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In this paper a multiscale model is provided to assess the toughening improvements in nanoparticle filled
polymers caused by the formation of localised plastic shear bands, initiated by the stress concentrations
around nanoparticles. The model quantifies the energy absorbed at the nanoscale and accounts for the
emergence of an interphase zone around the nanoparticles. It is proved that the elastic properties of
the interphase, which are different from those of the matrix, due to chemical interactions, highly affect
the stress field rising around particles and the energy dissipation at the nanoscale.
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1. Introduction

Throughout the last decades the subject of improving the
mechanical properties of polymers by the addition of particle fillers
has received a large attention. However, only recently nanotech-
nology has emerged providing very promising results in increasing
the mechanical properties of polymers by the addition of nano-
sized fillers. This is the reason why nanocomposites have received
a higher and higher interest by the scientific community, especially
for the significant amelioration in terms of stiffness, strength and
toughness which can be obtained at low nanofiller contents (see
amongst others, [1,2]). It is acknowledged that the reasons for such
improvements must be sough in the huge amount of energy dissi-
pated by the numerous damaging mechanisms taking place at the
nanoscale. This is the reason why, it is suggested that the best ap-
proach to address the prediction of nanocomposite toughness
should be a ‘‘multi-mechanism’’ modelling strategy, in which each
contribution is weighted according to the specific case (accounting
for the type, the morphology and the functionalisation of the nano-
filler as well as the loading conditions) [3–7].

However, the modelling of nanoscale damage mechanisms is far
from easy and requires a different way of thinking with respect to
the approaches developed for traditional composites where two
different characteristic lengths at most (microscale and macro-
scale) are reasonably described by means of continuum mechanics.

When dealing with nanocomposites, the handshaking of nano-
scale, microscale and macroscale quantities and phenomena urges
All rights reserved.
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a multiscale modelling strategy [6]. Indeed, the introduction of
atomistic models, able to account for molecular interactions be-
tween nanofillers and the matrix, up to macro length-scales is lim-
ited by the impracticability of accounting for more than some
hundred millions of atoms. Initial steps towards modelling strate-
gies which account for nanostructure features, such as nano-rein-
forcement size and distributions, are due to Chen et al. [8]. They
provided a simple size-dependent formulation for the debonding
stress, later used to compute the energy dissipation due to this
mechanism. The analysis carried out in [8] has been later extended
by Zappalorto et al. [9] who developed a closed form expression for
the critical debonding stress accounting for the existence of an
interphase zone embedding the nanoparticle. Such a zone is
thought of as characterised by chemical and physical properties
different from those of the nanoparticle and of the matrix. On par-
allel tracks, the effects of surface elastic constants on the debond-
ing stress of nanoparticles have been investigated by Salviato et al.
[10] who showed that the range of the nanoparticle radii where
those effects are significant is limited to the nanoscale.

Independently, Lauke [7] and Williams [11] analysed the energy
dissipation phenomena by considering, besides particle debonding,
voiding and subsequent yielding of the polymer. While analysing
the fracture toughness improvements resulting from nanomodifi-
cation of epoxy resins with silica nanoparticles, Hsieh et al. [4,5]
experimentally observed two dominant mechanisms responsible
of toughening improvements: localised shear banding of the
polymer and particle debonding followed by subsequent plastic
void growth. They also modified a previous model due to Huang
and Kinloch [12] with the aim to assess the fracture toughness
improvements resulting from nanomodification. Such a solution,

http://dx.doi.org/10.1016/j.compositesa.2013.01.006
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which was proved to be in a very good agreement with the exper-
imental data, requires some quantities to be set on the basis of frac-
ture surface observations. The present authors have recently
developed a hierarchical multi-scale model to assess the fracture
toughness improvements due to the debonding of nanoparticles
and the plastic yielding of nanovoids [13–15]. In more details, it
has been shown that the energy absorbed through nanoparticle
debonding is almost negligible, but debonding is a necessary condi-
tion for the subsequent plastic yielding around nanovoids created
by debonded nanoparticles, such a toughening mechanism being,
instead, of primary concern. The model quantifies the energy ab-
sorbed at the nanoscale and accounts for the emergence of an inter-
phase zone around the nanoparticles [13–15]. The experimental
observations carried out in [4,5] allow to state that different damag-
ing mechanisms, taking place at the nanoscale, can simultaneously
contribute to the overall fracture toughness of the nanocomposite.
Accordingly, the nanocomposite toughness can be written as
GIc ¼ GIm þ

P
iDGi, where GIm is the toughness of the unloaded

matrix and DGi is the toughness improvement due to the i-th dam-
aging mechanism. Then, the best approach to predict the nanocom-
posite toughness should be a ‘‘multi-mechanism’’ modelling
strategy, in which each DGi contribution is appropriately deter-
mined and weighted according to the specific case [6]. As a further
step towards this multimechanism strategy, in the present paper
we address the multiscale modelling of the toughness improve-
ment due to shear banding around nanoparticles. The major novelty
of the present paper, with respect to those above mentioned dealing
with the same topic [4,5], lays on the fact that the effect of an inter-
phase zone surrounding the nanoparticle, characterised by
mechanical properties different from those of the constituents, is
explicitly considered. Zappalorto et al. [9] have already demon-
strated that the interphase properties (which are linked to surface
functionalizers) have a significant effect on the debonding stress,
especially for nanoparticle radii below 50 nm.

Briefly, the aims of the present paper can be summarised as
follows:

– to quantify the toughness improvement due to the shear band-
ing around nanoparticles. Shear bands are supposed to be initi-
ated by the stress concentrations around the periphery of the
nanoparticles;

– to show that the formation of local shear bands is a highly dis-
sipative mechanism, causing a high fracture toughness
improvement at low nanofiller content;

– to prove that nanocomposite toughening may be strongly
affected by the size of nanoparticles and by surface treatments.
In particular, the effect of functionalisation is accounted for
through the properties and the size of the interphase.

It is worth mentioning here again that the correct estimation
of the fracture toughness improvement resulting from nanomodi-
fication requires the modelling of all the possible damage mech-
anisms taking place at the nanoscale. Accordingly this work has
to be seen as a part of a more general multiscale model including
the contributions of other mechanisms analysed in previous
works [13–15].
2. Description of the hierarchical multiscale strategy adopted
for the analysis

2.1. General concepts

Modelling of nanocomposite mechanical properties urges to
deal with three different length scales, macro-, micro- and nano-,
each of them being characterised by peculiar phenomena and
mechanical quantities. Accordingly, we will use terms like ‘‘macro-
scale stress’’ or ‘‘microscale stress’’ and, in order to avoid misun-
derstandings it is worth giving the correct definitions for these
quantities and briefly discussing the link between them.

Macro-scale: at the macroscale, the material is assumed to be
homogeneously and continuously distributed ‘‘so that the smallest
element cut from the body possesses the same specific physical
properties as the body’’ [16]. In addition, under the hypothesis that
the nanofiller is randomly oriented and uniformly distributed, the
material can also be thought of as isotropic. All the mechanical
quantities (such as stresses and strains) are regarded as averaged
values [17] and supposed to be representative of the overall mate-
rial behaviour.

Micro-scale: the micro-scale system is commonly described as a
RVE (Representative Volume Element) and it has to be large en-
ough to be statistically representative of the properties of the
material system. Contemporaneously, whenever the nanofiller is
uniformly distributed and dispersed, the microscale system can
be regarded to be, within reason, sufficiently small to be an infin-
itesimal volume of the macro-scale one. All the microscale
mechanical properties are considered here as pointwise values
[17].

Nano-scale: the nanoscale system represents a single unit cell of
those compounding the micro-scale system; it accounts for the
material morphology (such as nanofiller type and size).

Macroscale stresses, r, can be regarded as the average values
over a RVE of the microscale stresses [17–19]:

r ¼ 1
V

Z
V
r̂dV ð1aÞ

where r̂ is the micro-scale stress distributions and V is the volume
of the RVE.

The handshaking between the mechanical quantities character-
ising the different length scales can be carried out thanks to the
Mori–Tanaka theorem, which allows to disregard of the actual
microscale fields by approximating stresses on the boundary of
nano-inhomogeneities (nanoscale). If the considered volume frac-
tions are small enough to avoid significant particle–particle inter-
actions, this can be carried out taking advantage of the Global
Concentration Tensors of Eshelby dilute solution, H, and of the
mean value for the fields over the RVE which, thanks to Eq. (1a)
equate the macroscale ones:

rn ¼ H :
1
V

Z
V
r̂dV

� �
¼ H : r ð1bÞ

The procedure just described is also summarised in the flow
chart shown in Fig. 1.

2.2. Multiscale strategy to analyse shear bands around nanoparticles

2.2.1. Description of the nanoscale system
Different from traditional microsized composites, in nanoscale

materials and structures the surface effects become important
[20–22] due to the high surface/volume ratio.

The significant effect of the elastic properties of the interphase
on the critical debonding stress around nanoparticles has been re-
cently shown by Zappalorto et al. [9]. This solution proves that,
since different functionalizers lead to different elastic properties
of the interphase, the debonding stress is highly affected by the
surface treatment depending on the interphase radius to the nano-
particle radius ratio, a/r0.

Unfortunately, the lack of precise data about the law of varia-
tion of the interphase properties across its thickness [23] urges
to assume, according to [9,24,25] that a through-the-thickness



Fig. 1. Flowchart of the multiscale approach adopted in the present work.

Fig. 2. Description of the system under analysis at the nanoscale.
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Fig. 3. Description of the multiscale system under analysis.

146 M. Salviato et al. / Composites: Part A 48 (2013) 144–152
average is representative of the overall property distribution
within the interphase. Consequently, the interphase is supposed
to be homogeneous and isotropic.

The system under investigation at the nanoscale, shown in
Fig. 2, is constituted by:

– a spherical nanoparticle of radius r0 (diameter d0 = 2r0);
– a shell-shaped interphase of external radius a, thickness

t = a � r0, and uniform properties;
– a volume of matrix with size much greater than a and r0.

The properties required by the analysis can be computed by
means of Molecular Dynamics (MD) simulations, as done in
[24,25], which provide, as outputs, the radial extension
of the interphase as well as its elastic properties averaged
through the thickness. Alternatively, for a specific system,
they could be fitted a posteriori on the basis of dedicated experi-
mental results.

2.2.2. Application of the multiscale approach
The system at the macro-scale is constituted of a cracked nano-

modified matrix (see Fig. 3). Under the hypothesis of plane strain
conditions, with reference to the coordinate system shown in
Fig. 3, the stress components at the crack tip can be divided into
a hydrostatic part:

rh ¼
rx þ ry þ rz

3
¼ 2ð1þ m0ÞK I

3
ffiffiffiffiffiffiffiffiffiffi
2pq

p cos
/
2

ð2Þ
and a deviatoric one:

sxx

syy

szz

sxy

8>>><
>>>:

9>>>=
>>>;
¼

rxx � rh

ryy � rh

rzz � rh

sxy

8>>><
>>>:

9>>>=
>>>;
¼ K Iffiffiffiffiffiffiffiffiffiffi

2pq
p

�

1
6 cos /

2 ½2ð1� 2m0Þ � 3Cos/þ 3Cos2/�
1
6 cos /

2 ½2ð1� 2m0Þ þ 3Cos/� 3Cos2/�
2
3 ð2m0 � 1Þ cos /

2

cos /
2 sin /

2 cos 3/
2

8>>>><
>>>>:

9>>>>=
>>>>;

ð3Þ

where KI and m0 are the Stress Intensity Factor of local stress fields
and the Poisson’s ratio of the nanocomposite, respectively. The
stress field given by Eq. (3) can also be represented in terms of prin-
cipal stresses; by doing so one obtains:

s ¼
s11

s22

s33

8><
>:

9>=
>; ¼

K Iffiffiffiffiffiffiffiffiffiffi
2pq

p
ð1�2m0Þ

3 cos /
2 � 1

2 sin /
ð1�2m0Þ

3 cos /
2 þ 1

2 sin /

� 2
3 ð1� 2m0Þ cos /

2

8>><
>>:

9>>=
>>; ð4Þ

The associated equivalent macroscopic von Mises stress is:

rvM ¼
K Iffiffiffiffiffiffiffiffiffiffi
4pq

p cos
/
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� 2m0Þ2 þ 3ð1� cos /Þ

q
ð5Þ

Within a multiscale approach to the problem, in agreement
with the concepts provided in Section 2.1, the deviatoric crack
macroscale stress field s can be regarded as the average value of
the microscale stresses over a Representative Volume Element
(RVE). The bridge with the nanoscale can finally be established
by means of the Mori–Tanaka approach (see Fig. 1).

Then, the maximum von Mises stress and the hydrostatic stress
arising around the nanoparticle can be approximated by:

rvM;n ¼ HvMrvM

¼ HvM
K Iffiffiffiffiffiffiffiffiffiffi
4pq

p cos
/
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� 2m0Þ2 þ 3ð1� cos /Þ

q
ð6Þ

rh;n ¼ Hhrh ¼ Hh
2ð1þ m0ÞK I

3
ffiffiffiffiffiffiffiffiffiffi
2pq

p cos
/
2

ð7Þ

where Hh is the hydrostatic part the of the global stress concentra-
tion tensor and, under the hypothesis of a rigid nanoparticle, can be
determined as [9]:

Hh ¼
3Ka
Gm
þ 4 Ga

Gm

� �
3ð1�mmÞ

1þmm

� �
3Ka
Gm
þ 4� 4 � 1� Ga

Gm

� �
ðr0=aÞ3

ð8Þ



(a) (b)
Fig. 4. Schematic representation of the four plastic shear bands departing from a nanoparticle (a). Relevant geometrical quantities used to describe the localised shear
banding around nanoparticles (b).
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Differently, HvM is the deviatoric component of the global stress con-
centration tensor, and it is determined in closed form in Appendix A.

Whenever the stress field around a nanoparticle is high enough,
it causes local shear yielding, with the formation of plastic shear
bands. The region of material containing all the nanoparticles sub-
jected to shear yielding is denoted as Shear Banding Region (SBR).
According to [3–5,12], the shear bands are modelled as four plastic
strips departing from the nanoparticle periphery (Fig. 4a). As we
will argue better later, the size of these strips depends on the dis-
tance from the crack tip.

The extension of the SBR can be determined by applying the
modified von Mises yielding criterion, which explicitly takes into
account the level of the hydrostatic stress [26]:

rvM;n þ
ffiffiffi
3
p

lrh;n ¼ rYa;c 1� lffiffiffi
3
p

� �2

ð9Þ

where rYa,c is the interphase yield stress under compression and l
is a dimensionless pressure coefficient. Substituting Eqs. (6) and (7)
and solving by q:

qSBð/Þ ¼
1

4p
K I

rYa;cð1� l=
ffiffiffi
3
p
Þ

" #2

HvM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� 2m0Þ2 þ 3ð1� cos /Þ

q	

þ
ffiffiffiffiffiffiffiffi
8=3

p
lHhð1þ m0Þ


2

cos2 /
2
ð10Þ

Eq. (10) gives the region of the material subjected to shear banding
(SBR). From Eq. (10) it is also evident that the actual value of qSB

strongly depends on /. However, the use of an average value for
the extension of the damage zone makes it representative of the
overall damage behaviour over /. Such an average value can be de-
fined as:

�qSB ¼
1

2p

Z þp

�p
qSBð/Þd/ ¼ 1

4p
K I

rYa;cð1� l=
ffiffiffi
3
p
Þ

" #2

ISB ð11Þ

where:

ISB ¼
1

2p

Z þp

�p
HvM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� 2m0Þ2 þ 3ð1� cos /Þ

q
þ

ffiffiffiffiffiffiffiffiffi
8=3

p
lHhð1þ m0Þ

	 
2

� cos2 /
2

d/ ð12Þ

The analytical solution for ISB is given in Appendix B.
Then, in the following we approximate the actual SBR with a

circle, centred at the crack tip and having a radius equal to �qSB. This
is in agreement with [4,5,12].
Denoting with USB the energy produced at the nanoscale,
according to the adopted multiscale system, the strain energy den-
sity in a RVE (microscale) can be calculated as:

uSB ¼ USB �
3f p0

4pr3
0

ð13Þ

where fp0 is the volume fraction of nanoparticles. Finally, the frac-
ture toughness enhancement due to shear band formation can be
determined, according to [4,5,7,12,27,28] as:

DGSB ¼ 2�
Z �qSB

0
uSBdq ð14Þ

The problem of determining the overall fracture toughness
enhancement is, in this way, reconverted into finding the energy
produced at the nanoscale by shear banding.

3. Modelling of toughness improvements due to shear bands

In a recent work, analysing the transmission optical micro-
graphs from the (non-propagating) crack-tip region of DN4PB test
specimens, Hsieh et al. [4,5] demonstrated the tendency of the
epoxy polymers to form localised plastic shear bands. In agreement
with previous works [4,5,12], this phenomenon of localised dam-
age can be modeled using a very simple network according to
which the local stress concentration around each nanoparticle
gives rise to four shear bands, departing from the nanoparticle sur-
face. According to this schematic, the cross sectional area of the
single shear band soundly scales with the diametrical cross sec-
tional of the nanoparticle as:

AðqÞ ¼ f ðqÞpr2
0 ð15Þ

In this expression, f (q), of which the values must fall
within the range (0,1), is an appropriate function of the distance
from the crack tip. A convenient form for f(q) is the following power
expression:

f ðqÞ ¼ 1� q
�qSB

� �a

ð16Þ

For the sake of simplicity, in this work we assume a = 0.5, where
the square root law has been chosen to agree with the square root
singularity.

The length of the shear bands can then be estimated as:

Ls ¼ r0 þ
Dp

2
� r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ðqÞ

q
ð17Þ
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where Dp is the interparticle distance. Under the hypothesis of a cu-
bic array, which is likely to occur for low nanofiller volume frac-
tions, Dp can be estimated as:

Dp ¼
4p

3f p0

 !1
3

� 2

2
4

3
5r0 ð18Þ

It is worth noting (see Fig. 4b) that in this paper it has been con-
sidered the presence of an interphase zone between the nanopar-
ticle and the matrix, thought of a zone of matrix of altered
chemistry. Then the shear band departing from the nanoparticle
boundary develops partly in the interphase zone and partly in
the un-altered matrix. It is then basic to estimate the volume frac-
tion of the interphase and of the matrix which have encountered
shear yielding.

With the aid of simple geometrical considerations, the total vol-
ume of the shear yielded material can be estimated by:

V tot ¼
3f p0

pr3
0

pf ðqÞr2
0Ls �

p
3

Ls �
Dp

2

� �2

3r0 � Ls þ
Dp

2

� �" #
ð19Þ

The interphase volume fraction per unit volume within the
bands can be expressed, instead, by means of the following equa-
tion, for Dp P 2t:

Va ¼
3f p0

pr3
0

pf ðqÞr2
0 r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
r0

� �2

� f ðqÞ

s
� r0 þ Ls �

Dp

2

0
@

1
A

2
4

�p
3

Ls �
Dp

2

� �2

3r0 � Ls þ
Dp

2

� �
þ p

3
r3

0
a
r0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
r0

� �2

� f ðqÞ

s0
@

1
A

2

� 2
a
r0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
r0

� �2

� f ðqÞ

s0
@

1
A
3
5 ð20Þ

Finally, the matrix fraction can be evaluated as:

Vm ¼
3f p0

pr3
0

pf ðqÞr2
0Ls �

p
3

Ls �
Dp

2

� �2

3r0 � Ls þ
Dp

2

� �" #
� Va ð21Þ

If we assume, for the sake of simplicity, that the matrix and the
interphase yield according to a perfectly plastic law, we can disre-
gard the elastic part of the stress–strain curve, and determine the
strain energy density related to shear banding as:

uSB ¼ f ðqÞsymVmcfm þ f ðqÞsyaVacfa ¼ um þ ua ð22Þ

where sym and sya are the shear yielding stress of the matrix and of
the interphase, while cfm and cfa are the shear fracture strain of the
matrix and of the interphase, respectively.

Substituting Eq. (22) into Eq. (14) results in:

DGSB ¼2
Z �qSB

0
uSBdq ¼ �qSBfp0symcfm

p
6f p0

 !1
3

� 52
63

syacfa

symcfm

8<
:

� 1� syacfa

symcfm

� �
32
21

Q
1
3
þ

�a4

5

� �
þ

�a2

315
ð4S� 32�a4Z þ 128�a6MÞ

	 
�
¼ �qSBfp0C ð23Þ

where:

C ¼symcfm
p

6f p0

 !1
3

� 52
63

syacfa

symcfm
� 1� syacfa

symcfm

� �8<
:

� 32
21

Q
1
3
þ

�a4

5

� �
þ

�a2

315
ð4S� 32�a4Z þ 128�a6MÞ

	 
�
ð24aÞ
�a ¼ a
r0

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 � 1
p

M ¼ �a� Q S ¼ 105�a� 88Q

Z ¼ 9�a� 7Q ð24bÞ

and �qSB is given by Eq. (11).
Further taking into consideration that:

GI ¼ K2
I ð1� m2

0Þ=E0 ð25Þ

the fracture toughness improvement turns finally out to be:

DGSB ¼ GIcfp0 �
ISB

4pr2
yað1� l

ffiffiffi
3
p
Þ2

E0

1� m2
0

� C

 !

¼ fp0 � wSB � GIc ð26Þ

where wSB quantifies the energy dissipation at the nanoscale by
localised shear banding:

wSB ¼
ISB

4pr2
yað1� l=

ffiffiffi
3
p
Þ2

E0

1� m2
0

� C

 !
ð27Þ

Since, according to [7,12], the overall fracture toughness can be
written as:

GIc ¼ GIm þ DGSB ð28Þ

being GIm the fracture toughness of the pure (unloaded) matrix, the
fracture toughness improvement can also be written in the follow-
ing normalised form:

DGSB

GIm
¼ fp0 � wSB

1� fp0 � wSB
ð29Þ
4. Results and discussion

In the present work, a general multi-scale approach has been
proposed for the damage analysis at the nanoscale induced by
shear banding around nanoparticles. It has been assumed that
the nanofiller is uniformly dispersed and distributed within the
volume, agglomeration being neglected at present. The effect of
an interphase zone surrounding the nanoparticle, characterised
by mechanical properties different from those of the matrix, is
explicitly considered.

Plastic shear bands are thought of as created by the stress con-
centration around nanoparticles. The shear bands are modelled as
four plastic strips departing from the nanoparticle periphery (see
Fig. 4a and b) of which the size depend on the distance from the
crack tip. The extension of the SBR, the region of material contain-
ing all the nanoparticles causing to shear yielding, has been deter-
mined in closed form by applying the modified von Mises yielding
criterion. This zone is thought of as the active process zone.

The aim of this section is to clarify the range of applicability and
to highlight, through examples, the most relevant features of the
solution proposed in the previous sections.

The following properties have been adopted for the
matrix, according to the suggestions in Refs. [4,5]: sym = 61.3 MPa,
cfm = 0.75, Em = 2.96 GPa, mm = 0.35. Conversely, the properties of
the interphase have been changed in order to analyse their contri-
bution to the final solution.

The effect of the interphase zone on the total strain energy, utot,
dissipated within the RVE, Eq. (22), is shown in Fig. 5. In the figure,
the strain energy absorbed within the matrix, um, the interphase,
ua, and the total energy absorbed, utot, normalised to the maximum
total strain energy, utot,max, are plotted as a function of the
nanoparticle radius for given interphase thickness and ultimate
properties. It is worth noting that, moving from micro to nanopar-
ticles, the fraction of energy dissipated within the interphase, ua,
increases. Fig. 5 also shows, with reference to the case investigated,
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Fig. 5. Normalised microscale energy dissipated by shear banding within the
matrix, um, and the interphase, ua, as a function of the nanoparticle radius (f(q)
equal to 0.5).

Fig. 6. Influence of the interphase properties on the von Mises stress concentration
around nanoparticles, according to Eq. (A.21). HvM,0 is the stress concentration
disregarding the interphase.

Fig. 7. Normalised fracture toughness increment due to shear banding as a function
of the nanofiller volume fraction. Different interphase elastic properties (v = Ga/Gm;
n = 3Ka/Gm).

Fig. 8. Normalised fracture toughness increment as a function of the nanofiller
volume fraction. Stiff interphase (v = Ga/Gm = 2; n = 3Ka/Gm = 28). Different nano-
particle diameters (d0 = 2r0).
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the strong size dependency of the phenomenon, the contribution of
the interphase becoming lower than 10% for nanoparticle diame-
ters larger than 60 nm.

It is also worth noting, in addition, that the interphase elastic
properties highly affects the stress concentration at the nanoparti-
cle periphery. In Fig. 6, the normalised von Mises stress concentra-
tion factor, determined by accounting for the presence of the
interphase, is plotted as a function of a/r0, considering different
interphase elastic properties. It can be seen that the stiffer the
interphase, the higher HvM, which reaches an almost asymptotic
value for a/r0 higher than 2. This leads to, ceteris paribus, a higher
extension of the shear banding process zone, see Eqs. (11) and (12),
and, in turn, in a much higher fracture toughness improvement,
according to Eq. (26).

The analytical model developed in this work indicates that the
fracture toughness improvements of nanoparticle reinforced poly-
mers is mainly affected by two important parameters: the elastic
properties of the interphase (related to the surface functionalisa-
tion of nanoparticles) and the nanofiller size. This is shown in
Figs. 7–10.

In particular, Fig. 7 shows the fracture toughness increase due
to shear banding as a function of the nanofiller volume content,
for different elastic properties of the interphase. The model shows
that the formation of local shear bands is a highly dissipative
mechanism (causing a high fracture toughness improvement at
low nanofiller content) and it is affected by the characteristics of
the interphase. In this sense, the model agrees with the experimen-
tal evidence: as different functionalizers lead to different proper-
ties of the interphase, nanocomposite toughening may be
strongly affected by surface treatments.

Differently, Figs. 8 and 9 show the influence of the particle size
on the fracture toughness improvements, such an effect being dif-
ferent depending whether the interface is stiffer or softer than the
matrix. In Fig. 8, the case of an interphase stiffer than the matrix is
presented. The toughness increase becomes more than 200% and it
is higher for smaller nanoparticles.

With reference to the case of a soft interphase, Fig. 9 shows that
the increase is smaller with respect to the previous case and great-
er nanoparticle radii lead to higher fracture toughness.

To better clarify the size effect on the model, the toughness
improvement is shown in Fig. 10 versus the nanoparticle radius
for two different interphase properties and a volume fraction of
5%. For radii higher than 60 nm, the results for both the case of a
soft interphase and of a stiff interphase lead to the same asymp-
totic value. Instead, for smaller particles, a stiff interphase gives
far higher improvements than a soft one.

It is worth noting that as a basic assumption of the present work
the nanofiller is supposed to be uniformly dispersed and distrib-
uted, neglecting the high tendency to agglomerate exhibited by
nanoparticles beyond a certain value of the volume fraction. It is
clear that this approximation confines the application of the model
to low nanofiller volume fractions.

Eventually, it is important to remember that a correct predic-
tion of the fracture toughness of nanoparticle filled polymers
should include, besides the effect of the shear bands, the amount



Fig. 9. Normalised fracture toughness increment as a function of the nanofiller
volume fraction. Soft interphase (v = Ga/Gm = 0.5; n = 3Ka/Gm = 7). Different nano-
particle diameters (d0 = 2r0).

Fig. 10. Normalised fracture toughness increment as a function of the nanoparticle
radius for a volume fraction, fp0, of 5%.

Table 1
Comparison between the fracture toughness of an epoxy matrix filled with silica
nanoparticles [5] and the theoretical predictions including the contribution due to
shear bands only.

Silica volume fraction, fp0 GIC (experiments) (J/m2) GIC (estimated) (J/m2)

0 77 –
0.025 123 100.8
0.049 179 117.1
0.071 183 131.8
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of energy dissipated by other mechanisms taking place at the
nanoscale (like, for example, the plastic yielding of nanovoids
[15]) which are not dealt with in the present work. Indeed, the
assessments based solely on the multiscale model developed in
this work inevitably lead to an underestimation of the fracture
toughness for nanoparticle filled polymers. However, for the sake
of completeness, Table 1 shows a comparison between the fracture
toughness of an epoxy matrix filled with silica nanoparticles [5]
and the theoretical predictions including the contribution due to
shear bands only. As expected, the model underestimates the frac-
ture toughness of polymer nanocomposites.
5. Conclusion

An analysis is provided for the toughening of nanoparticle filled
polymers caused by the emergence of localised plastic shear bands,
initiated by the stress concentrations around nanoparticles. The
model stems from the quantification of the energy absorbed at
the nanoscale and accounts for the emergence of an interphase,
created by the inter- and supra-molecular interactions arising at
the nanoscale, with mechanical properties different from those of
the matrix. It is proved that the interphase elastic properties highly
affect the stress rising around particles, causing lower or higher en-
ergy dissipation at the nanoscale. Moreover it is proved that the
particle size effects may be different depending on the elastic prop-
erties of the interphase.
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Appendix A. Determination of coefficient HvM

Let consider the problem shown in Fig. A1a. The deviatoric part
of the interphase stress components around the nanoparticle, at
r = r0, can be written as [29]:

rrrd;a ¼ rðAa cos2 h2 þ BaÞ
rhhd;a ¼ rðCa cos2 h2 þ DaÞ
r//d;a ¼ rðEa cos2 h2 þ FaÞ
srh;a ¼ rHa cos h2 sin h2

ðA:1Þ

where:

Aa ¼
3Ga

aþ bþ vþ d
� x

14
� n

9ka þ 10Ga

6ka
þ gþ 6j

	 

ðA:2Þ
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Ga
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ðA:8Þ

Auxiliary parameters are defined as [29]:

a ¼ 28G4
a � ð8Gm þ 3kmÞð28þ 50�a3 � 36�a5 þ 25�a7 þ 8�a10Þ

þ 12G2
m � k

2
a � ð14Gm þ 9kmÞð�a� 1Þ4 � ð4þ 16�aþ 40�a2

þ 55�a3 þ 40�a4 þ 16�a5 þ 4�a6Þ ðA:9Þ

b ¼ 4G3
a 2Gm½7Gmð�224� 25�a3 þ 18�a5 þ 75�a7 þ 156�a10Þ
�

þ4ka � ð182þ 400�a3 � 504�a5 þ 350�a7 þ 97�a10Þ� þ 3km

�½7Gmð�76þ 25�a3 � 18�a5 þ 25�a7 þ 44�a10Þ þ kað182þ 400�a3

�504�a5 þ 350�a7 þ 97�a10Þ�
�

ðA:10Þ



Fig. A1. Spherical inclusion embedded in a shell-shaped interphased zone under unidirectional load (a). Polar coordinate system used to describe the stress field around the
nanoparticle (b).

Fig. A2. Distribution of HvM in the range / 2 ½0; 180� for an interphase stiffer or
softer than the matrix.
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v ¼ GaGmka 112G2
mð37� 100�a3 þ 126�a5 � 100�a7 þ 37�a10Þ

n
þ9kakm � ð�96þ 100�a3 � 168�a5 þ 75�a7 þ 89�a10Þ
þ6 � Gm½kað�304� 100�a3 þ 168�a5 � 25�a7 þ 261�a10Þ

þ12kmð37� 100�a3 þ 126�a5 � 100�a7 þ 37�a10Þ�
o

ðA:11Þ

d ¼ G2
a 392G3

mð16� 25�a3 þ 18�a5 � 25�a7 þ 16�a10Þ
n

þ9k2
akm � ð48þ 200�a3 � 336�a5 þ 225�a7 þ 38�a10Þ

þ4 � G2
m½kað�2492� 400�a3 þ 504�a5 þ 525�a7 þ 1863�a10Þ

þ63kmð16� 25�a3 þ 18�a5 � 25�a7 þ 16�a10Þ�
þ6Gmka½4kað48þ 200�a3 � 336�a5 þ 225�a7 þ 38�a10Þ

þkmð�808þ 400�a3 � 504�a5 þ 325�a7 þ 587�a10Þ�
o

ðA:12Þ

n ¼� 75�a3kað2Gm þ kmÞ 14Ga½Ga � ð4þ �a7Þ þ 4Gmð�a7 � 1Þ�
�

þka � ½Gað16þ 19�a7Þ þ 16 � Gmð�a7 � 1Þ�
�

ðA:13Þ

x ¼ 6300�a3ð�a2 � 1Þ kaðGa � GmÞðGa þ kaÞð2Gm þ kmÞ ðA:14Þ

g ¼ 5�a3ð2Gm þ kmÞ 28G2
a ½Ga � ð25� 9�a2 þ 4�a7Þ

n
þGmð�25þ 9�a2 þ 16�a7Þ� þ 2kaGa � ½Gað400� 252�a2 þ 97�a7Þ
þ4 � Gmð�100þ 63�a2 þ 37�a7Þ� þ 3k2

a � ½Ga � ð100� 84�a2 þ 19�a7Þ

þ4Gm � ð�25þ 21�a2 þ 4�a7Þ�
o

ðA:15Þ

j ¼� 15�a5ð2Gm þ kmÞðGa þ kaÞ 14Ga � ½Gað4þ �a5Þ þ 4Gmð�a5 � 1Þ�
�

þka � ½Gað16þ 19�a5Þ þ 16Gmð�a5 � 1Þ�
�

ðA:16Þ

where �a ¼ a=r0.
This analytical framework can be used to calculate analytically

coefficient HvM. According to the analysis carried out in Section 2.2,
the macroscale deviatoric stress field and the macroscale equiva-
lent von Mises stress turn out to be:

s ¼
s11

s22

s33

8><
>:

9>=
>; ¼

K Iffiffiffiffiffiffiffiffiffiffi
2pq

p
ð1�2m0Þ

3 cos /
2 � 1

2 sin /
ð1�2m0Þ

3 cos /
2 þ 1

2 sin /

� 2
3 ð1� 2m0Þ cos /

2

8>><
>>:

9>>=
>>;

rvM ¼
K Iffiffiffiffiffiffiffiffiffiffi
4pq

p cos
/
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ð1� 2m0Þ2 þ 3ð1� cos /Þ

q
ðA:17Þ
Coefficient HvM represents the maximum von Mises stress at the
periphery of the nanoparticle (nanoscale stress) when the system
shown in Fig. A1a is loaded by a stress tensor constituted by a com-
bination of stresses s11, s22, s33, as given by Eq. (A.17).

In particular we suppose that the directions (X1, X2, X3) of the
Cartesian coordinate system shown in Fig. A1b coincides with
the direction of applied stresses s11, s22, s33.

It is evident that the value of coefficient HvM depends on the an-
gle /. However the variation of HvM in the range / e [0,180] is very
limited, and the value evaluated at / = 60� can be regarded as rep-
resentative of the average value (as an example see Fig. A2).

At / = 60�, the stress components sij can also be re-written in
the following normalised form:

�s1

�s2

�s3

8><
>:

9>=
>; ¼

1
rvM

s11

s22

s33

8><
>:

9>=
>; ðA:18Þ

When / = 60�, the maximum von Mises stress arising in the inter-
phase at r = r0 lays in the plane X3 = 0. Accordingly:

h2 ¼ Arc tan
X3

X1

� �
h1 ¼ �Arc tan

X3

X1

� �
¼ h2 �

p
2

h3 ¼
p
2
ðA:19Þ

Then, by making use of Eq. (A.1) and using the superposition
principle, the stress components in the interphase when r = r0

can calculated as:



Table B1
Parameter K, E, j, k and p for some values of the Poisson’s ratio.

m0 K E j k p

0.05 2.2295 1.18691 9.23628 18.5339 9.80177
0.1 2.31597 1.16188 10.1369 18.1987 8.73363
0.15 2.41961 1.1363 11.0794 17.8071 7.79115
0.2 2.54568 1.11057 12.0637 17.3769 6.97434
0.25 2.70218 1.08526 13.09 16.9309 6.28319
0.3 2.90228 1.06109 14.1581 16.4986 5.7177
0.35 3.17028 1.03899 15.2681 16.1186 5.27788
0.4 3.56011 1.02016 16.4201 15.8447 4.96372
0.45 4.24255 1.00622 17.6139 15.7559 4.77522
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�rrrd;a ¼ Aað�s1 cos2 h1 þ �s2 cos2 h2Þ þ Bað�s1 þ �s2 þ �s3Þ ¼ Aað�s1 cos2 h1 þ �s2 cos2 h2Þ
�rhhd;a ¼ Cað�s1 cos2 h1 þ �s2 cos2 h2Þ þ Dað�s1 þ �s2 þ �s3Þ ¼ �Cað�s1 cos2 h1 þ �s2 cos2 h2Þ
�r//d;a ¼ Eað�s1 cos2 h1 þ �s2 cos2 h2Þ þ F9mð�s1 þ �s2 þ �s3Þ ¼ Eað�s1 cos2 h1 þ �s2 cos2 h2Þ
�srh;a ¼ Hað�s1 cos h1 sin h1 þ �s2 cos h2 sin h2Þ

ðA:20Þ

the latter substitution being valid because �s1 þ �s2 þ �s3 ¼ 0 .
Coefficient HvM can be determined as the maximum value of

von Mises stress at the periphery of the nanoparticle, �rvM, over
the range 0 6 h2 6 p=2:

HvM ¼maxf�rvMg ðA:21Þ

where:

�rvM ¼
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ð�rrrd;a � �rhhd;aÞ2 þ ð�rhhd;a � �r//d;aÞ2 þ ð�r//d;a � �rrrd;aÞ2 þ 6�s2

rh;a

2
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ðA:22Þ
Appendix B. Closed form solution for integral ISB

ISB ¼
1

2p

Z þp

�p
½HvM
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2p
ðpH2

vM þ klHhHvM þ jl2H2
hÞ ðB:1Þ

where:

j ¼ 8
3
pð1þ m0Þ2 ðB:2Þ

k ¼ 64
27

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m0ð1� m0Þ
p

½2Eð1þ 3m0 � 2m3
0Þ þ Kð1� 3m0

þ 4m3
0Þ� ðB:3Þ

p ¼ p
2
ð7� 16m0 þ 16m2

0Þ ðB:4Þ

K ¼ EllipticK
3

4� 4m0 þ 4m2
0

� �
ðB:5Þ

E ¼ EllipticE
3

4� 4m0 þ 4m2
0

� �
ðB:6Þ
being EllipticK and EllipticE the first and the second complete Ellip-
tic integrals, respectively. Parameter K, E, j, k and p are listed in
Table B1 for some values of the Poisson’s ratio.
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