is to be able to create and use a complex mesh that results from the HIT-SI geome-

try. Using the developments of the multi-block framework and CAD interface a block

structured mesh is created for the HIT-SI geometry. Due to the complex features in the

mesh, degeneracies and poor mesh regions were discovered that would either cause the

solver to fail to converge or generate inaccurate results. The mesh deformation analy-

sis is then used to identify regions that need repair or improvement. It is shown that

with mesh improvement the solution accuracy improved in the HIT-SI geometry solv-

ing the heat equation. It was also shown that for more complex equation systems like

MHD, that tighter tolerances on the metrics are needed and that poor regions of the

mesh need to be improved or eliminated. This work ties together much of the previous

work in this dissertation.
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11.7 Final Summary

The work in this dissertation accomplishes the goal of creating an effective engineer-

ing design tool by combining several development pieces into a single coherent analysis

method. The research shows that one can now use the tool with a CAD representation,

an automatic mesh generator, and an a priori error analysis technique to estimate the

solution errors and identify problematic regions. The meshes can be refined through

the analyses to minimize the solution error. This gives experimentalists, computation-

alists and other scientists an effective way of analyzing their particular problem with

confidence the results will be accurate.
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MULTI-BLOCK HIFI USER MANUAL
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A.1 Obtaining HiFi-mb

The HiFi code can be downloaded via a subversion repository after communicating

with one of the primary developers and completing a user agreement form. The form

is displayed on the next page.



181

SEL code development project, up to version 2.3
Copyright (c) 2002-2007, Los Alamos National Laboratory.
HiFi (also known as SEL) code development project, versions 2.3-3.1
Copyright (c) 2007-2009, University of Washington.
Copyright (c) 2010-2011, University of Washington & Naval Research Laboratory.
Written by HiFi team with Vyacheslav S. Lukin and Alan H. Glasser as principle developers.
All rights reserved.

HiFi (SEL) User Agreement Form:

HiFi (SEL) is an open source code development project for solving systems of coupled non-linear PDEs
on (semi-)structured logically hexahedral (rectangular) grids that abides by the following BSD-style
license. The project has been supported, in part, by the U.S. Department of Energy. Before having
access to the code, you must agree to the conditions of the license that serve as additional
protections for the HiFi (SEL) code.

Terms of Agreement:

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1) Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.
3) Neither the name of the project nor the names of its developers may be used to endorse, promote,
or publish products derived from this software without specific prior written permission by one of the
principle developers.
4) Publications or figures made using results of the HiFi (SEL) code calculations will acknowledge
the HiFi (SEL) code.
5) It is understood that the HiFi (SEL) code is still under development and thus may not contain
all features that users may need/want for their problem of interest.
6) It is understood that the HiFi (SEL) project does not guarantee that support will always be
available to users of the code. In addition, it is understood that extensive support from a
HiFi (SEL) team member on a particular application generally implies that any publication derived
from the application will include that team’s member(s) as a co-author.

THIS SOFTWARE IS PROVIDED BY HiFi team ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL neither any HiFi team member, nor the University of Washington, nor the
United States Government, nor any agency thereof, nor any of their employees BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

If you agree to the above terms and would like to download and/or use the HiFi (SEL) code, please fill
out this form and e-mail it to Vyacheslav Lukin at vlukin1@mailaps.org.

HiFi (SEL) Agreement form.

Name: ___________________________________________
Organization: ___________________________________________
Mailing Address: ___________________________________________
Mailing Address: ___________________________________________
Email Address: ___________________________________________
Requested username for Web access: ___________________________________________
Any comments or special requests:

I agree to the above Terms of Agreement and certify that the information submitted in the form is
true.
NAME: ___________________________________
DATE: ____________________________________
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A.2 Structure of the HiFi Code

The HiFi code has two major components: The main solver, and a physics module. The

main solver is compiled into a library called ‘libhifi.a’. The physics module is compiled

separately and then linked to this main solver library.

The main solver requires three major external libraries to work properly. The

PETSc [29, 28] library is essential to the code, as it relies on it for massively parallel

linear and nonlinear solvers, preconditioners, matrix and vector data structures, and

the majority of the MPI parallelism. The HDF5 [83] library is necessary for parallel

I/O of the HiFi output and restart (checkpoint) data. Additionally the NetCDF [84] li-

brary is used for reading external mesh files created by the CUBIT [2] software. These

libraries need to be compiled prior to compiling libhifi.a. They are common enough

that many of the large HPC machines (e.g. Hopper and Franklin at NERSC) have

these libraries compiled and are accessed by loading the appropriate modules using a

command like module load pets/3.1.04 .

A.3 Compiling Main Solver Library

The main solver library can be compiled in a unix/linux environment using the ‘make’

command with one of the included ‘makefiles’. It requires a Fortran compiler, and

below is an example makefile for use on the Hopper machine at NERSC. In the header

the appropriate modules for loading the required external libraries are listed. One

must make sure be sure to check the compiler flags, which are included in the FFLAGS

environment variable. In this particular case the Portland Group (PGI) compiler is

used. Other Fortran compiler such as Cray, Intel, and GNU have also been tested and

successfully compile the code.

# This i s the makefile f or l i b h i f i . a on Hopper .
# Before compiling , load the necessary modules with
# the fol lowing commands :
#
# module load petsc /3.1.04
# module load hdf5−para l l e l
# module load netcdf
#

FFLAGS = −O3 −Munroll=c :4 −Msave \
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$ (HDF5) $ (NETCDF) −I$ (HDF5 DIR)
FC = ftn $ (FFLAGS)
F90 = ftn $ (FFLAGS)

OBJECTS = \
i o . o \
l o c a l . o \
debug . o \
spl ine . o \
bicube . o \
j a cob i . o \
bessel . o \
cubit3d . o \
beltrami . o \
job3 . o \
p 3 h i f i . o \
p3 ct . o \
p3 grid . o \
p3 condense . o \
p3 inter ior . o \
p3 face . o \
p3 r j . o \
p3 diagnose . o \
p3 snes . o \
p3 advance . o \
driver . o

h i f i : $ (OBJECTS) chkopts
ar −r l i b h i f i . a $ (OBJECTS)
rm −f ∗ . cpp ∗ . i

include $ (PETSC DIR ) / conf / variables
include $ (PETSC DIR ) / conf / rules

#dependencies

l o c a l . o : i o . o
debug . o : l o c a l . o
spl ine . o : l o c a l . o
bicube . o : spl ine . o
jacob i . o : l o c a l . o
bessel . o : l o c a l . o
cubit3d . o : l o c a l . o
beltrami . o : j a cob i . o bicube . o
job3 . o : beltrami . o cubit3d . o
p 3 h i f i . o : job3 . o debug . o
p3 diagnose . o : p 3 h i f i . o
p3 ct . o : p3 diagnose . o
p3 condense . o : p 3 h i f i . o
p3 inter ior . o : p3 ct . o
p3 face . o : p3 ct . o
p3 r j . o : p3 condense . o p3 inter ior . o p3 face . o
p3 snes . o : p3 r j . o
p3 grid . o : p3 snes . o
p3 advance . o : p3 grid . o
driver . o : p3 advance . o

realc lean : clean
rm −f ∗ . o ∗ .mod ∗ . out ∗ . bin ∗ . dat ∗ . f l d ∗ . d i f f ∗ . err ∗ ˜ temp∗
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A.4 Physics Module Creation and Compiling

A physics module that links with the HiFi library is the main user interface. It allows

the user to specify parameters, initial conditions, boundary conditions, the equation

system, and the geometry. This separates the user from the core code, such that they

can focus on their specific equation system and unique problem of interest.

First the physics module must be created. A template physics module is included

with the code called ‘physics_templ.f’. This file is a template for all the required

functions that are called by the main solver. Additional complete physics modules (e.g.

vmhd.f, heat.f, spheromak.f) are also included with the code.

For compiling the physics module, and linking to the main solver, and the exter-

nal libraries, there is an included makefile. It is similar to the main solver makefile,

but in this case it only compiles the desired physics modules, and then links to the

main solver and external libraries. Prior to invoking the make command one must

specify the environment variable PHYSICS, which should have the same name as the

<physics>.f file. An example makefile is included below. The resulting executable

file will be named from the PHYSICS environment variable.

# This i s the makefile f or HiFi on Hopper .
# Before compiling HiFi , load the necessary modules with
# the fol lowing commands :
#
# module load petsc /3.1.04
# module load hdf5−para l l e l
# module load netcdf
#
# Then , export PHYSICS environment variable to be the name of
# the [ physics templ ] . f appl icat ion f i l e you would l i k e to
# compile with the fol lowing command:
#
# export PHYSICS=physics templ
#
# where ” physics templ ” should be replaced with the name of
# your physics appl icat ion f i l e .
#

FFLAGS = −O3 −Munroll=c :4 −Msave \
−I . / so lver \
$ (HDF5) $ (NETCDF) −I$ (HDF5 DIR)

FC = ftn $ (FFLAGS)
F90 = ftn $ (FFLAGS)

# l i b r a r i e s

LIBS = \
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−L . / so lver − l h i f i \
$ (PETSC FORTRAN LIB) \
$ (PETSC LIB) \
$ (HDF5) \
$ (NETCDF)

# o b j e c t s

OBJECTS = \
$ (PHYSICS ) . o

# targe t s

a l l : l i b h i f i $ (PHYSICS)

l i b h i f i :
cd . / so lver ; make

$ (PHYSICS ) : $ (OBJECTS) chkopts
$ (FLINKER) −o $ (PHYSICS) $ (OBJECTS) $ (LIBS)
rm −f ∗ . cpp ∗ . i

include $ (PETSC DIR ) / conf / variables
include $ (PETSC DIR ) / conf / rules

#dependencies

$ (OBJECTS) : so lver / l i b h i f i . a

realc lean : clean
rm −f ∗ . o ∗ .mod ∗ . out ∗ . bin ∗ . dat ∗ . f l d ∗ . d i f f ∗ . err ∗ ˜ temp∗ \
HiFi . o∗ $ (PHYSICS)

A.5 CAD Model Import and Mesh Creation With CUBIT

In many cases, especially with complex geometries, one will want to use an external

mesh file rather then analytically specifying the logical to physical mapping for the

domain geometry. In the multi-block formulation each block must have a logical to

physical mapping, further necessitating the need for an external mesh generation.

One way to do this is with the CUBIT software, which can read in CAD files, partition

the volume into blocks, and create a hexahedral mesh. This appendix section will be a

tutorial on how accomplish the creation of a successful mesh.

A.5.1 CAD file input

Importing CAD files in CUBIT is simple. The native format used in CUBIT is ACIS,

which is a common format that many CAD programs can export. One can either use

the GUI menus (File → Import...) command line, or a script file to give the import
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command. The command line/script statement looks like:

import acis ‘ ‘/ path/to/ file /HIT SI CAD.sat’ attributes on separate bodies’,

and will create a volume in CUBIT. Figure A.1 shows a screen shot of resulting volume

imported into the software.

A.5.2 Alternative: Geometry Creation Within CUBIT

An alternative method of creating a geometry is to use the native CAD tools within

the CUBIT program. One can either use the GUI interface or a command line/script

interface. The documentation for how to use the software is found on the the CUBIT

website [85].

An example script of geometry creation is shown below. In this particular case the

HIT-SI confinement region is created. It first creates the cross-sectional surface, and

then rotates the surface to define the volume.

##########################
## Create HIT−SI Geometry
##########################
# CUBIT 13.0 Build 46571
##########################
reset

#{rad=1.796051}
#{ sq ra t i o =1.75}

#######################
## Create Surface
#######################
# Ver t i c e s
create vertex 0 0 0
create vertex 0 4.03430245 0
create vertex 1.79605122 4.77825122 0
create vertex 25.46802561 28.45022561 0
create vertex 25.84 29.34825122 0
create vertex 25.84 29.6731 0
create vertex 40.34294648 29.6731 0
create vertex 40.34294648 27.75568243 0
create vertex 40.48152483 27.17880719 0
create vertex 52.45754091 3.69032476 0
create vertex 53.58896256 2.9972 0
create vertex 55.60218540 2.9972 0
create vertex 55.60218540 0 0

# Arc Centers
create vertex 0 6.574302 0
create vertex 24.57 29.348251 0
create vertex 41.612946 27.755682 0
create vertex 53.588963 4.2672 0
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Figure A.1: CUBIT Screenshot showing a CAD volume that has been imported
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# Curves
create curve vertex 1 vertex 2
create curve arc center vertex 14 2 3 radius 2.54
create curve vertex 3 vertex 4
create curve arc center vertex 15 4 5 radius 1.27
create curve vertex 5 vertex 6
create curve vertex 6 vertex 7
create curve vertex 7 vertex 8
create curve arc center vertex 16 8 9 radius 1.27
create curve vertex 9 vertex 10
create curve arc center vertex 17 10 11 radius 1.27
create curve vertex 11 vertex 12
create curve vertex 12 vertex 13
create curve vertex 13 vertex 1

# Delete Arc Center Ver t i c e s
delete vertex 14 15 16 17

# Surface
create surface curve 1 2 3 4 5 6 7 8 9 10 11 12 13

## Re f l e c t Surfaces
Surface 1 copy r e f l e c t y nomesh

## Unite the Surfaces
unite volume 1 2

## Rotate the Surface to Create the Volume
sweep surface 1 yaxis angle 360

A.5.3 Geometry Partitioning

The geometry partitioning is a more involved process, and requires careful consider-

ation of the topological shape of each partition. The multi-block framework requires

that each partition, or block be a logical cube, such that a structured mapped mesh can

be created for each.

There are several tools in the CUBIT software to accomplish a successful partition-

ing. The main tool used is called a webcut. This tool allows one to cut up a volume or

collection of volumes into partitions using several geometric constructs. These include

planes, other volumes, swept surfaces, swept curves, and more. A full list of possible

ways to webcut a volume is in the CUBIT documentation [85]. Like any of the features

in CUBIT, they can be accomplished either through the GUI or command line/script.

Below is an example script that partitions the HIT-SI geometry into logical cube blocks.

##########################
## Create HIT−SI Geometry
##########################
# CUBIT 13.0 Build 46571
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##########################
reset

#{rad=1.796051}
#{ sq ra t i o =1.75}
#{ i n j s q r a t i o =1.25}
#{ i n j s q =4.1529/ i n j s q r a t i o }

##########################
## Import the CAD Geometry
##########################
import ac is ” / Users / wlowrie / Dropbox / codes / HiFi−mb grids / HIT SI CAD . sat ” attr ibutes on

separate bodies

imprint a l l
merge a l l

# Delete I n j e c t o r s From Geometry ( They Have a Small Error )
webcut volume 1 with plane yplane o f f s e t 29.6731 noimprint nomerge
webcut volume 1 with plane yplane o f f s e t −29.6731 noimprint nomerge
delete Volume 2
delete Volume 1

## Create the I n j e c t o r s with Correct Geometry
create vertex 9.293423 29.6731 29.195499
create vertex 0 29.6731 25.84 on curve 35
create vertex −9.293423 29.6731 29.195499
create vertex −9.293423 29.6731 37.000398
create vertex 0 29.6731 40.342946 on curve 36
create vertex 9.293423 29.6731 37.000398
create vertex −7.873047 29.6731 33.097949
create vertex 7.873047 29.6731 33.097949

create curve vertex 85 vertex 86 on surface 2
create curve vertex 86 vertex 87 on surface 2
create curve arc center vertex 91 87 88 radius 4.1529 on surface 2
create curve vertex 88 vertex 89 on surface 2
create curve vertex 89 vertex 90 on surface 2
create curve arc center vertex 92 90 85 radius 4.1529 on surface 2

create vertex −7.873047 29.6731 {33.097949+ i n j s q /2}
create vertex −7.873047 29.6731 {33.097949− i n j s q /2}
create vertex 7.873047 29.6731 {33.097949+ i n j s q /2}
create vertex 7.873047 29.6731 {33.097949− i n j s q /2}

create curve vertex 88 vertex 99 on surface 2
create curve vertex 99 vertex 100 on surface 2
create curve vertex 100 vertex 87 on surface 2
create curve vertex 99 vertex 101 on surface 2
create curve vertex 101 vertex 90 on surface 2
create curve vertex 101 vertex 102 on surface 2
create curve vertex 102 vertex 85 on surface 2
create curve vertex 102 vertex 100 on surface 2

create surface curve 135 141 140 139 on surface 2
create surface curve 142 140 146 144 on surface 2
create surface curve 143 138 145 144 on surface 2
create surface curve 145 133 146 134 141 on surface 2
create surface curve 142 139 136 137 143 on surface 2
delete Vertex 91 92

sweep surface 77 76 75 78 74 vector 0 1 0 distance 3.3782
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sweep surface 77 76 75 78 74 axis 0 33.0513 0 1 0 0 angle −180
sweep surface 77 76 75 78 74 vector 0 −1 0 distance 3.3782

Volume 4 5 6 7 8 copy rotate 180 about z nomesh
rotate Volume 9 10 11 12 13 angle 90 about Y include merged

imprint a l l
merge a l l

webcut volume 3 sweep surface 89 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 84 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 105 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 94 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 100 vector 0 −1 0 distance 60

webcut volume 3 sweep surface 77 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 76 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 75 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 74 vector 0 −1 0 distance 60
webcut volume 3 sweep surface 78 vector 0 −1 0 distance 60

webcut volume 3 sweep surface 208 vector 0 1 0 distance 60
webcut volume 3 sweep surface 191 vector 0 1 0 distance 60
webcut volume 3 sweep surface 177 vector 0 1 0 distance 60
webcut volume 3 sweep surface 163 vector 0 1 0 distance 60
webcut volume 3 sweep surface 225 vector 0 1 0 distance 60

webcut volume 3 sweep surface 207 vector 0 1 0 distance 60
webcut volume 3 sweep surface 162 vector 0 1 0 distance 60
webcut volume 3 sweep surface 176 vector 0 1 0 distance 60
webcut volume 3 sweep surface 190 vector 0 1 0 distance 60
webcut volume 3 sweep surface 224 vector 0 1 0 distance 60

imprint a l l
merge a l l

#######################
## Part i t ion the Geometry
#######################
## Make Radial Cuts with Center Cylinder/Square
brick x {rad / sq ra t i o } y {2∗4.7782512} z {rad / sq rat i o }
rotate Volume 34 angle 45 about Y
chop volume 3 with volume 34

webcut volume 36 28 24 26 29 31 33 with plane zplane noimprint nomerge
webcut volume 37 23 21 19 36 15 17 18 with plane xplane noimprint nomerge

imprint a l l
merge a l l

webcut volume 36 48 44 37 with cyl inder radius 53.58896256 axis y
webcut volume 52 53 54 55 with cyl inder radius 52.45754091 axis y
webcut volume 56 57 58 59 with cyl inder radius 40.342946 axis y
webcut volume 60 61 62 63 with cyl inder radius 25.84 axis y
webcut volume 64 65 66 67 with cyl inder radius 1.79605122 axis y
webcut volume 64 65 66 67 with cyl inder radius 25.46802561 axis y
webcut volume 56 57 58 59 with cyl inder radius 40.48152483 axis y

imprint a l l
merge a l l

webcut volume 60 61 62 63 with cyl inder radius 30.63894373 axis y
webcut volume 60 61 63 62 with cyl inder radius 38.14966793 axis y
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imprint a l l
merge a l l

create curve vertex 509 vertex 472
create curve vertex 510 vertex 471
webcut volume 85 81 61 32 29 31 33 43 42 41 30 87 62 82 22 46 45 47 19 23 21 20 63 86 83

27 39 40 38 24 26 28 25 80 84 60 14 15 17 18 49 50 16 51 sweep curve 1709 yaxis
angle 360

webcut volume 87 62 82 41 30 42 43 29 31 33 32 85 61 81 16 51 50 49 18 17 15 14 84 60 80
25 24 26 28 38 40 39 27 83 86 63 23 20 45 21 19 47 46 22 sweep curve 1710 yaxis
angle 360

delete Curve 1709 1710

imprint a l l
merge a l l

webcut volume 5 7 8 4 6 with plane xplane noimprint nomerge
webcut volume 11 13 10 12 9 with plane zplane noimprint nomerge
webcut volume 179 9 181 180 12 11 10 13 with plane yplane o f f s e t −33.0513 noimprint

nomerge
webcut volume 177 4 176 178 8 5 7 6 with plane yplane o f f s e t 33.0513 noimprint nomerge

imprint a l l
merge a l l

Notice the ‘imprint all’ and ‘merge all’ statements. They simplify the model by com-

bining vertices, curves, and faces that are conformal into a single entity. This is essen-

tial before meshing, so that CUBIT knows to match the mesh on conformal geometric

features. Figure A.2 shows a screenshot of a CUBIT geometry partitioned into blocks.

Each block is represented by a different color.

A.5.4 Mesh Creation

Once the geometry is partitioned into logical blocks, the mesh can be created. The

partitions are created as logical blocks, such that a mapped structured mesh can be

created within each one. Each block is effectively meshed separately, but will depend

on any conformal adjacent block edges and faces that have been previously meshed.

In order to make sure one creates the desired mesh, the intervals of each edge can be

specified explicitly. Additionally one must make careful consideration of the intervals

on of the block and make sure it is devisable by intended polynomial degree np to

be used in the simulation. When the meshing process is scripted, one can make the

intervals an input parameter such that many different resolution can be created with

minimal effort. Below is an example script of the mesh creation process.
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Figure A.2: CUBIT Screenshot showing a partitioned volume, where each color repre-
sents a different block.
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#######################
## Create HIT−SI Mesh
#######################
# CUBIT 13.0 Build 46571
#######################
reset

#######################
## Import the Geometry
#######################
open ” / Users / wlowrie / Dropbox / codes / HiFi−mb grids / HIT SI Geometry InjSq1250 . cub ”

####################
## Set the Mesh Sizes
####################
#{np=3}
#{sq nxz=6∗np}
#{diag nxz1=6∗np}
#{diag nxz2=12∗np}
#{diag nxz3=6∗np}

#{ ctr diag1 =4∗np}
#{ ctr diag2 =8∗np}

#{diag dnstc=2∗np}

#{ in j rad =4∗np}
#{ inj gap ny=1∗np}
#{ i n j r i s e r n y =1∗np}
#{ in j =18∗np}

#{ny=8∗np}

####################
## Center Cylinder
####################
# Top Side
curve 892 894 885 889 1109 1143 1249 1211 interval {sq nxz}
curve 892 894 885 889 1109 1143 1249 1211 scheme bias fac tor 1.0
curve 1090 916 1195 910 interval {diag nxz1}
curve 1090 916 1195 910 scheme bias fac tor 1.0
surface 554 441 575 644 616 scheme map
mesh surface 554 441 575 644 616

# y−Length
curve 1458 1475 884 888 886 1468 1457 891 interval {ny}
curve 1458 1475 884 888 886 1468 1457 891 scheme bias fac tor 1.0

# Bottom Side
curve 1114 887 893 1244 890 1142 1219 883 interval {sq nxz}
curve 1114 887 893 1244 890 1142 1219 883 scheme bias fac tor 1.0
curve 1089 909 1196 917 interval {diag nxz1}
curve 1089 909 1196 917 scheme bias fac tor 1.0

# Volumes
volume 35 70 71 68 69 scheme Map
mesh volume 35 70 71 68 69

####################
## Conic Section
####################
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# Top Side
curve 1212 692 1108 688 1144 777 1250 775 interval {sq nxz}
curve 1212 692 1108 688 1144 777 1250 775 scheme bias fac tor 1.0
curve 1194 911 1091 915 interval {diag nxz2}
curve 1194 911 1091 915 scheme bias fac tor 1.0
curve 912 1193 914 1092 interval {np}
curve 912 1193 914 1092 scheme bias fac tor 1.0
surface 576 553 617 643 scheme map
mesh surface 576 553 617 643
surface 645 577 618 552 scheme map
mesh surface 645 577 618 552

# y−Length
curve 684 533 592 768 interval {ny}
curve 684 533 592 768 scheme bias fac tor 1.0
curve 1487 1498 1488 1505 interval {ny}
curve 1487 1498 1488 1505 scheme bias fac tor 1.0

# Bottom Side
curve 1141 1218 1115 1245 691 690 778 773 interval {sq nxz}
curve 1141 1218 1115 1245 691 690 778 773 scheme bias fac tor 1.0
curve 918 1094 908 1197 interval {diag nxz2}
curve 918 1094 908 1197 scheme bias fac tor 1.0
curve 913 1192 907 1093 interval {np}
curve 913 1192 907 1093 scheme bias fac tor 1.0

# Volumes
volume 72 75 74 73 scheme Map
mesh volume 72 75 74 73

# Thin Volumes
volume 64 65 66 67 scheme Map
mesh volume 64 65 66 67

#######################
## Center Section
#######################
# Top Side
curve 692 2187 2196 749 688 2040 2029 752 777 1871 1869 835 775 1713 1711 839 interval {

sq nxz}
curve 692 2187 2196 749 688 2040 2029 752 777 1871 1869 835 775 1713 1711 839 scheme bias

fac tor 1.0
curve 2055 2126 2186 1727 1728 1840 1897 1968 interval { ctr diag1}
curve 2055 2126 2186 1727 1728 1840 1897 1968 scheme bias fac tor 1.0
curve 2169 2199 1712 1714 1856 1872 2011 2041 interval { ctr diag2}
curve 2169 2199 1712 1714 1856 1872 2011 2041 scheme bias fac tor 1.0
curve 2212 1739 1738 1809 1885 1981 2027 2155 interval { ctr diag1}
curve 2212 1739 1738 1809 1885 1981 2027 2155 scheme bias fac tor 1.0

surface 1239 931 1045 1151 scheme map
mesh surface 1239 931 1045 1151
surface 1247 921 1027 1141 scheme map
mesh surface 1247 921 1027 1141
surface 1257 939 1037 1133 scheme map
mesh surface 1257 939 1037 1133

# y−Length
curve 533 684 592 768 interval {ny}
curve 533 684 592 768 scheme bias fac tor 1.0
curve 2689 2658 2523 2821 2851 2358 2357 2460 interval {ny}
curve 2689 2658 2523 2821 2851 2358 2357 2460 scheme bias fac tor 1.0
curve 2687 745 2791 2625 575 2521 2491 831 2355 2356 659 2864 interval {ny}
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curve 2687 745 2791 2625 575 2521 2491 831 2355 2356 659 2864 scheme bias fac tor 1.0

# Bottom Side
curve 778 2509 2511 836 753 2677 2675 691 690 2842 2854 750 773 2343 2345 838 interval {

sq nxz}
curve 778 2509 2511 836 753 2677 2675 691 690 2842 2854 750 773 2343 2345 838 scheme bias

fac tor 1.0
curve 2445 2372 2370 2843 2809 2704 2643 2538 interval { ctr d iag1}
curve 2445 2372 2370 2843 2809 2704 2643 2538 scheme bias fac tor 1.0
curve 2496 2512 2660 2678 2828 2855 2344 2346 interval { ctr d iag2}
curve 2496 2512 2660 2678 2828 2855 2344 2346 scheme bias fac tor 1.0
curve 2526 2612 2692 2778 2869 2359 2360 2478 interval { ctr d iag1}
curve 2526 2612 2692 2778 2869 2359 2360 2478 scheme bias fac tor 1.0

# Smooth Surfaces that Need I t
surface 939 921 931 1257 1247 1239 1037 1027 1045 1133 1141 1151 smooth scheme winslow
smooth surface 939 921 931 1257 1247 1239 1037 1027 1045 1133 1141 1151
surface 939 921 931 1257 1247 1239 1037 1027 1045 1133 1141 1151 smooth scheme mean rat io

cpu 10
smooth surface 939 921 931 1257 1247 1239 1037 1027 1045 1133 1141 1151

# Volumes
volume 154 red is t r ibute nodes on
volume 154 autosmooth target o f f
volume 154 scheme Sweep source surface 1247 target surface 1557 rotate o f f
volume 154 sweep smooth Copy
mesh volume 154
volume 166 red is t r ibute nodes on
volume 166 autosmooth target o f f
volume 166 scheme Sweep source surface 1141 target surface 1671 rotate o f f
volume 166 sweep smooth Copy
mesh volume 166
volume 132 red is t r ibute nodes on
volume 132 autosmooth target o f f
volume 132 scheme Sweep source surface 1027 target surface 1345 rotate o f f
volume 132 sweep smooth Copy
mesh volume 132
volume 143 red is t r ibute nodes on
volume 143 autosmooth target o f f
volume 143 scheme Sweep source surface 921 target surface 1451 rotate o f f
volume 143 sweep smooth Copy
mesh volume 143

volume 156 155 165 167 134 133 145 144 scheme Map
mesh volume 156 155 165 167 134 133 145 144

#######################
## I n j e c t o r Footprints
#######################
# Top Side
curve 2300 2286 2254 2241 1780 1767 1824 1811 1926 1924 1983 1970 2083 2096 2142 2128

interval { ctr d iag1}
curve 2300 2286 2254 2241 1780 1767 1824 1811 1926 1924 1983 1970 2083 2096 2142 2128

scheme bias fac tor 1.0
curve 1712 2299 2253 2224 2199 2169 2141 2095 2068 2041 2011 1997 1923 1910 1872 1856 1825

1779 1751 1714 interval { ctr d iag2}
curve 1712 2299 2253 2224 2199 2169 2141 2095 2068 2041 2011 1997 1923 1910 1872 1856 1825

1779 1751 1714 scheme bias fac tor 1.0
curve 1954 1969 1984 1939 1907 1909 1841 1766 1812 1795 1752 1750 2285 2313 2269 2240 2223

2225 2127 2158 2111 2065 2067 2082 interval { in j rad }
curve 1954 1969 1984 1939 1907 1909 1841 1766 1812 1795 1752 1750 2285 2313 2269 2240 2223

2225 2127 2158 2111 2065 2067 2082 scheme bias fac tor 1.0
surface 967 957 1007 997 987 1017 947 977 scheme map
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mesh surface 967 957 1007 997 987 1017 947 977
surface 1305 1315 1335 1325 1295 1285 1275 1265 scheme map
mesh surface 1305 1315 1335 1325 1295 1285 1275 1265
surface 1229 1199 1209 1219 1189 1179 1169 1159 scheme map
mesh surface 1229 1199 1209 1219 1189 1179 1169 1159
surface 1093 1123 1113 1103 1073 1063 1083 1053 scheme map
mesh surface 1093 1123 1113 1103 1073 1063 1083 1053

# y−Length
curve 2561 2559 2575 2626 2642 2591 interval {ny}
curve 2561 2559 2575 2626 2642 2591 scheme bias fac tor 1.0
curve 2808 2792 2758 2742 2728 2726 interval {ny}
curve 2808 2792 2758 2742 2728 2726 scheme bias fac tor 1.0
curve 2893 2908 2939 2891 2973 2926 interval {ny}
curve 2893 2908 2939 2891 2973 2926 scheme bias fac tor 1.0
curve 2396 2409 2394 2426 2475 2459 interval {ny}
curve 2396 2409 2394 2426 2475 2459 scheme bias fac tor 1.0

# Bottom Side
curve 2447 2464 2414 2384 2961 2914 2881 2930 2794 2780 2746 2732 2628 2614 2565 2582

interval { ctr d iag1}
curve 2447 2464 2414 2384 2961 2914 2881 2930 2794 2780 2746 2732 2628 2614 2565 2582

scheme bias fac tor 1.0
curve 2496 2461 2415 2400 2346 2344 2975 2929 2896 2855 2828 2793 2747 2678 2660 2627 2581

2550 2512 interval { ctr diag2}
curve 2496 2461 2415 2400 2346 2344 2975 2929 2896 2855 2828 2793 2747 2678 2660 2627 2581

2550 2512 scheme bias fac tor 1.0
curve 2381 2448 2479 2430 2399 2383 2962 2943 2897 2882 2880 2913 2812 2779 2762 2729 2715

2713 2646 2613 2564 2549 2547 2595 interval { in j rad }
curve 2381 2448 2479 2430 2399 2383 2962 2943 2897 2882 2880 2913 2812 2779 2762 2729 2715

2713 2646 2613 2564 2549 2547 2595 scheme bias fac tor 1.0

# Volumes
volume 170 168 171 174 173 172 169 175 149 148 147 150 151 152 153 146 135 137 138 136 139

140 141 142 164 162 163 158 159 157 160 161 scheme Map
mesh volume 170 168 171 174 173 172 169 175 149 148 147 150 151 152 153 146 135 137 138

136 139 140 141 142 164 162 163 158 159 157 160 161

#######################
## Outter Section
#######################
# Top Side
curve 1242 1215 1137 1112 interval {sq nxz}
curve 1242 1215 1137 1112 scheme bias fac tor 1.0
curve 1206 920 1101 936 interval {diag nxz3}
curve 1206 920 1101 936 scheme bias fac tor 1.0
curve 1100 919 1198 928 interval {np}
curve 1100 919 1198 928 scheme bias fac tor 1.0
curve 1243 1136 1214 1113 interval {sq nxz}
curve 1243 1136 1214 1113 scheme bias fac tor 1.0
surface 620 558 634 568 scheme map
mesh surface 620 558 634 568
surface 559 619 635 567 scheme map
mesh surface 559 619 635 567

# y−Length
curve 1518 1517 1535 1528 interval {ny}
curve 1518 1517 1535 1528 scheme bias fac tor 1.0
curve 1528 1428 1517 1417 1518 1418 1535 1435 interval {ny}
curve 1528 1428 1517 1417 1518 1418 1535 1435 scheme bias fac tor 1.0

# Bottom Side
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curve 1146 1247 1209 1105 interval {sq nxz}
curve 1146 1247 1209 1105 scheme bias fac tor 1.0
curve 926 1200 930 1098 interval {diag nxz3}
curve 926 1200 930 1098 scheme bias fac tor 1.0
curve 929 1099 927 1199 interval {np}
curve 929 1099 927 1199 scheme bias fac tor 1.0
curve 1210 1248 1147 1104 interval {sq nxz}
curve 1210 1248 1147 1104 scheme bias fac tor 1.0

# Volumes
volume 79 78 77 76 scheme Map
mesh volume 79 78 77 76
volume 56 59 58 57 scheme Map
mesh volume 56 59 58 57

#######################
## Diagnostic Gap
#######################
# Top Side
curve 1102 935 1205 921 interval {np}
curve 1102 935 1205 921 scheme bias fac tor 1.0
curve 1216 1111 1138 1241 interval {sq nxz}
curve 1216 1111 1138 1241 scheme bias fac tor 1.0
surface 569 557 633 621 scheme map
mesh surface 569 557 633 621
curve 934 1204 922 1103 interval {diag dnstc}
curve 934 1204 922 1103 scheme bias fac tor 1.0
curve 1110 1139 1239 1217 interval {sq nxz}
curve 1110 1139 1239 1217 scheme bias fac tor 1.0
surface 570 632 556 622 scheme map
mesh surface 570 632 556 622

# y−Length
curve 1398 1387 1388 1405 interval {ny}
curve 1398 1387 1388 1405 scheme bias fac tor 1.0
curve 1095 923 1203 933 interval {ny}
curve 1095 923 1203 933 scheme bias fac tor 1.0

# Bottom Side
curve 931 1097 925 1201 interval {np}
curve 931 1097 925 1201 scheme bias fac tor 1.0
curve 1246 1207 1145 1106 interval {sq nxz}
curve 1246 1207 1145 1106 scheme bias fac tor 1.0
curve 924 1202 932 1096 interval {diag dnstc}
curve 924 1202 932 1096 scheme bias fac tor 1.0
curve 1107 1140 1208 1240 interval {sq nxz}
curve 1107 1140 1208 1240 scheme bias fac tor 1.0

# Volumes
volume 53 52 54 55 scheme Map
mesh volume 53 52 54 55
volume 44 37 36 48 scheme Map
mesh volume 44 37 36 48

#######################
## I n j e c t o r Gaps
#######################
# Top Gap − Top Side
curve 689 1611 1639 748 687 1633 1673 751 776 1627 1689 834 774 1620 1657 837 interval {

sq nxz}
curve 689 1611 1639 748 687 1633 1673 751 776 1627 1689 834 774 1620 1657 837 scheme bias

fac tor 1.0
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curve 686 1034 1022 747 743 1016 1027 682 133 1261 1274 137 136 1282 1266 134 772 1054
1068 833 829 1076 1060 766 252 1178 1163 272 269 1158 1170 243 interval { ctr diag1}

curve 686 1034 1022 747 743 1016 1027 682 133 1261 1274 137 136 1282 1266 134 772 1054
1068 833 829 1076 1060 766 252 1178 1163 272 269 1158 1170 243 scheme bias fac tor 1.0

curve 735 725 1038 712 708 138 144 1269 140 135 819 809 1063 798 797 279 264 1168 256 260
interval { ctr diag2}

curve 735 725 1038 712 708 138 144 1269 140 135 819 809 1063 798 797 279 264 1168 256 260
scheme bias fac tor 1.0

curve 733 1015 710 680 1024 675 246 253 1156 1183 250 274 764 794 1078 1053 770 821 139
1284 143 145 1259 141 interval { in j rad }

curve 733 1015 710 680 1024 675 246 253 1156 1183 250 274 764 794 1078 1053 770 821 139
1284 143 145 1259 141 scheme bias fac tor 1.0

# y−Length
curve 744 2166 2151 2137 2136 2110 2092 685 2036 2079 2077 2050 interval { inj gap ny}
curve 744 2166 2151 2137 2136 2110 2092 685 2036 2079 2077 2050 scheme bias fac tor 1.0
curve 660 1938 1937 1992 1993 1978 1979 1116 1883 1921 1919 1881 interval { inj gap ny}
curve 660 1938 1937 1992 1993 1978 1979 1116 1883 1921 1919 1881 scheme bias fac tor 1.0
curve 943 1794 1778 769 1820 1821 1836 1851 1725 1762 1764 1723 interval { inj gap ny}
curve 943 1794 1778 769 1820 1821 1836 1851 1725 1762 1764 1723 scheme bias fac tor 1.0
curve 1726 2309 2296 1724 1220 2268 2252 1213 2195 2238 2236 2210 interval { inj gap ny}
curve 1726 2309 2296 1724 1220 2268 2252 1213 2195 2238 2236 2210 scheme bias fac tor 1.0

# Volumes
volume 88 red is t r ibute nodes on
volume 88 autosmooth target o f f
volume 88 scheme Sweep source surface 921 target surface 900 rotate o f f
volume 88 sweep smooth Copy
mesh volume 88
volume 122 red is t r ibute nodes on
volume 122 autosmooth target o f f
volume 122 scheme Sweep source surface 1247 target surface 888 rotate o f f
volume 122 sweep smooth Copy
mesh volume 122
volume 111 red is t r ibute nodes on
volume 111 autosmooth target o f f
volume 111 scheme Sweep source surface 1141 target surface 909 rotate o f f
volume 111 sweep smooth Copy
mesh volume 111
volume 99 red is t r ibute nodes on
volume 99 autosmooth target o f f
volume 99 scheme Sweep source surface 1027 target surface 919 rotate o f f
volume 99 sweep smooth Copy
mesh volume 99

volume 110 121 123 124 127 126 125 128 129 131 90 130 89 94 93 92 91 97 96 95 98 100 101
103 105 106 112 107 104 102 108 109 113 114 115 116 119 118 117 120 scheme Map

mesh volume 110 121 123 124 127 126 125 128 129 131 90 130 89 94 93 92 91 97 96 95 98 100
101 103 105 106 112 107 104 102 108 109 113 114 115 116 119 118 117 120

# Bottom Gap − Bottom Side
curve 601 1632 1671 665 603 1626 1687 662 537 1619 1655 578 536 1612 1641 579 interval {

sq nxz}
curve 601 1632 1671 665 603 1626 1687 662 537 1619 1655 578 536 1612 1641 579 scheme bias

fac tor 1.0
curve 400 1033 1023 439 437 1017 1028 402 531 1260 1275 577 573 1280 1267 535 406 1069

1055 371 384 1061 1074 410 589 1180 1164 657 661 1157 1169 594 interval { ctr diag1}
curve 400 1033 1023 439 437 1017 1028 402 531 1260 1275 577 573 1280 1267 535 406 1069

1055 371 384 1061 1074 410 589 1180 1164 657 661 1157 1169 594 scheme bias fac tor 1.0
curve 624 622 1166 637 649 287 294 1065 325 353 557 556 1271 510 514 367 339 1036 308 313

interval { ctr diag2}
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curve 624 622 1166 637 649 287 294 1065 325 353 557 556 1271 510 514 367 339 1036 308 313
scheme bias fac tor 1.0

curve 626 1154 1182 600 647 596 291 1051 350 343 1080 297 527 553 1286 512 507 1257 364
369 1013 311 314 1026 interval { in j rad }

curve 626 1154 1182 600 647 596 291 1051 350 343 1080 297 527 553 1286 512 507 1257 364
369 1013 311 314 1026 scheme bias fac tor 1.0

# y−Length
curve 1583 2884 2932 593 2347 2966 2349 2917 2857 2886 2899 2844 interval { inj gap ny}
curve 1583 2884 2932 593 2347 2966 2349 2917 2857 2886 2899 2844 scheme bias fac tor 1.0
curve 2784 2783 2799 2814 1552 2749 2733 1557 2680 2719 2717 2682 interval { inj gap ny}
curve 2784 2783 2799 2814 1552 2749 2733 1557 2680 2719 2717 2682 scheme bias fac tor 1.0
curve 576 2568 2584 534 2617 2618 2633 2649 2516 2554 2552 2514 interval { inj gap ny}
curve 576 2568 2584 534 2617 2618 2633 2649 2516 2554 2552 2514 scheme bias fac tor 1.0
curve 832 2417 2385 1571 2451 2452 2468 2484 2348 2402 2387 2350 interval { inj gap ny}
curve 832 2417 2385 1571 2451 2452 2468 2484 2348 2402 2387 2350 scheme bias fac tor 1.0

# Volumes
volume 87 red is t r ibute nodes on
volume 87 autosmooth target o f f
volume 87 scheme Sweep source surface 1345 target surface 918 rotate o f f
volume 87 sweep smooth Copy
mesh volume 87
volume 85 red is t r ibute nodes on
volume 85 autosmooth target o f f
volume 85 scheme Sweep source surface 1451 target surface 898 rotate o f f
volume 85 sweep smooth Copy
mesh volume 85
volume 86 red is t r ibute nodes on
volume 86 autosmooth target o f f
volume 86 scheme Sweep source surface 1671 target surface 908 rotate o f f
volume 86 sweep smooth Copy
mesh volume 86
volume 84 red is t r ibute nodes on
volume 84 autosmooth target o f f
volume 84 scheme Sweep source surface 1557 target surface 889 rotate o f f
volume 84 sweep smooth Copy
mesh volume 84

volume 62 82 30 43 42 41 29 31 33 61 32 81 51 16 49 50 15 18 17 14 60 80 25 28 26 24 38 40
39 27 63 23 21 19 20 45 46 47 22 83 scheme Map

mesh volume 62 82 30 43 42 41 29 31 33 61 32 81 51 16 49 50 15 18 17 14 60 80 25 28 26 24
38 40 39 27 63 23 21 19 20 45 46 47 22 83

#######################
## I n j e c t o r 1
#######################
# Top Side − I n j e c t o r Riser
curve 186 3014 3016 160 158 3026 3028 188 202 3015 3013 228 230 3027 3025 199 interval {

ctr diag1}
curve 186 3014 3016 160 158 3026 3028 188 202 3015 3013 228 230 3027 3025 199 scheme bias

fac tor 1.0
curve 168 172 3225 180 196 209 214 3226 222 238 interval { ctr d iag2}
curve 168 172 3225 180 196 209 214 3226 222 238 scheme bias fac tor 1.0
curve 212 204 3206 3237 232 208 162 3205 155 190 3236 170 interval { in j rad }
curve 212 204 3206 3237 232 208 162 3205 155 190 3236 170 scheme bias fac tor 1.0
curve 169 171 163 161 159 3012 3007 187 189 179 157 156 255 245 3010 3009 254 247 244 249

262 273 251 interval { i n j r i s e r n y }
curve 169 171 163 161 159 3012 3007 187 189 179 157 156 255 245 3010 3009 254 247 244 249

262 273 251 scheme bias fac tor 1.0

# Riser Volumes
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volume 206 212 209 211 198 202 204 200 199 201 205 210 203 208 207 213 scheme Map
mesh volume 206 212 209 211 198 202 204 200 199 201 205 210 203 208 207 213

# I n j e c t o r
curve 203 200 205 201 213 207 3011 221 3008 231 229 interval { i n j }
curve 203 200 205 201 213 207 3011 221 3008 231 229 scheme bias fac tor 1.0

# I n j e c t o r Volumes
volume 8 178 6 4 7 177 176 5 scheme Map
mesh volume 8 178 6 4 7 177 176 5

#######################
## I n j e c t o r 2
#######################
# Bottom Side − I n j e c t o r Riser
curve 427 3077 3099 387 390 3089 3067 425 385 3098 3076 412 408 3066 3088 373 interval {

ctr d iag1}
curve 427 3077 3099 387 390 3089 3067 425 385 3098 3076 412 408 3066 3088 373 scheme bias

fac tor 1.0
curve 356 328 3154 306 303 289 296 3153 326 354 interval { ctr diag2}
curve 356 328 3154 306 303 289 296 3153 326 354 scheme bias fac tor 1.0
curve 300 305 3144 3120 359 362 3143 3119 298 293 352 345 interval { in j rad }
curve 300 305 3144 3120 359 362 3143 3119 298 293 352 345 scheme bias fac tor 1.0
curve 288 292 295 290 374 3083 3063 407 346 318 323 351 310 307 309 312 436 3065 3085 399

363 335 338 366 interval { i n j r i s e r n y }
curve 288 292 295 290 374 3083 3063 407 346 318 323 351 310 307 309 312 436 3065 3085 399

363 335 338 366 scheme bias fac tor 1.0

# Riser Volumes
volume 184 187 189 183 196 194 190 192 186 191 197 193 195 185 182 188 scheme Map
mesh volume 184 187 189 183 196 194 190 192 186 191 197 193 195 185 182 188

# I n j e c t o r
curve 299 301 424 304 302 3064 3084 327 355 386 329 357 interval { i n j }
curve 299 301 424 304 302 3064 3084 327 355 386 329 357 scheme bias fac tor 1.0

# I n j e c t o r Volumes
volume 181 12 10 13 11 9 179 180 scheme Map
mesh volume 181 12 10 13 11 9 179 180

A.5.5 Block Creation

An important step before exporting the mesh to a file is the specification of block num-

bers. The user can decide what ordering they would like for the blocks, and this will be

how they are identified in HiFi. The following commands in CUBIT are used to create

the block numberings.

#######################
## Assign Blocks
#######################
set duplicate block elements o f f
# Center Cylinder
block 1 volume 35
block 2 volume 69
block 3 volume 70
block 4 volume 71
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block 5 volume 68

# Conic Section
block 6 volume 73
block 7 volume 74
block 8 volume 75
block 9 volume 72
block 10 volume 65
block 11 volume 66
block 12 volume 67
block 13 volume 64

# Center Section
block 14 volume 145
block 15 volume 134
block 16 volume 165
block 17 volume 156
block 18 volume 143
block 19 volume 132
block 20 volume 166
block 21 volume 154
block 22 volume 144
block 23 volume 133
block 24 volume 167
block 25 volume 155

block 26 volume 142
block 27 volume 139
block 28 volume 140
block 29 volume 141
block 30 volume 135
block 31 volume 137
block 32 volume 138
block 33 volume 136

block 34 volume 175
block 35 volume 173
block 36 volume 174
block 37 volume 170
block 38 volume 172
block 39 volume 171
block 40 volume 168
block 41 volume 169

block 42 volume 164
block 43 volume 163
block 44 volume 162
block 45 volume 161
block 46 volume 158
block 47 volume 159
block 48 volume 160
block 49 volume 157

block 50 volume 153
block 51 volume 152
block 52 volume 151
block 53 volume 150
block 54 volume 149
block 55 volume 148
block 56 volume 147
block 57 volume 146

# Outer Section
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block 58 volume 77
block 59 volume 78
block 60 volume 79
block 61 volume 76

block 62 volume 57
block 63 volume 58
block 64 volume 59
block 65 volume 56

# Diagnostic Gap
block 66 volume 53
block 67 volume 54
block 68 volume 55
block 69 volume 52

block 70 volume 48
block 71 volume 44
block 72 volume 37
block 73 volume 36

# I n j e c t o r Gap 1
block 74 volume 89
block 75 volume 101
block 76 volume 112
block 77 volume 121
block 78 volume 88
block 79 volume 99
block 80 volume 111
block 81 volume 122
block 82 volume 90
block 83 volume 100
block 84 volume 110
block 85 volume 123

block 86 volume 91
block 87 volume 92
block 88 volume 93
block 89 volume 94
block 90 volume 97
block 91 volume 96
block 92 volume 95
block 93 volume 98

block 94 volume 102
block 95 volume 105
block 96 volume 103
block 97 volume 104
block 98 volume 106
block 99 volume 108
block 100 volume 107
block 101 volume 109

block 102 volume 113
block 103 volume 114
block 104 volume 115
block 105 volume 116
block 106 volume 117
block 107 volume 118
block 108 volume 119
block 109 volume 120

block 110 volume 124
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block 111 volume 125
block 112 volume 126
block 113 volume 127
block 114 volume 128
block 115 volume 129
block 116 volume 131
block 117 volume 130

# I n j e c t o r Gap 2
block 118 volume 81
block 119 volume 82
block 120 volume 83
block 121 volume 80

block 122 volume 85
block 123 volume 87
block 124 volume 86
block 125 volume 84

block 126 volume 61
block 127 volume 62
block 128 volume 63
block 129 volume 60

block 130 volume 32
block 131 volume 29
block 132 volume 31
block 133 volume 33
block 134 volume 41
block 135 volume 42
block 136 volume 43
block 137 volume 30

block 138 volume 22
block 139 volume 47
block 140 volume 46
block 141 volume 45
block 142 volume 19
block 143 volume 21
block 144 volume 23
block 145 volume 20

block 146 volume 27
block 147 volume 39
block 148 volume 40
block 149 volume 38
block 150 volume 24
block 151 volume 26
block 152 volume 28
block 153 volume 25

block 154 volume 14
block 155 volume 15
block 156 volume 17
block 157 volume 18
block 158 volume 49
block 159 volume 50
block 160 volume 51
block 161 volume 16

# I n j e c t o r 1
block 162 volume 201
block 163 volume 199
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block 164 volume 203
block 165 volume 205
block 166 volume 210
block 167 volume 208
block 168 volume 207
block 169 volume 213

block 170 volume 212
block 171 volume 211
block 172 volume 209
block 173 volume 206
block 174 volume 198
block 175 volume 202
block 176 volume 204
block 177 volume 200

block 178 volume 4
block 179 volume 177
block 180 volume 176
block 181 volume 178
block 182 volume 7
block 183 volume 5
block 184 volume 8
block 185 volume 6

# I n j e c t o r 2
block 186 volume 193
block 187 volume 191
block 188 volume 195
block 189 volume 197
block 190 volume 186
block 191 volume 188
block 192 volume 182
block 193 volume 185

block 194 volume 184
block 195 volume 187
block 196 volume 189
block 197 volume 183
block 198 volume 190
block 199 volume 194
block 200 volume 196
block 201 volume 192

block 202 volume 11
block 203 volume 12
block 204 volume 10
block 205 volume 13
block 206 volume 181
block 207 volume 180
block 208 volume 179
block 209 volume 9

A.5.6 Mesh File Export

The last step in CUBIT before the mesh can be used in HiFi is exporting the mesh and

block data. This is a simple process and like any of the other processes in CUBIT can
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be done graphically via the GUI or by command. The export command can be included

at the end of the mesh script, and the command is shown below.

##########################
## Write the Mesh to Fi le
##########################
set large exodus f i l e o f f
export Genesis ” / Users / wlowrie / Desktop / HIT SI Mesh 209Block InjSq1250 Sq06 MR W np3 . g ”

dimension 3 block a l l

When exporting the mesh file to a Genesis filetype, it is important to make sure

it’s exported in 3D with the dimension 3 keyword, and all blocks are included with

block all keyword. This ensures that the file is in the correct format for HiFi, all

dimensional data is included, and all the block numberings are included in the output

file.

A.6 Input File (hifi.in) Specification

The hifi.in input file is similar to the single block version. The major difference is in the

‘block input’ list section. This includes a variable to specify the number of processor

cores per block. It is a list separated by spaces for each of the blocks. Additionally one

can optionally specify the block resolution and processor partitioning variables nx, ny,

nz, and nbx, and nbz. These are not required and are automatically determined from

the CUBIT mesh.

&algorithm input

so lve type=” condense ”
step type=” theta ”
theta =.5

adapt dt= f
e r r t o l =1.e−4
ksp restart =500
always pc reset=t
mat prealloc=t

itmax=100
itmax incr=4
itmax decr=5
dt incr =1.2
dt decr =.6

nodal= f
quad type=” gl0 ”

grid type=” cubit ”
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gr id inv type=” uniform ”
gr idto l1 =5e−2
gr idto l2 =1.

monitor=t
f d t e s t = f
mesh metrics= f

o u t f i l e t y p e =” hdf5 ”
para l l e l wr i t e=t
para l le l read=t

/

&universal input

np=3
nq=5

dt =1.e−9
dtmax=1.e−1
tmax=250.
nstep=2000
dmout=1

cubit BCs=f
c u b i t f i l e =” . . / . . / grids / HIT SI Meshes / HIT SI Mesh 209Block InjSq1250 Sq06 MR W np3

. g ”
outdir=” . . / . . / resu l ts / H20111017 209blk 001 / raw”
restart run=f
r e s t a r t i n i t = f
r e s t a r t d i r =” . ”
res tar t s tep =1
restart np=3
gr id step=0

/

&block input

mb diagnostics=t
proc per blk= 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 04 04
04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 72 72
72 72 72 72 72 72 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 72 72 72 72
72 72 72 72

/

&vmhd list

i n i t t y p e=”HIT−SI ”
source=f

lx =0.1
ly =0.1
l z =0.320
a=0.080

etar =0.e−3
mu=0e−3
muz=0e−3
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nu=0e−6
kap=0.e−1
rhod i f f =0
B0=2.0
rho0=1.0
p0=1.0
lambda=0.103366
kx=1.
ky=1.
vz shear =0.0
delta =0.e−3

/

A.7 Running HiFi-mb

Like HiFi, the HiFi-mb executables are run with whatever MPI executable commands

the particular system is using. For example one could use ‘mpirun’ or ‘mpiexec’ to

initiate the HiFi-mb executable. On large shared systems like those seen at NERSC

an other facilities, a resource manager and job scheduler are used. The user is required

to submit the job for execution using whatever system they have in place. For example

on the Hopper system at NERSC one would use a script like the one below to initiate

a job.

#PBS −N HiFi−mb
#PBS −A m489
#PBS −j oe
#PBS −S /bin/bash
#PBS −m abe

#PBS −q debug
#PBS −l walltime =00:10:00
#PBS −l mppwidth=3984
#PBS −l mppnppn=24

export CRAY ROOTFS=DSL
ulimit −S −c 0
cd $PBS O WORKDIR

aprun −n 3968 −N 24 . / vmhd \
−ksp type fgmres \
−pc type asm \
−pc asm overlap 1 \
−sub pc type lu \
−sub pc factor mat solver package super lu dist \
−ksp rto l 1e−10 \
−snes monitor \
−ksp monitor \
−o p t i o n s l e f t \
−log summary > log . out 2> log . err



208

Appendix B

EQUATION LINEARIZATION AND EIGENSYSTEM
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B.1 Linearization of the dissipative MHD equations and solving for the re-
sulting eigensystem

The linearization starts with the full dissipative MHD equation system:

∂

∂t


ρ

ρ~v

~A

1
γ−1p

+∇ ·


ρ~v

ρ~v~v − ~B ~B +
(
p+ 1

2
~B · ~B

)
~I − µ∇~v

−η∇ ~B
γ
γ−1p~v − κ∇T

 =


0

0

~v × ~B

(~v · ∇p+ η~j ·~j + µ(∇~v : ∇~v)


(B.1)

For clarity it is expanded out of its vector form as:
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∂

∂t



ρ

ρvx

ρvy

ρvz

Ax

Ay

Az

1
γ−1p



+
∂

∂x



ρvx

ρv2x + p+ 1
2
~B · ~B − (∂Az

∂y −
∂Ay

∂z )2 − µ ∂
∂x (ρvxρ )

ρvxvy − (∂Ax

∂z −
∂Az

∂x )(∂Az

∂y −
∂Ay

∂z )− µ ∂
∂x (

ρvy
ρ )

ρvxvz − (
∂Ay

∂x −
∂Ax

∂y )(∂Az

∂y −
∂Ay

∂z )− µ ∂
∂x (ρvzρ )

+η∇(
∂Ay

∂y + ∂Az

∂z )

−η∇∂Ay

∂x

−η∇∂Az

∂x

γ
γ−1pvx − κ

∂
∂x (pρ )



+
∂

∂y



ρvy

ρvyvx − (∂Az

∂y −
∂Ay

∂z )(∂Ax

∂z −
∂Az

∂x )− µ ∂
∂y (ρvxρ )

ρv2y + p+ 1
2
~B · ~B − (∂Ax

∂z −
∂Az

∂x )2 − µ ∂
∂y (

ρvy
ρ )

ρvyvz − (
∂Ay

∂x −
∂Ax

∂y )(∂Ax

∂z −
∂Az

∂x )− µ ∂
∂x (ρvzρ )

−η∇∂Ax

∂y

+η∇(∂Ax

∂x + ∂Az

∂z )

−η∇∂Az

∂y

γ
γ−1pvy − κ

∂
∂y (pρ )



+
∂

∂z



ρvz

ρvzvx − (∂Az

∂y −
∂Ay

∂z )(
∂Ay

∂x −
∂Ax

∂y )− µ ∂
∂z (ρvxρ )

ρvzvy − (∂Ax

∂z −
∂Az

∂x )(
∂Ay

∂x −
∂Ax

∂y )− µ ∂
∂z (

ρvy
ρ )

ρv2z + p+ 1
2
~B · ~B − (

∂Ay

∂x −
∂Ax

∂y )2 − µ ∂
∂z (ρvzρ )

−η∇∂Ax

∂z

−η∇∂Ay

∂z

+η∇(∂Ax

∂x +
∂Ay

∂y )

γ
γ−1pvz − κ

∂
∂z (pρ )



=



0

0

0

0

vy(
∂Ay

∂x −
∂Ax

∂y )− vz(∂Ax

∂z −
∂Az

∂x )

vz(
∂Az

∂y −
∂Ay

∂z )− vx(
∂Ay

∂x −
∂Ax

∂y )

vx(∂Ax

∂z −
∂Az

∂x )− vy(∂Az

∂y −
∂Ay

∂z )

(vx
∂
∂x + vy

∂
∂y + vz

∂
∂z )p+ η~j ·~j + µ(∇~v : ∇~v)


(B.2)

where,

~B · ~B = (∇× ~A) · (∇× ~A) =

(
∂Az
∂y
− ∂Ay

∂z

)2

+

(
∂Ax
∂z
− ∂Az

∂x

)2

+

(
∂Ay
∂x
− ∂Ax

∂y

)2

. (B.3)

From here each primary variable is assumed to be composed of a background quantity,
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and a perturbation quantity:

u = u0 + δũ, (B.4)

with δ assumed in the form

δ ≡ e−i(~k·~x−ωt). (B.5)

In this particular case, the background density and pressure are assumed to be uni-

form, and the background velocity is zero. For the magnetics, a uniform magnetic field

intensity aligned in the x̂-direction is assumed, and the other directions are zero. Equa-

tion B.4 is substituted into equation B.2. All terms higher than the first order pertur-

bation are removed, and the result is converted into a spectral space where ∂
∂t = −iω,

∂
∂x = ikx, ∂

∂y = iky, and ∂
∂z = ikz. The equations are simplified and result as:

• Equation 1:

− iωρ̃+ ikxρ0ṽx + ikyρ0ṽy + ikzρ0ṽz = 0 (B.6)

• Equation 2:

−iωρ0ṽx + ikxp̃+ µk2ṽx

−ikxBx0(ikyÃz − ikzÃy) + ikyBx0(ikzÃx1 − ikxÃz)− ikzBx0(ikxÃy − ikyÃx) = 0

(B.7)

• Equation 3:

−iωρ0ṽy + ikyp̃+ µk2ṽy

−ikxBx0(ikzÃx − ikxÃz) + ikyBx0(ikyÃz − ikzÃy) = 0 (B.8)

• Equation 4:

−iωρ0ṽz + ikz p̃+ µk2ṽz

−ikxBx0(ikxÃy − ikyÃx) + ikzBx0(ikyÃz − ikzÃy) = 0 (B.9)
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• Equation 5:

− iωÃx − kxkyηÃy − kxkzηÃz + k2
yηÃx + k2

zηÃx = 0 (B.10)

• Equation 6:

− iωÃy − kykxηÃx − kykzηÃz + k2
xηÃy + k2

zηÃy + iṽzBx0 = 0 (B.11)

• Equation 7:

− iωÃz − kzkxηÃx − kzkyηÃy + k2
xηÃz + k2

yηÃz − iṽyBx0 = 0 (B.12)

• Equation 8:

− iωp̃+ ikxγp0ṽx+ ikyγp0ṽy + ikzγp0ṽz + (γ−1)κk2 1

ρ0
p̃− (γ−1)κk2 p0

ρ2
0

ρ̃ = 0 (B.13)

B.1.1 Solve for Eigensystem

The simplified system of equations in spectral space can now be organized into an

eigenvalue problem of the form:

A~̃u = ω~̃u (B.14)

where,

~̃u =



ρ̃

ṽx

ṽy

ṽz

Ãx

Ãy

Ãz

p̃



(B.15)
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and

A =

0 kxρ0 kyρ0 kzρ0 0 0 0 0

0 − iµk2

ρ0
0 0 0 0 0 kx

ρ0

0 0 − iµk2

ρ0
0 − ikxkzBx0

ρ0
− ikykzBx0

ρ0
+
i(k2x+k2y)Bx0

ρ0

ky
ρ0

0 0 0 − iµk2

ρ0
+
ikxkyBx0

ρ0
− i(k2y+k2z)Bx0

ρ0
+
ikzkyBx0

ρ0
kz
ρ0

0 0 0 0 −i(k2
y + k2

z)η ikxkyη ikxkzη 0

0 0 0 +iBx0 +ikzkxη +ikzkyη −i(k2
x + k2

y)η 0

0 0 −iBx0 0 +ikzkxη +ikzkyη −i(k2
x + k2

y)η 0

i(γ−1)κk2p0
ρ20

kxγp0 kyγp0 kzγp0 0 0 0 − i(γ−1)κk2

ρ0


(B.16)

Equation B.14 can be solved as a eigenvalue problem. The resulting eigensystem from

this equation will find 8 different eigenvalues and eigenvectors. For the linearized

MHD case, 2 eigenvalues will be null, and the other six represent the forward and

backward propagating slow magnetosonic, fast magnetosonic, and shear Alfvén waves.

The corresponding eigenvectors represent the perturbation necessary to initialize the

particular wave.
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Appendix C

EQUATION NORMALIZATION
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C.1 Equations

C.1.1 Continuity Equation

∂ρ

∂t
+∇ · [ρv] = 0 (C.1)

ρ0

t0

∂ρ̃

∂t̃
+
ρ0v0

L0
∇̃ · [ρ̃ṽ] = 0 (C.2)

L0

t0v0

∂ρ̃

∂t̃
+ ∇̃ · [ρ̃ṽ] = 0 (C.3)

L0

t0v0
= 1 ⇒ t0 =

L0

v0
(C.4)

∂ρ̃

∂t̃
+ ∇̃ · [ρ̃ṽ] = 0 (C.5)

C.1.2 Momentum Equation

∂(ρv)

∂t
+∇ · [ρvv + pI− µ∇v] = j×B (C.6)

ρ0v0

t0

∂(ρ̃ṽ)

∂t̃
+

1

L0
∇̃ ·
[
ρ0v

2
0 ρ̃ṽṽ + p0p̃I−

v0

L0
µ∇̃ṽ

]
= j0B0(̃j× B̃) (C.7)

p0 = ρ0v
2
0 , µ̃ =

µt0
ρ0L2

0

ρ0v
2
0

∂(ρ̃ṽ)

∂t̃
+ ∇̃ ·

[
ρ0v

2
0 ρ̃ṽṽ + ρ0v

2
0 p̃I−

v0

L0
µ∇̃ṽ

]
= j0B0L0(̃j× B̃) (C.8)

∂(ρ̃ṽ)

∂t̃
+ ∇̃ ·

[
ρ̃ṽṽ + p̃I− µ̃∇̃ṽ

]
=
j0B0L0

ρ0v2
0

(̃j× B̃) (C.9)

µ0j = ∇×B ⇒ µ0j0L0

B0
j̃ = ∇̃ × B̃ (C.10)
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µ0j0L0

B0
= 1 ⇒ j0 =

B0

µ0L0

B2
0

µ0ρ0v2
0

= 1 ⇒ v2
A = v2

0 =
B2

0

µ0ρ0
⇒ vA = v0 =

B0√
µ0ρ0

∂(ρ̃ṽ)

∂t̃
+ ∇̃ ·

[
ρ̃ṽṽ + p̃I− µ̃∇̃ṽ

]
= (̃j× B̃) (C.11)

C.1.3 Ohm’s Law (Vector Potential) Equation

∂A
∂t

+∇ · [−ν∇j] = v×B− ηj (C.12)

A0

t0

∂Ã
∂t̃

+
1

L0
∇̃ ·
[
− j0
L0
ν∇̃j̃

]
= v0B0ṽ× B̃− j0ηj̃ (C.13)

A0v0
∂Ã
∂t̃

+ ∇̃ ·
[
− j0
L0
ν∇̃j̃

]
= v0B0L0ṽ× B̃− j0L0ηj̃ (C.14)

B = ∇×A ⇒ B0L0

A0
B̃ = ∇̃ × Ã (C.15)

B0L0

A0
= 1 ⇒ A0 = B0L0 (C.16)

B0L0v0
∂Ã
∂t̃

+ ∇̃ ·
[
− j0
L0
ν∇̃j̃

]
= v0B0L0ṽ× B̃− B0

µ0
ηj̃ (C.17)

ν̃ ≡ ν

µ0v0L3
0

, η̃ ≡ η

µ0v0L0

∂Ã
∂t̃

+ ∇̃ ·
[
−ν̃∇̃j̃

]
= ṽ× B̃− η̃j̃ (C.18)
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C.1.4 Pressure Equation(
1

γ − 1

)
∂p

∂t
+∇ ·

[
γ

γ − 1
pv− κ∇T

]
= v · ∇p+ ηj · j + µ(∇v : ∇v) (C.19)

ρ0v
3
0

(
1

γ − 1

)
∂p̃

∂t̃
+ ∇̃ ·

[
ρ0v

3
0

γ

γ − 1
p̃ṽ− κT0

L0
∇̃T̃
]

= ρ0v
3
0ṽ · ∇̃p̃+

B2
0

µ2
0L0

ηj̃ · j̃+
v2

0

L0
µ(∇̃ṽ : ∇̃ṽ)

(C.20)

κ̃ ≡ κT0

ρ0v3
0L0

(
1

γ − 1

)
∂p̃

∂t̃
+ ∇̃ ·

[
γ

γ − 1
p̃ṽ− κ̃∇̃T̃

]
= ṽ · ∇̃p̃+ η̃j̃ · j̃ + µ̃(∇̃ṽ : ∇̃ṽ) (C.21)

C.1.5 Current Density Equation

∇ · [(∇ ·A)I−∇A] = j (C.22)

1

L0
∇̃ ·
[
A0

L0
(∇̃ · Ã)I− A0

L0
∇̃Ã

]
=

B0

µ0L0
j̃ (C.23)

∇̃ ·
[
(∇̃ · Ã)I− ∇̃Ã

]
=

1

µ0
j̃ (C.24)

C.2 Summary of Normalizations

t0 =
L0

v0
, p0 = ρ0v

2
0 ,

j0 =
B0

µ0L0
, vA = v0 =

B0√
µ0ρ0

, A0 = B0L0

µ̃ =
µt0
ρ0L2

0

, ν̃ ≡ ν

µ0v0L3
0

, η̃ ≡ η

µ0v0L0
, κ̃ ≡ κT0

ρ0v3
0L0
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C.3 Initial Condition - Bennett Z-Pinch Profile

C.3.1 Vector Potential

B̃θ =
I0

2π

r

r2 + a2

1

B0
=⇒ Ãz = − I0

4π
Log[r2 + a2]

1

A0
(C.25)

Ãz = − I0

4π
Log[r2 + a2]

1

vA
√
µ0ρ0L0

(C.26)

C.3.2 Current Density

J̃z =
I0

µ0π

a2

(r2 + a2)2

1

j0
(C.27)

J̃z =
I0

µ0π

a2

(r2 + a2)2

√
µ0L0

vA
√
ρ0

(C.28)

C.3.3 Pressure

p̃ =
I2

0

µ08π2

a2

(r2 + a2)2

1

p0
(C.29)

p̃ =
I2

0

µ08π2

a2

(r2 + a2)2

1

ρ0v2
A

(C.30)
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