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Elastic Microplane Formulation
for Transversely Isotropic
Materials
This contribution investigates the extension of the microplane formulation to the descrip-
tion of transversely isotropic materials such as shale rock, foams, unidirectional compo-
sites, and ceramics. Two possible approaches are considered: (1) the spectral
decomposition of the stiffness tensor to define the microplane constitutive laws in terms
of energetically orthogonal eigenstrains and eigenstresses and (2) the definition of
orientation-dependent microplane elastic moduli. The first approach, as demonstrated
previously, provides a rigorous way to tackle anisotropy within the microplane frame-
work, which is reviewed and presented herein in a clearer manner; whereas the second
approach represents an approximation which, however, makes the formulation of nonlin-
ear constitutive equations much simpler. The efficacy of the second approach in modeling
the macroscopic elastic behavior is compared to the thermodynamic restrictions of the
anisotropic parameters showing that a significant range of elastic properties can be mod-
eled with excellent accuracy. Further, it is shown that it provides a very good approxima-
tion of the microplane stresses provided by the first approach, with the advantage of a
simpler formulation. It is concluded that the spectral stiffness decomposition represents
the best approach in such cases as for modeling composites, in which accurately captur-
ing the elastic behavior is important. The introduction of orientation-dependent micro-
plane elastic moduli provides a simpler framework for the modeling of transversely
isotropic materials with remarked inelastic behavior, as in the case, for example, of shale
rock. [DOI: 10.1115/1.4034658]

1 Introduction

Quasi-brittle materials are defined as those materials that
exhibit no or negligible plastic strain prior to failure [1]. The for-
mation and growth of fracture process zone are considered to be
responsible for both the softening behavior observed in the
post–peak stress–strain curve and the development of plastic irre-
versible strains [2]. The presence of anisotropy in quasi-brittle
materials is very common. For example, the response of rigid
foams is usually anisotropic. During the foaming process, viscous
forces cause the cells to be elongated in the rise direction, and the
material response will be therefore stiffer in this direction [3]. A
special case of anisotropy is transverse isotropy, which contains a
plane of isotropy, implying that the material can be rotated with
respect to the loading direction about one axis without measurable
effect on material’s response. Due to its high symmetry and rela-
tive simplicity in mathematical formulae, transversely isotropic
medium has become one of the most studied anisotropic media in
the literature. Fiber-reinforced composites with all fibers being in
parallel can be regarded as transversely isotropic, and many sedi-
mentary rocks, such as shales, slates, siltstones, claystones, and
mudstones, are best described as transversely isotropic media with
the symmetric axes perpendicular to bedding. Such bedding
planes affect the strength and deformational behaviors of the rock
with orientation to the applied stresses.

Elastic transverse isotropy is the subject of the present contribu-
tion which investigates the extension of the microplane formula-
tion to this type of anisotropy. Two possible approaches are
compared: (1) the spectral decomposition of the stiffness tensor to
define the microplane constitutive laws in terms of energetically

orthogonal eigenstrains and eigenstresses and (2) the definition of
orientation-dependent microplane elastic moduli.

2 Background of Microplane Model

The microplane model describes the material behavior at the
mesoscopic scale by formulating the constitutive laws in terms of
stress and strain vectors acting on individual microplanes of all
possible orientations at a given material point [3–22], instead of
using a traditional tensorial constitutive model. These microplanes
may be imagined to represent damage planes or weak planes in
the mesoscale structures, such as contact layers between aggregate
pieces in concrete or defects in composite laminates.

The microplane concept has known a long history. The charac-
terization of the material behavior on different material planes
was first suggested by Mohr [23] in 1900. This idea was then
advanced by Taylor [24] and applied to develop the slip theory of
plasticity by Batdorf and Budiansky [25]. Later, it was extended
by Ba�zant and his co-workers to model quasi-brittle materials
exhibiting softening damage [4,5]. Since then, the microplane
model for concrete has been studied extensively and evolved
through several progressively improved versions [4–6, 8–13, and
18–21]. Numerous advantages of microplane models were
reviewed in Brocca and Ba�zant [26] and Cusatis et al. [27]. The
main appealing aspect of this approach is its conceptual simplic-
ity, i.e., once the general algorithm for the relationship between
microplane quantities and macroscopic tensors has been estab-
lished, formulating a constitutive law is intuitive, since all the
quantities involved always have an immediate physical meaning.
Oriented phenomena, such as friction and cracking, can be realis-
tically simulated. Besides, the microplane model automatically
exhibits the vertex effect, which has not been captured by any usa-
ble tensorial models, and the interaction of microplanes accurately
captures all the cross effects, such as shear dilatancy and pressure
sensitivity. This also allows simulating damage-induced anisot-
ropy quite simply. Despite the fact that the adoption of the
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microplane modeling approach is usually computationally expen-
sive compared to the classical tensorial models, systems of mil-
lions of finite elements have been successfully solved using the
microplane model for concrete [7]. Microplane models have also
been developed for other complex materials such as rock [14],
cemented soils [28], clay [15], rigid foam [3], fiber reinforced
concrete [17], shape memory alloy [29], and fiber composites
(prepreg laminates [27,30] and braided composites [31]). Finally,
it is worth noting that the constitutive relations prescribed on the
microplanes, which are lumped into a single material point in the
microplane models, can also be used in an explicit mesoscale
model on planes of various orientations separating the neighbor-
ing aggregates embedded in a cement mortar matrix, as it has
been done in the recently developed lattice discrete particle model
(LDPM) [32,33]. Inevitably, there are similarities between the
constitutive relations of microplane models and those of LDPM.

However, most of the microplane and LDPM simulations have
been focusing on the mechanical behavior of isotropic quasi-
brittle materials, and there are only a few studies on the formula-
tion for anisotropic quasi-brittle materials [3,15,27,34]. The
formulation for anisotropy could be complex even in the elastic
regime, as elasticity must be defined on the microplanes in order
to model softening damage. Brocca et al. proposed a microplane
formulation for stiff foam based on the assumption that the elastic
moduli on the microplanes vary ellipsoidally as a function of the
microplane orientation [3]. This approach cannot be used to cor-
rectly represent the mechanical properties of strongly anisotropic
materials due to the fact that an exact correspondence in elasticity
between tensorial macrostiffness and vectorial microstiffness can-
not be obtained. A similar limitation exists in the microplane
models developed for anisotropic clay [15,34]. As shown by
Cusatis et al. [27], only the microplane formulation based on spec-
tral decomposition of the stiffness tensor guarantees that an exact
correspondence in elasticity between the microplane formulation
and the tensorial formulation can be established. Although the
spectral stiffness microplane model is the only known exact and
rigorous approach for the anisotropic generalization of the micro-
plane model, such a method becomes less appropriate for the sim-
ulation of the nonlinear and softening behaviors of quasi-brittle
materials. Cusatis et al. managed to simulate the strain-softening
damage and fracture mechanics aspects by using strain-dependent
limits to provide bounds for the microplane stresses in each spec-
tral mode [27], but it is not as convenient as directly using micro-
plane normal stress and strain components. This, along with the
fact that too many parameters need to be identified in the calibra-
tion procedure, renders the method unwieldy in practice, and
therefore there remains a scientific challenge to relate the macro-
scopic response of anisotropic quasi-brittle materials to the elastic
properties of its underlying microstructure.

Even for the simulation of the elasticity of isotropic quasi-
brittle materials, as it was pointed out by Ba�zant et al. [9] and
Cusatis et al. [32], the microplane formulation without
volumetric-deviatoric split of the strain cannot cover the entire

range of thermodynamically acceptable Poisson’s ratios
(�1� �� 0.5): Poisson’s ratio is restricted to the range from �1
to 0.25. Although the full Poisson’s ratio range can be obtained by
introducing the volumetric-deviatoric decomposition of the nor-
mal strain [35], this complicates severely the damage formulation.
The same issue exists for the simulation of anisotropic quasi-
brittle materials, and there still exists no microplane model
without spectral decomposition that is capable of giving the com-
plete range of thermodynamically admissible Poisson’s ratio. In
this study, the possibility of formulating a microplane model for
transversely isotropic quasi-brittle materials based on the assump-
tion that the elastic moduli on the microplanes vary with the
microplane orientation is investigated in detail, and the ranges of
Poisson’s ratios produced by the model are compared with the full
Poisson’s ratio range obtained from the thermodynamic restric-
tions and the microplane spectral stiffness formulation.

3 Thermodynamic Restrictions on Elastic Constants

of Transversely Isotropic Materials

The elastic stress–strain relation of an anisotropic material can
be written in tensorial notation as rij ¼ Eijklekl, where the indices
refer to Cartesian coordinates xi (i¼ 1, 2, 3); rij and eij are the
second-order stress and strain tensors, respectively. They are sym-
metric and their symmetry enables their contraction into six-
dimensional vectors r and e. Similarly, the internal and external
symmetries of the fourth-order stiffness tensor Eijkl allow its con-
traction into a 6� 6 matrix E. The following rules contract a pair
of indices into a single index: 11! 1; 22! 2; 33! 3;
23; 32ð Þ ! 4; 13; 31ð Þ ! 5, and 12; 21ð Þ ! 6. Therefore, in

matrix notation, one can write r ¼ Ee where r ¼ r11;½
r22;r33;

ffiffiffi
2
p

r23;
ffiffiffi
2
p

r13;
ffiffiffi
2
p

r12�T ; e ¼ e11; e22; e33;
ffiffiffi
2
p

e23;
ffiffiffi
2
p

e13;
�ffiffiffi

2
p

e12�T , and the matrix E is defined accordingly. The foregoing
definitions of six-dimensional vectors are known as the Kelvin

notation [36]. The factor
ffiffiffi
2
p

assures that both the stiffness tensor
and its column matrix have the same norm, given by the sum of
the squares of their elements.

As an anisotropic medium of the highest symmetry, i.e., hexag-
onal symmetry, transversely isotropic medium possesses a rota-
tional symmetry axis and the least number of independent elastic
constants (five in total). For the case of transverse isotropy with
isotropy in the 1-2 plane, as shown in Fig. 1(a), the elastic compli-
ance matrix, C¼E

–1, is given by

C¼

1=E ��=E ��0=E0 0 0 0

��=E 1=E ��0=E0 0 0 0

��0=E0 ��0=E0 1=E0 0 0 0

0 0 0 1= 2Gð Þ 0 0

0 0 0 0 1= 2Gð Þ 0

0 0 0 0 0 1þ �ð Þ=E

2
6666664

3
7777775

(1)

where E0 and E are Young’s moduli in the longitudinal and trans-
verse directions, respectively, G is out-of-plane shear modulus, �0

and � are Poisson’s ratios in the longitudinal and transverse direc-
tions, respectively.

It is well known that a necessary and sufficient condition for
the work done on an elastic material to be strictly positive is that
the matrix C be symmetric and positive definite [37]. If the work
done on a material is not positive, then useful work could be
extracted from the material. This would be a violation of estab-
lished thermodynamic principles. A necessary and sufficient con-
dition for a symmetric matrix to be positive definite is that all
determinants formed from it be positive. In the case of a trans-
versely isotropic material, applying the conditions of positive defi-
niteness to the compliance matrix C, one can show that the
following inequalities must be satisfied by the elastic constants:

Fig. 1 (a) Coordinate system for transversely isotropic materi-
als and (b) spherical coordinate system
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�1 < � < 1 (2)

�
ffiffiffiffiffiffiffiffiffiffi
E0=E

p
< �0 <

ffiffiffiffiffiffiffiffiffiffi
E0=E

p
(3)

� < 1� 2 �0ð Þ2 E=E0
� �

(4)

By making use of these equations, one can find the lower and
upper bounds of �0 for every possible value of � with different val-
ues of E=E0, as plotted in Fig. 2.

4 Microplane Model Formulation With Different

Types of Constraints

At the microstructural level, nonlinear and inelastic phenomena
often occur on planes of a certain specific orientation, and thus the
constitutive law characterizing the mechanical behavior is best
described by a relationship between stress and strain vectors act-
ing on a generic plane of arbitrary spatial orientation. These
microplanes can be imagined as the tangent planes of a unit sphere
surrounding every point in the three-dimensional space [27].

Fig. 2 The contour plot of t for each case. The results are compared with the thermody-
namic restrictions on elastic constants of transversely isotropic materials. The figure
appears in color in the electronic version of this article.
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There are two different classes of microplane models: the kine-
matically constrained and the statically constrained [3]. In the kin-
ematically constrained microplane model, the strain vector on
each microplane is the projection of the macroscopic strain tensor.
Using Kelvin notation, one can write eP ¼ Pe where eP

¼ eN ; eM; eL½ �T is the microplane strain vector, with eN being the
normal strain component, and eM and eL being the shear strain
components, respectively. The matrix P can be written as:

P ¼
N11 N22 N33

ffiffiffi
2
p

N23

ffiffiffi
2
p

N13

ffiffiffi
2
p

N12

M11 M22 M33

ffiffiffi
2
p

M23

ffiffiffi
2
p

M13

ffiffiffi
2
p

M12

L11 L22 L33

ffiffiffi
2
p

L23

ffiffiffi
2
p

L13

ffiffiffi
2
p

L12

2
64

3
75 (5)

which collects the components of the tensors Nij ¼ ninj; Mij

¼ minj þ mjnið Þ=2 and Lij ¼ linj þ ljnið Þ=2, where ni, mi, and li
are local Cartesian coordinate vectors on the generic microplane,
with ni being normal. If the microplane orientation is defined by
spherical angles h and /, as shown in Fig. 1(b), then
n1 ¼ sin h cos /; n2 ¼ sin h sin /, and n3 ¼ cos h, and one can
choose m1 ¼ cos h cos /; m2 ¼ cos h sin /, and m3 ¼ �sin h,
which gives l1 ¼ �sin /; l2 ¼ cos /, and l3¼ 0. Once the strain
components on each microplane are obtained, the stress compo-
nents are updated through microplane constitutive laws, which
can be expressed in an algebraic or differential form. If the kine-
matic constraint is imposed, in general, the microplane stress
components do not coincide with the projections of the macro-
scopic stress tensor, i.e., rP 6¼ Pr. Thus, static equivalence or
equilibrium between the microplane stress components and mac-
roscopic stress tensor must be enforced by other means. This is
accomplished by applying the principle of virtual work, which
leads to

r ¼ 3

2p

ð
X

PTrPdX (6)

where X is the surface of a unit hemisphere.
The kinematic constraint was proposed to stabilize the system

of softening microplanes, since the statically constrained micro-
plane models, similar to the classic Taylor models developed for
metals and nonsoftening soils, can be only used for hardening
plasticity. It is possible to formulate the microplane model such
that a kinematic constraint for the strains coexists with a static
constraint for the stresses. When this happens, the model is said to
have a double constraint. As proved by Cusatis et al. [27], such a
double constraint exists in the elastic regime if and only if micro-
plane elasticity is formulated through the spectral decomposition
of the stiffness or compliance matrices.

5 Spectral Stiffness Microplane Model

By using the spectral decomposition theorem [27,38–40], the
stiffness matrix E can be decomposed as E ¼

P
IkIEI where kI

are the eigenvalues of E, and EI define a set of matrices con-

structed from the eigenvectors of E as EI ¼
P

n/In/
T
In, where /In

is the normalized eigenvector associated with the eigenvalue kI of

multiplicity n so that /T
InE/In ¼ kI . The following conditions

hold for the matrix E :
P

IEI ¼ 1; EIEI ¼ EI , and EIEJ¼ 0
(I 6¼ J). EI decomposes the stress and strain vectors into energeti-
cally orthogonal modes, which are called eigenstresses and eigen-
strains, as eI ¼ EIe and rI ¼ EIr, respectively, where
r ¼

P
IrI; e ¼

P
IeI , and rI ¼ kIeI . In a similar manner, one can

also decompose the stress and strain vectors into microplane
eigenstresses and microplane eigenstrains as ePI ¼ PIe and
rPI ¼ PIr, respectively, where PI¼PEI [27]. Finally, in the elas-
tic regime, the microplane eigenstresses are proportional to the
microplane eigenstrains through the associated eigenvalue, that is,
rPI ¼ kIePI .

For the case of transverse isotropy, the eigenvalues of the com-
pliance matrix C, which are the reciprocal of the eigenvalues kI of
the stiffness matrix E, can be expressed as [27,39]

k�1
1 ¼

1þ �
E

; k�1
2 ¼

1� �
2E
þ 1

2E0

� 1� �
2E
� 1

2E0

� �2

þ 2�02

E02

" #1=2

; k�1
3 ¼

1� �
2E
þ 1

2E0

þ 1� �
2E
� 1

2E0

� �2

þ 2�02

E02

" #1=2

; and k�1
4 ¼

1

2G

and the corresponding EI can be expressed as

E1 ¼

1=2 �1=2 0 0 0 0

�1=2 1=2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

(7)

E2 ¼

c2=2 c2=2 cs=
ffiffiffi
2
p

0 0 0

c2=2 c2=2 cs=
ffiffiffi
2
p

0 0 0

cs=
ffiffiffi
2
p

cs=
ffiffiffi
2
p

s2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666664

3
77777775

(8)

E3 ¼

s2=2 s2=2 �cs=
ffiffiffi
2
p

0 0 0

s2=2 s2=2 �cs=
ffiffiffi
2
p

0 0 0

�cs=
ffiffiffi
2
p

�cs=
ffiffiffi
2
p

c2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666664

3
77777775

(9)

E4 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

2
6666664

3
7777775

(10)

where c ¼ cos x; s ¼ sin x, and tan 2x ¼ �2
ffiffiffi
2
p

�0=E0
� �

=
1� �ð Þ=E� 1=E0

� �
.

As a generalization of the volumetric-deviatoric decomposition,
the spectral stiffness microplane model is the only exact and rigor-
ous approach for the anisotropic generalization of the microplane
model, but it becomes unwieldy for the simulation of the nonlin-
ear and softening behaviors of quasi-brittle materials. This is
because various nonliear and softening laws must be formulated
for the different spectral modes and for their interaction. Further-
more, the use in the nonlinear regime of the spectral deformation
modes that are derived from the elastic stiffness matrix can be
questioned from a theoretical point of view. In many cases, it is
easier to formulate nonlinear constitutive equations, especially for
fracture and damage, with reference to the total microplane
stresses and strains. To directly use normal stress and strain com-
ponents, a microplane formulation based on the assumption that
the elastic moduli on the microplanes vary with the microplane
orientation is more convenient. This type of elastic formulation is
discussed in Sec. 6.

6 Microplane Model with Orientation Dependent

Moduli

To capture the macroscopic response of anisotropic materials,
Brocca et al. [3] proposed a microplane formulation based on the
assumption that the elastic moduli on the microplanes vary as
functions of the microplane orientation, that is, Ei ¼ Ei /; hð Þ,
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where subscript i¼N, M, L labels the components of the micro-
plane strain and stress vectors. Furthermore, for transversely iso-
tropic materials, one can assume that the moduli are functions of
h only. By integrating the microplane elastic energy over the unit
hemisphere, one can obtain:

1

2
rTE�r ¼ W ¼ 3

2p

ð
X

1

2
rT

PEPrPdX

¼ 1

2
rT 3

2p

ð
X

PTEPPdX

	 

r) E� ¼ 3

2p

ð
X

PTEPPdX

(11)

where Ep¼ diag(Ei).
The objective of this study is to investigate the form of the

function of Ei(h) which gives the maximum range of Poisson’s
ratios The following four cases are studied. The first is case A,
characterized by a linear variation with h:

EN ¼ a1 � a2ð Þ
2

p
hþ a2; EM ¼ a3 � a4ð Þ

2

p
hþ a4;

EL ¼ a3 � a4ð Þ
2

p
hþ a4 (12)

The second case, case B, makes use of trigonometric functions:

EN ¼ a1 sin2hþ a2 cos2h; EM ¼ a3 sin2hþ a4 cos2h;

EL ¼ a3 sin2hþ a4 cos2h (13)

The third case, case C, uses the inverse of the functions in case B:

EN ¼ a1 sin2hþ a2 cos2h
� ��1

; EM ¼ a3 sin2hþ a4 cos2h
� ��1

;

EL ¼ a3 sin2hþ a4 cos2h
� ��1

(14)

where ai (i¼ 1, 2, 3, 4) are positive unknown parameters. In both
case A and case B, EN jh¼0 ¼ a2; EN jh¼p=2 ¼ a1; ELjh¼0

¼ EMjh¼0 ¼ a4, and ELjh¼p=2 ¼ EMjh¼p=2 ¼ a3. In case C, instead,

one has EN jh¼0 ¼ 1=a2; EN jh¼p=2 ¼ 1=a1; ELjh¼0

¼ EMjh¼0 ¼ 1=a4, and ELjh¼p=2 ¼ EMjh¼p=2 ¼ 1=a3. In all the

cases, the condition ai> 0 (i¼ 1, 2, 3, 4) ensures that Ei> 0
(i¼N, M, L).

Finally, the fourth case, case D, assumes independent modulus
values at each microplane orientation. For the most commonly
adopted quadrature formula with 37 microplanes [41,42], this
approach involves the values of EN and EM at eight different h:
h1 ¼ 0; h2 ¼ 0:1p; h3 ¼ 0:157p; h4 ¼ 0:25p; h5 ¼ 0:304p; h6 ¼
0:391p; h 7 ¼ 0:4p, and h8 ¼ 0:5p. Hence, in this case, Young’s
moduli, E and E0, and Poisson’s ratios, � and �0, for the trans-
versely isotropic material depend on 16 parameters: EM h1ð Þ;
EM h2ð Þ; EM h3ð Þ; EM h4ð Þ; EM h5ð Þ; EM h6ð Þ; EM h7ð Þ; EM h8ð Þ;
EN h1ð Þ; EN hð 2Þ; EN h3ð Þ; EN h4ð Þ; E N h5ð Þ; EN h6ð Þ; EN h7ð Þ, and
EN(h8).

Now let us examine the range of Poisson’s ratios that the pro-
posed microplane formulation can generate in each case. Substi-
tuting Ei(h) as indicated in Eqs. (12)–(14) into Eqn (11), one can
obtain the following results:

E� ¼

E11 E12 E13 0 0 0

E12 E11 E13 0 0 0

E13 E13 E33 0 0 0

0 0 0 E44 0 0

0 0 0 0 E44 0

0 0 0 0 0 E66

2
6666664

3
7777775

(15)

where for case A, one can obtain the following:

E11¼ 447a1þ3 �149þ60pð Þa2þ253a3þ 120p�253ð Þa4

� �
= 300pð Þ

(16)

E12¼ 149a1þ �149þ60pð Þa2�149a3þ 149�60pð Þa4

� �
= 300pð Þ

(17)

E13 ¼ 26a1 þ �26þ 15pð Þa2 � 26a3 þ 26� 15pð Þa4

� �
= 75pð Þ

(18)

E33 ¼ 48a1 þ �48þ 45pð Þa2 þ 52a3 þ �52þ 30pð Þa4½ �= 75pð Þ
(19)

For case B, one has the following results:

E11 ¼ 18a1 þ 3a2 þ 10a3 þ 4a4ð Þ=35 (20)

E12 ¼ 6a1 þ a2 � 6a3 � a4ð Þ=35 (21)

E13 ¼ 4a1 þ 3a2 � 4a3 � 3a4ð Þ=35 (22)

E33 ¼ 6a1 þ 15a2 þ 8a3 þ 6a4ð Þ=35 (23)

For case C, one has the following results:

E11 ¼
3

8

2a3þ a4

a4� a3ð Þ2
�

4a3� a4ð Þa4a
�1=2
3 arctan a4� a3ð Þ1=2a

�1=2
3

h i
a4� a3ð Þ5=2

2
4

þ 2a1�5a2

a2� a1ð Þ2
þ

3a2
2a
�1=2
1 arctan a2� a1ð Þ1=2a

�1=2
1

h i
a2� a1ð Þ5=2

3
5

(24)

E12 ¼
3

8

5a4 � 2a3

3 a4 � a3ð Þ2
�

a4
2a
�1=2
3 arctan a4 � a3ð Þ1=2a

�1=2
3

h i
a4 � a3ð Þ5=2

2
4

þ 2a1 � 5a2

3 a2 � a1ð Þ2
þ

a2
2a
�1=2
1 arctan a2 � a1ð Þ1=2a

�1=2
1

h i
a2 � a1ð Þ5=2

3
5

(25)

E13 ¼
1

2
� 2a4 þ a3

a4 � a3ð Þ2
þ

3a4a
1=2
3 arctan a4 � a3ð Þ1=2a

�1=2
3

h i
a4 � a3ð Þ5=2

2
4

þ 2a2 þ a1

a2 � a1ð Þ2
�

3a2a
1=2
1 arctan a2 � a1ð Þ1=2a

�1=2
1

h i
a2 � a1ð Þ5=2

3
5

(26)

E33 ¼
2a4 þ a3

a4 � a3ð Þ2
�

3a4a
1=2
3 arctan a4 � a3ð Þ1=2a

�1=2
3

h i
a4 � a3ð Þ5=2

þ a2 � 4a1

a2 � a1ð Þ2
þ

3a
3=2
1 arctan a2 � a1ð Þ1=2a

�1=2
1

h i
a2 � a1ð Þ5=2

(27)

Note that Eqs. (24)–(27) are valid only when a2> a1 and a4> a3.

When a2 < a1; arctan a2 � a1ð Þ1=2a
�1=2
1

h i
a2 � a1ð Þ�5=2 needs to

be replaced by arctanh a1 � a2ð Þ1=2a
�1=2
1

h i
a1 � a2ð Þ�5=2; and sim-

ilarly, when a4 < a3; arctan a4 � a3ð Þ1=2a
�1=2
3

h i
a4 � a3ð Þ�5=2

needs to be replaced by arctanh a3 � a4ð Þ1=2a
�1=2
3

h i
a3 � a4ð Þ�5=2
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in Eqs. (24)–(27). As only the range of Poisson’s ratios is exam-
ined in this section, the expressions for E44 are not presented here.

Young’s moduli and Poisson’s ratios for transversely isotropic
materials can be written as

E ¼ E2
11E33 þ 2E2

13E12 � 2E11E2
13 � E33E2

12

� �
= E11E33 � E2

13

� �
(28)

E0 ¼ E2
11E33 þ 2E2

13E12 � 2E11E2
13 � E33E2

12

� �
= E2

11 � E2
12

� �
(29)

� ¼ E12E33 � E2
13

� �
= E11E33 � E2

13

� �
(30)

�0 ¼ E13= E11 þ E12ð Þ (31)

Defining the following dimensionless variables: t ¼ E0=E;
A ¼ E33=E11; B ¼ E13=E11, and C¼E12/E11, one has

t ¼ E0=E ¼ A� B2ð Þ= 1� C2ð Þ (32)

� ¼ CA� B2ð Þ= A� B2ð Þ (33)

�0 ¼ B= 1þ Cð Þ (34)

Furthermore, by setting a¼ a2/a1, b¼ a3/a1, and c¼ a4/a1, one
can plot the values of t a;b; cð Þ; � a;b; cð Þ, and �0 a; b; cð Þ for any
a> 0, b> 0, and c> 0. Calculated from 108 randomly generated
positive real numbers used as a, b, or c, the results for each case
are shown in Fig. 3 with different values of t indicated by different
colors. (The figures appear in color in the electronic version of
this article.) It can be seen that the ranges of �, �0, and t generated
by case B are only slightly larger than those obtained from case
A, but significantly smaller than those obtained from case C and
case D.

To further compare the possible range of Poisson’s ratios
obtained from each case, one can obtain the contour plot of t for
each case. Substituting Eqs. (32) and (34) into Eq. (33), the func-
tion of � ¼ � �0; t;Cð Þ can be obtained as follows:

� ¼ C� �02 1þ Cð Þ=t (35)

To obtain the upper and lower bounds of � for every possible
value of �0 with different values of t, one needs to maximize and
minimize v a;b; cð Þ, for any a> 0, b> 0, and c> 0, subject to the
constraints that �0 a; b; cð Þ ¼ �00 and t(a, b, c)¼ t0. The results for
each case are shown in Fig. 2 with different values of t indicated
by different colors, and they are compared with the thermody-
namic restrictions on elastic constants of transversely isotropic
materials obtained from Eqs. (2)–(4). As shown in Fig. 2, although
the largest ranges of � and �0 are generated by case D, the results
obtained are still not exhaustive, because for case D, it was
assumed that the modulus values at each microplane orientation
are a function of h only, which put a restriction on the possible
range of Poisson’s ratios.

Since Fig. 2 confirms that case C and case D generate the larg-
est ranges of �, �0, and t, they will be adopted for the numerical
modeling of transversely isotropic elasticity of quasi-brittle mate-
rials in this study. Two examples are given as shown below.

6.1 Elastic Microplane Model Formulation for Shale.
Adequate knowledge and prediction of mechanical properties of
shale are pivotal to the success in many fields of petroleum engi-
neering, ranging from seismic exploration, to well drilling and pro-
duction, and to the design of hydraulic fractures. Shale is best
described as transversely isotropic quasi-brittle material with the
symmetric axes being perpendicular to bedding. In laboratory meas-
urements of shale, high magnitude of anisotropy was reported for
both static [43] and dynamic [44] conditions, which cannot be
neglected in shale modeling. Neglecting shale anisotropy may lead
to incorrect estimates of rock and fluid properties, fracture aperture,
fracture containment, and stress or stress changes resulting from
production. To the best of the authors’ knowledge, a microplane

Fig. 3 The values of tða;b; cÞ; mða; b; cÞ, and m0ða;b; cÞ for any
a > 0, b > 0, and c > 0 for each case with different values of t indi-
cated by different colors. The figure appears in color in the elec-
tronic version of this article.
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model to completely characterize the transversely isotropic elastic
behavior of shale has not yet been developed.

Due to the presence of bedding-parallel weakness planes, shales
are in general stiffer along the bedding planes than perpendicular
to bedding, i.e., E0=E < 1. Figure 4 plots the ranges of � and �0

obtained from microplane model based on case C for seven differ-
ent values of E0=E when 0 < E0=E � 1. The ranges of � and �0 for
various types of shale provided by the existing literature [45–50]
are also plotted in Fig. 4. It can be seen that the ranges of � and �0

for most types of shale fall within the microplane simulation
region. The predicted Poisson’s ratios in Fig. 4 are reasonable, as
according to the existing literature [45–50], the ratio of E0=E is
about 0.5 for Boryeong shale, 0.6–1.0 for Barnett shale, 0.4–0.6
for Haynesville shale, and approximately 0.5 for Eagle Ford shale.
The ranges of � and �0 based on case D are also plotted in Fig. 4
for comparison. It shows that the possible range of Poisson’s
ratios obtained from case D is much larger than those obtained
from case C.

One can take Boryeong shale as an example, which has been
extensively investigated in the literature. The experimental data
on the five elastic constants of Boryeong shale are provided by
Cho et al. [47], as shown in Table 1. Based on the experimental
data, one has E¼ 37.3 GPa, E0 ¼ 18:4 GPa; � ¼ 0:15; �0 ¼ 0:16,
and G¼ 12.0 GPa, and the elastic stiffness matrix, E, reads

E¼

41:2104 8:7756 7:9978 0 0 0

8:7756 41:2104 7:9978 0 0 0

7:9978 7:9978 20:9593 0 0 0

0 0 0 24:0000 0 0

0 0 0 0 24:0000 0

0 0 0 0 0 32:4348

2
66666666666664

3
77777777777775

GPa

(36)

By adopting the formulation provided by case C, and determining
the unknown parameters ai (i¼ 1, 2, 3, 4) by minimizing the Fro-

benius norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jjE�ij � Eijj2
q

, where E* is defined in Eq. (11),

one obtains a1 ¼ 0:0132 GPa�1; a2 ¼ 0:0408 GPa�1; a3

¼ 0:0289 GPa�1, and a4 ¼ 0:6227 GPa�1, which gives the
following results:

E�¼

41:4836 8:8028 7:5865 0 0 0

8:8028 41:4836 7:5865 0 0 0

7:5865 7:5865 20:9401 0 0 0

0 0 0 24:1149 0 0

0 0 0 0 24:1149 0

0 0 0 0 0 32:0101

2
6666664

3
7777775

GPa

(37)

It can be seen that a good match between E* and E has been
obtained. Based on Eq. (14), one can plot the curves for the values
and the ratios of Ei (i¼N, M, L) as a function of h, as shown in
Fig. 5. Figure 6 shows the variation of apparent Young’s modulus
with anisotropy angle in comparison with experimental data pro-
vided by Cho et al. [47].

Alternatively, case D can also be applied. The unknown
parameters EM h1ð Þ; E M h2ð Þ; EM h3ð Þ; EM h4ð Þ; EM h5ð Þ; EM h6ð Þ;
EM h7ð Þ; EM h8ð Þ; EN h1ð Þ; EN h2ð Þ; EN h3ð Þ; EN h4ð Þ; EN h5ð Þ; EN

h6ð Þ; EN h7ð Þ, and EN(h8) can be determined by minimizing the

Frobenius norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j jE�ij � Eijj2
q

. One obtains the following

results:

E�¼

41:2104 8:7756 7:9978 0 0 0

8:7756 41:2104 7:9978 0 0 0

7:9978 7:9978 20:9593 0 0 0

0 0 0 24:0000 0 0

0 0 0 0 24:0000 0

0 0 0 0 0 32:4348

2
6666664

3
7777775

GPa

(38)

In this case, an exact match is obtained. The results for the values
and the ratios of Ei (i¼N, M, L) as a function of h are shown in
Fig. 5.

6.2 Elastic Microplane Model Formulation for Rigid Poly-
meric Foams. Foamed plastics, such as polyurethane, polyvinyl
chloride (PVC), polystyrene, polypropylene, epoxy, phenol-
formaldehyde, cellulose acetate, and silicone, are widely used as
core materials for sandwich structures in automotive and aero-
space industries due to their light weight and high specific stiff-
ness. They are good heat insulators by virtue of the low
conductivity of the gas contained in the cells; they have a higher
ratio of flexural modulus to density than before foaming; and they

Fig. 4 The ranges of m and m0 obtained from microplane model based on case C and case D when 0 < E 0=E £ 1, respectively.
The ranges of m and m0 for various types of shale studied by the existing literature [40–45] are also plotted. The figure appears
in color in the electronic version of this article.
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achieve a greater load-bearing capacity per unit weight, as well as
greater energy storage and energy dissipation capacities [3,51,52].

However, most of the polymeric foams usually show an aniso-
tropic behavior, which complicates the numerical modeling of
such materials. For simplicity, the elastic response of polymeric
foams is usually regarded as transversely isotropic: during the
foaming process, viscous forces cause the cells to be elongated in
the rise direction, and therefore the material response in this direc-
tion is stiffer, i.e., E0=E > 1. The ratio of the modulus in the rise
direction to that in the perpendicular-to-rise direction is indicative
of the extent of elongation of the cells.

Let us take rigid PVC foams as an example. The experimental
data on the five elastic constants of DIAB Divinycell H60 are pro-
vided by the DIAB group [53] and Tita et al. [54], as shown in
Table 2. Based on the experimental data, one has E¼ 16.0 GPa,
E0 ¼ 32:0 GPa, �¼ 0.29, �0 ¼ 0:28, and G¼ 15.0 GPa, and the
elastic stiffness matrix, E, reads:

Fig. 5 The results for the values and the ratios of Ei (i 5 N, M, L) as a function of h obtained from case C and case
D for example A, respectively

Fig. 6 The variation of apparent Young’s modulus with anisot-
ropy angle in comparison with experimental data provided by
Cho et al. [42]

Table 1 The five elastic constants of Boryeong shale

Elastic constants
Experimental

data [42]
Data generated by
microplane model

Young’s modulus parallel
to bedding, E (GPa)

34–45.8 37.30

Young’s modulus perpendicular
to bedding, E0 (GPa)

16.5–20.5 18.40

Poisson’s ratio parallel
to bedding, �

0.13–0.23 0.15

Poisson’s ratio perpendicular
to bedding, �0

0.14–0.23 0.16

Shear modulus, G (GPa) 6.2–12.0 12.00

011001-8 / Vol. 84, JANUARY 2017 Transactions of the ASME

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org/ on 12/01/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



E¼

18:8678 6:4647 7:0931 0 0 0

6:4647 18:8678 7:0931 0 0 0

7:0931 7:0931 35:9721 0 0 0

0 0 0 30:0000 0 0

0 0 0 0 30:0000 0

0 0 0 0 0 12:4031

2
6666664

3
7777775

GPa

(39)

By adopting the formulation provided by case C, and determining
the unknown parameters ai (i¼ 1, 2, 3, 4) by minimizingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jjE�ij � Eijj2
q

, one has a1 ¼ 0:0378 GPa�1; a2 ¼ 0:0109

GPa�1; a3 ¼ 1:2882 GPa�1, and a4 ¼ 0:0026 GPa�1, which gives
the following results:

E�¼

18:6261 5:8339 7:7705 0 0 0

5:8339 18:6261 7:7705 0 0 0

7:7705 7:7705 35:9102 0 0 0

0 0 0 30:0000 0 0

0 0 0 0 30:0000 0

0 0 0 0 0 12:8046

2
6666666666664

3
7777777777775

GPa

(40)

It can be seen that the match between E and E* obtained from
case C is not very accurate but still satisfactory. Figure 7 plots the
curves for the values and the ratios of Ei (i¼N, M, L) as a func-
tion of h.

For case D, the optimized microplane parameters give

E�¼

18:8678 6:4647 7:0931 0 0 0

6:4647 18:8678 7:0931 0 0 0

7:0931 7:0931 35:9721 0 0 0

0 0 0 30:0000 0 0

0 0 0 0 30:0000 0

0 0 0 0 0 12:4031

2
6666664

3
7777775

GPa

(41)

which basically coincides with E. The results for the values and
the ratios of Ei (i¼N, M, L) as a function of h are shown in Fig. 7.

7 Comparison Between Microplane Model With

Orientation Dependent Moduli and Spectral Stiffness

Microplane Model

Note that Eqs. (12)–(14) are just assumptions in the form of Ei

(i¼N, M, L), and the actual form of Ei can be obtained only when

Table 2 The five elastic constants of DIAB Divinycell H60

Elastic constants
Experimental
data [48,49]

Data generated by
microplane model

Young’s modulus in
transverse direction, E (GPa)

13.0–19.0 16.0

Young’s modulus in
rise direction, E0 (GPa)

31.0–33.0 32.0

Poisson’s ratio in the plane
perpendicular to rise direction, �

0.29–0.31 0.29

Poisson’s ratio in rise direction, �0 0.04–0.44 0.28
Shear modulus, G (GPa) 15.0–20.0 15.0

Fig. 7 The results for the values and the ratios of Ei (i 5 N, M, L) as a function of h obtained from case C and case
D for example B, respectively
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the microplane model is under double constraint, which is derived
through the spectral stiffness microplane model. It is worth then
studying the accuracy with which the non-spectral formulation
approximates the actual microplane stress distribution.

By taking the Boryeong shale again as reference, the distribu-
tions of the normal strain component, eN, on a generic microplane

sphere caused by different types of macroscopic strains are shown
in Fig. 8. It has six subfigures, corresponding to the distribution of
eN on the microplane sphere under uniaxial strains e11, e22, and
e33, and shear strains e23, e13, and e12, respectively. Each subfigure
includes one three-dimensional plot and three contours plots on
the x1-x3 plane, the x2-x3 plane, and the x1-x2 plane, respectively.

Fig. 8 The distribution of the normal strain component, eN, on a generic microplane sphere caused by different types of
macroscopic strains for the Boryeong shale with E 5 37.3 GPa, E 05 18:4 GPa; m 5 0:15; m05 0:16, and G 5 12.0 GPa
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In a similar manner, the distributions of the normalized normal
stress component, rN, are shown in Fig. 9. For the purpose of
comparison, Fig. 10 plots the distributions of the normalized nor-
mal stress component rN based on the assumption that
rN ¼ ENeN , where EN ¼ 1= a1 sin2hþ a2 cos2h

� �
as given in case

C. It can be seen that, while not an exact match, the stress distribu-
tion obtained from the formulation in case C matches closely with
the actual stress distribution. The deviation of rN based on

orientation variation microplane model from the one based on
spectral stiffness microplane model is typically in the range of
11–28%: the deviation under uniaxial strain e11 or e22 is less
than 20%; the deviation under uniaxial strain e33 is less than 28%;
and the deviation under shear strain e23, e13, or e12 is less than
11%.

The actual EN can be obtained by EN ¼ rN=eN , where eN and
rN are given as follows:

Fig. 9 The distribution of the normalized normal stress component, rN, on a generic microplane sphere caused by different
types of macroscopic strains for the Boryeong shale with E 5 37.3 GPa, E 05 18:4 GPa; m 5 0:15; m05 0:16, and G 5 12.0 GPa
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eN ¼ sin2h c1 cos2/� sin2/
� �

þ 2
ffiffiffi
2
p

e6 sin / cos /
h i

þ c2 �sin x sin2h=
ffiffiffi
2
p
þ cos x cos2h

� �
þc3 cos x sin2h=

ffiffiffi
2
p
þ sin x cos2h

� �
þ 2

ffiffiffi
2
p

sin h cos h e4 sin /þ e5 cos /ð Þ (42)

rN ¼ k1 sin2h c1 cos2/� sin2/
� �

þ 2
ffiffiffi
2
p

e6 sin / cos /
h i

þ k2c2 �sin x sin2h=
ffiffiffi
2
p
þ cos x cos2h

� �
þk3c3 cos x sin2h=

ffiffiffi
2
p
þ sin x cos2h

� �
þ 2

ffiffiffi
2
p

k4 sin h cos h e4 sin /þ e5 cos /ð Þ (43)

Fig. 10 The distributions of the normalized normal stress component rN based on the assumption that rN 5 EN eN , where
EN 5 1=ða1 sin2h1a2 cos2hÞ as given in case C, caused by different types of macroscopic strains for the Boryeong shale with
E 5 37.3 GPa, E 05 18:4 GPa; m 5 0:15; m05 0:16, and G 5 12.0 GPa
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with c1 ¼ e1 � e2ð Þ=2; c2 ¼ �sin x e1 þ e2ð Þ=
ffiffiffi
2
p
þ e3 cos x, and

c3 ¼ cos x e1 þ e2ð Þ=
ffiffiffi
2
p
þ e3 sin x. Figures 11(a)–11(c) plot the

actual EN under different macroscopic strains, and Fig. 11(d) plots
EN ¼ 1= a1 sin2hþ a2 cos2h

� �
as assumed in case C. It can be

seen that while the EN assumed in case C is a function of h only,
the actual EN is a function of not only h but also / and the macro-
scopic strain.

8 Concluding Remarks

This contribution has studied the extension of the microplane
formulation to transversely isotropic materials such as shale rock,
polymeric foams, and composites among others. It has been dem-
onstrated that, while the spectral stiffness decomposition provides
the only rigorous approach for the description of microplane
strains and stresses in transverse isotropy, an approximation
almost as accurate could be obtained by making the elastic micro-
plane moduli a function of the microplane orientation. It was
shown that the latter approach can span a broad range of macro-
scopic elastic properties compared to the thermodynamic restric-
tions on the anisotropic parameters. Further, the approximated
functions have the advantage to provide a diagonal microplane
elastic matrix which makes easier to guarantee work consistency

and, more importantly, makes the formulation of inelastic bounda-
ries easier.

Acknowledgment

C. Jin thanks the start-up funds provided by Department of
Mechanical Engineering at State University of New York at Bing-
hamton. G. Cusatis thanks the funding support from U.S. National
Science Foundation through Grant No. CMMI-1435950 to North-
western University.

References
[1] Lemaitre, J., and Desmorat, R., 2005, Engineering Damage Mechanics: Duc-

tile, Creep, Fatigue and Brittle Failures, Springer Verlag, New York.
[2] Ba�zant, Z. P., and Planas, J., 1997, Fracture and Size Effect in Concrete and

Other Quasibrittle Materials, CRC Press, Boca Raton, FL.
[3] Brocca, M., Ba�zant, Z. P., and Daniel, I. M., 2001, “Microplane Model for Stiff

Foams and Finite Element Analysis of Sandwich Failure by Core Indentation,”
Int. J. Solids Struct., 38(44–45), pp. 8111–8132.

[4] Ba�zant, Z. P., and Oh, B.-H., 1983, “Microplane Model for Fracture Analysis of
Concrete Structures,” Symposium on the Interaction of Non-Nuclear Munitions
With Structures, Colorado Springs, CO, pp. 49–53.

[5] Ba�zant, Z. P., and Oh, B.-H., 1985, “Microplane Model for Progressive Fracture
of Concrete and Rock,” J. Eng. Mechanics, Trans. ASCE 111(4), pp. 559–582.

[6] Ba�zant, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S. A., 2000,
“Microplane Model M4 for Concrete: I. Formulation With Work-Conjugate
Deviatoric Stress,” J. Eng. Mechanics, Trans. ASCE, 126(9), pp. 944–953.

Fig. 11 (a) plots of the actual EN under e11 5 e22 5 e33 5 1 and e13 5 e23 5 e12 5 0, (b) plots of the actual EN under
e11 5 e22 5 e33=4 5 1 and e13 5 e23 5 e12 5 0, (c) plots of the actual EN under e11 5 e22 5 e33 5 e12 5 1 and e13 5 e23 5 0, and (d) plots
of EN 5 1=ða1 sin2h1a2 cos2hÞ as assumed in case C

Journal of Applied Mechanics JANUARY 2017, Vol. 84 / 011001-13

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org/ on 12/01/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1016/S0020-7683(01)00007-5
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADP001715
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADP001715
http://dx.doi.org/10.1061/(ASCE)0733-9399(1985)111:4(559)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944)


[7] Ba�zant, Z. P., Adley, M. D., Carol, I., Jir�asek, M., Akers, S. A., Rohani, B.,
Cargile, J. D., and Caner, F. C., 2000, “Large-Strain Generalization of Micro-
plane Model for Concrete and Application,” J. Eng. Mechanics, Trans. ASCE,
126(9), pp. 971–980.

[8] Ba�zant, Z. P., and Prat, P. C., 1988, “Microplane Model for Brittle Plastic Mate-
rial: I. Theory,” J. Eng. Mech. ASCE, 114(10), pp. 1672–1688.

[9] Ba�zant, Z. P., Xiang, Y., and Prat, P. C., 1996, “Microplane Model for Con-
crete. I. Stress-Strain Boundaries and Finite Strain,” J. Eng. Mech. ASCE,
122(3), pp. 245–254.

[10] Caner, F. C., and Ba�zant, Z. P., 2000, “Microplane Model M4 for Concrete. II:
Algorithm and Calibration,” J. Eng. Mech. Trans. ASCE, 126(9), pp. 954–961.

[11] Ba�zant, Z. P., Di Luzio, G., 2004, “Nonlocal Microplane Model With Strain-
Softening Yield Limits,” Int. J. Solids Struct., 41(24–25), pp. 7209–7240.

[12] Ba�zant, Z. P., and Caner, F. C., 2005, “Microplane Model M5 With Kinematic
and Static Constraints for Concrete Fracture and Anelasticity. I Theory,” J.
Eng. Mech. ASCE, 130(1), pp. 31–40.

[13] Ba�zant, Z. P., and Caner, F. C., 2005, “Microplane Model M5 With Kinematic
and Static Constraints for Concrete Fracture and Anelasticity. II Computation,”
J. Eng. Mech. ASCE, 130(1), pp. 41–47.

[14] Ba�zant, Z. P., and Zi, G., 2003, “Microplane Constitutive Model for Porous Iso-
tropic Rock,” Int. J. Numer. Anal. Methods Geomech., 27(1), pp. 25–47.

[15] Ba�zant, Z. P., and Prat, P. C., 1987, “Creep of Anisotropic Clay: New Micro-
plane Model,” J. Eng. Mech. ASCE, 113(7), pp. 1000–1064.

[16] Brocca, M., and Ba�zant, Z. P., 2001, “Microplane Finite Element Analysis of
Tube-Squash Test of Concrete With Angle up to 70

�
,” Int. J. Numer. Methods

Eng., 52(10), pp. 1165–1188.
[17] Beghini, A., Ba�zant, Z. P., Zhou, Y., Gouirand, O., and Caner, F. C., 2007,

“Microplane Model M5f for Multiaxial Behavior and Fracture of Fiber Rein-
forced Concrete,” ASCE J. Eng. Mech., 133(1), pp. 66–75.

[18] Caner, F. C., and Ba�zant, Z. P., 2011, “Microplane Model M6f for Fiber Rein-
forced Concrete,” XI Int. Conference on Computational Plasticity Fundamen-
tals and Applications, COMPLAS 2011, Barcelona, Spain, pp. 796–807.

[19] Caner, F., and Baz�ant, Z. P., 2013, “Microplane Model M7 for Plain Concrete.
I: Formulation,” J. Eng. Mech., 139(12), pp. 1714–1723.

[20] Caner, F., and Baz�ant, Z. P., 2013, “Microplane Model M7 for Plain Concrete.
II: Calibration and Verification,” J. Eng. Mech., 139(12), pp. 1724–1735.

[21] Kirane, K., and Baz�ant, Z. P., 2015, “Microplane Damage Model for Fatigue of
Quasi-Brittle Materials: Sub-Critical Crack Growth, Lifetime and Residual
Strength,” Int. J. Fatigue, 70, pp. 93–105.

[22] Cusatis, G., and Zhou, X., 2014, “High-Order Microplane Theory for Quasi-
Brittle Materials With Multiple Characteristic Lengths,” J. Eng. Mech., 140(7),
p. 04014046.

[23] Mohr, O., 1900, “Welche Umst€ande bedingen die Elastizit€atsgrenze und den
Bruch eines Materials,” Z. Ver. Dtsch. Ing., 46, pp. 1524–1530; 1572–1577.

[24] Taylor, G. I., 1938, “Plastic Strain in Metals,” J. Inst. Metals, 62, pp. 307–324.
[25] Batdorf, S. B., and Budiansky, B., 1949, “A Mathematical Theory of Plasticity

Based on the Concept of Slip,” National Advisory Committee for Aeronautics,
Washington, DC, Technical Note No. 1871.

[26] Brocca, M., and Ba�zant, Z. P., 2000, “Microplane Constitutive Model and
Metal Plasticity,” ASME Appl. Mech. Rev., 53(10), pp. 265–281.

[27] Cusatis, G., Beghini, H., and Ba�zant, Z. P., 2008, “Spectral Stiffness Micro-
plane Model for Quasibrittle Composite Laminates–Part I: Theory,” ASME J.
Appl. Mech., 75(2), p. 021009.

[28] Chang, K. T., and Sture, S., 2006, “Microplane Modeling of Sand Behavior
Under Non-Proportional Loading,” Comput. Geotech., 33(3), pp. 177–178.

[29] Brocca, M., Brinson, L. C., and Ba�zant, Z. P., 2002, “Three-Dimensional Con-
stitutive Model for Shape Memory Alloys Based on Microplane Model,” J.
Mech. Phys. Solids, 50(5), pp. 1051–1077.

[30] Cusatis, G., Beghini, H., and Ba�zant, Z. P., 2008, “Spectral Stiffness Micro-
plane Model for Quasibrittle Composite Laminates–Part II: Calibration and
Validation,” ASME J. Appl. Mech., 75(2), p. 021010.

[31] Caner, F. C., Ba�zant, Z. P., Hoover, C., Waas, A., and Shahwan, K., 2011,
“Microplane Model for Fracturing Damage of Triaxially Braided Fiber-
Polymer Composites,” ASME J. Eng. Mater. Technol., 133(2), p. 021024.

[32] Cusatis, G., Mencarelli, A., Pelessone, D., and Baylot, J. T., 2011, “Lattice Dis-
crete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration
and Validation,” Cem. Concr. Compos., 33(9), pp. 891–905.

[33] Cusatis, G., Pelessone, D., and Mencarelli, A., 2011, “Lattice Discrete Particle
Model (LDPM) for Failure Behavior of Concrete. I: Theory,” Cem. Concr.
Compos., 33(9), pp. 881–890.

[34] Ba�zant, Z. P., and Kim, J.-K., 1986, “Creep of Anisotropic Clay: Microplane
Model,” J. Geotech. Eng. ASCE, 112(4), pp. 458–475.

[35] Carol, I., and Ba�zant, Z. P., 1997, “Damage and Plasticity in Microplane The-
ory,” Int. J. Solids Struct., 34(29), pp. 3807–3835.

[36] Elbing, K., 1994, Foundation of Anisotropy for Exploration Seismic, Pergamon
Press, Oxford, UK.

[37] Gurtin, M. E., 1972, “The Linear Theory of Elasticity,” Handbuch der Physik,
Vol. Via/2, pp. 1–296.

[38] Theocaris, P. S., and Sokolis, D. P., 1998, “Spectral Decomposition of the Com-
pliance Tensor for Anisotropic Plates,” J. Elasticity, 51(2), pp. 89–103.

[39] Theocaris, P. S., and Sokolis, D. P., 2000, “Spectral Decomposition of the Com-
pliance Fourth-Rank Tensor for Orthotropic Materials,” Arch. Appl. Mech.,
70(4), pp. 289–306.

[40] Theocaris, P. S., and Sokolis, D. P., 1999, “Spectral Decomposition of the Lin-
ear Elastic Tensor for Monoclinic Symmetry,” Acta Crystallogr., A55(4), pp.
635–647.

[41] Baz�ant, Z. P., and Oh, B.-H., 1986, “Efficient Numerical Integration on the Sur-
face of a Sphere,” Z. Angew. Math. Mech., 66(1), pp. 37–49.

[42] Stroud, A. H., 1971, Approximate Calculation of Multiple Integrals, Prentice-
Hall, Englewood Cliffs, NJ.

[43] Amadei, B., 1996, “Importance of Anisotropy When Estimation and Measuring
In Situ Stresses in Rock,” Int. J. Rock Mech. Min. Sci. Geotech. Abstr., 33(3),
pp. 293–326.

[44] Wang, Z., 2001, “Fundamentals of Seismic Rock Physics,” Geophysics, 66(2),
pp. 398–412.

[45] Lin, W., 1981, “Mechanical Behavior of Mesaverde Shale and Sandstone at
High Pressure,” SPE/DOE Low Permeability Gas Reservoirs Symposium,
Denver, CO, May 27–29, Paper No. SPE/DOE 9835.

[46] Bossart, P., 2011, “Characteristics of the Opalinus Clay at Mont Terri,” Mont Terri
Project, Wabern Switzerland.

[47] Cho, J. W., Kim, H., Jeon, S., and Min, K. B., 2012, “Deformation and Strength
Anisotropy of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist,” Int. J.
Rock Mech. Min. Sci., 50, pp. 158–169.

[48] Sone, H., and Zoback, M. D., 2013, “Mechanical Properties of Shale Gas Reser-
voir Rocks–Part 1: Static and Dynamic Elastic Properties and Anisotropy,”
Geophysics, 78(5), pp. D381–D392.

[49] Sone, H., 2012, “Mechanical Properties of Shale Gas Reservoir Rocks and its
Relation to the In-Situ Stress Variation Observed in Shale Gas Reservoirs,”
Ph.D. thesis, Stanford University, Standford, CA.

[50] Waters, G. A., Lewis, R. E., and Bentley, D., 2011, “The Effect of Mechanical
Properties Anisotropy in the Generation of Hydraulic Fractures in Organic
Shales,” SPE Annual Technical Conference and Exposition, Denver, CO, Oct.
30–Nov. 2. Paper No. SPE 146776.

[51] Gibson, L. J., 1989, “Modeling the Mechanical Behavior of Cellular Materials,”
Mater. Sci. Eng. A, 110, pp. 1–36.

[52] Gibson, L. J., and Ashby, M. F., 1997, Cellular Solids: Structure and Proper-
ties, Pergamon Press, Oxford, UK.

[53] DIAB Group, 2014, “Technical Data for Divinycell H Grade,” DIAB, Laholm,
Sweden.

[54] Tita, V., Caliri, M. F., Angelico, R. A., and Canto, R. B., 2012, “Experimental
Analyses of the Poly(vinyl chloride) Foams’ Mechanical Anisotropic Behav-
ior,” Polym. Eng. Sci., 52(12), pp. 2654–2663.

011001-14 / Vol. 84, JANUARY 2017 Transactions of the ASME

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org/ on 12/01/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:9(971)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1672)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1996)122:3(245)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:9(954)
http://dx.doi.org/10.1016/j.ijsolstr.2004.05.065
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:1(31)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:1(31)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:1(41)
http://dx.doi.org/10.1002/nag.261
http://dx.doi.org/10.1061/(ASCE)0733-9410(1986)112:4(458)
http://dx.doi.org/10.1002/nme.253
http://dx.doi.org/10.1002/nme.253
http://dx.doi.org/10.1061/(ASCE)0733-9399(2007)133:1(66)
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000570
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000571
http://dx.doi.org/10.1016/j.ijfatigue.2014.08.012
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000747
http://ntrs.nasa.gov/search.jsp?R=19930082547
http://dx.doi.org/10.1115/1.3097329
http://dx.doi.org/10.1115/1.2744036
http://dx.doi.org/10.1115/1.2744036
http://dx.doi.org/10.1016/j.compgeo.2006.04.002
http://dx.doi.org/10.1016/S0022-5096(01)00112-0
http://dx.doi.org/10.1016/S0022-5096(01)00112-0
http://dx.doi.org/10.1115/1.2744037
http://dx.doi.org/10.1115/1.4003102
http://dx.doi.org/10.1016/j.cemconcomp.2011.02.010
http://dx.doi.org/10.1016/j.cemconcomp.2011.02.011
http://dx.doi.org/10.1016/j.cemconcomp.2011.02.011
http://dx.doi.org/10.1061/(ASCE)0733-9410(1986)112:4(458)
http://dx.doi.org/10.1016/S0020-7683(96)00238-7
http://dx.doi.org/10.1023/A:1007549729716
http://dx.doi.org/10.1007/s004199900066
http://dx.doi.org/10.1107/S0108767398016766
http://dx.doi.org/10.1002/zamm.19860660108
http://dx.doi.org/10.1016/0148-9062(95)00062-3
http://dx.doi.org/10.1190/1.1444931
https://www.onepetro.org/conference-paper/SPE-9835-MS
http://www.mont-terri.ch/internet/mont-terri/en/home/geology/key_characteristics.html
http://www.mont-terri.ch/internet/mont-terri/en/home/geology/key_characteristics.html
http://dx.doi.org/10.1016/j.ijrmms.2011.12.004
http://dx.doi.org/10.1016/j.ijrmms.2011.12.004
http://dx.doi.org/10.1190/geo2013-0050.1
http://dx.doi.org/10.2118/146776-MS
http://dx.doi.org/10.1016/0921-5093(89)90154-8
http://dx.doi.org/10.1017/CBO9781139878326
http://dx.doi.org/10.1017/CBO9781139878326
http://www-eng.lbl.gov/~ecanderssen/Composite_Design/Divynicell/H_Man_M.pdf
http://dx.doi.org/10.1002/pen.23222

	s1
	s2
	aff1
	l
	s3
	FD1
	FD2
	1
	FD3
	FD4
	s4
	2
	FD5
	FD6
	s5
	FD7
	FD8
	FD9
	FD10
	s6
	FD11
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	FD21
	FD22
	FD23
	FD24
	FD25
	FD26
	FD27
	FD28
	FD29
	FD30
	FD31
	FD32
	FD33
	FD34
	FD35
	s6A
	3
	FD36
	FD37
	FD38
	s6B
	4
	5
	6
	1
	FD39
	FD40
	FD41
	s7
	2
	7
	8
	FD42
	9
	FD43
	10
	s8
	1
	2
	3
	4
	5
	6
	11
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54

