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Plasma photonic crystals have the potential to significantly expand the capabilities of current

microwave filtering and switching technologies by providing high speed (µs) control of energy

band-gap/pass characteristics in the GHz through low THz range. While photonic crystals

consisting of dielectric, semiconductor, and metallic matrices have seen thousands of articles

published over the last several decades, plasma-based photonic crystals remain a relatively

unexplored field. Numerical modeling efforts so far have largely used the standard methods

of analysis for photonic crystals (the Plane Wave Expansion Method, Finite Difference Time

Domain, and ANSYS finite element electromagnetic code HFSS), none of which capture

nonlinear plasma-radiation interactions. This thesis describes a set of tools implemented

in the Computational Plasma Dynamics Lab’s WARPXM finite element multi-physics code

to simulate, characterize, and analyze non-linear fluid effects of plasma photonic crystals.

The model is validated against theory, linear numerical models, and experimental results.

Additionally, novel cases are explored.
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Chapter 1

INTRODUCTION

Plasma based photonic crystals are a promising, and potentially powerful, method for con-

trolling microwaves. Photonic crystals are optic materials consisting of a periodic structure

that takes advantage of Bragg reflections to selectively transmit or reflect certain wavelengths

of light. Plasmonic metamaterials are man-made materials that use electron oscillations at

a metal-dielectric interface (surface plasmons) to achieve certain optical properties. Plas-

monic photonic crystals combine the effects of photonic crystals and plasmonics in a single

device. Plasma photonic crystals extend traditional metal based plasmonic photonic crystals

by adding high speed control of important transmission characteristics.

Why make plasmonic photonic crystals out of plasmas?

• Plasmas can access an under served frequency band. Plasmon resonances can

occur in the THz range, a underutilized portion of the electromagnetic spectrum.

• Fast control of photonic crystal properties. Plasmas are created when needed,

with lifetimes in the µs, for fast reconfiguration of lattice characteristics.

• Fast control of plasmonic properties. Plasma resonant frequencies can be con-

trolled through application of external EM fields.

• High energy applications. Absorption can be controlled through collisionality. Plas-

mas are not subject to phase-change at high temperatures.

• Self organization. Plasmas can produce stable (in the time scales of interest) periodic

structures. Potential devices could take advantage of naturally occurring periodicity

from plasma instabilities.

There exists a suite of techniques for predicting the behavior of both photonic crystals
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and plasmonics, which can be extended for use with plasmas. Generally, these tools assume

a linear response (low temperature plasma, small amplitude fields).

This research aims to use high-fidelity plasma models to explore non-linear plasma pho-

tonic crystal behavior in the limit where these low temperature, small field assumptions

break down.

As part of a Multi University Research Initiative grant from the Air Force Offices of

Scientific Research, the work described in this thesis is the assembly of a suite of numerical

tools for the characterization of plasma photonic crystals using a hierarchy of increasingly

more complex (and physically accurate) models. Using these tools, the limits of validity of

each model can be quantified. Perhaps the most exciting outcome will be the exploration of

how higher order effects could be used to further functionalize plasma photonic crystals.

In this thesis, we will discuss what progress has been made towards that objective. Val-

idation of the fluid model will be demonstrated, and the numerical exploration of a number

of plasmonic photonic crystal effects will be reviewed. Finally, next steps outlined.
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Chapter 2

WHAT ARE PLASMA PHOTONIC CRYSTALS?

To understand the theory and the motivation behind the investigation of plasma photonic

crystals, it is helpful to have a firm understanding of both photonic crystals and plasmonic

metamaterials.

2.1 Photonic crystals

Photonic crystals are optic materials consisting of a periodic structure that takes advantage

of Bragg reflections to selectively transmit or reflect certain wavelengths of light. Light

is transmitted or reflected based on its wavelength. The wavelength is determined by the

characteristic length of the periodic structure. For example, chameleon skin, a naturally

occurring example of a photonic crystal, controls the wavelength of light reflected through

active tuning of a lattice of guanine nanocrystals on their skin[33].

Photonic crystals can come in many different forms and configurations:

• Dimension. Photonic crystals can be one, two, or three dimensional.

• Periodicity. They be either regular (can be described by their lattice structure),

disordered[34], or regular with strategically located defects.
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• “Atom” shape. The shape of the sub unit is unlimited. Spheres, oblate spheroids,

holes, plates, squares, hexagons, ...

• Material. Photonic crystals can be composed of any material: dielectrics, metals,

semiconductors, liquids, gasses, plasmas, and any combination thereof.

Figure 2.1: Photonic crystals are categorized by dimension, lattice type (top left), unit shape
(top right), material, and whether or not they contain defects (bottom).

2.1.1 History of photonic crystals

Naturally occurring photonic crystals exist in both geology (opal) and biology (chameleon

skin, butterfly wings, bird feathers, abalone and oyster shells). When in the optical range

(periodic structures on the order of a few hundred nanometers) they appear iridescent to the

human eye.
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Figure 2.2: Opal and butterfly wings are naturally occurring examples of photonic crystals.

Human investigation of photonic crystals begins in 1887 when Lord Rayleigh showed that

multi-layer dielectric stacks have a band gap. Called dielectric mirrors, they are currently

used in thin-films for optical filters and paints.

Little progress was made for 100 years, until 1987 Eli Yablonovitch[42] and Sajeev John[9]

published two seminal papers where they proposed that photons in a periodic dielectric struc-

ture behave similarly to electron waves in a crystal lattice. This allowed for the adaptation

of band theory, which had seen considerable success in describing electron propagation in

semiconductors, to optics. In 1991 Yablonovitch and Gmitter claimed to have created the

first “photonic band gap” material, which they named Yablonovite, with a full band gap in

the microwave frequencies[41].

A number of theorists, namely K. Ming Leung of Polytechnic University, and Kai Ming

Ho of Iowa State University, became interested and modified their computational algorithms

used for computing electron bands for use on photonic crystals. While they eventually proved

that Yablonovite did not have a full band gap, they now had the tools to determine which

lattice configurations would. In the subsequent years interest exploded. A wide variety of

lattice structures were found to have either full or useful partial band gaps.

In 1998, Philip Russel at the University of Bath created the first photonic crystal fiber.

Its utility was instantly recognized, as it could achieve information carrying capacities of over
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Figure 2.3: (Left) “Yablonovite”, the first photonic crystal, developed by Yablonovitch and
Gmitter in 1991. (Right) a photonic crystal optical fiber.

100 times that of a conventional fiber[10]. While there has been a lot of exciting research

in photonic crystals and their applications in optoelectronics and optical computing, the

photonic crystal fiber remains the only commercially successful two dimensional photonic

crystal application to date.

Figure 2.4: A concept for an optical circuit composed entirely of two-dimensional photonic
crystal components[13]

Three dimensional photonic crystals films have only recently been able to make mean-

ingful progress. Nanofabrication techniques are only now reaching the levels of accuracy

and repeatability necessary to create large, tough films with decent optical properties. As a

result, photonic crystal films have recently been used to increase the off-angle efficiency of
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photovoltaic panels[11].

2.1.2 Photonic crystal theory

Photonic crystals work through electromagnetic wave interference. In a random, inhomo-

geneous media, the waves reflect off of material interfaces at random points, with random

directions. The direction of the original light would be hard to determine either from the

reflection, or from the light that penetrates the material, as in frosted glass.

But if instead of being random, the materials were arranged in a regular, repeating

pattern, the many reflections would add up. Patterns of constructive and destructive inter-

ference would emerge. The more reflections, the stronger and more defined the pattern. This

is analogous to the Fourier transform of a single frequency wave train: the more periods of

the wave that are captured, the sharper the peak in Fourier space. This pattern contains

information not only about the original light, but also the material it’s traveled through.

Figure 2.5: Graphical representation of Bragg’s Law. Wikipedia: Bragg’s Law.

In a material with consistent spacing, this results in an orderly diffraction pattern that

is simple to predict. The angle of incidence for the strongest constructive interference of a

cubic lattice can be easily calculated from Bragg’s law,

2d sin θ = nλ, (2.1)
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where d is the lattice spacing, θ is the angle of incidence of the light, λ is its wavelength,

and n is any positive integer.

Crystallography takes advantage of the information contained in diffraction patterns to

reconstruct the crystalline structure of a material. If a third material is added, or the pattern

is not a simple cubic lattice, the diffraction pattern becomes much more complex.

Figure 2.6: An example of crystallography being used to determine the structure of
proteins[2].

A photonic crystal uses the same principles to solve the inverse problem: instead of

using the diffraction pattern to find the crystal structure, the crystal structure is modified

to achieve a desired diffraction pattern. More specifically, a crystal structure is created that

achieves total reflection in most, or all directions, for a particular frequency. This is called a

band gap.

Band theory

Band theory was developed to describe the electron energies allowed in a solid. For an

insulator, these energies occur at discrete wavelengths corresponding to the atoms electron

orbitals. For a conducting gas, all energies and momentums are possible. But for electrons

in a conductor or semiconductor, these allowable states are discrete, but vary gradually with

the momentum, forming continuous “bands.” A band gap is a range of energies that do not
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contain any transmission bands.

This same concept can be modified for electromagnetic plane waves in a lattice of spatially

varying permittivity. In this case, the eigenstates (allowable spatial configuration of the field)

and eigenvalues (frequency) of solutions to the electromagnetic wave equation on a periodic

media, where ε(x), can be found with Floquet-Bloch theory for periodic ODEs (as used with

the Schrodinger Eq to find electron bands in a lattice),

Hkn(r) = ukn(r)eik·r (2.2)

Θ̂H(r) =
(ω
c

)2
H(r) : Θ̂H(r) ≡ ∇×

(
1

ε(r)
∇×H(r)

)
, (2.3)

where H is the Bloch state and u is a periodic function that has the same periodicity as

the lattice, uk(r) = uk(r + R) where R is a reciprocal lattice vector. The Bloch states and

their frequencies can be found numerically either as solutions to an eigenvalue problem, or in

the time domain by applying Bloch periodic boundary conditions to the lattice unit cell.[29]

Figure 2.7: Electromagnetic waves in a photonic crystal are analogous to electrons in a
semiconductor lattice. Examples of band diagrams for both cases[25].

Floquet-Bloch theory is no longer applicable when the finite nature of the photonic crystal

becomes important, or if the crystal has defects. In these cases numerical simulation of

Maxwell equations becomes necessary.
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2.1.3 Numerical modeling

Flochet-Bloch theory is a powerful technique for describing the dispersion properties of a

photonic crystal, and is generally sufficient when the crystal is large and uniform. But in some

of the most interesting applications of photonic crystals, defects and non-uniformities are

essential to the operation of the device: photonic crystal wave guides, steerable antennas, and

optical transistors (see Figure 2.8. In these cases, numerical simulation becomes necessary.

Computational electrodynamics employs a number of different methods that are used for

simulating photonic crystals:

• Finite difference frequency domain.

• Finite difference time domain: MIT Electromagnetic Equation Propagation (MEEP).

• Finite element: ANSYS High-frequency Structure Simulator (HFSS), COMSOL Mul-

tiphysics, WARPXM.

• Method of moments (MoM) or boundary element method (BEM): Keysight Momen-

tum.

The work described in this report falls into this category.

Figure 2.8: (Left) a photonic crystal band gap waveguide[17], (right) A tunable gradient
plasmonic crystal.[35]
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2.1.4 Methods of characterization

When considering photonic crystals as optical devices, the most important characteristics are

transmittance, reflectance, and absorption. These can be easily measured experimentally,

and are generally plotted versus frequency or wavelength of radiation. From transmission

spectra band gaps can be identified and characterized. Import parameters of band gaps that

can be interpreted from transmission spectra are: center, width, ratio (width/center), and

attenuation.

Band gap maps are a convenient way to visualize how band gaps change due to lattice

and material parameters.

Band diagrams plot band dispersion relations for wave vectors k that align with the major

lines of symmetry (see Figure 2.7). A lot of information is contained in band diagrams, such

as band gaps, transmission mode speeds, slow waves, band degeneracy, among other things.

Figure 2.9: (Left) example of transmission spectra for TE radiation in a photonic crystal
with photonic band gap highlighted. (Right) band gap map showing band gap evolution for
a range of fill fractions r/a[8].

2.2 Plasmonic metamaterials

Plasmonic metamaterials take advantage of natural surface plasmon resonances on conductor-

dielectric interfaces to absorb, couple, and re-radiate, energy at specific frequencies. They

have proposed uses in cancer treatment [7], signal amplification[12], spectroscopy, and high
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efficiency photovoltaics[3].

Plasmonic metamaterials interact with light through surface plasmons. Field energy is

absorbed into localized plasma oscillations that form at the surface of the metal/dielectric

interface. On closed surfaces (cylinder in 2D, sphere in 3D) surface plasmons are stationary,

and accumulate energy, producing fields many times larger than the driving wave.

Figure 2.10: (Left) sketch of a surface plasmon, Wikipedia. (Right) surface plasmons on
gold nanoparticles. [7]

For cylindrical rods the surface plasmon resonant frequency falls between ωpe/
√

3 and

ωpe/
√

2, and is a function of fill fraction and mode number (see Figure 2.11. Each mode has

a magnetic field arrangement as shown in the middle figure at right.

Figure 2.11: Mode frequencies and spacial configuration of modes for surface plasmon po-
laritons on a conducting rod[29].
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2.3 Plasmonic photonic crystals

Plasmonic photonic crystals combine the properties of photonic crystals and plasmonic meta-

materials. They can be constructed out of a combination of any conducting material (metals,

semiconductors, plasmas) with a dielectric. They are characterized by an interesting inter-

play of photonic bands and plasmon resonances.

The same tools used in photonic crystals can be applied to plasma photonic crystals. For

band characteristics of the infinite crystal, we can use Flochet-Bloch theory with a frequency

dependent permittivity[27],

Θ̂H(r) =
(ω
c

)2
H(r) : Θ̂H(r) ≡ ∇×

(
1

ε(r, ω)ε0
∇×H(r)

)
(2.4)

εp(r, ω) = 1−
(
ωpe(r)

ω

)
1

1− j(νm/ω)
, (2.5)

where ωpe is the electron plasma frequency, and νm is the collision frequency.

Figure 2.12: Band diagram
for PC with a = 2.5 mm,
r = 0.5 mm, and ne =
1013cm2. Flat-bands due to
surface plasmons are circled
in red[27].

When ω < ωpe, εp becomes negative. Surface plas-

mons can form and the crystal enters a plasmonic regime[29].

When confined to a closed surface (cylindrical in 2D and

spherical in 3D) these plasmons are non-propagating, and

present as “flat bands” in the band diagram (see figure at

right), and result in band gaps.

While traditional PC band gaps occur in frequency re-

gions where forward propagating modes do not exist and re-

flection occurs, surface plasmon band gaps do have modes.

But as they are stationary they do not transmit or reflect,

but store energy (albeit temporarily).

When finite effects are important, numerical simulations

of Maxwell equations are also applicable to plasma photonic

crystals, with the added complication that permittivity is frequency dependent. This can be
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Figure 2.13: (Left) Plasma photonic crystal created by augmenting a traditional photonic
crystals[36]. (Center) A microstrip photonic crystal device with a plasma element[39].
(Right) Plasma photonic crystals where plasma forms the principle material[37].

solved in several ways:

• Run a frequency domain simulation with a frequency dependent permittivity. Only

gives a steady state solution, but is the fastest.

• Run a series of time domain simulations each with a single frequency and correspond-

ing material permittivity. Shows dynamic response, but requires running many simu-

lations.

• Self-consistently solve a physical model for the material behavior during the simulation

that couples with the Maxwell’s equations. This is the most accurate, can include

physical effects that lead to non-linear behavior, but is computationally expensive.

2.4 Plasma photonic crystals

Finally, we come to plasma photonic crystals, or PPCs. PPCs are a sub-type of plasmonic

photonic crystal distinguished by their use of plasmas for the conducting material. They can

be formed either by augmenting traditional photonic crystals made of dialectics or metals,

or as the primary conducting component.

2.4.1 History

Though plasma photonic crystals were being studied theoretically in the years before, Osamu

Sakai at Kyoto University in 2005 is the first to publish experimental verification of a 2D
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plasma photonic crystal composed of an array of micro-discharges.[26]

Figure 2.14: (Left) possible PPC devices as proposed by Sakai[28]. (Right) a microplasma
array used by Sakai, et al as a plasma photonic crystal device[26].

Sakai argues in a review paper published in 2012 that plasmas can be integrated into

periodic structures to create many new optical materials with exciting properties like tunable

band-gaps, and a negative refractive index.[28]

In 2014 the AFOSR puts out a call for proposals for a multi-university grant “Control

of Coherent Structures in Plasmas for Reconfigurable Metamaterial-Based Devices” and is

awarded to a team headed by Mark A. Cappelli at Stanford, and includes L. Raja (University

of Texas, Austin), J. Hopwood (Tufts University), C. Randall (Penn State), R. Wirz (UCLA),

and Uri Shumlak (University of Washington).

2.4.2 Current state of field

To date, a number of plasma crystal experimental results have been published. In one

dimension: plasmas functionalizing a microstrip [39], and a dielectric-plasma stack [].In two
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dimensions: all plasma micro-discharge arrays [26, 27, 40], tunable self-organized plasma

discharges [5], plasma discharge tube arrays [37, 38], plasmas as functional unit in metal or

dielectric PC [39, 14, 22].

Simulations have been conducted using a modified plane wave method[23], FDTD[6],

and finite elements EM codes[37, 39, 24]. None have yet used fluid plasma models to self-

consistently solve field and plasma interactions.

2.4.3 Challenges and areas of inquiry

All experimental and theoretical research performed up to this point centers around low en-

ergy applications. The wave energy deposited in the columns is assumed to have a negligible

effect. As plasmas offer some of their greatest benefits over traditional materials at high

powers, this is an important, and understudied, area of research.

High power EM waves could effect the plasma, and by it transmission characteristics, in

several ways:

• Plasma deformation. If the field amplitude is sufficiently large, and wavelength long

enough, the plasma will eventually develop regions of lower or higher electron density.

As electron density drives plasmon frequency, and the dielectric constant, these changes

could be detectable in the transmission spectra.

• Plasma heating. In a collisional plasma, currents driven by the incident radiation will

resistively generate heat. This heating could cause changes in the device performance,

if high enough.

• Ionization-recombination. When fields are strong enough that local concentrations due

to the plasma exceed the ionization energy, ionization will occur. This is already a

problem in high powered radar and communications antenna at high altitudes, and

most research has been in mitigating this breakdown. Ionization in a plasma photonic

crystal could be used to create passively functional devices.

The research reviewed in this thesis lays the groundwork for understanding all three of

these effects, beginning with plasma deformation.
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Chapter 3

NUMERICAL EXPERIMENT DEVELOPMENT FOR THE
INVESTIGATION OF PLASMA PHOTONIC CRYSTALS

A two-dimensional, plasma-vacuum photonic crystal is simulated in the WARPXM com-

putational framework using a coupled Maxwell-plasma fluid model. To establish the accuracy

of the model, band diagrams and transmission spectra generated from the simulations are

compared with Drude model simulations (both within WARPXM and in other software) and

experiment. To develop a better understanding of the many types of plasma photonic crys-

tal phenomenon, a numerical exploration of various plasmonic and photonic crystal effects is

undertaken using WARPXM. Once we have confidence in the model, and our understanding,

predictions are made on where non-linear plasma-radiation coupling effects might be seen,

and are explored through further simulations.

3.1 Determination of scope

PPCs fall into two main categories, depending on how the plasma is integrated:

• Plasma enhanced photonic crystal. These are traditional photonic crystals made

of a metal or dielectric that uses a plasma to alter the transmission characteristics.

These plasmas can be active -a permanent plasma ignited and controlled by some sec-

ondary means- or passive -ignited in defects or field concentrations when field strengths

reach a critical level.

• Full plasma photonic crystal. In this case, the entire crystal is composed of a

periodic plasma. These PPCs should behave similarly to metallic photonic crystals,

with the added benefit of active control of important lattice and material parameters

over short time scales.
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We have chosen the second type for several reasons. First, metallic and semiconductor 2D

photonic crystals are fairly well researched, and plenty of tools exist for understanding and

predicting their transmission characteristics. Secondly, there a quality experimental results

available for direct comparison [37]. Finally, an all plasma photonic crystal exhibits interest-

ing coupling behavior between plasmon and lattice resonances that could prove interesting.

For simplicity, the lattice parameters (lattice configuration, lattice constant, and fill frac-

tion) are varied separately from the plasma parameters (density, temperature, and colli-

sionality). In actual devices, where micro plasmas are created in free space by lasers or

discharges, this may not always be the case, but by decoupling these parameters we can

better understand the effects of each, and lay the foundation for more physically complete

models in the future.

This research is funded by an exploratory grant on plasma photonic devices in the 100

GHz to 1 THz range. This implies plasma densities of 1020−1022 m−3, and lattice constants

from 10 mm to 100 microns. While this regime includes devices beyond current engineering

capabilities, both in size and density, this will likely not be the case for long.

3.2 Mathematical models that capture the relevant plasma dynamics

The physics important to the behavior being investigated must be taken into account when

choosing an appropriate model. In the case of plasma photonic crystals, the important

physics is the interaction of plasma with electromagnetic waves. This can happen in several

ways:

• EM wave-free electron interactions. Important at frequencies at or below the

electron plasma frequency, and plasma scales larger than the electron skin depth.

• EM wave-bound electron interactions. Bound electrons absorb and emit radiation

in PHz to EHz range (1015 − 1018 Hz).

• EM wave-magnetized plasma interactions. Here, strong interactions happen at

the electron cyclotron frequencies.

• EM wave-ion interactions. As for free electrons, strong interactions happen near
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the ion plasma frequency and on scales larger than the ion skin depth.

Bound electrons are obviously well outside our frequencies of interest, so can safely be

neglected. Cyclotron frequency is a function of magnetic field strength. Static magnetic

fields are not a necessary component of plasma photonic crystals, so can be neglected in

most devices.

Ion plasma frequencies for typical laboratory plasmas are in the MHz to low GHz range:

just outside our range of interest, but close enough that they should probably be taken into

consideration at some point.

This leaves EM wave-free electron interactions as the most important. Individual elec-

trons interact with EM fields through the Lorentz force,

F = me
dv

dt
= −e(E + v ×B). (3.1)

3.2.1 The Drude model

If we instead consider a homogeneous collection of many electrons with a constant density

(in time), the above can be rewritten as an evolution equation for the momentum density,

p = nemev, of a continuous electron fluid. If we also add a sink for momentum lost due to

collisions with the heavier ions, we get the Drude model,

dp

dt
= − e

me

(ρE + p×B)− νp, (3.2)

where ρ is the electron mass density, ν is the electron-ion collision frequency, and the

electric E and magnetic B fields are evolved through Maxwell’s equations,

∇ · E = ρc/ε0 : ∇ ·B = 0 (3.3)

∇× E = −∂B

∂t
: ∇×B = µ0ε0

∂E

∂t
+ µ0J. (3.4)

Despite its simplicity, the Drude model is a powerful equation. It can capture EM wave

reflection, dispersion, and absorption in metals and plasmas. When applied on a finite
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conductor, it can model surface plasmons. It also explains important macroscopic material

properties of conductors like the electron plasma frequency, the dispersion relation for EM

waves in a plasma, and the frequency dependent permittivity.

In fact, the Drude model, coupled with Maxwell’s equations, can explain most common

electrodynamic phenomenon: waveguides, antennas, radio wave reflection off the ionosphere,

plasmonics, plasmonic photonic crystals, and more.

But electron motion can be driven by more than just EM fields. If we are to consider

hotter plasmas, or stronger fields, effects like pressure gradients, time varying densities, and

ionization-recombination need to be considred.

3.2.2 Fluid plasma-Maxwell models

The Drude model can be expanded to include these effects by self consistently evolving

density and pressure, and adding the necessary pressure gradient and source terms. Since

density, and velocity, can now no longer be assumed to be divergence free, the full convective

derivative should be included. As should be expected, adding compressible fluid effects

results in well known compressible fluid equations. Below we have Navier-Stokes equations

with some additional terms,

∂ρα
∂t

+∇ · (ραvα) = Γion − Γrec (3.5)

∂

∂t
(ραvα) +∇ · (ραvαvα + Pα) = qαnα(E + vα ×B) +

∑
β

Rαβ +
∑
i

mα(vΓ)i (3.6)

∂εα
∂t

+∇ · (εvα + vα · Pα + hα) = −v)α · (qαnαE +
∑
β

Rαβ) + ion-rec source terms, (3.7)

where the subscript α denotes the fluid species (ion, electron, neutral, etc.)

The results shown in this thesis will neglect ionization-recombination Γion,Γrec, inter and

intra-species collisions Rαβ, and all ion or neutral dynamics α 6= n, i. The effects of these

terms will be examined in future work.
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The Boltzmann plasma model and its moments

While we have arrived at a fluid plasma model from the simple Drude model by adding phys-

ical effects, we could have come at this from another direction. Starting from the microscopic

description of a plasma as a collection of individual particles all moving in different directions

at different speeds, we can create a hierarchy of models of progressively decreasing fidelity.

First by invoking statistical mechanics to approximate the sea of individual particles each

with its own equation of motion, as a smooth probability function f(x,v, t) with a single

equation. The result is the Boltzmann plasma model,

∂fα
∂t

+ vα ·
∂fα
∂x

+
qα
mα

(E + v ×B) · ∂fα
∂v

=
∂fα
∂t

∣∣∣∣
c

. (3.8)

While the degrees of freedom in the Boltzmann equation are dramatically reduced from

a full particle description, there is still a lot of information stored in velocity space that isn’t

always necessary. In many cases, the distribution function can be well described through

a hierarchy of integrated values, or moments. For example, a normal distribution can be

exactly described by its first three moments, corresponding to the macroscopic values of

density, momentum, and temperature.

Equations for the evolution of moment variables are arrived at by taking moments of

the Boltzmann equation[30]. The first five moments (density, three velocity directions, and

isotropic pressure) give what is known as the 5N-moment plasma fluid model, and is closely

related to the Navier-Stokes fluid model. Additional moments describe departures from

normal distribution functions: anisotropies in pressure can be captured in the 10-moment

model, heat flux in the 13-moment model[18], etc.

3.3 Washington Approximate Riemann Solver (WARPXM) code

The models mentioned above have all been implemented numerically by others in the WARPXM

computational framework[19]. WARPXM is an unstructured Discontinuous Galerkin finite

element code developed in the Computational Plasma Dynamics Laboratory at the Univer-
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sity of Washington. The framework was developed primarily for solving multi-scale, coupled,

non-linear equation sets commonly found in plasma physics. The code is highly modular,

allowing for a virtually infinite combination of spatial discretizations, temporal discretiza-

tions, equation sets, and boundary conditions. Parallelization is achieved through spatial

decomposition with MPI.

In this study the following preexisting capabilities were used:

• Maxwell field equations, Maxwell field equations with perfectly hyperbolic divergence

cleaning [20], 5N-moment plasma fluid model [30], Maxwell-fluid model coupling.

• Third-order finite elements, Rusanov numerical flux between discontinuous element

boundaries.

• Free slip and conducting wall boundary conditions.

The following modules were implemented for this work:

• Bloch periodic boundary conditions (see Appendix A)

• Open boundary conditions (see Appendix B)

3.4 Numerical models

Several photonic crystal numerical models were constructed.

3.4.1 Infinite two-dimensional crystal

The infinite crystal is useful as it can provide information about propagation bands and band

gaps. For this model, a two-dimensional mesh of a single crystal unit cell is used. Bloch

periodic boundary conditions (see Appendix A) are imposed on all boundaries. A plasma,

or other material model, is initialized and evolved in the center subdomain. A complex field

is evolved everywhere through two sets of Maxwell field equations (real and imaginary). The

plasma and field are coupled through source terms.

A radial sinc function is initialized in the real field in order to excite a broad range of

wave numbers in all directions. A series of simulations are run, each having a different k
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Figure 3.1: (Left) example unit cell crystal domain shortly after initialization. Contours are
real electric field magnitude. (Right) the Brillouin Zone (smallest unit of symmetry) for a
rectangular crystal lattice, with lines of symmetry and symmetry points used for determining
important k wave vectors[8].

vector applied on the Bloch boundary conditions that corresponds to reciprocal points on

crystal lines of symmetry. The region defined by this region on the reciprocal lattice is the

Brillouin Zone.

The simulation is run long enough to allow for the emergence of constructively interfering

modes. A Fourier analysis is performed on data collected at specific points in space to

determine the frequency of these modes. Modes are then plotted per k to construct a band

diagram.

3.4.2 Semi-infinite crystal

The semi-infinite crystal model is useful for studying the effect that lattice and plasma

parameters have on transmission spectra. A number of columns (n = 1− 7) are aligned in x

in the center of the domain. Periodic boundaries in y simulate an infinite lattice perpendicular

to EM wave propagation. A broad band pulse (sinc function) is propagated in x from left to

right through the domain, and field values are probed at various locations in the region left

of the columns.
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Figure 3.2: Simulation domain for semi-infinite crystal.

3.4.3 Finite crystal

Experimental devices compared in this study are finite (7x7) crystals. To capture the effect

of diffraction around the finite edges of a crystal, a model was created for a 3x3, 5x5, and

7x7 two dimensional PPC.

Figure 3.3: Example results from a 5x5 finite crystal simulation. Background contours (blue-
red) are electric field magnitude. Column contours (purple-green) are electron momentum
in y.

3.4.4 Single column

High resolution, single column models were used to study plasma dynamics under strong

fields.
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Chapter 4

VALIDATION OF THE NUMERICAL MODEL

As these simulations constitute the first attempt to model plasma photonic crystals at

this level of physical detail, confirmation that the model reproduces expected results in the

linear limit is necessary.

First, transmission spectra for a rectangular lattice photonic crystal are compared for the

multi-fluid model and the Drude model, in the cold plasma (0.028 eV), weak field (Emax = 1

V/m), limit. Both simulations are done in WARPXM, with identical mesh and physical

parameters.

Second, transmission spectra and band diagrams generated by WARPXM are compared

with those generated by other E & M codes commonly used in photonic crystal analyses.

Finally, transmission spectra generated from WARPXM simulations are compared with

experimentally generated spectra.

4.1 Fluid model vs the Drude model for a cold plasma

In the limit where plasma deformations are small (∂ρ/∂t = 0) and the plasma is cold (p =

∇p ≈ 0), as shown in the previous chapter, the equations for a 5-moment, ion-electron

plasma can be reduced to the Drude model. Therefore, at low temperatures and energies, a

plasma should behave much like an ideal conductor. To test this, both models were used to

simulate a plasma photonic crystal, and transmission spectra were generated and compared

over a wide range of plasma frequencies.

The fluid model at cold temperatures (0.028 eV) and weak electromagnetic fields (Emax =

1 V/m) was coupled with Maxwell equations. The Drude model was implemented by initial-

izing the same plasma parameters as mentioned above, but only evolving the plasma through
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the Lorentz force term that couples with Maxwell’s equations.

As expected, the results were identical. There was no discernible difference in the trans-

mission spectra despite small changes in density in the full fluid model case.

4.2 WARPXM vs ANSYS HFSS and Meep

PPC simulations in WARPXM are compared with two well known software packages.

4.2.1 Transmission spectra

The ANSYS finite element electromagnetic code HFSS is an industry standard for the model-

ing of antennas and waveguides. HFSS’s ability to handle complex 3D geometries and a vari-

ety of material properties has also proven useful in the simulation of photonic crystals[37, 38].

The software is limited in the types of materials it can model, plasmas not being among them.

The cold, weak field fluid model case simulated in WARPXM is compared with a similar

Drude model simulation in HFSS.

Figure 4.1: HFSS simulation domain, courtesy of F. Righetti.

The WARPXM simulation consisted of a 4 row semi-infinite two-dimensional case, with

planar broad-band EM waves. The HFSS simulation was performed by F. Righetti at Stan-

ford, and differed from the WARPXM case in that the broadcasting and receiving antennae

had a finite size, and the domain was three-dimensional.
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Figure 4.2: Transmission spectra for a range of plasma frequencies for similar cases in
WARPXM (solid), and HFSS (dashed).

Both software show similar general behavior, though deviate in depth and width of band

gaps. This difference could easily be accounted for by differences in simulation geometry. The

narrow antenna in the HFSS simulation will create different interference points at different

distances behind the array, making the transmission spectra sensitive to probe location.

4.2.2 Band diagram

Meep (MIT Electromagnetic Equation Propagation)[21] is an open-source finite-difference

time-domain (FDTD)[32] electromagnetic code. Meep supports a wide variety of material

models, including Drude. Bloch periodic boundary conditions give Meep the ability to

simulate periodic materials, as well as allow for the study of lattice modes and the generation

of band diagrams.

Bloch periodic boundary conditions were implemented in WARPXM (See Appendix).

Band diagrams were generated with the fluid model and compared with results from Meep

(see Figure 4.3). Results are reassuringly similar, and improve in correlation with increased

resolution.
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Figure 4.3: Photonic bands for a rectangular PPC with fpec/a = 1 and r/a = 0.12, calculated
with WARPXM (red dots) and Meep (black +).

4.3 Comparison with experiment

M. Cappelli and B. Wang at Stanford constructed a plasma photonic crystal of a 7x7 array

of plasma discharge tubes[37, 38] (see Figure 4.4). The discharge tubes contain an argon

gas seeded with mercury. Quartz tubes have a lattice spacing of a = 38.1mm, and an inner

radius of r = 6.5 mm. Variable amperage is the primary control of plasma parameters. Three

amperages are chosen, with an estimated plasma density of ne = 1.1, 5.8, and 7.8 × 1017

m−3 (fpe = 3.0, , 6.9, and 8.0 GHz). Collision frequency is assumed to be ν = 1.0 GHz. The

measured spectra published in [37] are compared with HFSS simulations of a semi-infinite 7

row crystal, with a 1 mm quartz envelope (ε = 3.8) and uniform density plasma with r = 4.6

mm.

In WARPXM, a finite 7x7 row crystal was also simulated with the same densities, tem-

peratures, and plasma density profile, but without the quartz envelope or collisions. The

results are compared with the experimental and HFSS spectra in Figure 4.5.

The WARPXM results (all in solid blue) mimic all the major features seen in the ex-
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Figure 4.4: Stanford plasma photonic crystal experimental setup[37]. Quartz discharge tubes
contain an argon gas seeded with mercury. Lattice spacing a = 38.1 mm, r = 7.5 mm.

perimental results. The experimental spectra tend to be broader, and shallower, which is

consistent with simulations that have been run for non-uniform density profiles. The HFSS

spectra (dashed lines) show a narrow band gap at 9 GHz that do not appear in either the

experimental or WARPXM spectra, and is likely due to the quartz envelope. A small Fano

resonance type feature occurs in the 7 and 8 GHz HFSS spectra around 6 GHz which is

present in the experimental spectra, but not the WARPXM spectra. This could be a cou-

pling between the plasma and quartz tube resonances. A WARPXM simulation with the

quartz tube and non-uniform profile would be necessary to determine if this is the case.

Figure 4.5: WARPXM results compared with Stanford plasma photonic crystal experimental
and HFSS simulation results.
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Chapter 5

NUMERICAL INVESTIGATION OF A PLASMA PHOTONIC
CRYSTAL

The numerical model validated in the previous section provides a powerful tool for ex-

ploring many aspects of plasma photonic crystals. Below, a few of the more notable results

are summarized.

5.1 Surface plasmon, photonic band gap resonance

Plasma density (and thereby the plasma frequency) has the strongest effect on transmission

spectra. Even for small crystals where destructive interference from Bragg reflections is

weak, significant energy is absorbed in plasmon oscillations. In Figure 5.1 up to 140 dB

band gaps are present at the surface plasmon frequency (ωpe/
√

2). In comparison, the band

gap associated purely with the photonic band gap (seen around the lattice frequency fa =

c0/a = 300 GHz for fpe = 155− 300 GHz, and 600− 750 GHz) is never greater than 30 dB.

As the plasmon resonance frequency approaches the lattice frequency the character of

the band gap changes dramatically. At fpe = 430 − 450 GHz the band gap becomes broad

and shallow as the surface plasmon resonance begins to couple with scattered frequencies.

Since these band gap frequencies are not discrete, and can in some cases cover a range of

continuous frequencies, it is possible that this an example of Fano resonance. Fano resonances

have been observed in many photonic crystals and plasmonic metamaterials[15, 4]. Further

work is needed to determine if this is really the case.

Beyond the Fano resonance, higher mode number resonances create a complicated trans-

mission spectra which is much harder to decipher. In Figure 5.2 the transmission spectra

of PPCs with plasma frequencies > 500 GHz have multiple deep band gaps that no longer
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Figure 5.1: Transmission spectra for a range of plasma frequencies. Semi-infinite crystal
with 4 rows, a = 500 microns, r = 100 microns (solid), r = 75 microns (dashed).

correspond to the plasmon frequency. They also include smaller band gaps at or above the

plasma frequency where the dielectric constant is positive, between 0 and 1.

5.2 Plasma temperature

Plasma temperature has nearly insignificant effect on transmission characteristics in the

collisionless, low resolution simulations. In Figure 5.3 the same 3 row PPC is simulated over

a range of frequencies with two different temperatures, 0.028 eV (solid) and 100 eV (dashed).

A temperature difference of nearly four orders of magnitude!

This is understandable. Temperature has no direct contribution to the plasma frequency

or the effective permittivity, the two material parameters that determine the plasmonic

and scattering responses. Temperature could indirectly effect the imaginary component of

permittivity through the collision frequency νm, as it is a function of the mean free path
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Figure 5.2: Transmission spectra for the same PPC case as Figure 5.1, now including fpe =
930 and 1320 GHz, showing the complex transmission spectra at frequencies much higher
than the lattice frequency (300 GHz in this case).

εr = 1−
ω2
pe

ω2(1 + jνm/ω)
(5.1)

As collisions are not included in these simulations, then this could not contribute here.

The temperature could indirectly contribute to the plasmon resonance frequency through

the plasma frequency, which is a function of electron density. Electron density can only

depart significantly from the ion density in regions on the order of the Debye length, which

is a function of temperature

λD =

√
εone2

kT
(5.2)

Even at the 100 eV, the largest Debye length is less than the element size 5 × 10−6 m.

Any density perturbations would not be resolved. Even if the Debye length were resolved

(which we will explore in the next chapter) the EM wave energy would have to be large

enough to drive a sizable density perturbation.
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Figure 5.3: Transmission spectra at two different temperatures: 0.028 eV (solid) and 100 eV
(dashed).

5.3 Lattice parameters and transmission characteristics

5.3.1 Fill fraction

The fill fraction, r/a, increases as the plasma columns take up a larger percentage of the

space. As can be seen in Figure 5.1 this has several effects on the transmission spectra. The

smaller columns (dashed lines) have narrower band gaps, and the Fano resonance is much

less pronounced. Below the Fano resonance (fpe < 430 GHz) the band gaps appear to be

shifted to higher frequencies, and above the Fano resonance the opposite is true.

The upward shift in lower frequencies can likely be explained by the fact that higher mode

number surface plasmons have a frequency that is a function of radius (see Figure 5.4). The

shallowing is likely due to the increased free space between plasma columns allowing for more

wave energy to make it through the crystal without meeting with a column.

The downward shift at higher frequencies is likely due to the fact that these hybrid band

gaps are influenced by the mean space between column surfaces (not just center-to-center

column spacing a) which will be longer as the column radius shrinks.
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Figure 5.4: Surface plasmon polariton frequencies by mode number and fill fraction[29]. The
smaller the fill fraction, the narrower the range of frequencies.

5.3.2 Finite crystal

Finite crystals behave similarly to the semi-infinite crystals (see Figure 5.5) except that the

limited extent of the crystal allows for diffraction of large wavelengths. In these results the

constructive interference of wavelengths on the order of the total crystal size (λ = 1−3 mm,

or f = 100− 300 GHz) have a greater than unity transmission coefficient!

Figure 5.5: Transmission spectra for a semi-infinite 3 row (solid) vs finite 3x3 crystal
(dashed).
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Chapter 6

INVESTIGATION OF HIGH POWER MICROWAVE PPC
INTERACTIONS

The numerical exploration of plasma photonic crystals described in the previous section

has provided some groundwork on the investigation of non-linear plasma effects in plasma

photonic crystals.

To review, high power EM waves could effect the plasma (and indirectly transmission

characteristics) in several ways:

• Plasma deformation. If the field energy is strong enough, and wave length long enough,

the plasma will eventually develop regions of lower or higher electron density. As

electron density drives plasmon frequency, and the dielectric constant, these changes

could be detectable in the transmission spectra.

• Plasma heating. In a collisional plasma, currents driven by the incident radiation will

restively generate heat. This heating could cause changes in the device performance.

• Ionization-recombination. When fields are strong enough that local concentrations due

to the plasma exceed the ionization energy, ionization will occur. This is already a

problem in high powered radar and communications antenna at high altitudes, and

most research has been in mitigating this breakdown. Ionization in a plasma photonic

crystal could be used to create passively functional devices.

For this investigation, strong fields are considered to be > 105 V/m.

6.1 Plasma deformation

While it is a given that an externally applied electric field will generate a separation of charge

on length scales on the order of the Debye length, this local change in electron density will
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only effect plasma-EM wave interactions if the deformation is large compared to the electron

skin depth. Mathematically, this looks like,

λD ≈ δpe → vth
ωpe
≈ c0
ωpe

→ vth ≈ co. (6.1)

In most laboratory plasmas, and especially in those likely to be used in PPC devices, vth

will be many orders of magnitude smaller than the speed of light. This condition indicates

that PPC devices will be highly resistant to changes in transmission characteristics in high

fields.

The above line of reasoning is based on a static field picture, and does not include effects

due to increased heating, or ionization that will likely become important once fields are strong

enough. We will investigate the validity of these assumptions in the following sections.

6.1.1 Electron deformation due to strong EM fields

To capture the evolution of electron density profiles in a finite plasma under strong electric

fields, a single column simulation was created. The left boundary gradually ramps the electric

field from 0 to 107 V/m. Top and bottom boundaries are conducting wall, and the right

boundary is open.

The most interesting feature observed is that unless the ramp rate is extremely slow, the

electrons respond by oscillating at the surface plasmon frequency. The amplitude of this

oscillation continues to increase as long as the field is applied. Eventually, the electric fields

within the plasma column become many times that of the background field. This growth

continues until the simulation fails.

The sloshing density profile is observed to reach over 3× the background density at its

peak, and as little as 10% on the low density side. The density profile is asymmetric: the

high density sheath being about 5 Debye lengths thick, and the low density sheath extending

to almost twice that. This is expected, as the lower density will have a larger Debye length.

Extrapolating out to longer times and larger oscillations, it could be expected that density
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Figure 6.1: Electron density deformation under a strong, static electric field (E = 107 V/m).
(top left) contours of electron density, (bottom left) cross-section of density, and (right)
electric field strength inside plasma column over time.

perturbations will become large enough to deplete density in the core of the plasma. In that

case, shifting band gaps will be expected.

It is not yet clear that this will happen. The large density perturbations of the n = 0

surface plasmon mode do appear to be gradually cascading energy to higher number modes.

Further simulations at higher resolution over more plasma periods will be necessary to de-

termine which effect wins out.

6.1.2 Effect of non-uniform density profiles on transmission characteristics

Non-uniform density profiles are important to resolve for several reasons. Most current meth-

ods generate diffuse plasmas, or have edge gradients due to wall interactions. Additionally,

if plasma deformation due to strong fields becomes large enough, this will also cause non-

uniform profiles. To understand how non-uniform profiles effect transmission spectra, as

series of simulations was performed with a variety of density profiles (see Figure 6.2).
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Figure 6.2: Transmission spectra of non-uniform density profiles for fpe = 100 GHz.

In the figure above, results are shown for a low resolution simulation of the profiles

shown at left. Higher resolution simulations, are underway, and data is currently being

processed. These low resolution results show the spreading of band gaps to lower frequencies

and shallowing of the peak band gap. The jagged, multi peaked character of the non-uniform

density band gaps is an artifact of poorly resolving the density profile. In simulations where

the Debye length is resolved, the band gap becomes much smoother.

These results confirm that non-uniformities much larger than the skin depth will have

a significant effect on the transmission spectra. Current simulations on narrower non-

uniformities show that effect disappearing. The conclusion is that density perturbations

will have to be very large, and on the scale of the skin-depth to effect transmission spectra.

6.1.3 Ion dynamics

If electron deformation is large, and persists over long time periods, energy will inevitably

leak into ion motion. No work has yet been done by anyone in the field on high power PPC

devices and ion dynamics. Further work is planned to include ion dynamics once we feel that

the question of high field electron dynamics has been sufficiently resolved.
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6.2 Heating

Plasma heating has two parts, both of which could effect transmission spectra: increase in

plasma temperature, and a non-negligible electron-ion collision frequency.

6.2.1 Temperature

In the previous chapter, we saw that temperature changes of 4 orders of magnitude had

a nearly insignificant effect on transmission characteristics. Unless the higher temperature

leads to new physical effects (Debye length becomes large enough to create a significant

plasma sheath) then increased temperature will not significantly effect device performance.

This is highly desirable in devices designed for consistent operation though a range of

energies.

6.2.2 Collision frequency

Electron collision frequency has a direct effect on the imaginary component of the plasmas

effective dielectric constant (Eq. 2.5), which indicates absorption. Per [24] increased collision

frequency broadens band gaps and increases wave energy absorption into the plasma.

WARPXM has the capability to include electron-electron, electron-ion, and electron-

neutral collisions. Including these effects is planned for future simulations.

6.3 Ionization

In atmospheric air, the critical ionization field is around 106 V/m, which is within range

of field levels in high powered microwave devices. Increased ionization can effect both the

plasma density and plasma column radius. In the previous chapter, we show that band

gap center frequency is strongly dependent on plasma density. We also showed that column

radius has a significant effect on band gap width.

Neutral effects, including ionization-recombination, have recently been implemented in

WARPXM. Simulations are planned for including ionization effects in PPC models.
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Chapter 7

CONCLUSIONS

Plasma photonic crystals promise to be a powerful way to control high powered mi-

crowaves. Research into their construction, and control is still in its infancy. No serious

investigation has yet looked into how high amplitude fields will effect plasma behavior, and

transmission characteristics.

In this thesis we have reviewed the implementation and exploration of a PPC plasma-

Maxwell model in the WARPXM framework. WARPXM is an unstructured, discontinuous

Galerkin finite element code that is well suited for efficiently solving nonlinear hyperbolic

problems on complicated geometries. Mesh decomposition allows for both effective paral-

lelization, and physics decomposition. Additional capability was added for this work in the

form of Bloch periodic and open boundary conditions. Bloch periodic boundary conditions

allow for the analysis of properties of the ideal, infinite photonic crystal by finding crystal

bands. Open boundary conditions facilitate the simulation of finite crystals in free space or

open waveguides.

The plasma-Maxwell model was validated against a Drude-Maxwell model, both within

WARPXM and by a well-known EM codes ANSYS HFSS and Meep. Model generated

transmission spectra also showed good agreement with experimental results. It was proposed

that the behavior could by modified through three effects: 1) fluid deformation, 2) energy

absorption, and 3) ionization-recombination.

Plasma fluid deformation was first examined theoretically, and it was determined that

any electron density deformation due to an incident field would likely not be large enough to

significantly impact wave energy interaction as long as the temperature was low (vTh << c0).

A high resolution simulation of a single column of 1 eV plasma acted on by a constant 1x105
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V/m field confirmed that electron deformation is contained within 5 Debye lengths of plasma

edge.

The effect of non-uniform density profiles were also investigated, to determine the sheath

thickness necessary to see a significant effect on transmission characteristics. Results confirm

that deformed region must be on the scale of the electron skin depth.

The effect of energy absorption was investigated through simulating a wide range of

temperatures. It was found that even when the temperature was changed many orders of

magnitude, there was little effect on transmission spectra. This was supported theoretically

by the fact that temperature has no direct effect on plasma frequency, the primary material

characteristic that determines PPC behavior.

From these results we can so far conclude that PPCs are highly resistant to performance

changes due to large amplitude fields, when considering only plasma deformation and heating.

Work is continuing to determine to what field strengths and frequencies this remains the case.

Collisions will be added to investigate energy absorption and plasma heating. Eventually,

ionization will also be considered, as it promises to have a significant effect at high powers.

A detailed description of next steps is outlined in the next section.
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Chapter 8

FUTURE WORK

A number of questions remain that will be explored further in future work. In order of

priority these are:

• Examine reflection and absorption spectra. When the plasma frequency ap-

proaches or exceeds the lattice frequency, the transmission structure becomes much

more complicated. Band gaps due to Bragg reflections or plasmon resonances should

show up as either reflected or absorbed energy. A better understanding of what effect

causes which features will create a clearer understanding of how to control PPCs.

• Confirm character of Fano type resonance. A strong, Fano-type resonance oc-

curs when fpe =
√

2fa. It is characterized by a rapid transition from transmission

to bandgap over a few GHz. Understanding the important factors that control the

resonance, and its quality, will help in the design of future devices. This could include

lattice configuration, fill fraction, plasma density profile or absorption.

• Continue search for field amplitude and frequency where fluid effects be-

come important. As field energies increase, more and more electrons will have to be

displaced to neutralize the field. Where the density decreases, the Debye length will

increase. At some point, the depleted region will grow to a size that is comparable to

the column size, and the column shape will be deformed. As seen from the non-uniform

density simulations, a sizable deformation in density will effect the transmission spec-

tra.

• Explore effects of collisions on transmission spectra and wave energy ab-

sorption. Collisions are already known to have an effect on PPC transmission char-

acteristics. They will also lead to increased energy absorption. Examining energy



43

absorption rates, and the effects on things like Fano resonance will be helpful.

• Include ion dynamics in high field limit. As field strengths become large, and

electron deformation is sizable, the ions will eventually start to respond. Including ion

dynamics will create a more complete picture.

• Incorporate ionization-recombination, and other neutral effects. Ionization

energies of atmospheric air are with range of modern high power microwave sources.

Studying the effects of ionization and recombination will be crucial to understanding

PPC performance in these cases.
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Appendix 1

BLOCH PERIODIC BOUNDARY CONDITION
IMPLEMENTATION IN WARPXM

Photonic crystals have a large amount of symmetry that can be beneficially exploited

in developing numerical models, the most obvious being periodic boundary conditions. Un-

fortunately, many of the field modes in a periodic media will have spatial periods different

from that of the material structure. Normal periodic boundaries enforce a single periodicity,

resulting in the destructive interference of all waves that are not integer multiples of the

domain length.

To get around this limitation, a phase shift ψ can be applied to a wave as it passes a

boundary,

F1(x) = F2(x)ejψ, (A.1)

F2(x) = F1(x)e−jψ, (A.2)

where

ψ = k · a, (A.3)

and F is the field variable, superscript 1 and 2 denote the left and right boundaries,

k = 1/λ is the wave vector, and a is vector of periodic lengths in each direction.

This adds several complications: 1) the problem size is doubled due to the use of complex

fields(real fields do not contain phase information), and 2) only one phase shift, and therefore

only one spatial periodicity k, can be run per simulation.

As these boundary conditions are in effect replicating the same symmetry as Bloch the-

orem, they are commonly referred to as Bloch periodic boundary conditions. Similarly, the



46

numerical model can also be used to find the eigenvalues and eigenstates of the photonic

crystal. For further reading, please see the article by Celuch-Marcysiak, et al [1].

A.1 Implementation in WARPXM

In WARPXM, subdomains and virtual boundary conditions (BCs between subdomains) were

harnessed to effect the Bloch periodic phase shift at unit cell boundaries.

A.1.1 Mesh

First, a mesh is created with subdomains that only meet other subdomains (not themselves)

at periodic boundaries (seed Figure A.1). When the mesh is imported, all domain boundaries

are tagged as periodic boundaries.

Figure A.1: Example of a mesh subdomain division necessary for two sets of Bloch periodic
boundary conditions on a 2D domain.
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A.1.2 Variables

Separate sets of real and imaginary variables are assigned to each subdomain, including the

fluid variables. The real and imaginary variables will be evolved separately, only coupled at

the Bloch boundary conditions.

Separate field variables in the upper and lower domain are necessary to allow for dis-

continuous solutions at periodic boundaries where the phase shift occurs. Considering this

requirement, one of the vacuum domain variables can be assigned to the plasma domain, so

as to reduce the required number of sets of variables (see Figure A.2).

Figure A.2: Unit cell domain showing subdomain division. “Top” and “Plasma” contain one
set of field variables, and “Bottom” has another set. Virtual boundary conditions are then
required to pass the solution across the interior (red) and exterior boundary conditions

A.1.3 Solvers

Two sets of flux and source equations are set up for the real and imaginary domains.
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A.1.4 Boundary conditions

A Bloch periodic virtual boundary condition is assigned at the domain boundaries (which

are now also subdomain boundaries). The Bloch BC app takes in the real and imaginary

fields, performs the phase shift, and assigns the result to the ghost cells of the fields at the

opposite boundary. The app function have been reproduced below.

Another virtual boundary condition is needed on the interior subdomain boundary be-

tween the upper and lower field variables (see boundary in red in Figure A.2).

void b l o c h p e r i o d i c b c : : bc q (

const r e a l ∗ q in , const s o l v e rVa r i a b l e s t ∗ pFV, r e a l ∗ q out ) const

{

// q in = [ rea lE x , rea lE y , rea lE z , realB x , realB y , rea lB z ,

// imagE x , imagE y , imagE z , imagB x , imagB y , imagB z ]

// q out = [ rea lE x , rea lE y , rea lE z , realB x , realB y , rea lB z ,

// imagE x , imagE y , imagE z , imagB x , imagB y , imagB z ]

// Real and imaginary f i e l d s are combined in a complex f i e l d

q comp [ 0 ] = std : : complex<double> ( q in [ 0 ] , q in [ 6 ] ) ;

. . .

// Bloch p e r i o d i c boundary cond i t i on i s performed

f o r ( i n t var=0;var<6; var++) {

f o r ( i n t i =0; i <3; i++) {

i f (pFV−>R[ 0 ] [ i ] > 0 . ) {

q comp [ var ] = q comp [ var ]∗ std : : exp ( j ∗ k [ i ]∗ a [ i ] ) ;

}

i f (pFV−>R[ 0 ] [ i ] < 0 . ) {

q comp [ var ] = q comp [ var ]∗ std : : exp(− j ∗ k [ i ]∗ a [ i ] ) ;

}

}

}

// Complex f i e l d s are separated in to t h e i r r e a l and complex par t s

// and as s i gned to q out

q out [ 0 ] = std : : r e a l ( q comp [ 0 ] ) ;

. . .

}



49

A.1.5 Initial condition

To indiscriminately excite as wide a range of frequencies and directions of waves as possible,

a circular sinc function is initialized in the field, away from any points of symmetry (Figure

A.3).

A.2 Example

In the example user_runs\whitney_thomas\ppc\5_moment\bloch_periodic.py a series of

simulations is run with different wave vectors k. Fourier transforms are performed on probe

field data to extract dominant frequencies for each simulations. These frequencies are then

plotted versus wave number to create a dispersion relation, or band diagram, for the crystal

(see Figure A.3).

Figure A.3: (Right) initial condition with circular sinc pulse, and (left) a band diagram
generated using the WARPXM implemented Bloch boundary conditions (red dots) compared
to bands generated by another program, Meep (+).
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Appendix 2

LACUNA BASED OPEN BOUNDARY CONDITION
IMPLEMENTATION IN WARPXM

B.1 Motivation for open boundary conditions

There are many situations in plasma physics (and in fluid dynamics in general) where the

region of interest is small compared to the distances information can propagate over the

simulation time. Say, when a plasma is being irradiated by microwaves that aren’t entirely

absorbed, or plasma waves produced near a wall from sheath formation propagate into the

bulk plasma, or a hurricane moving in a jet stream. If an artificial wall is simulated at

the edges of the regions of interest, wave energy will be reflected back into the domain,

skewing results. If the domain was made large enough that information could not reach the

boundaries during the simulation, then large amounts of computation time would have to be

spent advancing an effectively useless solution.

To solve this problem, boundary conditions that allow information to pass freely out of a

simulation region are necessary. These “open” boundary conditions use various techniques

to do this effectively. An excellent summary of the history of open boundary condition

methods can be found in [16] by E.T. Meier, et al. While a number of simple open boundary

conditions are adequate over short periods or with linear hyperbolic equations (zero normal

derivative (ZND), or perfectly matched layers (PML)) they will accumulate error over long

simulations, or mixed parabolic-hyperbolic systems.

A lacuna-based open boundary condition (LOBC) is proposed by E.T. Meier, et al, in

[16]. The LOBC works by passing the interior solution to an exterior auxiliary variable

via a source term. The auxiliary solution is then effectively damped out before reaching

the exterior boundary, ensuring that information about the boundary cannot re-enter the
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interior domain.

B.2 Lacuna-based open boundary condition theory

The lacuna-based boundary condition (LOBC) is based on the fact that after a wave has

passed, a fluid will return to its previous state. This quiescent region immediately following

a wave is called a lacuna. The LOBC takes advantage of this idea by assuming that the

lacuna of a wave is in the same state than if that wave had never passed by. In this case, if

an earlier wave were suddenly “deleted” from the history of an auxiliary variable, the later

solution will not be effected, leaving the boundary of the interior domain unchanged.

To see this in practice, we take an arbitrary PDE, written in flux-source form,

∂q

∂t
+∇ · F(q) = S(q), (B.1)

where q is the interior variable, F is the flux, and S is the source. An exterior variable w

is advanced with a similar system, except that it includes an extra source term Ω(q),

∂w

∂t
+∇ · F(w) = S(w) + Ω(q). (B.2)

The variables w and q are related through a transition variable µ, which varies smoothly

from 0 in the interior to 1 in the exterior region (see Figure B.3). The source term functions

to transfer the interior solution to the auxiliary solution so that w = q at the open boundary

(the boundary between the transition and exterior regions). The value of w just outside this

boundary is used as the boundary condition on q.

This set up alone will not prevent information from reflecting off of the exterior boundary

and re-entering the interior domain through the boundary condition on q. To prevent this,

the solution on w is periodically reintegrated with source Ω(q) = 0 for some period of

time. This effectively erases the leading edge of the wave front. When the reintegration

and quiescent times are chosen appropriately, the wave front will always be erased before

reaching the exterior boundary.
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Figure B.1: LOBC domain schematic [16] (left), and a 2D EM wave pulse propagating into
an LOBC exterior domain and subsequent reintegration [31](right).

B.3 Implementation of the LOBC in WARPXM

WARPXM is well suited for efficient implementation of the LOBC. The code is modular:

new boundary conditions, source terms, and equation sets can easily be added without

touching much of the code. Variables and equation sets can be assigned to single or multiple

subdomains, allowing auxiliary variables to only exist and be evolved in auxiliary domains.

Differing slightly from the method described in [16], the auxiliary solution was not reinte-

grated periodically. Instead, a second auxiliary variable wlacuna was evolved simultaneously

with the source term set to zero for some amount of time following a “reintegration.” At

what would have been a reintegration time, the wlacuna is swapped with w, and then zeroed.

The cycle is repeated over the duration of the simulation.

Evolving a second auxiliary variable prevents having to store source values and perform

the periodic reintegration, which would require significant modifications to the WARPXM

framework. This also spreads out the load of the reintegration over all time steps. Swapping

pointers for w and wlacuna, instead of copying further reduces memory usage and time.

The structure of the problem setup is as follows:

• A mesh is created the has, at a minimum, an interior and exterior subdomain with a
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transition subdomain separating the two.

• Interior variables and equation sets are initialized as usual on the interior and transition

subdomains.

• Auxiliary variables w and wlacuna and their equation sets are initiated on the transition

and exterior subdomains.

• On the transition subdomain alone, the transition variable is initialized and its gradient

calculated.

• The gradient, along with the flux application for the interior variable q is passed to

auxiliary variable source term Ω for w and wlacuna. The source term for wlacuna also

includes a reintegration and lacuna time period to determine when to set the source

to zero.

• A boundary condition on the transition-exterior boundary assigns values of w to the

ghost values of q.

• As the simulation advances a reintegration time period, set by the user, triggers w and

wlacuna to be swapped, and then zeros wlacuna .

To implement the LOBC in WARPXM, the following new capabilities were added:

• LOBC source term for Ω(q).

• A timed variable swap host action, which takes the place of the auxiliary variable

reintegration.

• Generic virtual boundary condition that copies one variable to the ghost cell of another.

This is used for the open boundary condition on q.

• Helper functions to simplify simulation setups that use LOBCs.

B.3.1 The LOBC source application

To find an appropriate expression for the source term Ω(q), we can replace all the ws in Eq.

B.2 with the equivalent µq,



54

∂µq

∂t
+∇ · F(µq) = S(µq) + Ω(q). (B.3)

µ is not a function of time, and assuming that F and S are linear functions of q, then we

can extract µ to get,

µ
∂q

∂t
+∇ · µF(q) = µS(q) + Ω(q). (B.4)

Performing a vector-scalar product rule, and collecting terms we get

Ω(q) = µ

(
∂q

∂t
+∇ · F(q)− S(q)

)
+ F(q) · ∇µ. (B.5)

The expression in parentheses is the evolution equation for q, and is equal to zero. What

remains is a simple equation for Ω(q) that depends only on the flux F (q) and the gradient

of the transition variable:

Ω(q) = F(q) · ∇µ. (B.6)

In the implementation for WARPXM, an application is created that takes as inputs

the flux application for q, as well as the gradient of µ ([∂µ/∂x, ∂µ/∂y, ∂µ/∂z]) calculated

previously. The application is also made time dependent, so that it may be turned off during

the quiescent period in the reintegration variable such that,

Ω(q, t) = `(t)F (q) · ∇µ, (B.7)

where `(t) = 0 for ntreint < t < ntreint + tlacuna, n = 1, 2, 3, .., and one at all other times.

The flux F (q) is the same analytic flux as calculated in the evolution equations for q. To

make the source app general use (regardless of problem being solved), the app is passed a

flux app in the input file.

<w lobc source>

Type = app l i c a t i on
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Kind = LOBC SOURCE

Reintegrat ionTime = 2 .0

LacunaTime = 0 .0

Exte r i o rVar i ab l e = [ 6 , 7 , 8 , 9 , 10 , 11 ]

GradientMu = [18 , 19 , 20 ]

I n t e r i o rVa r i a b l e = [ 0 , 1 , 2 , 3 , 4 , 5 ]

<q f lux app>

Type = app l i c a t i on

Kind = maxwell

sk in depth norm = 1.0

omega p norm = 1.0

F i e ld = [ 0 , 1 , 2 , 3 , 4 , 5 ]

</q f lux app>

</w lobc source>

When the setup() of the LOBC source (wmapplication_lobc_source.cc) is called

during simulation initialization, the crypt set is searched for an application

std : : vector<std : : s t r i ng> names = wxc . getNamesOfType (” app l i c a t i on ” ) ;

If one is found the cryptset for the flux application block is extracted, and used to create

the WmApplication object _flux_app.

i f ( names . s i z e ()==1)

{

const WxCryptSet& subwxc = wxc . getSet ( names [ 0 ] ) ;

f l ux app . r e s e t (WxCreatorMap<WmApplication> : : getNew ( subwxc . get<std : : s t r i ng >(”Kind ” ) ) ) ;

f lux app−>setup ( subwxc ) ;

}

and finally the setup function for that application is called.

During the simulation the internal_flux() function of the _flux_app is called and used

to calculate the source term at that node

// Ca lcu la te the i n t e r n a l f l u x

std : : vector<std : : vector<r ea l>> i n t e rna lF lux (pEG−>num dims , std : : vector<r ea l> ( num components , 0 . ) ) ;

f l ux app−>i n t e r n a l f l u x (q , aux , pEG, in t e rna lF lux ) ;
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i f ( s td : : fmod ( t , r e i n t t im e ) >= lacuna t ime )

{

f o r ( s i z e t i =0; i < num components;++ i )

{

f o r ( s i z e t j = 0 ; j < pEG−>num dims ; ++j )

{

source [ i ] += aux [ j ] ∗ i n t e rna lF lux [ j ] [ i ] ;

}

}

}

B.3.2 Reintegration: the fill value and timed swap host actions

Performed with the fill_value and timed\_swap host actions.

B.3.3 Boundary condition at the open boundary

WARPXM treats normal boundary conditions by assigning values to the nodes on ghost

elements (additional elements that WARPXM appends to the element list from the imported

mesh). VBCs differ from normal boundary conditions in WARPXM in that there are no ghost

elements created on these interior subdomain boundaries.

B.4 Using LOBCs in WARPXM

B.4.1 Mesh

To run a simulation with an LOBC a mesh file must be created with at least three subdo-

mains:

• “interior” - The interior subdomain can either be all of the normal simulation domain

(excepting the transition region) or just the region in the domain adjacent to the

transition region.

• “transition” - The transition subdomain is part of the normal simulation domain and

completely separates the interior from the exterior subdomains. The transition region
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Figure B.2: Examples of meshes that are LOBC ready.

should be at minimum 10 elements across.

• “exterior” - This is the only region that is outside the normal simulation domain. The

only subdomain it shares a boundary with is the transition subdomain. The larger

the exterior domain, the larger the added computational cost, but the less frequent

reintegrations need to occur. As reintegrations add very little to computation time in

this implementation, it is better to have a smaller exterior subdomain. 3 to 4 times

the width of the transition region is sufficient.

And two node sets:

• “transBoundary” - Separates the interior and transition subdomains.

• “openBoundary” - Separates the transition and exterior subdomains. Also constitutes

the normal simulation domain boundary.

B.4.2 Variables

Variables to be initialized:

• Interior variables: These are the simulation variables, and are initialized everywhere

in the normal simulation domain

– Subdomains: “interior”, “transition”

– Virtual subdomains: “exterior”

– Initial condition: what ever is necessary for the problem

• Exterior variables w and wlacuna: This are the auxiliary variables that the interior

solution is passed to through the source term in the transition region.

– Subdomains: “transition”, “exterior”

– Virtual subdomains: None

– Initial condition: must be consistent with the interior variable such that w = µq,

where q is the interior variable.
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• Transition variables µ and ∇µ: The transition variables only exist in the transition

region

– Subdomains: “transition”

– Virtual subdomains: None

– Explodable: False (This prevents WARPXM from creating copies of the variable

for Runge-Kutta intermediate values.)

– Initial condition: µ must be a C1 continuous function with the boundary condi-

tions µ|int = 0, µ|ext = 1, and ∇µ · n̂|int,ext = 0, where n̂ is the normal at the

interior or exterior boundary.

– Caution!: When ∇µ is calculated from a specified µ with a gradient variable

adjuster, boundary values of µ must be specified. Setting zero Neumann (zero

first derivative) boundary conditions on all physical boundaries is sufficient.

As only ∇µ is required, and if it is known can specified without having to initialize

µ and calculate its gradient.

B.4.3 Assigning flux and source applications

Physics apps for fluxes and sources are assigned to the interior and exterior variables alike.

In addition to the physics apps, an LOBC source (Ω(q)) is applied only to the exterior

variables, and only in the transition subdomain.

B.4.4 Setting virtual and traditional boundary conditions

• Non-LOBC boundaries are set as usual.

• Physical boundary conditions on the exterior subdomain should not cause backward

propagation of information through the open boundary in the time between reintegra-

tion. Zero Neumann or a continuation of the physical boundary conditions from the

interior domain are good options.

• Boundary condition on µ should be zero Neumann (zero gradient) on all transition

subdomain boundaries.
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• Boundary condition on “transitionBoundary” for auxiliary variables should be a zero

Dirichlet.

• Boundary condition on “openBoundary” for interior variables will use the virtual

boundary condition.

B.4.5 Choosing reintegration and quiescent time periods

Reintegration and quiescent time periods should be chosen so that the fastest wave speed in

the system will not travel the width of the exterior region (or twice that width if reflection

is allowed) during a reintegration period.

If a is the fastest wave speed, Le and Lt are the exterior and transition domain widths,

some advisable bounds on times are

tintegration ≤ Le/a+ tquiescent : tquiescent ≈ Lt/a. (B.8)

B.5 Example: 2D Maxwell equations

The example in Figure B.3 was run using the 2D_maxwell_lobc.py input file. The boundary

conditions in y are conducting wall. A wave train emanates from the right boundary and

passes through transition region to the auxiliary variable. In the last frame, the auxiliary

solution has been reintegrated and wave front has receded from the left wall. The domain is

0.5× 7 nu, the normalized speed of light is 1, and the quiescent and reintegration times are

4 and 6, respectively
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Figure B.3: A 2D EM wave propagating into an LOBC exterior domain and subsequent
reintegration.
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