
International Journal of Solids and Structures 102–103 (2016) 10–20 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

A unified solution approach for a large variety of antiplane shear and 

torsion notch problems: Theory and examples 

Marco Salviato 

a , ∗, Michele Zappalorto 

b 

a William E. Boeing Department of Aeronautics & Astronautics, University of Washington, 311D Guggenheim Hall, Seattle, WA 98195-2400, USA 
b University of Padova, Department of Management and Engineering, Stradella San Nicola 3 – 36100 Vicenza Italy 

a r t i c l e i n f o 

Article history: 

Received 7 April 2016 

Revised 8 September 2016 

Available online 27 October 2016 

Keywords: 

Antiplane shear 

Torsion 

Notch 

Stress distributions 

a b s t r a c t 

In this work, a unified solution approach is proposed for the analytical evaluation of the stress fields close 

to notches under antiplane shear and torsion loadings, which allows a large variety of notch problems to 

be tackled. The method is based on the complex potential approach for antiplane elasticity combined 

with the use of proper conformal mappings. In particular, it is shown that a well defined analytical link 

does exist between the complex potential to be used to determine stresses and the first derivative of the 

conformal mapping used to mathematically describe the notch profile. This makes some methodologies 

such as Schwarz-Christoffel transformation, which allows describing any polygonal domain automatically, 

very attractive for the direct solution of notch problems. A bulk of solutions are provided to support this 

finding, from cracks and pointed notches, to radiused notches. In addition, the accuracy of each proposed 

solution is discussed in detail taking advantage of a bulk of results from FE analyses. 
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1. Introduction 

The knowledge of the linear elastic stress fields ahead of geo-

metrical variations, such as notches, holes and cutouts, is essential

in the design of mechanical components, where such variations are

unavoidable. 

Due to its simplicity in terms of constitutive equations, espe-

cially when compared to the plane stress or plane strain approx-

imations, the mechanical model of longitudinal (antiplane) shear

has received a special attention since the early investigations of

stress fields around grooves or cracks, as documented by the old-

dated papers by Filon (1900); Shepherd (1932) Wigglesworth and

Stevenson (1939) and Wigglesworth (1939) or by the extensive

analysis carried out by Neuber (1958 and 1985 ) on circumferen-

tially shafts under torsion with ‘ deep ’ and ‘ shallow ’ notches. 

Some years later, Creager and Paris (1967) gave the elastic stress

fields in the vicinity of the tip of isotropic blunt cracks, or ‘ slim ’

parabolic notches, under Mode I, II and III loadings, where the ex-

tension of such a solution to anisotropic materials is more recent

( Zappalorto and Carraro, 2015 ). 

Due to the progress of advanced computational technology, far

less attention was paid to analytical tools, and various numeri-

cal techniques were used to obtain the stress concentration fac-
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or of notched components subjected to torsion or antiplane shear

see, amongst others, Rushton, 1967 ; Hamada and Kitagawa, 1968 ;

atthews and Hooke, 1971 , and Peterson, 1974 ; Noda and Takase,

006 ; Zappalorto et al., 2011 ). 

Motivated by the fact that the engineering use of torque car-

ying shafts is extensive and they are susceptible to crack for-

ation at notches and grooves, in the recent years Zappalorto

nd co-workers carried out an extensive analysis on the stress

elds close to notches in shafts under torsion, including semi-

lliptical notches ( Lazzarin et al., 2007 ), parabolic and hyperbolic

otches ( Zappalorto et al., 2008 ), U and V-shaped rounded notches

 Zappalorto et al., 2010 ), V notches with end holes ( Zappalorto and

azzarin 2011a ), inclined notches and shouldered fillets ( Zappalorto

nd Lazzarin, 2011b ) and notched tubes ( Zappalorto and Lazzarin,

012 ). In all these works, the stress field is obtained in closed

orm by taking advantage of the complex potential approach for

ntiplane elasticity, and using appropriate ad hoc complex func-

ions for each case. It is also worth of mention that Zappalorto

t al. showed that previously published solutions related to mode

II loadings ( Creager and Paris, 1967 ; Kullmer, 1992 ; Seweryn and

olski, 1996 ; Dunn et al., 1997 ; Qian and Hasebe, 1997 ), could be

een as special cases of their more general solutions. 

Using the method of singular integral equations, the distribu-

ion of stresses over the contour of a rounded V-shaped notch un-

er antiplane deformation was also investigated by Savruk et al.

2012) , who later moved their attention also to quasi-orthotropic

aterials ( Kazberuk et al., 2016 ), whereas the problem of stress

http://dx.doi.org/10.1016/j.ijsolstr.2016.10.022
http://www.ScienceDirect.com
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Fig. 1. Notched body under longitudinal shear. 
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ingularity of a V-notch with angularly inhomogeneous elastic

roperties was recently addressed by Cheng et al. (2016) . 

The problem of the analytical evaluation of the stress fields

lose to notches under antiplane shear and torsion loadings is re-

onsidered in this work, where a universal solution approach is

roposed which allows a large variety of notch problems to be

ackled. The method is based on the complex potential approach

or antiplane elasticity combined with conformal mapping. It is

hown that a well defined analytical link does exist between the

omplex potential to be used to determine stresses and the first

erivative of the conformal mapping used to mathematically de-

cribe the notch profile. This makes some methodologies such as

chwarz-Christoffel transformation, which allows describing any

olygonal domain automatically, very attractive for the direct solu-

ion of notch problems. A bulk of solutions are provided to support

his finding, from cracks and pointed notches, to radiused notches.

n addition, the accuracy of each proposed solution is discussed in

etail taking advantage of a number of results from FE analyses. 

. Preliminary remarks 

Consider a body made of a homogenous and isotropic material

beying the theory of the linear elastic deformations. Further, con-

ider the Cartesian reference system (x,y,z) represented in Fig. 1

nd suppose that the body is loaded by a remote shear stress τ∞ 

esulting only in displacements w in the z direction, normal to the

lane of the notch characterized by the x and y axes ( Fig. 1 ). 

Coupling equilibrium of stresses and compatibility of strains re-

ults in the following two-dimensional Laplace equation to be in-

egrated ( Timoshenko and Goodier, 1970 ): 

∂ 2 w 

∂ x 2 
+ 

∂ 2 w 

∂ y 2 
= 0 (1) 

o that the displacement component w is a harmonic function.

he solution of Eq. (1) in a given two-dimensional domain � ∪ ∂�

where ∂� = domain boundary, � = inner portion of the domain),

equires that the function w ∈ C 2 ( �) and satisfies prescribed

oundary conditions. It is worth mentioning that, in the present

ork, the use of Eq. (1) is restricted to simply connected domains

nly. 

An important issue to be addressed in solving for w is the shape

f the domain � ∪ ∂�. Indeed, standard methods of solution, such

s separation of variables, can be employed only for simple enough

hapes, i.e. rectangular or circular. This gives rise to the interest in

nding a suitable change of variables transforming � ∪ ∂� into a

impler domain �’ ∪ ∂�’, easier to be addressed. Of course, such a

ransformation, {u = u(x, y), v = v(x, y)}, is required to be bijective
n order to avoid any ambiguity in moving from a domain to the

ther. 

In case the choice of u and v is restricted to functions being C 2 

n � and satisfying the following equations: 

∂u 

∂x 
= 

∂v 

∂y 

∂u 

∂y 
= −∂v 

∂x 
in � (2a,b) 

.e being the real and imaginary parts of an analytic function f ( z )

espectively, Eq. (1) can be recast again as a Laplace equation in

he transformed domain �’ ( Savin 1970 ; Greenberg 2001 ): 

∂ 2 ω 

∂ u 

2 
+ 

∂ 2 ω 

∂ v 2 
= 0 (2c) 

here now ω (u, v) = w{x(u, v), y(u, v)}. The integration domain

an be made simpler without affecting the simplicity of the gov-

rning equation on condition that a conformal transformation of

ariables is considered. In other words, if the transformation of co-

rdinates can be expressed by a complex analytic function, so that

 ( x,y ) and v ( x,y ) are conjugate harmonics, the Laplace equation is

reserved and the shape of the domain can be made sufficiently

imple to perform integration by separation of variables methods.

he interested reader can find a comprehensive review on this sub-

ect in the book by Greenberg ( Greenberg 2001 ), among others. 

. Analytical framework to the notch stress assessment 

.1. Notch described by the condition u(x, y) = u 0 

Let us consider a notch profile and a conformal map z = z ( ξ )

ith ξ = u + i v and z = x + i y such that the notch profile is de-

cribed by the condition u(x, y) = u 0 . The constant u 0 is taken as

 positive number, so that the domain of integration belong to the

ight half plane of the ( u,v ) space. Under this condition, u is always

ositive whilst v can take any value. 

Thus, Eq. (2c) can be solved assuming separation of variables in

urvilinear coordinates: 

 = f ( u ) g ( v ) (3) 

ubstituting Eq. (3) into ( 2c ) leads to: 

f ′′ ( u ) g ( v ) + f ( u ) g ′′ ( v ) = 0 (4)

r, equivalently: 

f ′′ ( u ) 

f ( u ) 
= −g ′′ ( v ) 

g ( v ) 
= λ2 (5) 

here λ is real a constant. Accordingly, the governing PDE can be

implified into two ODE in the variables u, v : 

 

′′ ( u ) − λ2 f ( u ) = 0 g ′′ ( v ) + λ2 g ( v ) = 0 (6)

ith the aim to introduce the relevant boundary conditions, the

ollowing expressions for strains and stresses in curvilinear coordi-

ate are useful ( Sokolnikoff, 1983 ): 

iz = 

1 

h i 

∂ω 

∂ αi 

τiz = 

G 

h i 

∂ω 

∂ αi 

(7) 

here G is the elastic modulus in shear and h i is the factor of

istortion ( Neuber, 1958 ). 

Since, in general h i � = 0, the Dirichlet conditions in terms of

tresses result in Von Neuman conditions on ω. 
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Fig. 2. Plot of conformal mapping given by Eq. (16) . 
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The problem is then defined by the following system of equa-

tions: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

g ′′ ( v ) + λ2 g ( v ) = 0 

f ′′ ( u ) − λ2 f ( u ) = 0 

f ′ ( u 0 ) = 0 

| f ′ ( u ) | 
h u 

< ∞ for u , v → ∞ 

| g ′ ( v ) | 
h v 

< ∞ for u , v → ∞ 

(8a,e)

where Eq. (8c) is the free-of-stress condition along the notch edge,

whereas Eqs. (8d,e) express the condition for bounded stresses far

away the notch tip. 

The case λ2 � = 0 can be disregarded since it provides trivial solu-

tions only. Differently, under the condition λ2 = 0, the general so-

lution: 

ω(u, v ) = (A + Bu )(C + D v ) (9)

can be further simplified into Eq. (10) to account for boundary con-

ditions: 

ω(u, v ) = C 1 + C 2 v (10)

where C 1 represents a rigid translation which does not contribute

to the strain field and can be ignored. 

Introducing Eq. (10) into the definition of stresses and invoking

Cauchy-Riemann conditions, one gets the following expressions: 

τzx = ς 

∂v 

∂x 
τzy = ς 

∂u 

∂x 
(11)

ς = GC 2 being a constant to determine. It is worth noting that,

since ξ ’ = d ξ ( z )/d z = ∂ u / ∂ x + i ∂ v / ∂ x , shear stresses represent the

real and imaginary parts of the first derivative of the conformal

map used to describe the notch profile, ξ = ξ ( z ): 

τzy + i τzx = ς 

dξ (z) 

dz 
(12)

This result provides an explicit link between the domain geom-

etry and the stress field. Once a suitable conformal map is found,

the problem of finding the generated stress field can be solved di-

rectly, except for one constant ς , which can be found analytically

for finite notches and cracks or it can be generally computed by FE

analysis. 

3.2. Notch described by the condition v ( x, y ) = v 0 

Sometimes it is convenient to describe the notch profile by the

condition v ( x, y ) = v 0 . This is the case, for instance, in which the

conformal map used to describe the domain is constructed by the

Schwarz-Christoffel transformation. 

The derivation of the stress field is similar to that provided in

the foregoing section, provided that the following system of ODE

is considered: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

g ′′ ( v ) − λ2 g ( v ) = 0 

f ′′ ( u ) + λ2 f ( u ) = 0 

g ′ ( v 0 ) = 0 

| g ′ ( v ) | 
h v 

< ∞ for u , v → ∞ 

| f ′ ( u ) | 
h u 

< ∞ for u , v → ∞ 

(13a,e)

which results in: 

τzx = ς 

∂u 

∂x 
τzy = −ς 

∂v 

∂x 
(14a,b)

or equivalently: 

τzx − i τzy = ς 

d ξ (z) 

dz 
(15)

ς being a constant to determine. 
. Examples of applications to rounded notches 

In this section several examples of application of the method

roposed in the previous sections are presented. Initially, in order

o prove the efficacy of the approach, a number of solutions al-

eady published in the literature are derived, whilst, subsequently,

ffort s are devoted to determine several new solutions for solids

nder antiplane shear and torsion and weakened by sharp and ra-

iused notches. 

.1. Stresses on a body with a deep notch and a very large net 

igament 

Consider the mapping shown in Fig. 2 ( Neuber, 1958 and 1985 ):

 = ξ q (16)

here z = x + iy and ξ = u 0 + i v and parameter q is linked to

he notch opening angle by the expression q = 

2 π−2 α
π . The case

 0 = 0 represents the pointed V-notch case. More generally, such

 mapping allows one to describe parabolic (q = 2) and hyper-

olic (1 < q < 2) notch profiles in an infinite body. Substituting Eq.

16) into (12) results in: 

zy + i τzx = ς 

d ξ (z) 

dz 
= A z 1 / q −1 (17)

here A is a real constant to determine. Accordingly, shear stress

omponents are: 

τzy = A r 1 / q −1 cos [ ( 1 / q − 1 ) ϑ ] 

zx = A r 1 / q −1 sin [ ( 1 / q − 1 ) ϑ ] (18)

n agreement with Zappalorto et al. (2008) . 

By a practical point of view, the solution can be successfully

pplied either to deep notches in infinite members or to deep

otches in finite size components. In the latter case, whenever the

otch depth is much larger than the member width, stresses can

e fully computed analytically (see Zappalorto et al., 2008 ). 

However, in the most general case, parameter A can be ex-

ressed as a function of the maximum notch tip stress: 

 = τmax r 0 
1 −1 / q (19)

here r 0 = u 

q 
0 

= 

q −1 
q · ρ , ρ being the curvature radius at the notch

ip ( Neuber, 1958 ). 



M. Salviato, M. Zappalorto / International Journal of Solids and Structures 102–103 (2016) 10–20 13 

Fig. 3. Plot of the stress component along the notch bisector line. The stress com- 

ponent is normalised with respect to the maximum shear stress. Circumferential 

hyperbolic and parabolic notches in axis-symmetric shafts under torsion. 

Fig. 4. Plot of conformal mapping given by Eq. (22) . 
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Fig. 5. Plot of the stress component along the notch bisector line. The stress com- 

ponent is normalised with respect to the maximum shear stress. Circumferential 

hyperbolic notch in an axis-symmetric shaft under torsion. 
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Along the bisector line, the stress field close to the notch tip is:

zy = τmax 

(
r 0 
r 

)1 −1 / q 

(20) 

Eq. (20) can be approximately extended to the case of an axis-

ymmetric notched shaft, with a net section of radius R, under

orsion loadings by taking into account the linear decrease of the

ominal shear stress: 

zy = τmax 

(
r 0 
r 

)1 −1 / q 

×
(

1 − r − r 0 
R 

)
(21) 

A comparison between the analytical solution given by Eq.

21) and the results from some FE analyses carried out on axis-

ymmetric notched shafts under torsion is shown in Fig. 3 , where

 very satisfactory agreement can be noted. 

.2. Stresses on a body with a deep notch and a finite net ligament 

Consider the mapping shown in Fig. 4 ( Timoshenko and Good-

er, 1970 ): 

 = c · cosh ξ (22) 

here z = x + iy and ξ = u + i v 0 and c is a constant. The case v 0 = 0

epresents the deep crack case whereas, more generally, such a
apping allows a hyperbolic notch with foci at x = ±c to be de-

cribed. Eq. (22) can be re-written as: 

= Arccosh 

z 

c 
(23) 

Substituting Eq. (23) into Eq. (15) results in: 

zx − i τzy = ς 

d ξ (z) 

dz 
= 

A √ 

z 2 − c 2 
= 

A 

c 

1 

sinh ξ
(24)

here A is a real constant to determine. Since: 

1 

sinh ξ
= 

2 cos v sinh u − 2i sin v cosh u 

cosh 2u − cos 2v 
(25) 

tresses turn out to be: 

zx = 

A 1 cos v sinh u 

cosh 2u − cos 2v 
τzy = 

A 1 sin v cosh u 

cosh 2u − cos 2v 
(26) 

n agreement with Zappalorto et al. (2008) . Parameter A 1 can be

ritten as a function of the maximum notch tip stress: 

 1 = τmax 
1 − cos 2 v 0 

sin v 0 
= 

2 τmax √ 

1 + 

a 
ρ

(27) 

Along the notch bisector line the stress field is: 

zy = 

τmax √ 

1 + 

a 
ρ

× 1 √ 

1 −
(

x 
c 

)2 
(28) 

As done in the previous section, Eq. (28) can be approximately

xtended the case of an axis-symmetric notched shaft under tor-

ion loadings: 

zy = 

τmax √ 

1 + 

a 
ρ

× 1 √ 

1 −
(

x 
c 

)2 
× x 

a 
(29) 

here a is the radius of the net section and ρ is the notch root

adius. 

A comparison between the analytical solution given by Eq.

29) and the results from a FE analysis carried out on an axis-

ymmetric notched shaft under torsion is shown in Fig. 5 , where

 very satisfactory agreement can be noted. 

.3. Stresses on a body with a shallow notch and a very large net 

igament 

Consider the mapping shown in Fig. 6 : 

 = ( 1 − k ) ξ + k 
√ 

ξ 2 + 4 a 2 (30) 

here z = x + iy, ξ = u + i v, and k and a are two constants. 
0 
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Fig. 6. Plot of conformal mapping given by Eq. (30) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Plot of the stress component along the notch bisector line. The stress com- 

ponent is normalised with respect to the maximum shear stress. Circumferential 

semi-elliptical notch in an axis-symmetric shaft under torsion. 

Fig. 8. Plot of conformal mapping given by Eq. (39) . 
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Substituting u 0 = 0 allows a semi-elliptical notch to be obtained

with depth, root radius and foci equal to: 

t = k · 2a ρ = 2a · ( 1 − k ) 
2 

k 
c = 2a 

√ 

2k − 1 (31)

respectively. The case k tending to 1 represents the sharp crack

case of length 2a, whereas for k tending to 0.5 a semicircular notch

can be obtained. Eq. (30) can also be re-written as: 

ξ = 

z ( k − 1 ) + k ·
√ 

z 2 − 4 a 2 ( 2k − 1 ) 

2k − 1 

(32)

Substituting Eq. (32) into (12) results in: 

τzy + i τzx = A 

[
k − 1 

2k − 1 

+ 

kz 

2k − 1 

· 1 √ 

z 2 − c 2 

]
(33)

where A is a real constant to determine. Considering the two Carte-

sian reference systems centred on the ellipse foci, (x 1 = x −c, y)

and (x 2 = x + c, y), Eq. (33) can be re-written as (see also Fig. 6 ): 

τzx = A 

k 

2k − 1 

r √ 

r 1 r 2 
sin 

(
θ − θ1 + θ2 

2 

)

τzy = A 

k 

2k − 1 

{
k − 1 

k 
+ 

r √ 

r 1 r 2 
cos 

(
θ − θ1 + θ2 

2 

)}
(34)

where: 

r k = 

√ 

x 2 
k 

+ y 2 θi = Arg [ x k + iy ] ( k = 1 , 2 ) (35)

Parameter A can be determined as a function of the far applied

shear stress imposing τ zy + i τ zx = τ∞ 

for z → ∞ . This condition, in

view of Eq. (33) , yields A = τ∞ 

. Along the notch bisector line the

stress field simplifies as: 

τzy = 

k 

2k − 1 

τ∞ 

{
k − 1 

k 
+ 

x √ 

x 2 − c 2 

}
(36)

for antiplane shear loadings and: 

τzy = 

k 

2k − 1 

τ∞ 

{
k − 1 

k 
+ 

x √ 

x 2 − c 2 

}
×
(

1 − x − t 

R 

)
(37)

in the case of a shallow notch in a finite size axis-symmetric shaft

under torsion loadings of which the radius of the net section is R
with a << R). At the notch tip (x = t) one obtains: 

max = τ∞ 

(
1 + 

k 

1 − k 

)
= τ∞ 

(
1 + 

√ 

t 

ρ

)
(38)

ccording to Neuber (1958 ). 

A comparison between the analytical solution given by Eq.

37) and the results from a FE analysis carried out on an axis-

ymmetric notched shaft under torsion is shown in Fig. 7 , where

 very satisfactory agreement can be noted. 

.4. Stresses on a body with a finite notch and a finite net ligament 

Consider the mapping shown in Fig. 8 : 

 = k 1 · Arcsinh 

{
sinh ξ

k 2 

}
(39)

here z = x + iy, ξ = u + i v 0 , and k 1 and k 2 are two constants. Such

 mapping allows the case of a finite depth notch in a finite size

olid to be treated letting v = v 0 . The resulting notch depth and net

igament of the specimen are: 

 = k 1 

{
v 0 − Arcsin 

(
sin v 0 

k 2 

)}
a = k 1 Arcsin 

(
sin v 0 

k 2 

)
(40)

espectively. The case v 0 ≈ π /2 allows a sharp crack to be de-

cribed. Eq. (39) can be re-written as: 

= Arcsinh 

{ 
k 2 · sinh 

z 

k 

} 
(41)
1 
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Fig. 9. Plot of the stress component along the notch bisector line. The stress com- 

ponent is normalised with respect to the maximum shear stress. Circumferential 

hyperbolic notch, as given by Eq. (39) , in a finite size axis-symmetric shaft under 

torsion. 
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Fig. 10. V-notch with an elliptical rounded tip as given by Eq. (48) . 
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Substituting Eq. (41) into Eq. (15) results in: 

zx − i τzy = ς 

d ξ (z) 

dz 
= A 

k 2 · Cosh 

[
z 

k 1 

]
k 1 

√ 

1 + k 2 
2 

· Sinh 

2 
[

z 
k 1 

] (42)

here A is a real constant to determine. Introducing the following

uxiliary variables: 

 1 = k 2 · Cosh 

[ 
z 

k 1 

] 
= r 1 e 

i θ1 z 2 = k 1 

√ 

1 + k 2 
2 

· Sinh 

2 
[ 

z 

k 1 

] 
= r 2 e 

i θ2

(43) 

tress component can be written as in Eq. (44) : 

zx = A 

r 1 
r 2 

cos ( θ1 − θ2 ) τzy = −A 

r 1 
r 2 

sin ( θ1 − θ2 ) (44) 

In the case of antiplane shear loadings, along the notch bisector

ine Eq. (44) simplifies to give: 

zx = A 

k 2 cos ( y / k 1 ) 

k 1 

√ 

1 − k 2 
2 

· sin 

2 (y / k 1 ) 

(45) 

nd parameter A can be expressed as a function of the far applied

ominal stress, A = τ n · k 1 . 

Alternatively, parameter A can also be determined as a function

f the maximum tip stress: 

 = τmax 

k 1 

√ 

1 − k 2 
2 

· sin 

2 (a / k 1 ) 

k 2 cos ( a / k 1 ) 
(46) 

Different from before, in the case of torsion loading of an axis-

ymmetric notched solid, the stress field along the notch bisector

an be approximately written as: 

zx = τmax 

k 1 

√ 

1 − k 2 
2 

· sin 

2 (a / k 1 ) 

k 2 cos ( a / k 1 ) 

k 2 cos ( y / k 1 ) 

k 1 

√ 

1 − k 2 
2 

· sin 

2 (y / k 1 ) 

× y 

a 

(47) 

here a is the radius of the net section. 

A comparison between the analytical solution given by Eq.

47) and the results from a FE analysis carried out on an axis-

ymmetric notched shaft under torsion is shown in Fig. 9 , where

 very satisfactory agreement can be noted. 
.5. V-notch with an elliptical rounded tip 

Consider the mapping shown in Fig. 10: 

 = 

{ 
( 1 − k ) ξ + k 

√ 

4 a 2 / q + ξ 2 

} q 
(48) 

here z = x + iy, ξ = u 0 + i v , k and a are two constants. Such a

apping allows the case of a V notch with an elliptical rounded

ip to be described by the case u 0 = 0. Parameter q is linked to the

otch opening angle by the expression q = 

2 π−2 α
π . 

The following three relevant sites can be deduced based on the

ransformation given by Eq. (48) : 

1. Intersection of the ellipse with the x-axis (notch tip), given

by the condition v = 0 and resulting in: 

˜ x 1 = ( 2k ) 
q · a (49) 

2. Intersection of the ellipse with the y-axis, given by 

˜ v 2 = 2k a 1 /q × Tan 

π

2q 

×
{ 

( 1 − k ) 
2 

Tan 

2 π
2q 

+ k 2 

} −0 . 5 

(50) 

The associated value of y is: 

˜ y 2 = 

{
( 1 − k ) 

2 
˜ v 2 1 + k 2 

(
4 a 2 / q − ˜ v 2 1 

) }q / 2 
(51) 

3. The intersections between the rectilinear flanks and the

ellipse. Those points are characterised by the value ˜ v 3 =
± 2 a 1 / q and the associated Cartesian coordinates are: 

˜ x 3 = { ( 1 − k ) ̃ v 2 } q cos 
π

2 

q ˜ y 3 = { ( 1 − k ) ̃  v 2 } q sin 

π

2 

q 

(52) 

Eq. (48) can be re-written as: 

= 

( k − 1 ) · z 1 / q + k ·
√ 

z 2 / q − 4 a 2 / q ( 2k − 1 ) 

2k − 1 

(53) 

Substituting Eq. (53) into Eq. (12) gives: 

zy + i τzx = A 

{ 

k − 1 

2k − 1 

· z 1 / q −1 + 

k 

2k − 1 

z 2 / q −1 √ 

z 2 / q − 4 a 2 /q ( 2k − 1 ) 

} 

(54) 

here A is a constant to determine. 

Defining the following auxiliary variables: 

 1 = z 2 / q − 8 a 2 / q 
(

k − 1 

2 

)
= r 1 e 

i θ1 (55) 
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Fig. 11. Plot of the stress component along the notch bisector line. The stress com- 

ponent is normalised with respect to the maximum shear stress. Circumferential 

V-notch with an elliptical rounded tip in a finite size axis-symmetric shaft under 

torsion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Finite V-notch with general depth a and opening 2 α. 

a  

p  

n

 

t

z  

w  

t  

w  

p

 

y  

s

5

 

s  

t  

c

Z  

w  

fi  

a{
 

w

A  

w  

E

τ  

w  

c  

f  

 

p  

n  

a

ξ
 

stresses can be written as: 

τzy = A 

{
( k − 1 ) · r 1 / q −1 cos ( 1 / q − 1 ) θ

+ k · r 2 / q −1 

r 1 / 2 
1 

cos 
[
( 2 / q − 1 ) θ − θ1 

2 

]} 
τzx = A 

{
( k − 1 ) · r 1 / q −1 sin ( 1 / q − 1 ) θ

+ k · r 2 / q −1 

r 1 / 2 
1 

sin 

[
( 2 / q − 1 ) θ − θ1 

2 

]} (56)

Parameter A can be written as a function of the maximum

notch tip stress (for r = ̃  x 1 ): 

A = 

τmax { 
( k − 1 ) · ˜ x 1 / q −1 

1 
+ k · ˜ x 2 / q −1 

1 

˜ r 1 / 2 
1 

} = 

τmax 

ω 

(57)

where: 

˜ r 1 = ˜ x 2 / q 
1 

− 8 a 2 / q 
(

k − 1 

2 

)
(58)

Along the notch bisector line the stress field simplifies to give:

τzy = 

τmax 

ω 

{
( 1 − k ) · r 1 / q −1 + k · r 2 / q −1 

r 1 / 2 
1 

}
(59)

In the case of an axis-symmetric notched shaft under torsion

loadings, Eq. (59) becomes: 

τzy = 

τmax 

ω 

{
( 1 − k ) · r 1 / q −1 + k · r 2 / q −1 

r 1 / 2 
1 

}
×
(

1 − r − ˜ x 1 
R 

)
(60)

where R is the radius of the net section. 

A comparison between the analytical solution given by Eq.

(60) and the results from a FE analysis carried out on an axis-

symmetric notched shaft under torsion is shown in Fig. 11 , where

a very satisfactory agreement can be noted. 

5. Schwarz-Christoffel transformation for description of finite 

notches in infinite plates 

5.1. Introductory remarks 

In Section 2 a logical approach to define the stress complex

potential was proposed according to which, once the conformal

map is defined, the complex potential is determined, as well. This

makes some methodologies such as Schwarz-Christoffel transfor-

mation very attractive to determine analytical solutions for the

stress fields caused by sharp notches. Indeed, this transformation
llows describing any polygonal domain automatically, thus sim-

lifying the construction of suitable complex potentials for various

otches. 

In general terms, the Schwarz-Christoffel Mapping (SCM) func-

ion can be written as ( Driscoll and Trefethen, 2002 ). 

 = f (ξ ) = C 

∫ ξ n ∏ 

j=1 

dw 

(w − a j ) 
1 − α j 

π

(61)

here C is a constant. Such a general function maps the real axis

o the edges of a polygon with n sides and interior angles αj ,

hereas a j represents the vertices of the polygon in the complex

lane. 

According to the SCM, the domain boundary is described by v ( x,

 ) = 0 so, from now on, Eq. (15) will be referenced to define the

tress complex potential. 

.2. The shallow V-notch 

Let us consider the case of a finite sharp V-notch in an infinite

olid subjected to a remote shear stress τ zx = τ∞ 

( Fig. 12 ). Thanks

o the SCM the conformal map describing the notch profile and the

orresponding first derivative are: 

 

′ ( ξ ) = A 

ξ 1 −2 α/π(
ξ 2 − 1 

)1 / 2 −α/π
Z ( ξ ) = B + 

∫ ξ

Z 

′ ( w ) dw (62)

here A and B are complex constants. However, since the stress

eld is linked to Z’( ξ ), constant A suffices to be determined, taking

dvantage of the following boundary conditions: 

Z(ξ = 0) = ia 
Z(ξ = 1) = a tan α

(63)

hich give: 

 = 

a 
√ 

π

cos α�
(
1 − α

π

)
�
(

1 
2 

+ 

α
π

) (64)

here �(t) = 

∞ ∫ 
0 

x t −1 · e −x dx is the gamma function. Substituting

q. (62) into Eq. (15) : 

zx − i τzy = ς 

d ξ (z) 

dz 
= ς 

(
dZ (ξ ) 

d ξ

)−1 

= τ∞ 

(
ξ 2 − 1 

)1 / 2 −α/π

ξ 1 −2 α/π
(65)

here τ∞ 

= lim | ξ |→∞ 

τzx − i τzy is the far applied shear stress. Ac-

ordingly, the explicit knowledge of stress components requires the

unction ξ = ξ ( Z ) to be known and, in general, this is far from easy.

However, if the stresses near the notch tip are of interest, the

rocess can be considerably simplified. To this end, one should

ote that, thanks to De L’ Hospital ’s rule, the following equations

re valid: 

lim 

→ 0 

Z − ia 

ξ 1 −2 α/π

H = lim 

ξ→ 0 

A 

1 − 2 α/π

ξ(
ξ 2 − 1 

)1 / 2 −α/π
= 0 (66)
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Fig. 13. Comparison between Eqs. (73), (74) and numerical data from Zappalorto et 

al. (2009) . Shallow V-notch under torsion. 

Fig. 14. Finite length inclined crack in an infinite medium subjected to a remote 

shear stress. 

 

e

Z

Z

τ

w

w  

A

z

lim 

→ 0 

[
( 1 − 2 α/π) 

Z − ia 

ξ 2 −2 α/π

]
ξ = lim 

ξ→ 0 

[
1 − 2 α/π

2 ( 1 − α/π) 

Z 

′ ( ξ ) 

ξ 1 −2 α/π

]
ξ

(67) 

So that invoking a Taylor series expansion near ξ = 0: 

Z − ia 

ξ 1 −2 α/π
= lim 

ξ→ 0 

[
Z 

′ ( ξ ) 

ξ 1 −2 α/π
− 1 − 2 α/π

2 ( 1 − α/π) 

Z 

′ ( ξ ) 

ξ 1 −2 α/π

]
ξ + ϑ 

(
ξ 2 
)

(68) 

Now, introducing the change of variables z = Z -i a and rearrang-

ng, Eq. (68) gives: 

 ≈ A 

2 exp [ (π/ 2 − α)i ] ( 1 − α/π) 
ξ 2 ( 1 −α/π) (69) 

r, equivalently: 

≈ e [ ( π/ 2 −α) / 2 ( 1 −α/π) i ] 
[ 

2 ( 1 − α/π) 

A 

] 1 / 2 ( 1 −α/π) 

z 1 / 2 ( 1 −α/π) (70) 

Eventually, substituting Eq. (70) into Eq. (65) gives: 

zx − i τzy = τ∞ 

e 
π
2 

q −1 
q i 

[
A 

q 

]1 / q −1 

z 1 / q −1 (71) 

here the equality 2 α = π (2- q ) has been used. The Notch Stress

ntensity Factor for this geometry can be easily determined by the

efinition K 3 = 

√ 

2 π lim 

y → 0 
τzx y 

1 −1 / q , which gives: 

 3 = τ∞ 

√ 

2 π

[
A 

q 

]1 / q −1 

= τ∞ 

√ 

2 π

[ 

a 
√ 

π

q cos α �
(
1 − α

π

)
�
(

1 
2 

+ 

α
π

)
] 1 −1 / q 

= τ∞ 

· k 3 · a 1 −1 / q (72) 

here: 

 3 = 

√ 

2 π

[ √ 

π

q cos α �
(
1 − α

π

)
�
(

1 
2 

+ 

α
π

)
] 1 −1 / q 

(73) 

Being the solid infinite, Eq. (72) is valid both for a prismatic

ody under longitudinal shear and for an axisymmetric shaft

eakened by a circumferential pointed V notch. 

Recently Zappalorto et al. (2009) provided an approximate ex-

ression for parameter k 3 , based on a best fitting of the results

rom numerical analyses carried out on torque loaded circumfer-

ntial bodied with shallow notches (0 ° ≤ 2 α ≤ 150 °). Such an ex-

ression reads as: 

 3s = 

√ 

π
(
−3779 

878 

· s 2 3 −
90 

119 

· s 3 + 

527 

312 

)
(74) 

here s 3 = ( α−π /2)/( π −α). 

Fig. 13 shows a comparison between Eq. (73) and Eq. (74) , both

f them being also compared to numerical results. The accuracy of

q. (73) is noteworthy. 

.3. The finite inclined crack in an infinite medium 

Consider the case of a finite length inclined crack in an infinite

edium subjected to a remote shear stress ( Fig. 14 ). The corre-

ponding bending problem was analysed by Hasebe and Inohara

1980) and later extended to the quasi-orthotropic case by Hasebe

nd Sato (2013) . 
According to SCM, the first derivative of the mapping can be

xpressed as: 

 

′ (ξ ) = a 

(
α

π − α

)1 − α
π ξ

( ξ − 1 ) 
1 −α/π

(
ξ − α−π

α

)α/π
(75) 

Accordingly: 

(ξ ) = a 

(
α

π − α

)1 − α
π

( ξ − 1 ) 
α/π

(
1 + 

α/πξ

1 − α/π

)1 −α/π

(76) 

Taking advantage of Eq. (15) : 

zx − i τzy = τ∞ 

( ξ − 1 ) 
1 −α/π

(
ξ + 

1 −α/π
α/π

)α/π

ξ
(77) 

here τ∞ 

= lim | ξ |→∞ 

τzx − i τzy is the far applied shear stress. 

Consider now the following MacLaurin series expansion: 

Z − a e i α

ξ
= lim 

ξ→ 0 

[
Z 

′ ( ξ ) 

ξ
− Z − a e i α

ξ 2 

]
ξ

+ ϑ 

(
ξ 2 
) H = lim 

ξ→ 0 

[
Z 

′ ( ξ ) 

ξ
− 1 

2 

Z 

′ ( ξ ) 

ξ

]
ξ + ϑ 

(
ξ 2 
)

(78) 

here the latter substitution is guaranteed by De L’Hospital ’s rule.

ccordingly: 

Z − a e i α

ξ
≈ 1 

2 

a 

e i ( π−α) 

(
α

π − α

)
ξ (79) 

Then, introducing the change of variables z = Z - a e i α: 

 ≈ 1 

2 

a 

e i ( π−α) 

(
α

π − α

)
ξ 2 (80) 
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Fig. 15. Comparison between Eq. (84b) and the results from FE analyses. Inclined 

crack in a solid under antiplane shear. (The FE analysis was conducted using the 

following dimensions: width, W = 240 mm, height, H = 240 mm and length of the 

edge crack, a = 10 mm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Schematic of a body weakened by a rectangular cutout. 

Fig. 17. Plot of Eq. (87) . 
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p

 

or equivalently: 

ξ ≈
√ 

2 e i ( π−α) / 2 
(
π − α

α

) 1 
2 
(

z 

a 

) 1 
2 

(81)

and, substituting Eq. (81) into Eq. (77) gives: 

τzx −i τzy = τ∞ 

√ 

2 

2 

e i ( π−α) / 2 
(
π − α

α

) α
π−1 

2 
(

a 

z 

) 1 
2 

(82)

or, in polar stress components: 

τzr −i τz θ = e i θ ( τzx −i τzy ) = τ∞ 

√ 

2 

2 

e i ( π−α) / 2+ θ/ 2 
(
π − α

α

) α
π − 1 

2 
(

a 

r 

) 1 
2 

(83)

Noting that along the crack plane θ = α, the stress intensity fac-

tor turns out to be: 

K III = 

√ 

2 π lim 

y → 0 
τzx r 

1 / 2 = τ∞ 

√ 

πa 

(
π − α

α

) α
π − 1 

2 = � · τ∞ 

√ 

πa 

(84a)

where: 

� = 

(
π − α

α

) α
π − 1 

2 

(84b)

A comparison between the analytical solution given by Eq.

(84b) and the results from FE analyses carried out on rectangu-

lar plates weakened by shallow inclined cracks is shown in Fig. 15 ,

where an excellent agreement can be noted. 

5.4. Rectangular cut out under longitudinal shear 

Consider a rectangular cutout under longitudinal shear ( Fig. 16 ).

The conformal mapping to be used to describe the notch profile

can be chosen as: 

Z ( ξ ) = D E 2 

[
ξ , 

b 

a 

]
/ E 2c 

[
b 

a 

]
(85)

where E 2 is the elliptic integral of the second kind, E 2 ( x , y ) =
x ∫ 

0 

√ 

1 − y 2 sin 

2 θ d θ , whereas E 2c (y) is the complete elliptical inte-

gral of the second kind. Under the condition b < a, the height of

the cutout, h, can be expressed as: 

h = Im 

{ 
lim 

v →∞ 

D · E 2 [ π/ 2 + iv , b / a ] / E 2c [ b / a ] 

} 
(86)
Accordingly, assuming a and b to be integers, the ratio h/D can
e written as: 

h 

D 

= −2 

√ 

b 

a 

{
·E 2c 

[
1 − a 

b 

]
− a 

b 
· E 1c 

[
1 − a 

b 

]}
− Im 

{[
E 2c 

[
a 
b 

]
−
(
1 − a 

b 

)
E 1c 

[
a 
b 

]]}
E 2c 

[
b 
a 

]
(87)

here E 1c (y) = 

π/ 2 ∫ 
0 

d θ√ 
1 −y 2 sin 2 θ

is the complete elliptic integral of the first

ind. Eq. (87) is plotted in Fig. 16. 

Invoking Eq. (12) together with Eq. (87) , stresses can be written

s: 

zy + i τzx = ς 

d ξ (z) 

dz 
= ς 

(
dZ (ξ ) 

d ξ

)−1 

= 

ς 

D 

E 2c [ b / a ] √ 

1 − b / a sin 

2 ξ
(88)

To define stresses in Cartesian coordinates near one of the ver-
ices we need to find ξ = ξ (Z). To this end, consider the Taylor ex-

ansion near ψ = π−arcsin 

√ 

a / b : 

Z − ( D + ih ) √ 

1 − b / a sin 
2 ξ

= 0 + lim 

ξ→ ψ 

[ 

Z ′ ( ξ ) √ 

1 − b / a sin 
2 ξ

− 1 

2 

Z ( ξ ) − ( D + ih ) (
1 − b / a sin 

2 ξ
)3 / 2 

×
(

−2 
b 

a 
sin ξ cos ξ

)]
( ξ − ψ ) + ϑ ( ξ − ψ ) 

2 

≈ lim 

ξ→ ψ 

[ 

2 

3 

Z ′ ( ξ ) √ 

1 − b / a sin 
2 ξ

] 

( ξ − ψ ) 

= 

2 

3 

D 

E 2c [ b / a ] 
( ξ − ψ ) (89)
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Fig. 18. Comparison between Eq. (100) and the results from FE analyses. Rectan- 

gular cutout in a prismatic solid under antiplane shear. (The FE analysis was con- 
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in the present work. 
Introducing the change of coordinates z = Z -( D + i h ): 

 ≈ 2 

3 

√ 

1 − b / a sin 

2 ξ
D 

E 2c [ b / a ] 
( ξ − ψ ) (90) 

nd recalling that: 

1 − b / a sin 

2 ξ ≈ −2b / a sin ξ cos ξ ( ξ − ψ ) 

= −2b / a 
√ 

a / b 

√ 

1 − a / b ( ξ − ψ ) (91) 

ne obtains: 

≈ ψ + 

z 2 / 3 e −iπ/ 2 (
2 
3 

√ 

2b / a 
√ 

a / b 

√ 

a / b − 1 

D 
E 2c [ b / a ] 

) 2 
3 

(92) 

Moreover, noting that: 
 

−2b / a 
√ 

a / b 

√ 

1 − a / b = 

√ 

2b / a 
√ 

a / b 

√ 

a / b − 1 e i3 / 4 π (93) 

ubstituting into Eq. (88) and rearranging: 

zy + i τzx = 

ζ

D 

( E 2 c [ b/a ] ) 
2 / 3 (

2 b/a 
√ 

a/b 
√ 

a/b − 1 

)1 / 3 
e −iπ/ 2 

(
2 

3 

)1 / 3 (D 

z 

)1 / 3 

(94) 

Moving to polar coordinates: 

zθ + i τzr = e iθ ( τzy + i τzx ) 

= 

ζ

D 

( E 2 c [ b/a ] ) 
2 / 3 (

2 b/a 
√ 

a/b 
√ 

a/b − 1 

)1 / 3 
e −iπ/ 2+3 / 4 θ

(
2 

3 

)1 / 3 (D 

r 

)1 / 3

(95)

Taking advantage of Eq. (95) it is trivial to determine an analyt-

cal solution for the Notch Stress Intensity Factor at the corner of

he cut-out, K 3 : 

 3 = 

√ 

2 π lim 

r→ 0 ,θ=3 / 4 π
τzθ · r 1 / 3 = 

√ 

2 π
ζ

D 

2 / 3 

( E 2 c [ b/a ] ) 
2 / 3 (

2 

√ 

1 − b/a 

)1 / 3 

(
2 

3 

)1 / 3

(96) 

Consider now a prismatic solid of unit thickness, invoking the

quilibrium of shear forces, the following equation holds valid: 

 tot = 2 

∫ D 

0 

ζ
dξ ( Z ) 

dZ 
dZ = 2 

∫ π/ 2 

0 

ζdξ = πζ (97)

here T tot is the applied shear force. Accordingly, 

= 

T tot 

π
(98) 

Substituting Eq. (98) into Eq. (96) and rearranging results in the

ollowing expression for the mode III NSIF: 

 3 = τnn ·

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
2 

3 

)1 / 3 

2 

√ 

2 

π

( E 2c [ b / a ] ) 
2 / 3 (

2 

√ 

1 − b / a 

)1 / 3 

⎫ ⎪ ⎬ 

⎪ ⎭ 

· D 

1 / 3 = τnn · k 3R · D 

1 /

(99) 

here τnn = 

T tot 
2D is the nominal shear stress and: 

 3R = 

(
2 

3 

)1 / 3 

2 

√ 

2 

π

( E 2c [ b / a ] ) 
2 / 3 (

2 

√ 

1 − b / a 

)1 / 3 
(100) 

A comparison between Eq. (100) and the results from FEA is

hown in Fig. 18 , where a very satisfactory agreement can be

oted. 
. Conclusions 

Mode III is a common loading scenario in several engineering

pplications, from e.g. power transmission shafts to fastened joints.

his contribution proposes a general approach to solve, in closed

orm, the stress and strain fields in cracked or notched bodies sub-

ected to anti-plane shear or torsional loadings. Based on the analy-

es and the discussions presented in this study, the following con-

lusions can be formulated: 

1. the mode III stress fields can be uniquely determined by the

introduction of a complex potential. Provided the domain of

the problem can be described by an analytic function and

the zero-stress condition is applied on a straight line in the

transformed domain, the mentioned complex potential is pro-

portional to the first derivative of the mapping ; 

2. there is no need to make arbitrary assumptions on the stress

complex potential. Once the geometry of the problem is de-

fined, the potential is uniquely determined . Accordingly, the

problem is not guessing the right potential but finding the

correct conformal mapping of the problem; 

3. when the Schwarz-Christoffel approach is adopted, the solu-

tion can be found by simple geometrical construction. This

is similar in spirit to the Mohr’s circles approach for the de-

termination of principal stresses; 

4. the foregoing considerations make the solution of even com-

plex geometries rather simple as the analyses presented in

the manuscript clearly show. Several completely new solu-

tions such as the rectangular cut, finite V-notch, elliptic key-

hole have been presented in this work leveraging on the

proposed approach. 

5. finally, another application of the proposed methodology

is the calculation of the three-dimensional stress field in

notched plates with finite thickness. In such a case, as

shown in ( Lazzarin et al., 2012, 2015 and Zappalorto and

Lazzarin 2013 ), the stress field is governed by two uncou-

pled equations in the two-dimensional space. The solution

of the first equation requires the same methodologies cor-

responding to plane notch problems. The second equation

corresponds to the related out-of-plane shear notch problem

and it can be solved by means of the formulation proposed
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